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A simple nonvariational wave function for two electron atoms is described. The radial part is derived from
the asymptotic one-electron wave functions that are modified to account for the proper core boundary condi-
tions. The electron-electron correlation is described by an ansatz which has the correct behavior forr 12→0 and
r 12→`. The additional parameter in this ansatz is calculated from a perturbation calculation. This wave
function yields ground-state energies for the heliumlike atoms withZ51 (H2) to 10 (Ne81) within 0.0021–
0.0068Eh of the exact energies, which is significantly better than obtained with previous models. We also
calculated ^r 2n& and multipolar polarizabilities and performed other tests on this wave function.
@S1050-2947~96!08510-1#

PACS number~s!: 31.10.1z, 31.25.Eb

I. INTRODUCTION

As the simplest of all quantum systems in which electron-
electron correlation has an important effect, the wave func-
tions of two-electron atoms and ions have been investigated
ever since the early days of quantum mechanics in great
detail@1#. Once this fundamental problem is fully understood
the experience gained can be applied to more complicated
many-electron systems. These wave functions are needed not
only to understand the properties of the free particles but also
to describe the behavior of these systems in the presence of
external fields, and their interaction with each other and with
other systems. A recent particularly interesting application is
the demonstration that the He-He van der Waals potential
can be fully determined knowing only the ionization energy,
the precise asymptotic behavior of the free helium atom
wave function, and the dispersion coefficients@2#.

The most accurate wave functions of two-electron sys-
tems are obtained from variational calculations. A few ex-
amples of this approach are the calculations of Chan-
drasekhar and Herzberg@3#, Frankowski and Pekeris@4#, and
Freund et al. @5#. For two-electron systems even high-
precision calculations including relativistic and QED correc-
tions can be carried out@6#. However, for a deeper under-
standing of the atomic properties, it is desirable to have
simple, analytic wave functions which can account for the
essential important physical features of the exact wave func-
tions. Here we mention several recent efforts in this direc-
tion. A systematic expansion in powers of the hypersperical
radius R5(r 1

21r 2
2)1/2 and lnR, usually designated as the

Fock expansion@7#, which is especially accurate for small
R and formally solves the Schro¨dinger equation@8#, has been
considered for two-electron systems@9–11#. In another ap-
proach@12#, asymptotic wave functions have been obtained

by considering a large-r expansion after separating out the
leading exponential term. In more recent work@13–15#, cor-
relation has been incorporated by including the cusp factor as
first suggested by Hirschfelder@16#. While all these ap-
proaches have some positive aspects, none of them appears
to incorporate all the correct features of the exact wave func-
tion.

In Sec. II we review some general properties of the exact
two-electron wave function. Then in Sec. III we propose a
simple radial wave function which satisfies these important
local properties. An ansatz for a correlation function which
correctly accounts for the electron-electron interaction in the
two limits r 12→0 and r 12→` is described. The additional
parameterl of this correlation function is calculated in Sec.
IV. In Sec. V we use this wave function to calculate the
ground state energies of the two electron systems H2, He,
Li 1, . . . , Ne81. This wave function yields ground state
energies which agree between 0.0021–0.0068Eh with the ex-
act energies. This wave function is also used to calculate
^r 2n& and multipolar polarizabilities. The reliability of the
wave function is demonstrated by subjecting it to several
critical tests. Atomic units are used throughout.

II. SOME GENERAL PROPERTIES OF EXACT
EIGENFUNCTIONS

The exact eigenstates of the atomic Hamiltonian have sev-
eral well known properties. For example, the expectation
value of the Hamiltonian has a minimum at the exact eigen-
function. Similarly, the virial theorem can be used to relate
the average kinetic and potential energies. These properties,
which are called global properties, have been the basis of
many variational calculations. Here, however, our interest is
in the local properties such as the spatial behavior of the
wave functions in specific regions of configuration space. By
analyzing these properties and incorporating each of them,
we have constructed an optimized but simple wave-function
which has the proper behavior in all regions.

The s-states of a two-electron atom or ion are described
by the Hamiltonian
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In our approach the wave function is separated into two
parts,

C~r 1 ,r 2 ,r 12!5F~r 1 ,r 2!3 f ~r 12!, ~2!

where the second factor, which depends only onr 12, is
called the correlation functionf (r 12). This approximation
was already introduced by Hylleraas@17# and used often af-
terwards@18#. The total wave function of Eq.~2! must satisfy
the following three local properties: it has to fulfill specific
boundary conditions as eitherr 1 or r 2 go to zero. On the
other hand, if eitherr 1 or r 2 goes to infinity, the wave func-
tion must satisfy the well known asymptotic conditions. If
r 12 goes to zero and the two electrons coalesce, the well-
known correlation cusp condition has to be fulfilled. Finally
as r 12 goes to infinityf (r 12) has to equal unity.

