PHYSICAL REVIEW A VOLUME 54, NUMBER 1 JULY 1996
Variational calculation of polarizability and second hyperpolarizability of two-electron systems
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Application of the perturbation expansion of the variational principle of energy in density-functional theory
is demonstrated by calculating the static dipole polarizabilitytand second hyperpolarizability of the
two-electron systems H, He, and Li*. Calculations are performed within both Hartree-Fock and density-
functional theories. In the approach employed, energy change at each{sedend and fourth in our casis
minimized so that no electric field needs to be applied explicitly. This makes the calculation very accurate.
Significantly, Hartree-Fock results obtained by us, to our knowledge, are |éagdr therefore closer to
experiments than those reported in the literature calculated by the finite field method, and also by other
methods[S1050-29476)10406-4

PACS numbds): 31.15—p

Response properties of atomic systems are described welhd is given as
by their dipole polarizabilities. At low intensities of the ap-
plied electric field atoms respond linearly. That is, their in-
duced dipole moment is proportional to the applied field; the p(N= 2 |¢i(n]% 2
constant of proportionality is the dipole polarizability(ten- 1=occe
sor in general However, the situation is different when the
applied field is intense, such as in a laser light. The induced EQ. (1) ve,(r) is the external field. The Hartree potential
dipole can then have higher-order contributions from thevn(r) and the exchange-correlation potentigl(r), both of
field. These are described by the first and second hyperpavhich are local operators, represent the electron-electron in-
larizability, B and y, respectively. This gives rise to inter- teraction. They are the functional derivatives of the corre-
esting nonlinear effects such as second- and third-harmongPonding energy functionals with respect to the density.
generation, intensity-dependent refractive index, etc. However, the exact exchange-correlation energy functional
Theoreticallye, 8, andy are calculated using perturba- is not known and therefore some approximate form for it is
tion theory[1] up to the appropriate order. For example, to@pplied in solving Eq(1). The most widely used is the local-
obtain @ one solves the first-order perturbation equation.density approximatiofLDA) [9]. Equation(2) can be ex-
However, calculations become more and more complicate@anded [10] perturbatively if the external potential is
for higher orders. A great simplification comes about by thechanged by a small amount. As such DFT has also been
2n+1 theorem [1,2]: the (2n+1)-order derivative of employed to calculate the polarizabilitigsO] and hyperpo-
eigenenergy can be calculated from the wave function and itgrizabilities[8,10—-12 of many-electron systems. Thus so-
derivatives up to orden. Thus to calculatey (fourth-order utions up to first order give the corresponding change in
energy one requires a wave function only up to order 2. Thedensity and lead to polarizability and the higher-order
theorem is easy to prove if the eigenstates are known. I§hanges give hyperpolarizabilities. In particular to obtain
practice, however, the many-electron Satinger equation ¥ One has to geft12] density up to the third ordes® and
cannot be solved exactly; therefore methods, such a&alculate its moment. However, for this one must solve the
Hartree-Fock 3], based on the variational principle of en- perturbed Kohn-Sham equation up to order 3. In contrast, if
ergy, are employed to obtain approximate solutions of théhe 2n+1 theorem could be applied, solutions only up to
Schradinger equation. The applicability of then2-1 theo-  Second order would be sufficiefg]. Can the 21+ 1 theorem
rem to such methods is not obvious. Thus the theorem hdae applied in DFT?
been studied and appligd—8] over the years on a case-by-  Some time ago it was proved] that the theorem is in-
case basis. deed valid in DFT, which means that the Kohn-Sham equa-
One of the most extensively used methods in recent timeton needs to be solved only up to ordein perturbation to
to obtain energies and densities of interacting many-electropalculate up to (B+1)-order total-energy changes
systems is the density-functional thedBFT) [9] approach. E®"*Y). This is a result of the nontrivial cancellati§8] of
This approach is also based on the variational principle fogorrections to the orbital eigenenergies, Hartree and
the energy and shows that the ground-state energy of @xchange-correlation energies, and the corresponding poten-
many-electron system can be expressed as a functiontiéls. Based on this, an explicit expression Ef"**) can be
E[p] of its ground-state density. The density in turn is ob-written[8,13] in terms of orbitals up te™. Furthermore, it
tained from the self-consistent solutions of the Kohn-Shanhas been proved recently thEt?" is also variational2]
(KS) equation[9] with respect tog(". By nature of the proof, the statements
1 above are also valid within Hartree-Fock theory for two-
2 _ electron systems, since the exchange energy for these sys-
— 5 Vit vedn) Fon(n+udn) [gi(N=€¢i(r), (1) easily expressed as a functional of the density. In a
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nutshell, if the wave function is knowexactlyup to order up to fifth order. One can thus build up higher and higher
n, the (n+1)-order wave function gives corrections in the derivatives of the wave function and the energy.
energy of the order of @+2 and this energy term is varia- In this work we consLder_th_e examples of two-electron
tional with respect top"*1). In this paper we show that sysr':emsh H', He, ar:jd LII \|N|th|r;] both Ingtr§$-Fock gnd
these two facts together can also be employed in a varialgO n-Sham LDA and calculate their polarizabilities and sec-
) AR “ond hyperpolarizability 8 is zero by symmetnyby applying
tional manner to calculate polarizabilities and hyperpolarizyhe apove-mentioned procedure. For Honly Hartree-Fock
abilities of an electronic system. Notice that variationally too(HF) results are presented as the LDA solution for it does not
once the energy up to ord&¥®" has been minimized, with converge[14]. Significantly, we show that within HF the
wave function up to orden, the next-order correction will Vvalues ofy obtained by us are larger than those reported in
give an energy change in (2-2)-order energy. the literaturg/ 15—-18 also determined variationally by other
Starting from a ground-state KS wave function, accurate{n.ethOds' The KS results, however, are close to those ob-
first-order correction to it can be obtained by minimizing ained by s-olvmg the complete LDA equation up to order 3.
- e Expressions for the second- and the fourth-order energy in
E®). Once the first-order wave function is known the totalterms of the Kohn-Sham orbitaldor spherical one-orbital
energy up toE®) is also known. Thusp® can now be systems considered in this papar the presence of the per-
obtained variationally by minimizing®, and gives energy turbing HamiltonianH®=r cos are given ag13]

