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Boundary-condition-determined wave function for the ground state of helium
and isoelectronic ions
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A simple nonvariational wave function for two electron atoms is described. The radial part is derived from
the asymptotic one-electron wave functions that are modified to account for the proper core boundary condi-
tions. The electron-electron correlation is described by an ansatz which has the correct behayjer Goand
ri,—o. The additional parameter in this ansatz is calculated from a perturbation calculation. This wave
function yields ground-state energies for the heliumlike atoms it (H™) to 10 (N€") within 0.0021—
0.006&,, of the exact energies, which is significantly better than obtained with previous models. We also
calculated (r2" and multipolar polarizabilities and performed other tests on this wave function.
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PACS numbd(s): 31.10+z, 31.25.Eb

[. INTRODUCTION by considering a large-expansion after separating out the
leading exponential term. In more recent wétiB—15, cor-

As the simplest of all quantum systems in which electron-relation has been incorporated by including the cusp factor as
electron correlation has an important effect, the wave funcfirst suggested by Hirschfelddil6]. While all these ap-
tions of two-electron atoms and ions have been investigateproaches have some positive aspects, none of them appears
ever since the early days of quantum mechanics in gred® incorporate all the correct features of the exact wave func-
detail[1]. Once this fundamental problem is fully understoodtion.
the experience gained can be applied to more complicated In Sec. Il we review some general properties of the exact
many-electron systems. These wave functions are needed rig{0-electron wave function. Then in Sec. Ill we propose a
only to understand the properties of the free particles but alsmple radial wave function which satisfies these important
to describe the behavior of these systems in the presence @@l Properties. An ansaiz for a correlation function which
external fields, and their interaction with each other and witHFOTectly accounts for the electron-electron interaction in the
other systems. A recent particularly interesting application igWO limits r1;—0 andr,,—ce is described. The additional
the demonstration that the He-He van der Waals potemiatparametem of this correla_tlon function is calculated in Sec.
can be fully determined knowing only the ionization energy, V- In Sec. V we use this wave function to calculate the

the precise asymptotic behavior of the free helium atong_rﬁund state energies of the two electron systems HHe,

wave function, and the dispersion coefficief$ Li™, RER l\.lé5 . This wave function vyields ground state
The most accurate wave functions of two-electron sysenergies which agree between 0.0021-0.@ya8ith the ex-

tems are obtained from variational calculations. A few ex-2Ct energies. This wave function is also used to calculate

amples of this approach are the calculations of Chan{r®") and multipolar polarizabilities. The reliability of the

drasekhar and Herzbefg], Frankowski and Peker[d], and ~ Wave function is demonstrated by subjecting it to several

Freund et al. [5]. For two-electron systems even high- critical tests. Atomic units are used throughout.

precision calculations including relativistic and QED correc-

tions can be carried od6]. However, for a deeper under-

standing of the atomic properties, it is desirable to have Il. SOME GENERAL PROPERTIES OF EXACT

simple, analytic wave functions which can account for the EIGENFUNCTIONS

,ﬁzi?tﬁér';nSv(gt;n;nriir:f'g:\llgergfur;ese?; tgfio?t); a;:r: \;\;]?;/e difruenc(f The exact eigenstates of the atomic Hamiltonian have sev-

. . S -~ _eral well known properties. For example, the expectation
tion. A systematic expansion in powers of the hypersperlcavalue of the Hamiltonian has a minimum at the exact eigen-
radius R=(rf+r2)*? and IrR, usually designated as the

Fock o 71 which i all ; I function. Similarly, the virial theorem can be used to relate
ROC de}xpanilor[ I] w 'r:: S'SFETQ'pGC'a y aqcugati orbsma the average kinetic and potential energies. These properties,

and formally solves the Schulinger equatioi8], has been nichy are called global properties, have been the basis of
considered for two-electron systerf&-11]. In another ap-

h[12 ) ¢ ; h b btai any variational calculations. Here, however, our interest is
proach[12], asymptotic wave functions have been obtainedy, the |ocal properties such as the spatial behavior of the

wave functions in specific regions of configuration space. By
. ) , . analyzing these properties and incorporating each of them,
Permanent address: Dept. of Physics, Indian Institute of Technoly,e nave constructed an optimized but simple wave-function

