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Application of the perturbation expansion of the variational principle of energy in density-functional theory
is demonstrated by calculating the static dipole polarizabilitya and second hyperpolarizabilityg of the
two-electron systems H2, He, and Li1. Calculations are performed within both Hartree-Fock and density-
functional theories. In the approach employed, energy change at each order~second and fourth in our case! is
minimized so that no electric field needs to be applied explicitly. This makes the calculation very accurate.
Significantly, Hartree-Fock results obtained by us, to our knowledge, are larger~and therefore closer to
experiments! than those reported in the literature calculated by the finite field method, and also by other
methods.@S1050-2947~96!10406-6#

PACS number~s!: 31.15.2p

Response properties of atomic systems are described well
by their dipole polarizabilities. At low intensities of the ap-
plied electric field atoms respond linearly. That is, their in-
duced dipole moment is proportional to the applied field; the
constant of proportionality is the dipole polarizabilitya ~ten-
sor in general!. However, the situation is different when the
applied field is intense, such as in a laser light. The induced
dipole can then have higher-order contributions from the
field. These are described by the first and second hyperpo-
larizability, b and g, respectively. This gives rise to inter-
esting nonlinear effects such as second- and third-harmonic
generation, intensity-dependent refractive index, etc.

Theoreticallya, b, andg are calculated using perturba-
tion theory@1# up to the appropriate order. For example, to
obtain a one solves the first-order perturbation equation.
However, calculations become more and more complicated
for higher orders. A great simplification comes about by the
2n11 theorem @1,2#: the (2n11)-order derivative of
eigenenergy can be calculated from the wave function and its
derivatives up to ordern. Thus to calculateg ~fourth-order
energy! one requires a wave function only up to order 2. The
theorem is easy to prove if the eigenstates are known. In
practice, however, the many-electron Schro¨dinger equation
cannot be solved exactly; therefore methods, such as
Hartree-Fock@3#, based on the variational principle of en-
ergy, are employed to obtain approximate solutions of the
Schrödinger equation. The applicability of the 2n11 theo-
rem to such methods is not obvious. Thus the theorem has
been studied and applied@4–8# over the years on a case-by-
case basis.

One of the most extensively used methods in recent times
to obtain energies and densities of interacting many-electron
systems is the density-functional theory~DFT! @9# approach.
This approach is also based on the variational principle for
the energy and shows that the ground-state energy of a
many-electron system can be expressed as a functional
E@r# of its ground-state density. The density in turn is ob-
tained from the self-consistent solutions of the Kohn-Sham
~KS! equation@9#
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In Eq. ~1! vext(r ) is the external field. The Hartree potential
vH(r ) and the exchange-correlation potentialvxc(r ), both of
which are local operators, represent the electron-electron in-
teraction. They are the functional derivatives of the corre-
sponding energy functionals with respect to the density.
However, the exact exchange-correlation energy functional
is not known and therefore some approximate form for it is
applied in solving Eq.~1!. The most widely used is the local-
density approximation~LDA ! @9#. Equation~2! can be ex-
panded @10# perturbatively if the external potential is
changed by a small amount. As such DFT has also been
employed to calculate the polarizabilities@10# and hyperpo-
larizabilities @8,10–12# of many-electron systems. Thus so-
lutions up to first order give the corresponding change in
density and lead to polarizability and the higher-order
changes give hyperpolarizabilities. In particular to obtain
g, one has to get@12# density up to the third orderr (3) and
calculate its moment. However, for this one must solve the
perturbed Kohn-Sham equation up to order 3. In contrast, if
the 2n11 theorem could be applied, solutions only up to
second order would be sufficient@8#. Can the 2n11 theorem
be applied in DFT?

Some time ago it was proved@8# that the theorem is in-
deed valid in DFT, which means that the Kohn-Sham equa-
tion needs to be solved only up to ordern in perturbation to
calculate up to (2n11)-order total-energy changes
E(2n11). This is a result of the nontrivial cancellation@8# of
corrections to the orbital eigenenergies, Hartree and
exchange-correlation energies, and the corresponding poten-
tials. Based on this, an explicit expression forE(2n11) can be
written @8,13# in terms of orbitals up tof (n). Furthermore, it
has been proved recently thatE(2n) is also variational@2#
with respect tof (n). By nature of the proof, the statements
above are also valid within Hartree-Fock theory for two-
electron systems, since the exchange energy for these sys-
tems is easily expressed as a functional of the density. In a
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nutshell, if the wave function is knownexactlyup to order
n, the (n11)-order wave function gives corrections in the
energy of the order of 2n12 and this energy term is varia-
tional with respect tof (n11). In this paper we show that
these two facts together can also be employed in a varia-
tional manner to calculate polarizabilities and hyperpolariz-
abilities of an electronic system. Notice that variationally too
once the energy up to orderE(2n) has been minimized, with
wave function up to ordern, the next-order correction will
give an energy change in (2n12)-order energy.

