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Energies of the fifteen (2l2l 82l 9) states for boronlike ions withZ 5 5–100 are evaluated to second order
in relativistic many-body perturbation theory. Second-order Coulomb and Breit-Coulomb interactions are
included. Corrections are made to lowest order for the frequency-dependent Breit interaction and for the Lamb
shift. A detailed discussion of the various contributions to the energy levels is given for boronlike iron
(Z526!. Comparisons of the calculated energy levels with available experimental data are made for the entire
sequence.@S1050-2947~96!09610-2#

PACS number~s!: 31.15.Md, 31.25.Jf, 31.30.Jv

I. INTRODUCTION

Boronlike ions are simple atomic systems for which both
three-electron interactions and interactions with an atomic
core are important. Three-electron interactions play a domi-
nant role, of course, for (1s2lnl 8) autoionizing levels of
lithiumlike ions; however, for such ions there are no core
interactions@1,2#. Edlén, in his 1933 thesis@3#, was perhaps
the first to identify lines of boronlike ions. Fifty years later,
he gave detailed comparisons of theoretical and experimental
energies along the boron isoelectronic sequence@4#. On the
basis of this comparison, he suggested a simple empirical
formula to predict levels of highZ boronlike ions. This for-
mula was used by Denne and Hinnov@5# to identify spectra
obtained in high-temperature Tokamak plasmas. The five
lines corresponding to 2s22p22s2p2 transitions for Ti
XVIII , Cr XX, Fe XXII , and Ni XXIV were identified in spec-
tra obtained from Princeton Large Torus tokamak plasmas
by Dave et al. @6#. More recently, this sequence was ex-
tended to MoXXXVIII by Myrnäs et al. @7#. Highly-charged
uranium and thorium ions were produced in a high-energy
electron beam ion trap~SuperEBIT! at Lawrence Livermore
National Laboratory@8,9#. Thirteen 2s1/222p3/2 transitions
~Li-like through Ne-like uranium and thorium! were identi-
fied and measured with high accuracy. Experimental ener-
gies for boronlike ions obtained by different authors have
been gathered and critically evaluated in Refs.@10–26#.
Some of these energies are used below for comparison.

Nonrelativistic perturbation theory was used to calculate
energies of (2l2l 82l 9) states for boronlike ions in Refs.@27–
29#. Contributions of the Breit interaction, calculated using
exact nonrelativistic wave functions, were expressed as a
1/Z expansion in Refs.@30,31#. By introducing screening
constants, and including radiative and higher-order relativis-
tic effects in this method~referred to as the MZ method!,
accurate predictions were obtained for ions in the rangeZ 5
6–54 @30,31#. The multiconfiguration Dirac-Fock~MCDF!
technique was used to calculate energies of the first excited
states of boronlike ions withZ56–92 in Ref. @32#. This
MCDF calculation was improved for boronlike iron

(Z526! by adding the second-order correlation energy@33#.
In the present paper, we use relativistic many-body per-

turbation theory~MBPT! to determine energies ofn52
states for boronlike ions with nuclear charges in the range
Z 5 5–100. We illustrate our calculation with detailed stud-
ies of the casesZ5 26, 90, and 92. High-quality experimen-
tal data exist for each of these ions. We determine energies
for the (2s22p) 2P1/2 ground state, the six odd-
parity (2s22p) 2P3/2, (2p

3) 4S3/2, (2p
3) 2PJ , (2p

3) 2DJ
excited states, and the eight even-parity (2s2p2)
@4PJ ,

2PJ ,
2DJ ,

2S1/2# excited states. Our calculations are
carried out to second order in perturbation theory and include
both the second-order Coulomb interaction and the second-
order Breit-Coulomb interaction. Correction for the
frequency-dependent Breit interaction are taken into account
in lowest order. The effect of the Lamb shift is estimated
from a calculation in a local central potential that approxi-
mates the core HF potential. The three-electron contributions
to the energy are compared with the one- and two-electron
contributions. They are found to contribute about 30% of the
total second-order energy.

Our perturbation theory calculations are carried out using
single-particle orbitals calculated in the HF potential of the
(1s)2 heliumlike core. As a first step, we determine and store
the single-particle contributions to the energy for the three
n52 states (2s,2p1/2, and 2p3/2) in lowest, first, and second
orders. These contributions are precisely those needed
to calculate energies ofn52 states of lithiumlike ions.
Next, we evaluate and store the twenty possible two-
particle matrix elements of the effective Hamiltonian,
^2l2l 8JuHeffu2l 92l 98J&, in first and second order. The one-
and two-particle matrix elements were used previously to
evaluate energies of the (2l2l 8) levels for berylliumlike ions
@34#. Finally, second-order three-particle matrix elements are
evaluated. Combining these data using the method described
below, we calculate one-, two-, and three-particle contribu-
tions to the energies of boronlike ions. To check correctness
of the various terms in the energy matrix, we also evaluated
all of the above contributions using relativistic Coulomb
wave functions, and compared the individual terms with pre-
vious nonrelativistic calculations@29#. It should be empha-
sized that the methods used here for boronlike ions can be
used as well to calculate energies of aluminumlike ions and
similar three-valence electron systems.
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The present calculations are compared with theoretical re-
sults from Ref.@33# for Z526, and with the CI calculations
of Chen and Cheng@35# for the 2s22p3/2 transitions in bo-
ronlile thorium and uranium. Comparisons of the ionization
potentials and multiplet splittings along the isoelectronic se-
quence with available experimental data are also given.

II. METHOD

The evaluation of the second-order energies for boronlike
ions follows the pattern of the corresponding calculation for
berylliumlike ions given in Ref.@34#. In particular, we use
the second-order one- and two-particle matrix elements for
berylliumlike ions calculated in@34#, but recoupled as de-
scribed below, to obtain the contributions from all diagrams
of the type shown in Fig. 1~a!. We will discuss how these
matrix elements are combined to obtain the one- and two-
particle contributions to energies of boronlike ions. We refer
the reader to Ref.@34# for a discussion of how the basic one-
and two-particle matrix elements were evaluated. Intrinsi-
cally three-particle diagrams of the type shown in Fig. 1~b!
also contribute to the second-order energy for boronlike ions.
We discuss the evaluation of these three-particle diagrams in
detail. It should be noted that the three-particle matrix ele-
ments calculated here can also be used in calculations of
energies of ions with four or more valence electrons.