O?y' Bombay 400076, India. which has the proper behavior in all regions.
Permanent address: Dept. of Physics, Pacific Lutheran Univer- The s-states of a two-electron atom or ion are described
sity, Tacoma, WA 98447, by the Hamiltonian
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1,1, 2z z 1 energy of the system B=—Z?%/2—E,, since—Z?/2 is the
H=—-3Vi-5Vor =+ —. (1) energy of the one electron ion core. Therefg#ecan be
vtz T written as
In our approach the wave function is separated into two _ [—52_
nars, B=+—-272-2E. (6)
Furthermore, the wave function of the residue system is hy-
W(ry,ra,r)=®(ry,rp) Xf(r), (2)  drogenic with a nucleus of chargg
where the second factor, which depends only rgp, is zZ32 .
called the correlation functiori(r,,). This approximation gl(rZ):ﬁe 2 (7)

was already introduced by Hylleragk7] and used often af-
terwardg18]. The total wave function of Eq2) must satisfy  Thys it follows from Eq.(5) that

the following three local properties: it has to fulfill specific

boundary conditions as eithef or r, go to zero. On the fime 730k e (Z- 1)1

other hand, if either, or r, goes to infinity, the wave func- W —— 5 Ae oy e P, (8a)
tion must satisfy the well known asymptotic conditions. If

r1, goes to zero and the two electrons coalesce, the wellSimilarly

known correlation cusp condition has to be fulfilled. Finally

asr, goes to infinityf(r,,) has to equal unity. e 792

v ——Ae M VIE e by (8b)
27
A. Small-r behavior of the total wave function whereA is the normalization for the asymptotic function. Of
Whenr, goes to 0, the two leading terms in the Hamil- course, there are other properties such as relations for higher
tonian are;V3 and — Z/r,. From this, one can show that the partial waves similar to Eq:3) or higher order terms in Eq.
total wave function of ars-state should start off 44.9] (5). They may be important, if higher precision is required
[23]. Again with the ansatz of Eq2) the asymptotic condi-

r{—0 . )
tions have to be fulfilled byb(r,r»).
¥ go(r2)(1-Z1). (33 P (rarz)
Similarly C. The electron-electron correlation function
Clearly in the region where,, is very small relative to
r2—0 r, andr,, the rl_z1 term will dominate the potential. Kato
W ——— go(r1)(1=Zry), (30)  [20] formally and rigorously showed that
wherego(r,) and gq(r4) are only functions ofr, andr, ) v 1
respectively lim|——] =5W¥(riy=0), €)
S r—0\ 912 2
These equations follow from Kato’s theoref@0] of 1770 av
electron-nucleus coalescence, where the factor of 1/2 is because of the reduced mass of the
two electrons, and their charges being both negative. This
lim a4 — _ZW(r=0) 4) condition is known as the correlation cusp. As a consequence
AR ' of Eqg. (9) the wave function at smal;, must start off as
[24]
wherer can be either, orr, and “av” stands for spherical r1o—0 1
averaging. Thus the exact eigenfunctions must satisfy these 0 D(ry,ro) |1+ =1t ) (10)
boundary conditions at small valuesmgfand ofr,. For the 2

\g?\r/e l;u;]cuon of Eq(2) these conditions must be fulfilled by where® is independent of ,,. According to Eq.(10) the
1,12/

logarithmic derivative is equal t§ at r,,=0. Although the
) _ wave function may not go to zero fos,— 0 the radial prob-
B. Large-r behavior of the total wave function ability density does. This can be easily seen using the coor-
Whenr, goes tox, electron 1 is essentially in the Cou- dinate set(y, r,, ri2) in which the volume element is pro-
lomb field of the nucleus shielded by electron 2. Thereforeportional tor y,.
the wave function of electron 1 is determined by its long From Eq. (10 it follows that the simplest correlation
range asymptotic form which is a Whittaker function function is[25]
[12,21-23. The leading term is 1
ri—o f(r12)21+ Erlz. (11)
U —— —=gy(ryri" VP e A, (5)
Vam This approximate correlation function has recently been used
in variational CI quantum chemistry calculatiof26—28.