A. Small-r behavior of the total wave function

When r 1 goes to 0, the two leading terms in the Hamil-
tonian are12¹1

2 and2Z/r 1. From this, one can show that the
total wave function of ans-state should start off as@19#

C ——→
r1→0

g0~r 2!~12Zr1!. ~3a!

Similarly

C ——→
r2→0

g0~r 1!~12Zr2!, ~3b!

whereg0(r 2) and g0(r 1) are only functions ofr 2 and r 1,
respectively.

These equations follow from Kato’s theorem@20# of
electron-nucleus coalescence,

lim
r→0

S ]C

]r D
av

52ZC~r50!, ~4!

wherer can be eitherr 1 or r 2 and ‘‘av ’’ stands for spherical
averaging. Thus the exact eigenfunctions must satisfy these
boundary conditions at small values ofr 1 and ofr 2. For the
wave function of Eq.~2! these conditions must be fulfilled by
F(r 1 ,r 2).

B. Large-r behavior of the total wave function

When r 1 goes to`, electron 1 is essentially in the Cou-
lomb field of the nucleus shielded by electron 2. Therefore
the wave function of electron 1 is determined by its long
range asymptotic form which is a Whittaker function
@12,21–23#. The leading term is

C ——→
r1→` A

A4p
g1~r 2!r 1

~Z21!/b21e2br1, ~5!

whereb5A2EI , EI is the first ionization energy, andA is
the asymptotic normalization constant. Forr 1→` the total

energy of the system isE52Z2/22EI , since2Z2/2 is the
energy of the one electron ion core. Thereforeb can be
written as

b5A2Z222E. ~6!

Furthermore, the wave function of the residue system is hy-
drogenic with a nucleus of chargeZ,

g1~r 2!5
Z3/2

Ap
e2Zr2. ~7!

Thus it follows from Eq.~5! that

C ——→
r1→` Z3/2

2p
Ae2Zr2r 1

~Z21!/b21e2br1. ~8a!

Similarly

C ——→
r2→` Z3/2

2p
Ae2Zr1r 2

~Z21!/b21e2br2, ~8b!

whereA is the normalization for the asymptotic function. Of
course, there are other properties such as relations for higher
partial waves similar to Eq.~3! or higher order terms in Eq.
~5!. They may be important, if higher precision is required
@23#. Again with the ansatz of Eq.~2! the asymptotic condi-
tions have to be fulfilled byF(r 1 ,r 2).

C. The electron-electron correlation function

Clearly in the region wherer 12 is very small relative to
r 1 and r 2, the r 12

21 term will dominate the potential. Kato
@20# formally and rigorously showed that

lim
r12→0

S ]C

]r 12
D
av

5
1

2
C~r 1250!, ~9!

where the factor of 1/2 is because of the reduced mass of the
two electrons, and their charges being both negative. This
condition is known as the correlation cusp. As a consequence
of Eq. ~9! the wave function at smallr 12 must start off as
@24#

C ——→
r12→0

F~r 1 ,r 2!•S 11
1

2
r 121••• D , ~10!

whereF is independent ofr 12. According to Eq.~10! the
logarithmic derivative is equal to12 at r 1250. Although the
wave function may not go to zero forr 12→0 the radial prob-
ability density does. This can be easily seen using the coor-
dinate set (r 1, r 2, r 12) in which the volume element is pro-
portional tor 12.

From Eq. ~10! it follows that the simplest correlation
function is @25#

f ~r 12!511
1

2
r 12. ~11!

This approximate correlation function has recently been used
in variational CI quantum chemistry calculations@26–28#.
Since this function increases linearly without bound it can
give good results only in cases where the wave function is
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compact, i.e., the functionF(r 1 ,r 2) is already very small in
places wherer 12 becomes large compared to 1. To remove
this limitation Hirschfelder@16# proposed a correlation func-
tion

f ~r 12!511
r 12
2
e2r12 /d ~12!

with d as a variational parameter. This correlation function
increases withr 12 up to r 125d, and then decreases reaching
an asymptotic value which is the same as the value at
r 1250. Since there is noa priori reason why the correlation
function should have a local maximum, the behavior of Eq.
~12! is not completely realistic. Nevertheless, this function
has been used with some success in several recent calcula-
tions @13#.