The model space state vector for an ion with three valence
electrons outside a closed core can be represented as@36#

C~QJM!5N~Q!( ^b1b2uK12&^K12b3uK&ab1
† ab2

† ab3
† u0&,

~2.1!

whereu0& is the state vector for the core (1s2, in our case!,
Q describes a three-particle state with quantum numbers
n1
0k1

0n2
0k2

0@J12#n3
0k3

0, and intermediate momentumJ12. We
use the notationKi5$Ji ,Mi% andb i5$ j i ,mi%. The sum in
Eq. ~2.1! is over magnetic quantum numbersm1, m2, m3,
andM12. The quantitŷ K1K2uK3& is a Clebsch-Gordan co-
efficient:

^K1K2uK3&5~21!J12J21M3A2J311S J1 J2 J3

M1 M2 2M3
D .

~2.2!

The above representation of the state vector is somewhat
inconvenient; for example, it leads to an expression contain-
ing 36 terms for the three-particle diagram in Fig. 1~b!, dif-

fering only in the order of the initial and final indices. It is
more efficient to express the state vector in a manifestly sym-
metric form. To this end, we rewrite Eq.~2.1! in six equiva-
lent ways, merely permuting the indicesb1 ,b2, andb3. The
resulting state vector is

C~QJM!5
1

6
N~Q! (

M12$b%
@^b1b2uK12&^K12b3uK&d123

2^b2b1uK12&^K12b3uK&d2131^b2b3uK12&

3^K12b1uK&d2312^b3b2uK12&^K12b1uK&d321

1^b3b1uK12&^K12b2uK&d3122^b1b3uK12&

3^K12b2uK&d132#ab1
† ab2

† ab3
† u0&, ~2.3!

where $b% ranges over the 3! permutations of the single-
particle indices, and where

d1235d~1,10!d~2,20!d~3,30!.

Using the following angular momentum identity@37#:

(
M12

^b1b3uK12&^K12b2uK&

5 (
J12M12

~21!J121J129 1 j 31 j 2^b1b2uK129 &

3^K129 b3uK&A~2J1211!~2J129 11!H j 2 j 3 J129

J1 J J12
J ,
~2.4!

the three-particle state vector can be represented in a form

C~QJM!5 (
b1b2b3

Cb1b2b3
QJM ab1

† ab2
† ab3

† u0&. ~2.5!

The factorCb1b2b3
QJM provides the orthonormality and antisym-

metry of the state vector in all one-electron (b1 ,b2, and
b3) indices. We may write

Cb1b2b3
QJM 5(

K129
^b1b2uK129 &^K129 b3uK&C110220330~J12,J129 ,J!,

~2.6!

where the indices (1,2,3) designate (n1k1 ,n2k2 ,n3k3), and
where the indices (10,20,30) designate (n1

0k1
0 ,n2

0k2
0 ,n3

0k3
0).

We note that the dependence on magnetic quantum numbers
is included in the two Clebsch-Gordan coefficients, and all
permutations of the three indices are in the factor
C110220330(J12,J129 ,J), which is independent of magnetic
quantum numbers. One finds

FIG. 1. Second-order diagrams:~a! two-particle diagram,~b!
three-particle diagram.
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TABLE I. Contributions to the second-order matrix elements forB-like iron (Z526) in a.u. In columns 3–8, the number in square
brackets denotes the power of 10.

Matrix element E1
(2) E2

(2) E3
(2) B1

(2) B2
(2) B3

(2)

J51/2 odd

2s2s@0#2p* 2s2s@0#2p* -0.264827@-1# -0.127850@-0# -0.656374@-1# -0.308971@-2# -0.533118@-2# -0.214070@-3#

2p2p@0#2p* 2p2p@0#2p* -0.382312@-1# -0.218904@-0# -0.112379@-0# -0.365215@-2# -0.887883@-2# -0.926460@-3#

2s2s@0#2p* 2p2p@0#2p* 0.332192@-1# 0.956959@-2# 0.130290@-2# 0.108640@-3#

2p2p@0#2p* 2s2s@0#2p* 0.315634@-1# 0.106161@-1# 0.123260@-2# 0.177300@-3#

J53/2 odd

2s2s@0#2p 2s2s@0#2p -0.257007@-1# -0.127675@-0# -0.651486@-1# -0.289492@-2# -0.418533@-2# -0.261970@-3#

2p2p@2#2p* 2p2p@2#2p* -0.382312@-1# -0.162226@-0# -0.971880@-1# -0.365215@-2# -0.717588@-2# -0.644260@-3#

2p* 2p* @0#2p 2p* 2p* @0#2p -0.390131@-1# -0.195739@-0# -0.106181@-0# -0.384695@-2# -0.947643@-2# -0.509780@-3#

2p2p@0#2p 2p2p@0#2p -0.374492@-1# -0.193442@-0# -0.104371@-0# -0.345736@-2# -0.652149@-2# -0.729410@-3#

2s2s@0#2p 2p2p@2#2p* 0.000000@-0# -0.192200@-4# 0.000000@-0# 0.282300@-4#

2p2p@2#2p* 2s2s@0#2p 0.000000@-0# -0.192300@-4# 0.000000@-0# -0.800000@-6#

2s2s@0#2p 2p* 2p* @0#2p 0.230278@-1# 0.650344@-2# 0.717040@-3# 0.599800@-4#

2p* 2p* @0#2p 2s2s@0#2p 0.221848@-1# 0.701846@-2# 0.691767@-3# 0.249500@-4#

2s2s@0#2p 2p2p@0#2p 0.234895@-1# 0.663667@-2# 0.921288@-3# 0.315600@-4#

2p2p@0#2p 2s2s@0#2p 0.223187@-1# 0.736370@-2# 0.871577@-3# 0.124560@-3#

2p2p@2#2p* 2p* 2p* @0#2p 0.254259@-1# 0.438694@-2# 0.508236@-3# 0.997000@-4#

2p* 2p* @0#2p 2p2p@2#2p* 0.256835@-1# 0.432405@-2# 0.512042@-3# 0.984100@-4#

2p2p@2#2p* 2p2p@0#2p -0.256835@-1# -0.426731@-2# -0.512042@-3# -0.921400@-4#

2p2p@0#2p 2p2p@2#2p* -0.254259@-1# -0.432948@-2# -0.508236@-3# -0.934000@-4#

2p* 2p* @0#2p 2p2p@0#2p -0.244734@-1# -0.661120@-2# -0.965367@-3# -0.124170@-3#

2p2p@0#2p 2p* 2p* @0#2p -0.240675@-1# -0.680506@-2# -0.950471@-3# -0.127420@-3#

J55/2 odd

2p2p@2#2p* 2p2p@2#2p* -0.382312@-1# -0.202427@-0# -0.103899@-0# -0.365215@-2# -0.676242@-2# -0.478100@-4#