where 8= 2E,, E, is the first ionization energy, anél is  Since this function increases linearly without bound it can
the asymptotic normalization constant. Fgr—o the total give good results only in cases where the wave function is
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compact, i.e., the functio®(r,r,) is already very small in lowing total wave function which has all these three proper-
places where 1, becomes large compared to 1. To removeties for the ground state:
this limitation Hirschfeldef16] proposed a correlation func-

tion W(ry,rp,ri)=®(ry,rp)f(rop)

r =B[e 2" (1+cr,y) @ VB 1g=hr2
f(ryp) =1+ —c r12/d (12) Lem ™ +erz
2 +e 2'2(1+cry) Z VE 17 A1)
with d as a variational parameter. This correlation function
increases withr, up tor,,=d, and then decreases reaching X|1— 15 on e"‘rlz), (16

an asymptotic value which is the same as the value at
r.»=0. Since there is na priori reason why the correlation ) o

function should have a local maximum, the behavior of EqWhereB is related to the normalization constahtof the
(12) is not completely realistic. Nevertheless, this function@Symptotic wave function by
has been used with some success in several recent calcula-

. Az3/2

tions[13]. B= cl-(z-1/B (17)
Roothaan and Weig29] made a very accurate numerical 2w ’

investigation of the correlation function for the ground state

of the He atom. They found that in the vicinity of,=0, the The only additional parameter is determined below

correlation function is linear and satisfies the cusp conditioffrom the smallr limiting behavior. Note that Eq(16) is
of Eg. (9). It monotonically increases and approaches unitysymmetric with respect to the interchangergfandr,. To
asr 1, becomes very large80]. To satisfy both these require- determinec we expand Eq(16) in the region of smalt, (or

ments Parf31] suggested a piecewise model function, ry),
1+gry, forryp,<D 10
f(rg)= (13 : CZr e (Z-1)/8-1g-Br2
1+gD forry,=D. VY — (1-Zry+---)(1+cry) e

This function, however, has the disadvantage that the deriva-
tive is discontinuous at,,=D. As far as we are aware, +(1+c
calculations based on this correlation function have not been

z-1_,
B

ri+- ..)(1—Brl+ .. .)e—Zfz]

reported in the literature. Other, in most cases more compli-
cated, correlation functions have been proposed in literature X ( 1- e""lZ)
[32]. 1+2\
In this paper, we propose the following simple correlation
function which has the desired properties ragb=0 and =((1—Zr1+---)(1+cr2)(z1>’31eﬁr2
2=
T N el —Blri+--- ezr2>
=1— —Arip
f(rip=1 Tion ¢ : (14) B
where\ is a variational parameter. Its smajl, expansion is X1 1= 112N 6“12)- (18)
1 A, iy .
f(ryp= 112N 1+ §r12_1r12+ cee ], (15 Then the electron-nucleus coalescence condition of &ds

only satisfied if

so that it satisfies the cusp condition of Eg). On the other

hand, asr,, becomes large the function E¢L4) has the C(E—l) —p=-7 (19)
desirable feature that it increases monotonically to unity. In B '

the following section we describe how Ed4) facilitates the

calculation of the ground state energy of two electron atomicThereforec becomes

systems. In a forthcoming paper, we will use this function to

treat the electron-electron correlation in the surface integral (B—2)8
method for the exchange energy in a molecular system. c= Z——,B—l (20

Ill. A MODEL WAVE FUNCTION Finally we call attention to the fact that the wave function in

A wave function satisfying the boundary conditions andEd.(16) with 8 given by Eq.(6) andc by Eq.(20) has all the
properties expressed by Ed8), (8), and (14) can be ex- required properties discussed in Sec. Il, i.e., the correct be-
pected to provide a realistic description of the spatial depenhavior forr, or r,—0 ando, and forr,;,—0 and«. Only
dence of the wave function in the entire configuration space@ne parametek remains, which may be determined varia-
of the electrons. Consistent with the ‘“different orbitals for tionally or from some other considerations as discussed in
different spins” approach33] we therefore propose the fol- the next section.
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TABLE |. The energies and parameters for heliumlike atoms from the present wave functioi with
calculated by Eq(31) and from a variational calculation. The fraction of the correlation endé€yyrr.
recovered by the present calculations is calculatddEgsresent— E(HF)]/[ E(exac}— E(HF)]. The Hartree-
Fock energie€(HF) are taken from Refl42] and the exact energies from Rg87]. All energies are in