Roothaan and Weiss@29# made a very accurate numerical
investigation of the correlation function for the ground state
of the He atom. They found that in the vicinity ofr 1250, the
correlation function is linear and satisfies the cusp condition
of Eq. ~9!. It monotonically increases and approaches unity
asr 12 becomes very large@30#. To satisfy both these require-
ments Parr@31# suggested a piecewise model function,

f ~r 12!5H 11gr12 for r 12<D

11gD for r 12>D.
~13!

This function, however, has the disadvantage that the deriva-
tive is discontinuous atr 125D. As far as we are aware,
calculations based on this correlation function have not been
reported in the literature. Other, in most cases more compli-
cated, correlation functions have been proposed in literature
@32#.

In this paper, we propose the following simple correlation
function which has the desired properties atr 1250 and
r 125`:

f ~r 12!512
1

112l
e2lr12, ~14!

wherel is a variational parameter. Its smallr 12 expansion is

f ~r 12!5
2l

112l S 11
1

2
r 122

l

4
r 12
2 1••• D , ~15!

so that it satisfies the cusp condition of Eq.~9!. On the other
hand, asr 12 becomes large the function Eq.~14! has the
desirable feature that it increases monotonically to unity. In
the following section we describe how Eq.~14! facilitates the
calculation of the ground state energy of two electron atomic
systems. In a forthcoming paper, we will use this function to
treat the electron-electron correlation in the surface integral
method for the exchange energy in a molecular system.

III. A MODEL WAVE FUNCTION

A wave function satisfying the boundary conditions and
properties expressed by Eqs.~3!, ~8!, and ~14! can be ex-
pected to provide a realistic description of the spatial depen-
dence of the wave function in the entire configuration space
of the electrons. Consistent with the ‘‘different orbitals for
different spins’’ approach@33# we therefore propose the fol-

lowing total wave function which has all these three proper-
ties for the ground state:

C~r 1 ,r 2 ,r 12!5F~r 1 ,r 2! f ~r 12!

5B@e2Zr1~11cr2!
~Z21!/b21e2br2

1e2Zr2~11cr1!
~Z21!/b21e2br1#

3S 12
1

112l
e2lr12D , ~16!

whereB is related to the normalization constantA of the
asymptotic wave function by

B5
AZ3/2

2p
c12~Z21!/b. ~17!

The only additional parameterc is determined below
from the small-r limiting behavior. Note that Eq.~16! is
symmetric with respect to the interchange ofr 1 and r 2. To
determinec we expand Eq.~16! in the region of smallr 1 ~or
r 2),

C ——→
r1→0 H ~12Zr11••• !~11cr2!

~Z21!/b21e2br2

1S 11cFZ21

b
21G r 11••• D ~12br 11••• !e2Zr2J

3S 12
1

112l
e2lr12D

5S ~12Zr11••• !~11cr2!
~Z21!/b21e2br2

1H 11FcS Z21

b
21D2bG r 11•••J e2Zr2D

3S 12
1

112l
e2lr12D . ~18!

Then the electron-nucleus coalescence condition of Eq.~3! is
only satisfied if

cS Z21

b
21D2b52Z. ~19!

Thereforec becomes

c5
~b2Z!b

Z2b21
. ~20!

Finally we call attention to the fact that the wave function in
Eq. ~16! with b given by Eq.~6! andc by Eq.~20! has all the
required properties discussed in Sec. II, i.e., the correct be-
havior for r 1 or r 2→0 and`, and for r 12→0 and`. Only
one parameterl remains, which may be determined varia-
tionally or from some other considerations as discussed in
the next section.
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IV. THE CORRELATION PARAMETER l

The customary way to determine the only remaining pa-
rameterl is to invoke the variational method and determine
the energyE self-consistently. First, with an assumedb ~for
example,b5Z), we varyl until a minimum in the energy
E calculated according to

E5

2^Cu¹1
2uC&12ZK CU 1r 1 UC L 1 K CU 1r 12UC L

^CuC&
~21!

is achieved. With thisE, we calculateb according to Eq.~6!
and then repeat the process. This iteration converges quickly,
usually after two or three cycles. The calculations of the
matrix elements in Eq.~21! are straightforward, and some of
the details are given in the Appendix. The only input param-
eter for different systems is the nuclear chargeZ. Values of
l and the corresponding energies are listed in Table I.

Next we show that in factl can be determined analyti-
cally. For this we split the Hamiltonian into a perturbation,
which is 1/r 12, and a zeroth-order Hamiltonian given by the
remaining terms in Eq.~1!. The wave functionF(r 1 ,r 2) is
assumed to be the eigenfunction of this zeroth-order Hamil-
tonian so that the total wave function is given by

C~r 1 ,r 2 ,r 12!5F0~r 1 ,r 2! f ~r 12!5e2Z~r11r2! f ~r 12!.
~22!