52Ech[P]
op(r)op(r’)

52Ech[P]
op(r)dp(r’)

E 2= (412 Ho~ Eol 6) + (SOIHY 60+ (O o) PPN drar, @

1
EW=($@|Ho—Eql ¢'2) +(¢@|HY$ ) + (¢ V[HY P + 5 f p2(1)p? (1" ydr dr’

1 éGEH)«:[P]
*EJ 3p(1)dp(r') op(r

+iJ’ 54EHXC[p]
24) Sp(r)ép(r')Sp(r")ép(r™)

ay V(0PN )p® (1) drdr dr”

p(l)(r)p(l)(rr)p(l)(rrr)p(l)(rm)dr drrdrrrdrw’ (4)

with is the Hartree energy. For single-orbital, two-electron sys-
tems, the exchange energy within Hartree-Fock theory is

PPN =5 (NN + M (No(r)  (5)
1
and EXTpl=—5Eulpl. (10

p2(r)= g5 (N ¢ 2 (r)+D* () go(r)+|sP2. (6)  On the other hand,

It is easily seen thaE(® and E® vary quadratically{13] oA )
with respect tog™™ and ¢(®, respectively, near the mini- Ex [P]=doJ p*¥(r)dr, (11
mum. Minimization is done with the constraint that the den-
sity change be such that the total number of electrons remaip;s, do=— ¥(3/m) 13

For correlation energy we use
unchanged. Thus

Gunnarson-Lundquigtl3] parametrization so that

(1) = 1) X 1
f p(ndr=0 ™ EgDA[p]=cj p(1)| (L+x)In| 1+ 2| + 5 =3P~ §}dr,
12
and (12)
with c=-0.0333, x=r /A, A=11.4, where
f p2(r)dr=0. ®) I’.S=[3/47Tp(r)]1/3 is the localrs value. Functional deriva-
tives of these functionals up to fourth order can be calculated
in a straightforward manner.
Here Taking a cue from the hydrogen atom problg20,21] we
choose
1(p(pr") |
=3 s e © $I(r)=A4(r) ol oS 13
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TABLE . Polarizability « and second hyperpolarizabilityfor H~, He, and Li" in Hartree-Fock theory. Results obtained from analytic
Hartree-Fock wave functions are also given in the brackets. CHF refers to coupled Hartree-Fock theory. Numbers given are in atomic units.

a Y
Atom or ion Present work CHF Expt. Present work CHF Expt.
H- 91.40 91.3¢ 6.33x 10° 4.37x10°2
He 1.322 1.325¢ 1.384¢ 37.77 36.2 51.33°
(1.32)) (37.29
Li* 0.1895 0.189 0.19114 0.2351
(0.1899 (0.2359
8Reference 18.
bReference 17.
‘Reference 25.
dReference 26.
®Reference 27.
and Results obtained by us are displayed in Tables | and II.