atomic units.
\ detemined by Eq(31) \ detemined variationally
System Z N —E(present  Corr. N —E(present  Corr. —E(exac)
H™ 1 0.083 0.5257 95% 0.155 0.5265 97% 0.5278
He 2 0.50 2.9000 91% 0.48 2.9000 91% 2.9037
Li* 3 0.92 7.2749 89% 0.86 7.2749 89% 7.2799
Be?t 4 1.33 13.6499 87% 1.24 13.6499 87% 13.6556
B3+ 5 1.75 22.0249 87% 1.63 22.0249 87% 22.0310
c* 6 2.17 32.4000 86% 2.02 32.4000 86% 32.4062
NS+ 7 2.58 44,7750 86% 2.41 44.7750 86% 44.7814
o8+ 8 3.00 59.1500 85% 2.80 59.1500 85% 59.1566
Fr 9 3.42 75.5250 85% 3.19 75.5250 85% 75.5317
NeB* 10 3.83 93.9000 85% 3.61 93.9000 85% 93.9068
IV. THE CORRELATION PARAMETER A with the eigenenerg¥,= —Z? of the zeroth-order Hamil-

The customary way to determine the only remaining paionian. The termsV; @, and V,®, are easily calculated.
rameten\ is to invoke the variational method and determineAfter dividing both sides byb,, a differential equation for
the energyE self-consistently. First, with an assumgdfor ~ (r12) is then obtained,
example,3=2), we vary\ until a minimum in the energy
E calculated according to

—

1, 1, _r - -
(E—Eo)f=—=V2f— -V —Z—=.(V,f)—Z—=-(V,f)
2 2 rg ro

v) 1
2 + —f. (24
(V[T) 12

(21)

1
—<\Ir|v§|«1r>+2z<\1f r—«v>+<~1r
1
E:

To solve forf(ry,) in the limitr,,—0, f(r{y) is assumed to
be a regular function for small,, and can therefore be writ-

is achieved. With thi€, we calculate3 according to Eq(6) .
S[Fn as a power series,

and then repeat the process. This iteration converges quickl

usually after two or three cycles. The calculations of the

matrix elements in Eq21) are straightforward, and some of f(r)= 2 cirly. (25)

the details are given in the Appendix. The only input param- i

eter for different systems is the nuclear charge/alues of

\ and the corresponding energies are listed in Table I. Thus Eq.(24) becomes
Next we show that in fack can be determined analyti-

cal!y. Eor this we split the Hamiltonian_ intq a pgrturbation, 1 o o Z[TiTip ToTpp i,

which is 1f;,, and a zeroth-order Hamiltonian given by the =3 2 Cii(I+1)rpp"— S\ T 2 Cill 12

remaining terms in Eq(1). The wave functiond(r,,r,) is ' ! 2

assumed to be the eigenfunction of this zeroth-order Hamil- i1 :

tonian so that the total wave function is given by +Ei Ciry, =(E- Eo)Ei Cil 1 (26)

—_ — - —

W(ry,rp,r1)=®o(ry,ro)f(ryp)=e 2rtraf(r ). -
(Nr2.f1) EREANED (") (22 With the expansionm,=r,;—rq-rq,/r{+--- one can show

that the second term in E¢R6) is of orderO(r,). Equating

This approximate wave function has the correct smaie- &l terms proportional ta ;" in Eq. (26) yields

havior but the asymptotia;—occ condition is not properly

fulfilled. Inserting Eq.(22) into the Schrdinger equation 1

with the full Hamiltonian, we obtain €175 Co. 27)

which is equivalent to Kato’s cusp condition H§). Equat-

1 1
_ 2 2 vi Vi
EV=Eq¥ =5 ®oVif— 5 PoVai+(Vi®Po)- (Vi) ing the terms proportional to 1 yields

- - 1 1/1
(Vo) (Vo) + —W 23 CZZE(E—(E—EO))CO. 28)
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TABLE II. The present values for the expectation val(e®"), dipolar and quadupolar polarizabilities,
along with the predictions of some other calculations which are enclosed in parentheses.

(r?) (rt) (r® ay a;
He 2.329 7.262 4.4810" 1.33 2.01
(2.39 (7.932 (5.03x 10H)° (1.382 (2.4432
(2.39 (7.6)° (1.379°
Li* 0.874 0.979 2.08 0.184 9.5410°2
(0.8922 (1.03° (2.39° (0.1922 (1.11x 107 1)P
(0.88° (0.190
Be?*t 0.456 0.264 0.287 5.0610 2 1.33x 1072
(0.455° (0.272° (0.315° (5.1x 10 2P (1.49x 1072)P
B3+ 0.280 9.8% 102 6.54x 102 1.91x 1072 3.04x 1073
c4* 0.189 451072 2.00< 1072 8.74x 1078 9.36x 1074
3Referencd43].
bReferencg12].