This approximate wave function has the correct small-r be-
havior but the asymptotic,r→` condition is not properly
fulfilled. Inserting Eq. ~22! into the Schro¨dinger equation
with the full Hamiltonian, we obtain

EC5E0C2
1

2
F0¹1

2f2
1

2
F0¹2

2f1~¹W 1F0!•~¹W 1f !

1~¹W 2F0!•~¹W 2f !1
1

r 12
C ~23!

with the eigenenergyE052Z2 of the zeroth-order Hamil-
tonian. The terms¹W 1F0 and ¹W 2F0 are easily calculated.
After dividing both sides byF0, a differential equation for
f (r 12) is then obtained,

~E2E0! f52
1

2
¹1
2f2

1

2
¹2
2f2Z

r 1W

r 1
•~¹W 1f !2Z

r 2W

r 2
•~¹W 2f !

1
1

r 12
f . ~24!

To solve for f (r 12) in the limit r 12→0, f (r 12) is assumed to
be a regular function for smallr 12 and can therefore be writ-
ten as a power series,

f ~r 12!5(
i
ci r 12

i . ~25!

Thus Eq.~24! becomes

2
1

2 (
i
ci i ~ i11!r 12

i222
Z

2
S r 1W •r 12W

r 1
2
r 2W •r 12W

r 2
D(

i
ci ir 12

i22

1(
i
ci r 12

i215~E2E0!(
i
ci r 12

i . ~26!

With the expansionr 25r 12r 1W •r 12W /r 11••• one can show
that the second term in Eq.~26! is of orderO(r 12). Equating
all terms proportional tor 12

21 in Eq. ~26! yields

c15
1

2
c0 , ~27!

which is equivalent to Kato’s cusp condition Eq.~9!. Equat-
ing the terms proportional to 1 yields

c25
1

6 S 122~E2E0! D c0 . ~28!

TABLE I. The energies and parameters for heliumlike atoms from the present wave function withl
calculated by Eq.~31! and from a variational calculation. The fraction of the correlation energy~Corr.!
recovered by the present calculations is calculated as@E~present!2E~HF!#/@E~exact!2E~HF!#. The Hartree-
Fock energiesE~HF! are taken from Ref.@42# and the exact energies from Ref.@37#. All energies are in
atomic units.

l detemined by Eq.~31! l detemined variationally
System Z l 2E~present! Corr. l 2E~present! Corr. 2E~exact!

H2 1 0.083 0.5257 95% 0.155 0.5265 97% 0.5278
He 2 0.50 2.9000 91% 0.48 2.9000 91% 2.9037
Li1 3 0.92 7.2749 89% 0.86 7.2749 89% 7.2799
Be21 4 1.33 13.6499 87% 1.24 13.6499 87% 13.6556
B31 5 1.75 22.0249 87% 1.63 22.0249 87% 22.0310
C41 6 2.17 32.4000 86% 2.02 32.4000 86% 32.4062
N51 7 2.58 44.7750 86% 2.41 44.7750 86% 44.7814
O61 8 3.00 59.1500 85% 2.80 59.1500 85% 59.1566
F71 9 3.42 75.5250 85% 3.19 75.5250 85% 75.5317
Ne81 10 3.83 93.9000 85% 3.61 93.9000 85% 93.9068
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This equation contains the unknown energy difference
(E2E0) which can be approximated by its perturbative
value

E2E05 K F0~r 1 ,r 2!U 1r 12UF0~r 1 ,r 2!L 5
5Z

8
. ~29!

We thus have

c25
1

12S 12
5Z

4 D c0 . ~30!

With c1 and c2 determined in Eq.~27! and Eq.~30! a
direct comparison with the expansion of the correlation func-
tion Eq.~15! becomes possible. The unknown parameterl is
calculated to be

l5
5

12
Z2

1

3
. ~31!

Thus in this approximationl is a simple linear function of
Z. It may be noted that since the perturbative value in Eq.
~29! is more accurate for larger values ofZ, the expression
for l in Eq. ~31! is particularly accurate for larger values of
Z.

V. RESULTS

We now present the results of the calculations of the en-
ergies, expectation values^r 2n&, and dipolar and quadrupolar
polarizabilities for the two-electron isoelectronic sequence,
using our wave function in Eq.~16! with the parameters
defined in Eqs.~6!, ~20!, and~31!. The parameterb, which
depends on the ionization energy of the system, is deter-
mined iteratively.