Starting from a ground-state KS wave function, accurate
first-order correction to it can be obtained by minimizing
E(2). Once the first-order wave function is known the total
energy up toE(3) is also known. Thusf (2) can now be
obtained variationally by minimizingE(4), and gives energy

up to fifth order. One can thus build up higher and higher
derivatives of the wave function and the energy.

In this work we consider the examples of two-electron
systems H2, He, and Li1 within both Hartree-Fock and
Kohn-Sham LDA and calculate their polarizabilities and sec-
ond hyperpolarizability (b is zero by symmetry! by applying
the above-mentioned procedure. For H2, only Hartree-Fock
~HF! results are presented as the LDA solution for it does not
converge@14#. Significantly, we show that within HF the
values ofg obtained by us are larger than those reported in
the literature@15–18# also determined variationally by other
methods. The KS results, however, are close to those ob-
tained by solving the complete LDA equation up to order 3.

Expressions for the second- and the fourth-order energy in
terms of the Kohn-Sham orbitals~for spherical one-orbital
systems considered in this paper! in the presence of the per-
turbing HamiltonianH (1)5r cosu are given as@13#
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with
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and
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It is easily seen thatE(2) and E(4) vary quadratically@13#
with respect tof (1) andf (2), respectively, near the mini-
mum. Minimization is done with the constraint that the den-
sity change be such that the total number of electrons remain
unchanged. Thus

E r~1!~r !dr50 ~7!

and

E r~2!~r !dr50. ~8!

Here

EH5
1

2E r~r !r~r 8!

ur2r 8u
dr dr 8 ~9!

is the Hartree energy. For single-orbital, two-electron sys-
tems, the exchange energy within Hartree-Fock theory is

Ex
HF@r#52

1

2
EH@r#. ~10!

On the other hand,

Ex
LDA@r#5d0E r4/3~r !dr , ~11!

with d052 3
4(3/p)

1/3. For correlation energy we use
Gunnarson-Lundquist@13# parametrization so that

Ec
LDA@r#5cE r~r !F ~11x3!lnS 11
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with c520.0333, x5r s /A, A511.4, where
r s5@3/4pr(r )#1/3 is the local r s value. Functional deriva-
tives of these functionals up to fourth order can be calculated
in a straightforward manner.

Taking a cue from the hydrogen atom problem@20,21# we
choose

f~1!~r !5D1~r !f0~r !cosu ~13!
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and

f~2!~r !5@D2~r !1D3~r !cos2u#f0~r !1lf0~r !, ~14!

where

D1~r !5a1r1b1r
21c1r

31d1r
41e1r

5,

D2~r !5a2r1b2r
21c2r

31d2r
41e2r

5, ~15!

D3~r !5a3r1b3r
21c3r

31d3r
41e3r

5.

By minimizing E(2), parametersa1 , . . . ,e1 are determined
and kept fixed;a2 , . . . ,e2 and a3 , . . . ,e3 are then opti-
mized to obtainE(4). Notice that with these choices of the
induced wave functions Eq.~7! is automatically satisfied; to
satisfy Eq.~8! l is appropriately chosen for each set of pa-
rameters.a andg are given by

a522E~2!, g5224E~4!. ~16!

We note here that such variational procedures have been
employed@22# in the past to obtain dipole polarizabilities of
atoms. However, what we show in this paper is that when
extended further within DFT, they can also be applied to
obtain higher-order polarizabilities. The approach in this pa-
per also differs from other variational calculations@18,21#
for g within the Hartree-Fock theory: In those calculations a
functional is constructed that gives the second-order pertur-
bation equation upon optimization with respect to the orbit-
als. Thus the second-order orbitals are obtained from this
functional rather than by directly minimizing the energy.

Results obtained by us are displayed in Tables I and II.
Calculations have been performed on the 441 mesh of the
Herman-Skillmann@23# atomic code. Convergence of the re-
sults has been tested by changing the number of parameters
in D1 , D2 , andD3 . After five parameters, inclusion of more
does not affect the value, as shown in Table III. Notice that
D1 also affectsg. Thus changingD1 may not alter the value
of a ~change is quadratic! but changesg.