This equation contains the unknown energy differencehere a slight difference. The present results are, to the best
(E—Ey) which can be approximated by its perturbative of our knowledge, the lowest parameter-free energies that
value have been reported up to now. Our results are much better
than the simplest conventional one-parameter variational cal-
1 culation which introduces an effective nuclear chafg4l.
r_12 Do(ry.r2) ~ g (29) They are also far superior to other more involved one-
parameter calculationg35,36. Particularly striking is the
We thus have nonvariational energy of- 0.525%F,, for H™, which is very
close to the exact result of 0.527&,, [37]. The present
1 57 value should be compared with the earlier two-parameter re-
:1—2( 1- 7) Co (B0 sults of —0.506,, [38] and — 0.5206,, [39] and the three-
parameter results of 0.521F,, [40] and —0.525%&,, [41].
With ¢; andc, determined in Eq(27) and Eq.(30) a  The importance of the asymptotic condition for Hvas al-
direct comparison with the expansion of the correlation funcfeady seen in a former one-parameter calculation, reported
tion Eq.(15) becomes possible. The unknown paramates by one of the present authors, which gave an energy of

Cz

calculated to be —0.5226E,, [36]. The present nonvariational calculation re-
covers 95% of the correlation energy defined as the differ-
5 1 ence between the exd@&7] and the HH42] energies. This is
A=15273 (31)  improved to 97% by using. as a variational parameter
(E=—0.526%,).
Thus in this approximation is a simple linear function of
Z. It may be noted that since the perturbative value in Eq. B. Expectation values(r®")
(29) is more accurate for larger values &f the expression Some important and useful properties of atomic isoelec-
for N in Eq. (31) is particularly accurate for larger values of tronic sequences are the expectation values®afWe have
Z. presented the values for these quantities, obtained from our
nonvariational wave functions, in Table II, along with the
V. RESULTS results of other calculations. In particular, the expectation

_ value(r?) is known to be equal to , wherey is the dia-
We now present the results of the calculations of the enmagnetic susceptibility. For He, [, and BE*, for which
ergies, expectation valu¢s™"), and dipolar and quadrupolar other values have been repor{@®,12], there is good agree-
polarizabilities for the two-electron isoelectronic sequencement. Previous results for 8 and C** are not available.
using our wave function in Eq(16) with the parameters
defined in Egs(6), (20), and(31). The parametep, which C. Multipolar polarizabilities
depends on the ionization energy of the system, is deter-

mined iteratively. Our wave functions can be used to calculate multipolar

polarizabilities. In the presence of a multipolar potential, the
) perturbed part of the wave functiodW(r,r,,r,), satisfies
A. Energies the inhomogeneous equation
The values of the energies for the two-electron isoelec-
tronic sequence witZ=1-10 calculated foix determined (Eo— H0)8\If=[r'1P|(cosﬂl)+r'2P|(c0592)]\If(r1,r2,r12),
from Eg. (31), and variationally, are listed in Table I. The (32
difference in the energies for these two calculations is sQvhereW(r,,r,,r,) is the unperturbed wave function given
small forZ=2-10 that it does not appear within the five in Eq. (16). We obtain the first two terms fos¥ in the
significant figures given in Table I. Only in the case of 5 asymptotic expansion,
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4 1.0[
3 7 E 0.8¢
. 06]
< 2F 3 'y f
: = 04
10 ] ]
i 0.2 ]
ot ] 0.0L . ‘ ‘ .
0 12 0 2 4 6 8 10
7r,,
FIG. 1. The two sets of values for the parameteare plotted FIG. 2. The correlation functions are plotted agains,Zor

against the nuclear charge The solid line is calculated using EQ. 7 from 1 to 1Ga,. A was calculated using E¢31). The correlation
(32). The variational pointg¢squarescan be fitted by a straight line  f,nctions are normalized to 1 far,,—. The slope ar;,=0 is
A=0.386xZ—0.283(dashegl All quantities are in atomic units. M(1+2)). All quantities are in atomic units.