A. Energies

The values of the energies for the two-electron isoelec-
tronic sequence withZ51210 calculated forl determined
from Eq. ~31!, and variationally, are listed in Table I. The
difference in the energies for these two calculations is so
small for Z52210 that it does not appear within the five
significant figures given in Table I. Only in the case of H2 is

there a slight difference. The present results are, to the best
of our knowledge, the lowest parameter-free energies that
have been reported up to now. Our results are much better
than the simplest conventional one-parameter variational cal-
culation which introduces an effective nuclear charge@34#.
They are also far superior to other more involved one-
parameter calculations@35,36#. Particularly striking is the
nonvariational energy of20.5257Eh for H

2, which is very
close to the exact result of20.5278Eh @37#. The present
value should be compared with the earlier two-parameter re-
sults of20.506Eh @38# and20.5206Eh @39# and the three-
parameter results of20.5213Eh @40# and20.5254Eh @41#.
The importance of the asymptotic condition for H2 was al-
ready seen in a former one-parameter calculation, reported
by one of the present authors, which gave an energy of
20.5226Eh @36#. The present nonvariational calculation re-
covers 95% of the correlation energy defined as the differ-
ence between the exact@37# and the HF@42# energies. This is
improved to 97% by usingl as a variational parameter
(E520.5265Eh).

B. Expectation valuesŠr 2n‹

Some important and useful properties of atomic isoelec-
tronic sequences are the expectation values ofr 2n. We have
presented the values for these quantities, obtained from our
nonvariational wave functions, in Table II, along with the
results of other calculations. In particular, the expectation
value ^r 2& is known to be equal to 6x, wherex is the dia-
magnetic susceptibility. For He, Li1, and Be21, for which
other values have been reported@43,12#, there is good agree-
ment. Previous results for B31 and C41 are not available.

C. Multipolar polarizabilities

Our wave functions can be used to calculate multipolar
polarizabilities. In the presence of a multipolar potential, the
perturbed part of the wave function,dC(r 1 ,r 2 ,r 12), satisfies
the inhomogeneous equation

~E02H0!dC5@r 1
l Pl~cosu1!1r 2

l Pl~cosu2!#C~r 1 ,r 2 ,r 12!,
~32!

whereC(r 1 ,r 2 ,r 12) is the unperturbed wave function given
in Eq. ~16!. We obtain the first two terms fordC in the
asymptotic expansion,

TABLE II. The present values for the expectation values^r 2n&, dipolar and quadupolar polarizabilities,
along with the predictions of some other calculations which are enclosed in parentheses.

^r 2& ^r 4& ^r 6& a1 a2

He 2.329 7.262 4.453101 1.33 2.01
~2.39! ~7.93!a (5.033101)b ~1.38!a ~2.44!a

~2.34! ~7.6!b ~1.37!b

Li 1 0.874 0.979 2.08 0.184 9.5431022

~0.892!a ~1.03!b ~2.35!b ~0.192!a (1.1131021)b

~0.88!b ~0.190!b

Be21 0.456 0.264 0.287 5.0631022 1.3331022

~0.455!b ~0.272!b ~0.315!b (5.131022)b (1.4931022)b

B31 0.280 9.8931022 6.5431022 1.9131022 3.0431023

C41 0.189 4.5031022 2.0031022 8.7431023 9.3631024

aReference@43#.
bReference@12#.
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dC52F H 1

~ l11!b
r 11

~Z21!@2l111~Z21!/b#

2b3l ~ l11! J
3r 1

l Pl~cosu1!1H 1

~ l11!Z
r 21

1

lZ2 J r 2l Pl~cosu2!G
3~11cr1!

~Z21!/b21e2br1e2Zr1f ~r 12!1~r 1↔r 2!.

~33!

The multipolar polarizabilitya l is given by

a l^CuC&5S 4

2l11D E C~r 1 ,r 2 ,r 12!

3F H 1

~ l11!b
r 11

~Z21!@2l111~Z21!/b#

2b3l ~ l11! J
3r 1

2l1H 1

~ l11!Z
r 21

1

lZ2 J r 22l G
3~11cr1!

~Z21!/b21e2br1e2Zr1f ~r 12!d
3r 1d

3r 2 .

~34!

Here we have left out the cross-terms which are expected to
be unimportant. The values of the polarizabilities obtained
for l51,2 are given in Table II, along with the results of
some other calculations@43,12#. Again the agreement with
other work is quite satisfactory.