J51/2 even

2p* 2p* @0#2s 2p* 2p* @0#2s -0.331389@-1# -0.159046@-0# -0.682029@-1# -0.356572@-2# -0.828600@-2# -0.329890@-3#

2p2p@0#2s 2p2p@0#2s -0.315750@-1# -0.182036@-0# -0.634433@-1# -0.317614@-2# -0.654263@-2# -0.705540@-3#

2p* 2p@1#2s 2p* 2p@1#2s -0.323569@-1# -0.172328@-0# -0.777728@-1# -0.337093@-2# -0.671150@-2# -0.360550@-3#

2p* 2p* @0#2s 2p2p@0#2s -0.346106@-1# 0.502457@-2# -0.136524@-2# -0.137040@-3#

2p2p@0#2s 2p* 2p* @0#2s -0.340366@-1# 0.511516@-2# -0.134417@-2# -0.158010@-3#

2p* 2p* @0#2s 2p* 2p@1#2s -0.442981@-1# -0.747114@-2# -0.727879@-3# 0.595100@-4#

2p* 2p@1#2s 2p* 2p* @0#2s -0.439120@-1# -0.756248@-2# -0.724006@-3# 0.842000@-5#

2p2p@0#2s 2p* 2p@1#2s 0.310505@-1# 0.551654@-2# 0.511949@-3# 0.970000@-5#

2p* 2p@1#2s 2p2p@0#2s 0.313235@-1# 0.544749@-2# 0.514688@-3# -0.384200@-4#

J53/2 even

2p* 2p@1#2s 2p* 2p@1#2s -0.323569@-1# -0.114922@-0# -0.678492@-1# -0.337093@-2# -0.573764@-2# -0.327400@-3#

2p* 2p@2#2s 2p* 2p@2#2s -0.323569@-1# -0.185428@-0# -0.711031@-1# -0.337093@-2# -0.620816@-2# -0.152680@-3#

2p2p@2#2s 2p2p@2#2s -0.315750@-1# -0.187786@-0# -0.753208@-1# -0.317614@-2# -0.531738@-2# -0.313460@-3#

2p* 2p@1#2s 2p* 2p@2#2s 0.246557@-1# 0.424196@-2# 0.320937@-3# -0.127780@-3#

2p* 2p@2#2s 2p* 2p@1#2s 0.246557@-1# 0.424196@-2# 0.320937@-3# -0.401400@-4#

2p* 2p@1#2s 2p2p@2#2s -0.350208@-1# -0.592824@-2# -0.575439@-3# 0.960200@-4#

2p2p@2#2s 2p* 2p@1#2s -0.347155@-1# -0.600247@-2# -0.572377@-3# -0.401800@-4#

2p* 2p@2#2s 2p2p@2#2s 0.415499@-2# 0.700561@-2# -0.122510@-4# -0.651800@-4#

2p2p@2#2s 2p* 2p@2#2s 0.414890@-2# 0.709114@-2# -0.112190@-4# -0.481000@-4#

J55/2 even

2p* 2p@2#2s 2p* 2p@2#2s -0.323569@-1# -0.153411@-0# -0.654774@-1# -0.337093@-2# -0.541372@-2# 0.109000@-3#

2p2p@2#2s 2p2p@2#2s -0.315750@-1# -0.123939@-0# -0.643519@-1# -0.317614@-2# -0.410860@-2# -0.130290@-3#

2p* 2p@2#2s 2p2p@2#2s -0.410566@-1# -0.628030@-3# -0.755139@-3# -0.636100@-4#

2p2p@2#2s 2p* 2p@2#2s -0.406686@-1# -0.637420@-3# -0.750154@-3# -0.825600@-4#
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C110220330~J12,J129 ,J!5N~10,20,30!Fd~3,30!d~J12,J129 !PJ12
~110,220!

1d~3,10!PJ
129

~130,220!A~2J1211!~2J129 11!H j 30 j 2
0 J129

j 1
0 J J12

J
1d~3,20!PJ2812~13

0,210!A~2J1211!~2J129 11!H j 30 j 1
0 J129

j 2
0 J J12

J ~21! j 1
0
1 j 2

0
1J12G , ~2.7!

where

PJ12
~110,220!5d~1,10!d~2,20!

1~21! j 1
0
1 j 2

0
1J1211d~1,20!d~2,10!. ~2.8!

Here, we have usedN(10,20,30) instead ofN(Q) to desig-
nate the normalization factor, which can be obtained from

(
1,2,3,J129

„C110220330~J12,J129 ,J!…256. ~2.9!

Using this representation it is possible to express contribu-
tions of diagrams of the type shown in Fig. 1~a! in terms of
the energy matrix elements for two-electron~berylliumlike!
ions. Moreover, with this representation, only one expression
is needed to evaluate the contributions from the diagram in
Fig. 1~b!.

The model space forn52 states of boronlike ions con-
sists of seven odd parity states consisting of twoJ51/2
states, fourJ53/2 states, and oneJ55/2 state and eight even
parity states consisting of threeJ51/2 states, threeJ53/2
states, and twoJ55/2 states which can be summarized as
follows:

Odd parity states:
J51/2 J53/2 J55/2

2s1/22s1/2@0#2p1/2 2s1/22s1/2@0#2p3/2 2p3/22p3/2@2#2p1/2
2p3/22p3/2@0#2p1/2 2p3/22p3/2@2#2p1/2

2p1/22p1/2@0#2p3/2
2p3/22p3/2@0#2p3/2

Even parity states:
J51/2 J53/2 J55/2

2p1/22p1/2@0#2s1/2 2p1/22p3/2@1#2s1/2 2p1/22p3/2@2#2s1/2
2p3/22p3/2@0#2s1/2 2p1/22p3/2@2#2s1/2 2p3/22p3/2@2#2s1/2
2p1/22p3/2@1#2s1/2 2p3/22p3/2@2#2s1/2

Let us now consider the coefficients
C110220330(J12,J129 ,J) for boronlike ions. To simplify the for-
mulas the following notation is used:

CJ~1
020J123

0![C110220330~J12,J129 ,J!,

QJ~1
02030![C110220~J!d~3,30!,

C110220~J!5h12PJ12
~110,220!,

s[2s, p*[2p1/2, p[2p3/2,

whereh is equal to 1 for nonequivalent electrons and 1/A2
for equivalent ones. We then obtain the following from Eq.
~2.7!:

FIG. 2. Second-order energy contributions:~a! odd-parity states,
~b! even-parity states. FIG. 3. Mixing coefficients for the even-parityJ51/2 states.
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2s22p configuration,

C1/2~ss0p* !5Q0~ssp* !2
1

A2
Q0~p* ss!1A3

2
Q1~p* ss!,

C3/2~ss0p!5Q0~ssp!2
A3
2
Q1~pss!1

A5
2
Q2~pss!.