ST =— [ ! r1+(z_ 1)[2|;L1+(Z_ 1)/'8]] charges. The small value affor H™ seen in Fig. 2 indicates
(I+1)8 2p°1(1+1) that the long range behavior of the correlation function is
1 most important in this diffuse system whose two electrons

Xr! P (costy)+ Tz iz r'2P|(cosaz)} are least tightly bound to the nucleus. Thus idrovides the
most exacting test of the new correlation function. For larger

X (1+cry) @ VB e Brig=Zrif (1 ) + (11 5). Z, the values of the correlation function ra,=0 approach

1. Since the total energy increases rapidly with but the
(33 correlation energy is almost the same forall42], the rela-
tive importance of correlation decreases with increaging

The multipolar polarizabilitye, is given by This is clearly illustrated in Fig. 2.

4
a(V[W)=| 537 jq’(rl,rz,rlz) VI. DISCUSSION AND CONCLUSIONS
1 (Z—1)[21 +1+(Z—1)/8] There are several properties Whlch_a good wave functlo_n
X r+ 3 must possess. Of course the expectation value of the Hamil-
(I+1)B 2p71(1+1) tonian must be close to the eigenvalue. However, the expec-
1 1 tation value is rather insensitive to the langeegion, except
Xral+ I—r2+|—2]r§'} in the case of H, and hence is usually not a very good
(I+1)z Z indicator of the overall quality of the wave function. We
X (1+cry) 2~ VIB=1g=Brig=2rif(r 3 dr,. consider other, more detailed tests.
34
(34) 00
Here we have left out the cross-terms which are expected to 1.5%
be unimportant. The values of the polarizabilities obtained e 1ob
for 1=1,2 are given in Table II, along with the results of T
some other calculationst3,12. Again the agreement with 0.5}
other work is quite satisfactory. 0.0 present
2.0
D. Dependence of the correlation function orz 1.5¢ zeroth order
In Fig. 1 we have plotted thk-values given by Eq(31) = 1.0r e _
and those from the variational calculation as a function of the 051
nuclear charge. The variational results can be fitted very 0 of; . .,
well by a straight linex=0.386xZ—0.283 which comes 'o 0 05 10 15 20
close to the perturbation calculation Eq.(31), ®/n [rad]

A=0.417<Z—0.333. Although, as shown in Fig. 1 the two

sets ofk-values differ somewhat from each other, only inthe £ 3. The local energy test for H The ratio between, and

case of H™ is there a significant difference in the energies. 1. is 1.1. The solid line showE for r;=0.5, the dashed line for
As a result of the linear increase »fwith Z, the relative r,=1, and the dotted line for;=10. The upper panel shows the

effect of the correlation becomes less important for heaviefocal energy for the present wave function Ebg) with A from Eq.

multiple charged ions. This is also confirmed in Fig. 2, where31) and the lower one for the zeroth order wave function

the correlation function is plotted for the different nuclear ¥ =z3e 2("1*12)/
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20 an indicator of the good quality of our wave function, in
sl particular, the correlation function we have proposed.
B 1.0p> B. Virial theorem and the correlation test
0.5} present I.f the wave fu.n.ctions are exact eigenstates, then they must
3‘8 satisfy the condition
1.5¢ ] (¥|[H,0]|¥)=0, (37
e 1.0 1 : .
whereO is any operator. This can be used as a test for the
05¢ /' zeroth order %\ quality of the model wave function. ¥ is ry-p;+r,-p,,
0.0l then Eq.(37) leads to the virial theorem. For our problem,
00 05 10 15 =20 T
this is
/7 [rad]
FIG. 4. The same as in Fig. 3 for He 24 42 11 1
T ' ' ((p1+p2)=2 r_"‘a “\rn/ (38)

A. Local energy test
_The term on the left is proportional to the average kinetic

In the local energy test, or more descriptively, local satis X ) )
9y pPuvey energy and the term on the right is the average potential

faction of the Schrdinger equation, one considers the func-

tion [44] energy. The first two columns of Table Il list the present
potential energies and the ratios between the two energies for

HY four systems. The good agreement with the result for the

F(ry,ra,rp)= RICIEoLE (35  exact wave function, which is 2, is again an indicator of the

1.1
o

good quality of our wave functions.