D. Dependence of the correlation function onZ

In Fig. 1 we have plotted thel-values given by Eq.~31!
and those from the variational calculation as a function of the
nuclear chargeZ. The variational results can be fitted very
well by a straight linel50.3863Z20.283 which comes
close to the perturbation calculation Eq.~31!,
l50.4173Z20.333. Although, as shown in Fig. 1 the two
sets ofl-values differ somewhat from each other, only in the
case of H2 is there a significant difference in the energies.

As a result of the linear increase ofl with Z, the relative
effect of the correlation becomes less important for heavier
multiple charged ions. This is also confirmed in Fig. 2, where
the correlation function is plotted for the different nuclear

charges. The small value ofl for H2 seen in Fig. 2 indicates
that the long range behavior of the correlation function is
most important in this diffuse system whose two electrons
are least tightly bound to the nucleus. Thus H2 provides the
most exacting test of the new correlation function. For larger
Z, the values of the correlation function atr 1250 approach
1. Since the total energy increases rapidly withZ2 but the
correlation energy is almost the same for allZ @42#, the rela-
tive importance of correlation decreases with increasingZ.
This is clearly illustrated in Fig. 2.

VI. DISCUSSION AND CONCLUSIONS

There are several properties which a good wave function
must possess. Of course the expectation value of the Hamil-
tonian must be close to the eigenvalue. However, the expec-
tation value is rather insensitive to the large-r region, except
in the case of H2, and hence is usually not a very good
indicator of the overall quality of the wave function. We
consider other, more detailed tests.

FIG. 3. The local energy test for H2. The ratio betweenr 2 and
r 1 is 1.1. The solid line showsF for r 150.5, the dashed line for
r 151, and the dotted line forr 1510. The upper panel shows the
local energy for the present wave function Eq.~16! with l from Eq.
~31! and the lower one for the zeroth order wave function
C5Z3e2Z(r11r2)/p.

FIG. 1. The two sets of values for the parameterl are plotted
against the nuclear chargeZ. The solid line is calculated using Eq.
~31!. The variational points~squares! can be fitted by a straight line
l50.3863Z20.283~dashed!. All quantities are in atomic units.

FIG. 2. The correlation functions are plotted against Zr12 for
Z from 1 to 10a0. l was calculated using Eq.~31!. The correlation
functions are normalized to 1 forr 12→`. The slope atr 1250 is
l/(112l). All quantities are in atomic units.
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A. Local energy test

In the local energy test, or more descriptively, local satis-
faction of the Schro¨dinger equation, one considers the func-
tion @44#

F~r 1 ,r 2 ,r 12!5
HC

^CuHuC&C
. ~35!

If the trial wave function is a good wave function, the func-
tion F(r 1 ,r 2 ,r 12) should be 1 everywhere. The function is
plotted in Figs. 3 and 4 for H2 and He, respectively, as a
function of the angleQ betweenrW1 andrW2 for three different
values ofr 1 and a constant ratior 2 /r 151.1. It is observed to
be close to 1 except for anglesQ close to 0 or 2p. This is
the region where the two electrons come closest to each other
and the electron density is small there anyway.

Also plotted in Figs. 3 and 4 are the same functionsF for
an uncorrelated zeroth order wave function
C5Z3e2Z(r11r2)/p. In this caseF is simply given by

F~r 12!5

2Z21
1

r 12

2Z21
5Z

8

. ~36!

The figures show that the functionF for the present wave
function is much closer to 1 than the functionF for the
zeroth order wave function. This local energy test is certainly

an indicator of the good quality of our wave function, in
particular, the correlation function we have proposed.

B. Virial theorem and the correlation test

If the wave functions are exact eigenstates, then they must
satisfy the condition

^Cu@H,O#uC&50, ~37!

whereO is any operator. This can be used as a test for the
quality of the model wave function. IfO is rW1•pW 11rW2•pW 2,
then Eq.~37! leads to the virial theorem. For our problem,
this is

^~p1
21p2

2!&5ZK S 1r 1 1
1

r 2
D L 2 K 1

r 12
L . ~38!

The term on the left is proportional to the average kinetic
energy and the term on the right is the average potential
energy. The first two columns of Table III list the present
potential energies and the ratios between the two energies for
four systems. The good agreement with the result for the
exact wave function, which is 2, is again an indicator of the
good quality of our wave functions.

If we takeO5rW1•pW 21rW2•pW 1, one obtains the relation@45#

2^pW 1•pW 2&5ZK rW1•rW2S 1r 13 1
1

r 2
3D L 1K 1

r 12
L . ~39!