2p3 configuration,

C1/2~pp0p* !5Q0~ppp* !2
A3
2
Q1~p* pp!

1
A5
2
Q2~p* pp!,

C5/2~pp2p* !5Q2~ppp* !2
1

2
Q1~p* pp!1

A7
2
Q2~p* pp!,

C3/2~pp2p* !5Q2~ppp* !2A3

2
Q1~p* pp!

2
1

A2
Q2~p* pp!,

C3/2~p* p* 0p!5Q0~p* p* p!2
A3
2
Q1~p* pp* !

1
A5
2
Q2~p* pp* !,

C3/2~pp0p!5
1

A2
Q0~ppp!2A5

2
Q2~ppp!.

2p22s configuration,

C1/2~p* p* 0s!5Q0~p* p* s!2
1

A2
Q0~sp* p* !

1A3

2
Q1~sp* p* !,

C1/2~pp0s!5Q0~pps!2
A3
2
Q1~spp!1

A5
2
Q2~spp!,

C1/2~p* p1s!5Q1~p* ps!2Q1~spp* !2Q1~sp* p!,

C3/2~p* p1s!5Q1~p* ps!2
1

4
Q1~spp* !1

A15
4

Q2~spp* !

2A3

8
Q0~sp* p!1A5

8
Q1~sp* p!,

C3/2~p* p2s!5Q2~p* ps!1
A15
4

Q1~spp* !1
1

4
Q2~spp* !

TABLE II. Energies of boronlike iron (Z526! given relative to the ground state. Notation:E(011)5E(0)1E(1)1B(1).

2p22s
4P1/2

4P3/2
4P5/2

2D3/2
2D5/2

2S1/2
2P1/2

2P3/2

E(011) 405724.5 460002.8 513306.5 755414.7 776375.5 880272.2 1003367.4 1019967.5
E(2) 2844.4 3854.5 3202.0 -15682.1 -14019.2 -22580.8 -21341.0 -24596.3
B(2) -367.2 -153.3 222.8 -280.1 -96.7 -812.9 -586.9 -220.1
ELamb -3652.3 -3490.9 -3389.3 -3459.5 -3349.8 -3585.0 -3289.4 -3297.8
ETot 404549 460213 513342 735993 758910 853294 978150 991853
ETh @33# 404691 459796 513373 735763 757578 858011 972713 990281
EExpt @22# 404550 460200 513260 736520 759620 853480 978220 992290

2s22p 2p3 2p3 2p3 2p3 2p3
2P3/2

4S3/2
2D3/2

2D5/2
2P1/2

2P3/2

E(011) 117397.9 1276431.5 1433133.0 1462519.3 1613924.3 1668716.6
E(2) 362.3 -13059.3 -29672.0 -29331.4 -36797.0 -34165.1
B(2) 264.9 -651.4 -1001.6 -467.5 -1191.0 -812.2
ELamb 241.9 -7258.3 -7241.0 -7169.8 -7018.1 -6821.5
ETot 118267 1255463 1395219 1425551 1568918 1626918
ETh @33# 118104 1256290 1395305 1425808 1569053 1626110
EExpt @22# 118270 1255700 1396410 1426880 1569630 1627720

TABLE III. Comparison of the present MBPT calculations with
CI calculations forB-like uranium and with experimental data for
B-like uranium andB-like thorium for 2s1/222p3/2 transitions.

B-like thorium B-like uranium
B-1 B-2 B-1 B-2

E(011) 4127.278 4127.315 4561.882 4562.111
E(2) -2.102 -1.716 -2.072 -1.682
B(2) -0.176 -0.492 -0.154 -0.489
ELamb -35.632 -35.633 -38.826 -38.827
ETot 4089.629 4089.473 4520.829 4521.113
EExpt@8,9# 4089.92 4089.92 4521.39 4521.39
ETh ~CI-DS! @35# 4521.30 4521.53
ETh ~CI-DH! @35# 4521.36
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2A5

8
Q0~sp* p!2A3

8
Q1~sp* p!,

C3/2~pp2s!5Q2~pps!2A3

2
Q1~spp!2

1

A2
Q2~spp!,

C5/2~p* p2s!5Q2~p* ps!2Q2~spp* !1Q1~sp* p!,

C5/2~pp2s!5Q2~pps!2
1

2
Q1~spp!1

A7
2
Q2~spp!.

Using this representaion, the expression for the energy
matrix element for diagrams of the type Fig. 1~a! ~which we
designate byR) can be written

ER~1020@J12#3
0J,180280@J128 #380J!

5 (
1,2,18,28

(
J129

ER~12,2818,J!N~12!N~1828!

3(
3

C110220330~J12,J129 ,J!

3C181802828038380~J128 ,J129 ,J!, ~2.10!

whereER(12,1828,J) is the two-particle contribution to the
n1k1n2k2n18k18n28k28 J matrix element for berylliumlike
ions. Here,N(12)51/A2 if electrons 1 and 2 are equivalent
and 1/2 if they are not equivalent. This choice accounts for
the fact thatER(12,1828,J) contains both direct and ex-
change contributions.

The three-electron coefficients given by Eqs.~2.6! and
~2.7! allow us to obtain the expression for the diagram of
Fig. 1~b!, designated byG. The contribution of this diagram
to the second-order matrix elements takes the form

EG~1020@J12#3
0J,180280@J128 #380J!

5 (
1,2,3,18,28,38

(
n

v1238nv18283n
en1e382e12e2

C123
QJMC182838

Q8JM ,

~2.11!

wherev i jkl5gi jkl1bi jkl is the sum of the two-particle Cou-
lomb matrix elementgi jkl , and the two-particle matrix ele-
ment of instantaneous Breit interaction,bi jkl . Carrying out
angular reduction we obtain for Coulomb interaction@from
thegg term in Eq.~2.11!#

EG~1020@J12#3
0J,180280@J128 #380J!