In Table I we show the results of the present calculations
within Hartree-Fock theory along with those of coupled
Hartree-Fock~CHF! calculations@15–18#. It is evident that
the values ofa in the present work are the same as those
obtained in CHF. On the other hand, the hyperpolarizability
values are larger than those quoted in the literature for both
H2 and He. We suspect that the same would be the case for
Li 1; the correlated wave-function calculation gives a value
of 0.242 a.u., which should be larger than the HF result. As
a check we have also calculateda and g for He and Li1

using analytic Hartree-Fock wave functions@24#. These re-
sults forg, although slightly different~see Table I!, are also
larger than the values obtained in previous works. Further,
they also show the sensitivity of hyperpolarizability on the
zeroth-order wave function employed.

For H2 a and g are both quite large, consistent with
H2 being a diffused system as the extra electron is very
loosely bound. Also the values are much smaller than the
exact~correlated! theoretical value, which is a manifestation
of the importance of Coulomb correlations in H2.

The LDA results for the helium atom and lithium cation
are displayed in Table II. There are no LDA numbers for
H2 because, as noted above, self-consistent LDA solutions

TABLE II. Polarizability a and second hyperpolarizabilityg for He and Li1 obtained within the LDA
Kohn-Sham theory. TDLDA refers to results calculated by solving the Kohn-Sham equation to the appro-
priate order. Numbers given are in atomic units.

a g
Atom or ion Present work TDLDA Present work TDLDA

He 1.630 1.66a 78.54 81.36b

Li 1 0.2111 0.3535

aReference 10.
bReference 12.

TABLE I. Polarizabilitya and second hyperpolarizabilityg for H2, He, and Li1 in Hartree-Fock theory. Results obtained from analytic
Hartree-Fock wave functions are also given in the brackets. CHF refers to coupled Hartree-Fock theory. Numbers given are in atomic units.

a g
Atom or ion Present work CHF Expt. Present work CHF Expt.

H2 91.40 91.39a 6.333106 4.373106 a

He 1.322 1.322b,c 1.384d 37.77 36.2b 51.33e

~1.321! ~37.25!
Li 1 0.1895 0.189c 0.1911d 0.2351

~0.1894! ~0.2354!

aReference 18.
bReference 17.
cReference 25.
dReference 26.
eReference 27.
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for this ion cannot be obtained. Again, the numbers for He
obtained by us are close to those calculated by solving the
Kohn-Sham equation up to the appropriate order~to order 1
@10# for a and to order 3@12# for g). For Li1, to the best of
our knowledge, there are no published results. Further, it is
clear that the LDA numbers are, particularly forg, much
larger than the CHF or the experimental@26,27# numbers.
This is because the highest occupied orbital within the LDA
is loosely bound. Further, sinceg is more sensitive to the
zeroth-order wave function, it differs relatively more than
a.

In Table III the effect of change inD1 on the value of
a andg for He is shown; in this calculation the number of
parameters inD2 and D3 are kept unchanged. As noted
above,a is not affected as appreciably with change inD1 as

is g. This is because, whereas changes in the value ofa are
quadratic in the difference between the variational and the
exactf (1), it is not so forg. The same trend is observed for
the other systems.

We now address the question as to why our Hartree-Fock
numbers are greater than 36.2 for He and 4.373106 for
H2. These numbers are obtained by minimizing the total
energy^H1lH1& with respect to a variational wave func-
tion. On the other hand we are minimizing the correction of
each order individually. Although in principle the numbers
obtained by either method should be the same, it is possible
that E(4)~present work!<E(4)~minimization of ^H1lH1&)
leading thereby to a better upper bound. Similarly in the
variational calculations, as noted above, a constructed func-
tional that is not the fourth-order energy is optimized to ob-
tain second-order wave functions. This would clearly lead to
fourth-order energies that are higher than those obtained by
us by minimizing the energy directly.

To conclude we have demonstrated with the help of two-
electron systems that the perturbation expansion of the varia-
tional principle can be used sequentially in a variational
manner to obtain response functions of interacting electron
systems. This makes computation of these quantities both
more accurate and numerically much simpler. Encouraged
by the present results, we are applying this method to other
systems and will report the results in the future.

We thank Dr. Kailash Rustagi for making available to us
his notes and also for fruitful discussions and comments.
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