This relation, which may be regarded as a generalization of
the virial theorem, can only be satisfied by wave functions
which correctly account for the correlation. For example, in
the independent particle approximation, the left-hand side
and the first term on the right-hand side are both zero
whereaŝ 1/r 12& is not zero, so this relation is not satisfied. In
Table III we have also listed the calculated values of the two
sides for different members of the isoelectronic sequence.
The near equality of the two sides except for H2 is a strong
indication of the reliability of our wave function in general
and the correlation function in particular. We note that in the
case of H2, sincel is quite small, the correlation is very
sensitive to the value ofl, and for this reason we have in
addition given the values of the two sides of Eq.~39! for the
variational value ofl50.155.

FIG. 4. The same as in Fig. 3 for He.

TABLE III. The potential energies~PE! and the ratios of the potential and the kinetic energies~KE!
calculated with the present wave function are listed in the first two columns. According to the virial theorem
this ratio should be equal to 2. Also the right-hand side and the left-hand side of the correlation test@Eq.

~39!# are compared with the exact values. Without correlation the value of^pW 1•pW 2& is equal to zero.

2PE 2PE/KE 2^pW 1•pW 2& Z^rW1•rW2(r 1
231r 2

23)&1^r 12
21& 2^pW 1•pW 2&exact

a

H2 1.015 2.074 0.0628 -0.0408 0.0657
~0.0577!b ~0.0357!b

He 5.721 2.028 0.309 0.284 0.320
Li 1 14.435 2.016 0.555 0.537 0.551
Be21 27.143 2.012 0.852 0.813 0.847

aReference@45#.
bCalculated with the variational valuel50.155.
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We have also compared our values of^pW 1•pW 2& with those
calculated using Pekeris exact wave functions@45,37#. From
the values given in Table III, one observes that the agree-
ment is quite satisfactory.

C. Other correlation functions

In order to demonstrate the importance of the correlation
function, we have calculated the energies of H2, He, and
Li 1 using different correlation functions. The results are
shown in Table IV. TheF(r 1 ,r 2) parts were the same as
discussed in Sec. II and only thef (r 12) part was changed.
The simplest correlation functionf (r 12)51 neglects the ef-
fect of correlation entirely, the second onef (r 12)511 1

2r 12
includes the cusp condition in its simplest way, and the third
correlation function is the one proposed in the present paper.
It is clearly seen that the present correlation function leads to
an improvement in the energy. Additional calculations re-
vealed that the Hirschfelder correlation function Eq.~12!
leads to almost the same results as with the present proposed
correlation function although its large-r 12 behavior is incor-
rect. For the asymptotic normalization constantA in Eq. ~8!
one has with the present correlation function a value of 2.34
which is much closer to theab initio value of 2.91@46#
compared to the value of 1.18 obtained with Hirschfelder’s
function. This illustrates the extreme sensitivity ofA to the
long range behavior of the correlation function.

D. Conclusions

The present calculation illustrates the importance of the
asymptotic behavior, the small-r behavior, and the correla-
tion factor for a proper description of the two-electron wave
function. As far as we are aware it is the first successful
derivation of a nonvariational wave function for simple two-
electron atoms and ions. Because of its simplicity and accu-
racy this wave function should prove very useful for calcu-
lating the effect of collective properties of two-electron
systems. It would be interesting to extend these methods to
atoms with more than two electrons. It should also be pos-
sible to extend this treatment to excited states, diatomic mol-
ecules, and atom-surface interactions. In this connection it is
interesting to note that Le Sech and co-workers have used a
related ansatz, but with two variationally determined param-
eters, to calculate the excited states of some two-electron
atoms@13#, the triplet states of H2 and He2

21 @14#, and re-
cently the atom-metal surface potential@15#. It is already
clear that the correlation function presented here is preferable
to other forms also for molecular calculations@47#.
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APPENDIX

In this appendix we describe how to calculate the matrix
elements for the energy calculation using Eq.~21!. To make
the calculations more systematic we write the correlation
function Eq.~14! as

f ~r 12!512
1

112l
e2lr125(

i51

2

a ie
2l i r12, ~A1!

wherea151, a2521/(112l), l150, andl25l. There-
fore the total wave functionC Eq. ~16! can be written as

C~rW1 ,rW2!5C1~rW1 ,rW2!1C2~rW1 ,rW2!, ~A2!

C1~rW1 ,rW2!5(
i51

2

a ie
2Zr1~11cr2!

2ge2br2e2l i r12,

~A3!

C2~rW1 ,rW2!5(
i51

2

a ie
2Zr2~11cr1!

2ge2br1e2l i r12,

~A4!

with g512(Z21/)b. The norm is given by

^CuC&52(
i , j

a ia j@K~l i1l j ,2g,0,0,0!