52 (
1,2,3,18,28,38

(
J129 ,J12-

(
kk8

3~21! j 21 j 282 j 32 j 381J129 1J12- 1k1k8

3(
n

Xk~1238n!Xk~18283n!

en1e382e12e2
H j n j 38 J129

j 1 j 2 k J

3H j n j 3 J

j 18 j 28 k8J H J12- j 38 J

J129 j 3 j n
J

3A~2J129 11!~2J12- 11!C110220330~J12,J12- , J!,

3C181802828038380~J128 ,J12- ,J!, ~2.12!

where

Xk~abcd!5~21!k^auuCkuuc&^buuCkuud&Rk~abcd!
~2.13!

~see for details@34#!. We obtain a similar term for Breit
contribution from linear terms (gb1bg) of Eq. ~2.11! by
changing Xk(123n8)Xk(18283n) to Xk

B(1238n)Xk(18283n)
1Xk(1238n)Xk

B(18283n) in Eq. ~2.12!. The expression for
Xk
B(abcd) is given in @38#. We see that the contribution of

the G diagram is determined by a sum over the single-
particle spectrumn ~with restrictions for states with principal
quantum number 2!.

III. RESULTS AND DISCUSSION

We calculate energies of the 15 possible (2l2l 82l 9) @J#
states for all boronlike ions with nuclear chargesZ<30 and
for 17 representative ions withZ.30 (Z 5 32, 36, 40, 42,
47, 50, 54, 60, 63, 70, 74, 79, 80, 83, 90, 92, 100!. These
calculations include first- and second-order contributions
from the Coulomb and Breit operators for the 43 possible
matrix elements. Although the calculations presented here
were carried out in a HF basis, calculations were also made
using a relativistic Coulomb basis in order to compare our
results with previous nonrelativistic calculations@27#.

In Table I and in Figs. 2 and 3, we give details of our
calculations of the first- and second-order contributions to
the energy matrices. We list the contributions from one-,
two-, and three-electron diagrams forZ526. The columns
headedEi

(2) and Bi
(2) contain second-order contributions

from the Coulomb and Breit operators, respectively. The col-
umns headedE1

(2) and B1
(2) contain the total contributions

from valence diagrams found in our previous paper@34#.
Those headedE2

(2) and B2
(2) contain values obtained using

data for two-electron diagrams given in@34# and recoupled
according to Eq.~2.10!. Contributions of the three-electron
diagram are given in the columnsE3

(2) andB3
(2) . These val-

ues were obtained from Eq.~2.12! . We can see from Table
I that the contributions of the three-electron diagram to the
Coulomb energy are smaller by a factor of 2–3 than the
two-electron contributions, but 2–3 times larger than the
one-electron contributions. It should be noted that one-
and two-electron contributions vanish for the
2s2s@0#2p22p2p@2#2p* matrix element, so the entire
contribution is from the three-electron diagram. The contri-
butions of the three-electron diagram to the Breit energy are
smaller than those of the one- and two-electron diagrams.

Let us describe in more detail the calculation ofE1
(2) ,

E2
(2) , B1

(2) , and B2
(2) . Consider, as an example, the~sim-

plest! case of the 2s2@0#2p* @0# diagonal matrix element. In
this case only two one-particle (2s and 2p* ) and three two-
particle (2s222s2 @J50#, 2s2p*22s2p* @J50#, and
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TABLE IV. Energies of boronlike ions given relative to the ground state in cm21 for ions with Z55-42.

Z 2p22s 2p22s 2p22s 2p22s 2p3 2p3 2p3
4P1/2

2D3/2
2S1/2

2P1/2
4S3/2

2D3/2
2P1/2

5 ETot 29688 46783 64495 72466 97144 95096 110234
EExpt 28805 47857 63561 72535 97037

6 ETot 43768 73694 98361 108920 142227 148761 170231
EExpt 43000 74933 96494 110625 142024 150468 168732

7 ETot 57910 100019 131688 144248 187061 201517 229284
EExpt 57187 101031 131003 145876 186797 203089 230404

8 ETot 72107 126110 164788 179035 231813 253873 287900
EExpt 71177 126950 164367 180481 231275 255186 289016

9 ETot 86402 152184 197866 213598 276685 306167 346422
EExpt 86035 152898 197565 214881 276657 307273 347418

10 ETot 100852 178402 231081 248143 321870 358656 405118
EExpt 99030 179020 230851 249292 359601 406001

11 ETot 115515 204905 264566 282832 367556 411564 464220
EExpt 114978 205412 264400 283869 367290 412395 465101

12 ETot 130456 231825 298437 317814 413932 465095 523944
EExpt 129890 232274 298282 318721 413610 465818 524652

13 ETot 145740 259294 332800 353243 461194 519449 584508
EExpt 144420 259730 332710 354080 460070 520140 585180

14 ETot 161437 287448 367741 389298 509543 574823 646133
EExpt 161010 287850 367670 390040 509330 575450 646760

15 ETot 177615 316429 403328 426192 559190 631412 709051
EExpt 177177 316807 403322 426877 558973 631961 709666

16 ETot 194343 346383 439600 464181 610354 689411 773506
EExpt 193882 346700 439580 464759 610075 689910 774020

17 ETot 211690 377464 476579 503570 663262 749016 839759
EExpt 377831 476636 504092 840411

18 ETot 229722 409831 514276 544694 718148 810423 908086
EExpt 410189 514410 545209

19 ETot 248502 443651 552723 587905 775248 873834 978784
EExpt 248320 443960 552860 588260 775280 874320 979270

20 ETot 268105 479112 592007 633568 834838 939494 1052202
EExpt 267990 479420 592180 633760 834860 940000 1052700

21 ETot 288524 516334 632182 681964 897032 1007515 1128560
EExpt 288440 516640 632370 682250 897130 1008100 1129060

22 ETot 309856 555555 673456 733494 962171 1078270 1208327
EExpt 555860 673714 733749 1078790 1208810

23 ETot 332114 596940 715991 788491 1030423 1152024 1291840
EExpt 332180 597291 716370 788850 1030850 1152900 1292800

24 ETot 355315 640680 759992 847330 1101966 1229135 1379497
EExpt 354570 640932 760400 847750 1101840 1229660 1380270

25 ETot 379460 686959 805675 910398 1176935 1310022 1471700
EExpt 379660 687540 805930 910880 1177430 1310890 1472410

26 ETot 404549 735993 853294 978150 1255463 1395219 1568918
EExpt 404550 736520 853480 978220 1255700 1396410 1569630

27 ETot 430559 787984 903107 1051036 1337615 1485310 1671608
EExpt 431560 788520 903260 1050860 1338760 1486350 1672130

28 ETot 457458 843156 955402 1129555 1423449 1580975 1780274
EExpt 457980 843710 955660 1129490 1424810 1581860 1781090

29 ETot 485190 901719 1010468 1214208 1512978 1682906 1895403
EExpt 485730 1513780

30 ETot 513713 963929 1068640 1305561 1606287 1791874 2017564
E Expt 964320 1068147

32 ETot 572850 1100290 1195653 1510677 1804678 2033832 2285238
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2s2p*22s2p* @J51#) contributions are necessary. Using
the following table:

E0 E1 B1 E2 B2

2s -75.211665 0.0 0.020549 -0.006609 -0.000871
2p* -73.419686 0.0 0.040284 -0.013265 -0.001347

it is possible to calculate the one-particle contributions as

E523~2s contribution!1~2p* contribution!.

Using Eq. ~2.10!, the expression for the corresponding
C181802828038380(J128 ,J129 ,J) coefficient

C1/2~ss0p* !5Q0~ssp* !2
1

A2
Q0~p* ss!1A3

2
Q1~p* ss!,

and values for two-particle matrix elements,

E1 B1 E2 B2

2s2s 2s2s J50 3.768813 0.003909 -0.037251 -0.001442
2s2p* 2s2p* J50 3.292572 0.005144 -0.026257 -0.001810
2s2p* 2s2p* J51 3.790241 -0.000147 -0.051647 -0.001989

we can calculate the two-particle contributions:

E5~2s2s 2s2s contr.!1
1

2
~2s2p* 2s2p* J50 contr.!

1
3

2
~2s2p* 2s2p* J51 contr.!.

Adding the three-particle contribution from Table I, we then
obtain for the 2s2@0#2p* @J# diagonal matrix element:

Contribution E0 E1 B1 E2 B2

one-particle -223.84302 0.00000 0.081382 -0.026483 -0.003090
two-particle 0.00000 11.100461 0.006261 -0.127850 -0.005331
three-particle 0.00000 0.00000 0.00000 -0.065637 -0.000214
total -223.84302 11.100461 0.087643 -0.219970 -0.008634

which givesE 5 2212.883 51 for the total energy. Results
of similar calculations for all 43 second-order energy matrix
elements are given in the columns headedE1

(2) , B1
(2) ,

E2
(2) , andB2

(2) in Table I.
Carrying out the recoupling by this method does not re-

quire significant computer time, provided the one- and two-
particle contributions are known~as they are in the present
case!. The only contribution that must be calculated anew is
the three-particle diagram. This contribution, however, con-
tains only a single sum over intermediate states, and does not
require a lengthy calculation. It should be noted that no ad-
ditional calculations are necessary to evaluate matrix ele-
ments for four-particle systems; it is only necessary to deter-
mine the recoupling coefficientsC and combine the known
one-, two-, and three-particle matrix elements.

After evaluating the energy matrices, we calculate eigen-
values and eigenvectors for states with given values ofJ and
parity. There are two possible methods to carry out the di-
agonalization:~a! diagonalize the sum of zeroth- and first-
order matrices, then calculate the second-order contributions

using the resulting eigenvectors; or~b! diagonalize the sum
of the zeroth-, first-, and second-order matrices together. Fol-
lowing Ref. @34#, we choose the second method here.
Second-order Coulomb contributions to the energies are
shown in Fig. 2~a! for odd-parity states and in Fig. 2~b! for
even-parity states. We see that the energies are smooth func-
tions of Z. It is simple to identify the three doublet states
(2s22p 2P,2p3 2D,2p3 2P) the one quartet state (2p3 4S)
of odd parity in Fig. 2~a!. We see that the splitting of the
doublet states is comparable to the difference betweenLS
terms for highZ ions. It should be noted that the second-
order energies for odd-parity states are slowly varying func-
tions ofZ, ranging from20.2 a.u. forZ55 to20.3 a.u. for
Z5100, for example. Similar comments can be made regard-
ing energies of the even-parity states shown in Fig. 2~b!: the
energies change, for example, from20.16 a.u. forZ55 to
20.35 a.u. forZ5100. We see that the splitting of the quar-
tet 2p22s 4P term covers almost the entire range of the eight
even-parity states~from20.16 a.u. to20.45 a.u.!. The split-
ting of the doublet 2p22s 2D term is also large, but the split-

TABLE IV. ~Continued!

Z 2p22s 2p22s 2p22s 2p22s 2p3 2p3 2p3
4P1/2

2D3/2
2S1/2

2P1/2
4S3/2

2D3/2
2P1/2

EExpt 1100600 1196000 1511320
36 ETot 697620 1428896 1502865 2028461 2255499 2633444 2931644

EExpt 698000 1429450 1502900 2029440
40 ETot 828049 1850020 1902681 2727792 2798252 3424488 3763936
42 ETot 894668 2103072 2145987 3161519 3112921 3906990 4265712

EExpt 894050 2102900 2147300 3164770
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ting of the doublet 2p22s 2P term remains small. The curve
for the single doublet 2p22s 2S ranges from20.3 a.u. for
Z55 to20.4 a.u. forZ5100. As a result, it is not possible
to use theLS designation for high-Z ions; the splitting for
these ions is comparable to intervals between theLS terms.
We obtain almost purej j coupling for the highest values of
Z.

These observations are confirmed by theZ dependence of
the mixing coefficients shown in Fig. 3. This figure shows
the mixing coefficients for even parity states withJ51/2.
There are three states in this complex and their state vectors
can be represented in a form

F~1!5C11F~2p* 2p* @0#2s!1C12F~2p2p@0#2s!

1C13F~2p* 2p@1#2s!,

F~2!5C21F~2p* 2p* @0#2s!1C22F~2p2p@0#2s!

1C23F~2p* 2p@1#2s!,

F~3!5C31F~2p* 2p* @0#2s!1C32F~2p2p@0#2s!

1C33F~2p* 2p@1#2s!. ~3.1!