If the trial wave function is a good wave function, the func-  If we takeO=r,-p,+Tr - p;, One obtains the relatidd5]

tion F(rq,r,,r15) should be 1 everywhere. The function is

plotted in Figs. 3 and 4 for H and He, respectively, as a .. .. 1

function of the anglé® betweerr, andr,, for three different 2(p1- p2>=z< 112 > +<r_12> . (9

values ofr, and a constant ratio, /r ;= 1.1. It is observed to

be close to 1 except for anglés close to 0 or Zr. This is  Tpig rejation, which may be regarded as a generalization of

the region where the two electrons come closest to each othg{e \irial theorem, can only be satisfied by wave functions

and the electron density is small there anyway. which correctly account for the correlation. For example, in
Also plotted in Figs. 3 and 4 are the same functisnfor o independent particle approximation, the left-hand side

an  uncorrelated  zeroth order ~wave  functiongng the first term on the right-hand side are both zero

W=2Z% #1712/ 7. In this caseF is simply given by whereag 1/ 1) is not zero, so this relation is not satisfied. In
1 Table Il we have also listed the calculated values of the two
—724 sides for different members of the isoelectronic sequence.
F(ryp) = r12_ (36) The near equality of the two sides except for ki a strong
, 9Z indication of the reliability of our wave function in general
-0 s and the correlation function in particular. We note that in the

case of H, since\ is quite small, the correlation is very
The figures show that the functida for the present wave sensitive to the value af, and for this reason we have in
function is much closer to 1 than the functiéh for the  addition given the values of the two sides of E8p) for the
zeroth order wave function. This local energy test is certainlyariational value o\ =0.155.

TABLE lll. The potential energiesPE) and the ratios of the potential and the kinetic energi€g)
calculated with the present wave function are listed in the first two columns. According to the virial theorem
this ratio should be equal to 2. Also the right-hand side and the left-hand side of the correlatidagtest

(39)] are compared with the exact values. Without correlation the valuiélofﬁz) is equal to zero.

—PE —PE/KE 2<51'52> Z<F1'':)2("173—’_r273)>—’_<r172:L 2<51'52>exac:[’jl
H- 1.015 2.074 0.0628 -0.0408 0.0657
(0.0579° (0.0357%°
He 5721 2.028 0.309 0.284 0.320
Li+ 14.435 2.016 0.555 0.537 0.551
Be?* 27.143 2.012 0.852 0.813 0.847
%Referencd45).

bCalculated with the variational value=0.155.
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TABLE IV. Negative values of the total ground state energy for the systemsHe, and Li" calculated
with different correlation functiongatomic unitg. A was calculated using E¢31).

f(ri)=1 f(ri)=1+2r, B 1, Exact
fr)=1-g355e '*

H™ 0.5082 0.5204 0.5257 0.5278

He 2.8591 2.8851 2.9000 2.9037

Li* 7.2286 7.2490 7.2749 7.2799

We have also compared our values(pf - p,) with those ACKNOWLEDGMENTS

calculated using Pekeris exact wave functip#s,37. From We are grateful to C. L. Yiu for useful discussions and to
the values given in Table Ill, one observes that the agreer. ziilicke and W. Kutzelnigg for reading and commenting
ment is quite satisfactory. on the manuscript. K.T.T. wishes to thank the Alexander von

Humboldt Stiftung for financial support.

C. Other correlation functions APPENDIX

In order to demonstrate the importance of the correlation
function, we have calculated the energies of ,HHe, and
Li  using different correlation functions. The results are
shown in Table IV. Thed(rq,r,) parts were the same as
discussed in Sec. Il and only tHér,,) part was changed.
The simplest correlation functiof(r,) =1 neglects the ef- 2
fect of correlation entirely, the second offr ;) =1+13r, f(rip=1— e M= ae Nz (A1)
includes the cusp condition in its simplest way, and the third =1
correlation function is the one proposed in the present paper.
It is clearly seen that the present correlation function leads t
an improvement in the energy. Additional calculations re-
vealed that the Hirschfelder correlation function EG2)

In this appendix we describe how to calculate the matrix
elements for the energy calculation using E2fl). To make
the calculations more systematic we write the correlation
function Eq.(14) as

1+2\

herea;=1, ay,=—1/(1+2\), A\;=0, and\,=\. There-
ore the total wave functio’ Eqg. (16) can be written as

leads to almost the same results as with the present proposed W(ry,r2) =Wa(ry,ra) +¥alry.ra), (A2)
correlation function although its largg- behavior is incor- 2

rect. For the asymptotic normallz_atlon constAnln Eq. (8) ‘1’1(F1,F2):2 aje 1 (1+cr,) e Prag N

one has with the present correlation function a value of 2.34 i=1

which is much closer to thab initio value of 2.91[46] (A3)

compared to the value of 1.18 obtained with Hirschfelder’s
function. This illustrates the extreme sensitivity dfto the
long range behavior of the correlation function.