1L~l i1l j ,g,g,0,0,0!#. ~A5!

Here we have

K~h,g,l ,m,n!5E e22Zr122br22hr12~11cr2!
2g

3
1

r 1
l r 2

mr 12
n d3r 1d

3r 2

58p2E I n~h,r 1 ,r 2!e
22Zr122br2

3~11cr2!
2g

1

r 1
l r 2

mr 1
2dr1r 2

2dr2, ~A6!

TABLE IV. Negative values of the total ground state energy for the systems H2, He, and Li1 calculated
with different correlation functions~atomic units!. l was calculated using Eq.~31!.

f (r 12)51 f (r 12)511
1
2r 12 f (r 12)512

1
112l

e2lr12
Exact

H2 0.5082 0.5204 0.5257 0.5278
He 2.8591 2.8851 2.9000 2.9037
Li 1 7.2286 7.2490 7.2749 7.2799

54 2847BOUNDARY-CONDITION-DETERMINED WAVE FUNCTION . . .



I n~h,r 1 ,r 2!5E e2hr12

r 12
n dcosQ12, ~A7!

r 125@r 1
21r 2

222r 1r 2cosQ12#
1/2, ~A8!

specifically forn50 andn51,

I 0~h,r 1 ,r 2!5
1

r 1r 2
Fe2hur12r2uur 12r 2u2e2h~r11r2!~r 11r 2!

h

1
e2hur12r2u2e2h~r11r2!

h2 G , ~A9!

I 1~h,r 1 ,r 2!5
1

r 1r 2
Fe2hur12r2u2e2h~r11r2!

h G . ~A10!

The integralL(h,g1 ,g2 ,l ,m,n) is given by

L~h,g1 ,g2 ,l ,m,n!5E e2~Z1b!~r11r2!2hr12~11cr1!
2g1

3~11cr2!
2g2

1

r 1
l r 2

mr 12
n d3r 1d

3r 2

58p2E I n~h,r 1 ,r 2!e
2~Z1b!~r11r2!

3~11cr1!
2g1~11cr2!

2g2

3
1

r 1
l r 2

mr 1
2dr1r 2

2dr2 . ~A11!

For calculating the kinetic energy, we have

^Cu¹1
2uC&5(

i , j
a ia j@~Z

21b222l il j !$K~l i1l j ,2g,0,0,0!1L~l i1l j ,g,g,0,0,0!%22Z$K~l i1l j ,2g,1,0,0!

1L~l i1l j ,g,g,1,0,0!%1g~g11!c2$K~l i1l j ,2g12,0,0,0!1L~l i1l j ,g,g12,0,0,0!%

12bgc$K~l i1l j ,2g11,0,0,0!1L~l i1l j ,g,g11,0,0,0!%22gc$K~l i1l j ,2g11,0,1,0!

1L~l i1l j ,g,g11,0,1,0!%22b$K~l i1l j ,2g,0,1,0!1L~l i1l j ,g,g,0,1,0!%#. ~A12!

In writing this expression, we have used some of the techniques described in Ref.@13#. Finally, one also needs

K CU 1r 1 UC L 5(
i , j

a ia j@K~l i1l j ,2g,0,1,0!1K~l i1l j ,2g,1,0,0!12L~l i1l j ,g,g,1,0,0!#, ~A13!

and

K CU 1r 12UC L 52(
i , j

a ia j@K~l i1l j ,2g,0,0,1!1L~l i1l j ,g,g,0,0,1!#. ~A14!
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2848 54KLEINEKATHÖFER, PATIL, TANG, AND TOENNIES



@20# T. Kato, Commun. Pure Appl. Math.10, 151 ~1957!.
@21# D. R. Bates and A. Damgaard, Philos. Trans. R. Soc. A242,

101 ~1949!.
@22# E. N. Lassettre, J. Chem. Phys.43, 4475~1965!; J. Katriel and

E. R. Davidson, Proc. Natl. Acad. Sci. USA77, 4403~1980!.
@23# R. Ahlrichs, M. Hoffman-Ostenhoff, T. Hoffman-Ostenhoff,

and J. D. Morgan III, Phys. Rev. A23, 2106~1981!.
@24# For a discussion of this form of expansion and its relationship

with Hylleraas-type trial wave functions including terms with
interelectronic distancer 12, see J. C. Slater,Quantum Theory
of Matter ~McGraw-Hill Book Company, New York, 1968!,
Chap. 22.

@25# C. Schwartz, Phys. Rev.126, 1015~1962!.
@26# W. Kutzelnigg, Theor. Chim. Acta68, 445 ~1985!.
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