The nine coefficientsCik with i ,k51,2,3 are shown. We can

see from the figure that for smallZ (Z 5 5 – 17!, the largest
values are those of the diagonal coefficientsC11, C22, and
C33. For Z518, the value of the nondiagonal coefficient
C21 is larger than the value of diagonal one (C22), but this
fact does not change the classification of the states
(2p2p@0#2s) since two other diagonal coefficients (C11 and
C33) are still larger than their nondiagonal counterparts. The
maximum value forC21 occurs forZ520, and beyond this
maximum the value ofC21 decreases rapidly. ForZ520, the
nondiagonal coefficientC32 intersects the diagonal one
(C33). As a consequence, the state 3 should be designated as
2p2p@0#2s. ForZ524, the nondiagonal coefficientC23 be-
comes larger than other two coefficientsC21 andC22. This
ordering of the coefficients does not change forZ.24. In
conclusion, we find that, in the interval fromZ55–19,
the three states of even parity withJ51/2 should be labeled
as 152p* 2p* @0#2s, 252p2p@0#2s, 352p* 2p@1#2s
and for Z.20 as 152p* 2p* @0#2s, 252p* 2p@1#2s,
352p2p@0#2s. It should be noted that for a situation where
there are almost equal nondiagonal and diagonal coefficients,
the names of states in a pure coupling scheme (j j or LS) do
not describe these states. It is simple to number them as 1, 2,
3 but then we lose information. Moreover, names of state in

TABLE V. Splitting of the levels forB-like isoelectronic sequence in cm21.

Z 2s22p 2P 2p22s 4P 2p22s 4P 2p22s 2D 2p22s 2P 2p3 2D 2p3 2P
(3/221/2) (3/221/2) (5/223/2) (5/223/2) (3/221/2) (5/223/2) (3/221/2)

5 17 7 10 0 14 1 2
6 65 24 33 -2 45 -2 3
7 177 62 88 -6 115 -11 6
8 389 134 193 -12 249 -24 12
9 749 258 374 -21 474 -41 25
10 1311 452 659 -30 821 -60 52
11 2140 740 1084 -37 1321 -76 104
12 3309 1152 1685 -37 2002 -77 199
13 4898 1722 2504 -23 2881 -47 365
14 7000 2488 3586 19 3961 40 642
15 9713 3500 4979 108 5218 222 1088
16 13149 4812 6731 270 6601 548 1782
17 17425 6488 8893 541 8028 1088 2826
18 22670 8607 11515 972 9405 1923 4350
19 29022 11256 14643 1628 10645 3150 6515
20 36631 14539 18319 2593 11689 4877 9509
21 45653 18578 22581 3975 12512 7210 13546
22 56260 23509 27455 5907 13112 10250 18861
23 68629 29493 32956 8553 13507 14070 25704
24 82953 36708 39084 12110 13719 18708 34333
25 99423 45354 45818 16806 13776 24150 45007
26 118267 55664 53129 22917 13703 30332 58000
27 139703 67885 60958 30745 13529 37123 73574
28 163972 82295 69235 40632 13278 44347 92002
29 191317 99187 77869 52945 12972 51797 113552
30 222002 118883 86763 68080 12635 59268 138502
32 294498 168060 104929 108456 11929 73604 199751
36 492491 316022 140379 241329 10694 97774 376203
40 779389 551603 172142 465458 9879 116294 642683
42 963920 710787 186428 619880 9602 124047 817319
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the LS-coupling scheme for smallZ and j j coupling for
largeZ are commonly used. For boronlike ions, this problem
occurs only for intermediateZ (Z 5 18–28!.

The final summary of our calculations is given in Tables
II–VII and in Figs. 4–6. In these tables, energies are given
relative to the (2s22p)2P1/2 ground state. We use the follow-
ing notation:E(011)[E(0)1E(1)1B(1) is the sum of the
lowest- and first-order eneries,E(2) is the second-order Cou-
lomb energy,B(2) is the second-order Breit correction,
ELamb is the QED correction,Etot is the total theoretical en-
ergy, ETh is other theoretical data, andEExpt is the experi-
mental energy. The QED contributions were evaluated from
one-electron Lamb shift data calculated in a (1s2) potential
following the method described in Ref.@39#. A Fermi distri-
bution with root-mean-square radius from@40# but with
thicknesst52.3 fm was used to describe the nuclear charge

distribution for ions other than U and Th; for these two ions,
a nonspherical charge distribution with parameters from
Refs.@41,42# was used.

We see from Table II that the second-order Coulomb con-
tribution is still very substantial for intermediate-Z ions, such
asZ526. For the 2p22s 4P states of this ion,E(2) is almost
equal toELamb ~with opposite sign!, and is 2–5 times larger
thenELamb for all other states except 2s22p 2P3/2. Again,
for Z526, the second-order Breit contribution is at least nine
times smaller than theE(2) for all states except 2s22p
2P3/2, for whichE

(2), B(2), andELamb are very close and of
the same sign. AsZ increases, the relative contribution of the
second-order term decreases rapidly~since E(2) is almost
constant withZ) and the contribution of theELamb becomes
20 times larger than the total second-order contribution for
states of boronlike Th and U listed in Table III. We include
comparisons with both theoretical and experimental data in
Tables II and III.

We will discuss Table II first. The experimental precision
is not less than 100–150 cm21 for 2p22s states. Our data
are in agreement with experiment within this precision for
most of these states. We also compare our results with those
obtained by MCDF1 nonrelativistic second-order calcula-
tions @33#. It can be seen that the present calculations agree
better with experiment than do the calculations from@33#.

The comparison with experimental data for uranium@8#
and thorium@9# and with CI calculations for uranium@35# is
given in Table III. ForB-like ions two transitions were mea-
sured:B-1 from the (2s1/22p1/22p3/2)3/2 state to the ground
state, andB-2 from the (2s1/22p1/22p3/2)1/2 state to the
ground state. The rows labeled CI-DS and CI-DH are results
from large-scale CI calculations using single-particle basis
orbitals from Dirac-Slater and Dirac-Hartree potentials, re-
spectively@35#. As can be seen from Table III, the present
calculations are in excellent agreement with experiment for
all four transitions, and with the CI calculations for uranium
ions. It should be noted that the present calculations require
considerably less computer time than the CI calculations of
Ref. @35#.

TABLE VI. Energies of even states of boronlike ions given relative to the ground state in eV for ions withZ5472100. Notation:
2p*52p1/2, 2p52p3/2.