2
q’z(Fl,Fz) = 2 aie_zr2(1+ crl)‘ye‘ﬁrle”\iflz'
i=1

(Ad)
D. Conclusions _ o
The present calculation illustrates the importance of thé’\”th y=1=(2=1))B. The norm is given by
asymptotic behavior, the smallbehavior, and the correla-
tion factor for a proper description of the two-electron wave (\If|\lf)=22 aja;[K(\j+)\;,27,0,0,0
function. As far as we are aware it is the first successful b
derivation of a nonvariational wave function for simple two- +L(Nj+X;,7,7.0,0,0]. (AS5)

electron atoms and ions. Because of its simplicity and accu-

racy this wave function should prove very useful for calcu-Here we have
lating the effect of collective properties of two-electron
systems. It would be interesting to extend these methods to
atoms with more than two electrons. It should also be pos-
sible to extend this treatment to excited states, diatomic mol-

K(ﬂ!71| ;m,n): f eizzrlfzﬁrzfﬂrlz(l_'_crz)f.y

ecules, and atom-surface interactions. In this connection it is v 1 d3r.dr

interesting to note that Le Sech and co-workers have used a rorgrl,” 2

related ansatz, but with two variationally determined param-

eters, to calculate the excited states of some two-electron —872| | —2Zr;—2pr
- + =87 | In(m,ry,rp)e o2

atoms[13], the triplet states of K and He " [14], and re-

cently the atom-metal surface potent[dl5]. It is already 1

clear that the correlation function presented here is preferable X (1+cry)~Y——=r2dr,radr,, (A6)
. m'! 1Yt 1! oY1t 2,

to other forms also for molecular calculatiof#]. rars
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e M2
In(nvrler):J I,n dCOS@lZ, (A7) L(7/a71:?’2:|aman):J e*(Z+ﬁ)(r1+f2)*77f12(1+crl)*y1
12
242 12 1
r12_[r1+I’Z_Zrer(:()i")lz-l ) (A8) ><(1+cr2)_72Wd3r1d3r2
specifically forn=0 andn=1, vz
1 efﬂ|r17r2‘|rl—l’2|—ef"(rlﬂz)(rl-l—rz) :8W2f |n(ﬂ’rl’rz)ef(z+ﬂ)(r1+r2)
lo(m,r1,r2)=——
1) Uj - -
e lr—Tal g n(ry+ry) X(1+cry) "(1l+cry) "7
+ 7 , (A9) 1
xmridrlrgdrz. (A11)
1 [e 7ri—ra _g=n(ritry) 12
L(mryr)=—" (A10)
! 12 rifz n

The integrall (7,71, 7,.1,m.n) is given by For calculating the kinetic energy, we have

(\If|V§|\If>=iZj ajaj[ (Z24 B2 = 2NN {K(Ni+X;,27,0,0,0 +L(A;+X{,7,7,0,0,0} = 2Z{K(\;+7;,27,1,0,0

+L(Ni+X},7,7,1,0,0}+ y(y+ 1) cHK(N+ )}, 2y+2,0,0,0 +L(\i+X,7,¥+2,0,0,0}
+2Byc{K(\ij+\j,2y+1,0,0,0+L(Nj+\j,y,v+1,0,0,0} —2yc{K(\j+\j,2y+1,0,1,0
+L()\i+)\j ,’y,’y+ 1,0,1,0}_23{K()\|+)\J ,2’y,0,1,Q+L()\i+)\j ,y,'y,O,l,Q}]. (A12)

In writing this expression, we have used some of the techniques described il &efinally, one also needs

AiE
\I[_
r

\P> :z aIaJ[K()\I+)\J 1271011,Q+K()\|+7\J !ZY!1!OIO+2L()\I+)\J v Y 7,!1;010]! (A13)
1]

and

1
<«p — qf> =22 aiog[K(Ni+1;,27,0,0)+L(\+);,7,7.0,0,D]. (A14)
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