@ Calculations have been performed on the 441 mesh of the
¢ P (r)=[A5(r)+A5(r)cogfldo(r)+Mo(r), (14  Herman-Skillmani23] atomic code. Convergence of the re-
sults has been tested by changing the number of parameters

where inAj, A,, andA;. After five parameters, inclusion of more
does not affect the value, as shown in Table IIl. Notice that
Ay(ry=asr+byr?+cir3+dré+er®, A, also affectsy. Thus changing\; may not alter the value
of a (change is quadratidout changesy.
Ap(r)=asr +byr?+cor3+dyr+e,r®, (15 In Table | we show the results of the present calculations
within Hartree-Fock theory along with those of coupled
Ag(r)=agr +bgr2+cari+dsr+esr®. Hartree-Fock(CHF) calculations[15—18. It is evident that
. @ . the values ofe in the present work are the same as those
By minimizing E'”, parameters,, ... e, are determined hiqined in CHF. On the other hand, the hyperpolarizability
and kept fixed;a,, ...,e, and as, ... ,e; are then opti-

values are larger than those quoted in the literature for both
H™~ and He. We suspect that the same would be the case for
Li *; the correlated wave-function calculation gives a value
of 0.242 a.u., which should be larger than the HF result. As
a check we have also calculatedand y for He and Li*
a=—2E?@, y=—24@4, (16) using analytic Hartree-Fock wave functiof4]. These re-
sults fory, although slightly differenfsee Table), are also
We note here that such variational procedures have bedarger than the values obtained in previous works. Further,
employed22] in the past to obtain dipole polarizabilities of they also show the sensitivity of hyperpolarizability on the
atoms. However, what we show in this paper is that wherzeroth-order wave function employed.
extended further within DFT, they can also be applied to For H™ a and y are both quite large, consistent with
obtain higher-order polarizabilities. The approach in this paH™~ being a diffused system as the extra electron is very
per also differs from other variational calculatiofs8,21] loosely bound. Also the values are much smaller than the
for  within the Hartree-Fock theory: In those calculations aexact(correlated theoretical value, which is a manifestation
functional is constructed that gives the second-order pertumf the importance of Coulomb correlations in"H
bation equation upon optimization with respect to the orbit- The LDA results for the helium atom and lithium cation
als. Thus the second-order orbitals are obtained from thiare displayed in Table Il. There are no LDA numbers for
functional rather than by directly minimizing the energy. = H™ because, as noted above, self-consistent LDA solutions

mized to obtainE(*). Notice that with these choices of the
induced wave functions Ed7) is automatically satisfied; to
satisfy Eq.(8) \ is appropriately chosen for each set of pa-
rametersa andy are given by

TABLE II. Polarizability « and second hyperpolarizability for He and Li" obtained within the LDA
Kohn-Sham theory. TDLDA refers to results calculated by solving the Kohn-Sham equation to the appro-
priate order. Numbers given are in atomic units.

a Y
Atom or ion Present work TDLDA Present work TDLDA
He 1.630 1.66 78.54 81.3¢
Li* 0.2111 0.3535

%Reference 10.
bReference 12.
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TABLE IIl. Convergence of polarizabilityr and second hyper-
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is y. This is because, whereas changes in the value afe

polarizability y for He with respect to change in the number of quadratic in the difference between the variational and the

parameters il .

No. of
parameters a y
2 1.3218 42.95
3 1.3222 38.30
4 1.3222 37.67
5 1.3222 37.77
6 1.3222 37.76

for this ion cannot be obtained. Again, the numbers for He/
obtained by us are close to those calculated by solving th

Kohn-Sham equation up to the appropriate orderorder 1
[10] for @ and to order 312] for v). For Li*, to the best of

our knowledge, there are no published results. Further, it i

clear that the LDA numbers are, particularly for much
larger than the CHF or the experimen{a6,27 numbers.

This is because the highest occupied orbital within the LDA

is loosely bound. Further, since is more sensitive to the

zeroth-order wave function, it differs relatively more than

.
In Table Il the effect of change iA; on the value of

a and y for He is shown; in this calculation the number of
parameters inA, and A; are kept unchanged. As noted

above,« is not affected as appreciably with changeipas

exact¢™, it is not so fory. The same trend is observed for
the other systems.

We now address the question as to why our Hartree-Fock
numbers are greater than 36.2 for He and %.3® for
H™. These numbers are obtained by minimizing the total
energy(H+\H?) with respect to a variational wave func-
tion. On the other hand we are minimizing the correction of
each order individually. Although in principle the numbers
obtained by either method should be the same, it is possible
that E()(present works E)(minimization of (H+\H?))
leading thereby to a better upper bound. Similarly in the
ariational calculations, as noted above, a constructed func-
onal that is not the fourth-order energy is optimized to ob-
ain second-order wave functions. This would clearly lead to
fourth-order energies that are higher than those obtained by

gs by minimizing the energy directly.

To conclude we have demonstrated with the help of two-
electron systems that the perturbation expansion of the varia-
tional principle can be used sequentially in a variational
manner to obtain response functions of interacting electron
systems. This makes computation of these quantities both
more accurate and numerically much simpler. Encouraged
by the present results, we are applying this method to other
systems and will report the results in the future.

We thank Dr. Kailash Rustagi for making available to us
his notes and also for fruitful discussions and comments.
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