Z 2p* 2p* @0#2s 2p* 2p@1#2s 2p2p@0#2s 2p* 2p@1#2s 2p* 2p@2#2s 2p2p@2#2s 2p* 2p@2#2s 2p2p@2#2s
1/2 1/2 1/2 3/2 3/2 3/2 5/2 5/2

47 132.059 360.994 564.159 288.182 358.239 565.287 315.226 501.785
50 145.129 433.954 698.535 357.383 432.422 699.628 386.504 631.367
54 163.158 554.063 922.219 472.162 553.830 923.259 503.790 848.573
60 191.952 794.646 1375.999 704.114 795.757 1376.932 739.030 1292.300
63 207.296 948.094 1668.016 852.982 949.644 1668.883 889.345 1579.093
70 246.240 1415.487 2564.710 1309.037 1417.548 2565.408 1348.281 2462.976
74 270.752 1766.900 3243.577 1653.568 1768.960 3244.179 1694.129 3134.078
79 304.150 2314.779 4306.967 2192.430 2316.562 4307.470 2234.261 4187.246
80 311.157 2440.985 4552.652 2316.776 2442.677 4553.139 2358.808 4430.812
83 333.062 2857.684 5365.183 2727.781 2859.033 5365.639 2770.296 5236.832
90 387.406 4089.473 7778.572 3945.609 4089.629 7779.066 3988.483 7634.039
92 403.659 4521.121 8627.437 4373.090 4520.838 8627.982 4415.842 8478.006
100 469.800 6707.808 12946.594 6542.334 6705.378 12947.620 6583.359 12776.193

FIG. 4. Difference between theory and experiment for the split-
ting of 2s22p 2P and 2s2p2 2D levels.
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Table IV listsETot andEExpt ~where available! for 30 ions
in the rangeZ 5 5–42 for the lowest terms in multiplets, i.e.,
4P1/2,

2D3/2,
2S1/2,

2P1/2, for even parity states, and
4S3/2,

2D3/2,
2P1/2, for odd parity states. The splitting of

4,2P and 2D terms is given in Table V. It should be noted
that the experimental data in Refs.@10–26# for quartet terms
(2s2p2 4PJ , 2p

3 4S3/2) were given with uncertainty1x
since there were no observed transitions withDS51. This
uncertainty1x is sometimes the principal contribution to the
difference between our results and experimental data (dE).
We see, for example, thatdE for the (2s2p2) 4PJ and
(2p3)4S3/2 levels changes sharply forZ513 and 24. For
those states with the experimental uncertainty given as1x,
our theoretical data, which were obtained by one theoretical
method for the entire isoelectronic sequence, can certainly be

useful. The fact thatdE is not a smooth function ofZ, for
Z.20, can be explained by the varying accuracy of the
available experimental data.

The error in the theoretical energy values decreases rap-
idly from about 1500 cm21 for Z55 to about 20–500
cm21 for Z520. The theoretical error for lowZ is domi-
nated by the omitted higher-order correlation corrections,
which decrease as 1/Z of the second-order correlation en-
ergy. There is also uncertanity in QED values which contrib-
ute to a difference for higherZ.

We obtained very good agreement with experiment for
the splitting of all levels: 2s22p 2P(3/221/2), 2p22s
4P(3/221/2), 2p22s 4P(5/223/2), 2p22s 2D(5/223/2),
2p22s 2P(3/221/2), 2p3 2D(5/223/2), 2p3 2P(3/221/2).
These splittings are given in Table V for the range of

TABLE VII. Energies of odd states of boronlike ions given relative to the ground state in eV for ions withZ5472100. Notation:
2p*52p1/2, 2p52p3/2.

Z 2p2p@0#2p* 2s2s@0#2p 2p* 2p* @0#2p 2p2p@2#2p* 2p2p@0#2p 2p2p@2#2p*
1/2 3/2 3/2 3/2 3/2 5/2

47 722.788 195.145 503.168 672.603 896.755 690.016
50 870.681 255.722 589.747 817.167 1103.442 835.605
54 1113.050 358.303 728.497 1055.131 1446.012 1074.752
60 1596.575 570.197 998.548 1532.026 2137.828 1553.059
63 1904.325 708.168 1167.559 1836.424 2581.740 1858.001
70 2840.426 1136.117 1674.051 2764.557 3941.639 2786.964
74 3543.646 1462.762 2049.805 3463.118 4969.276 3485.703
79 4639.611 1977.134 2630.552 4553.140 6577.153 4575.618
80 4892.034 2096.356 2763.613 4804.357 6948.372 4826.768
83 5725.418 2491.339 3201.661 5634.092 8175.638 5656.201
90 8188.850 3670.227 4485.860 8088.808 11816.935 8109.601
92 9052.128 4086.394 4933.022 8949.543 13096.661 8969.792
100 13426.078 6212.580 7181.888 13313.078 19602.155 13330.332

FIG. 5. Difference between theory and experiment for the split-
ting of 2s2p2 4P levels.

FIG. 6. Difference between theory and experiment for the split-
ting of 2p3 2P and 2p3 2D levels.
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Z55–42. The precision of the corresponding experimental
data was estimated by Edle´n @4#. The difference between the
present data and those from@4# ~given with error bars! is
shown in Figs. 4–6. The best agreement of our data with
experimental data was obtained for the splitting of the
ground-state multiplet~where the experimental data are very
precise!. It should be noted that this splitting was measured
with better accuracy than the remaining splittings shown in
Figs. 4–6. Furthermore, some of the present values of split-
ting @(2p3) 2D and (2p3) 2P# were obtained as a result of
diagonalization of energy matrices with differentJ. The
splitting for these terms and for the (2s2p2)2D term is very
small and the sign changes withZ. In such cases, it is very
difficult to determine the splitting with high precision; nev-
ertheless, we obtained good agreement~almost everywhere
within error bars! with Edlén’s experimental data from@4#.

In Table VI we present theoretical energies for ions with
Z in the range 47–100 for the eight even-parity states. Theo-
retical energies in thisZ range for the seven odd-parity states
are presented in Table VII. We usej j -coupling designations
in these two tables. The comparison with experiment forZ 5
90 and 92 has already been discussed. We expect that data

for otherZ will provide a useful guide for future measure-
ments.

In conclusion, we find that MBPT gives excellent agree-
ment with experimental data and with other high-precision
theoretical calculations. It would be beneficial if experimen-
tal data for other highly-chargedB-like ions were available.
At the present time, there are no experimental data for ions
with Z between 42 and 90. The availability of such data
could lead to an improved understanding of the relative im-
portance of different contributions to the energies of highly-
charged ions. It would also be useful to have experimental
data for other levels ofB-like uranium and thorium as well
as more precise data for the already measured transitions.
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