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The dispersion coefficientsC6, C8, andC10 for the interactions among H, He, and Li are calculated using
variational wave functions in Hylleraas basis sets with multiple exponential scale factors. With these highly
correlated wave functions, significant improvements are made upon previous calculations and our results
provide definitive values for these coefficients.@S1050-2947~96!03310-0#

PACS number~s!: 31.15.Pf, 32.10.Dk, 34.20.Cf

I. INTRODUCTION

At large separationsR, the interaction potential between
two neutral atoms can be expressed in terms of inverse pow-
ers ofR, with the leading termR26 @1,2#. The nature of the
long-range interaction can be described by the mutual per-
turbations of instantaneous multipoles of individual atoms.
The coefficient of theR26 term comes from an instantaneous
dipole-dipole interaction and the coefficient of theR28 term
from an instantaneous dipole-quadrupole interaction.

The precise evaluation of the dispersion coefficients be-
tween atoms is computationally challenging, because it re-
quires a summation over all intermediate states, including the
continuum. In actual calculations, it is therefore essential to
have an adequate representation of the whole spectrum of the
Hamiltonian. For atomic systems with more than one elec-
tron the central problem is the inclusion of electron-electron
correlations.

Recently, significant progress@3,4# has been made in
variational calculations for the helium and lithium atoms us-
ing double and multiple basis sets in Hylleraas coordinates.
The nonrelativistic energies for helium have been obtained to
better than one part in 1016 for the entire singly excited spec-
trum, whereas the nonrelativistic energies for the low-lying
states of lithium are accurate to a few parts in 1011–1012 @5#.
We have also performed a high precision calculation for the
lithium 2 2S→2 2P oscillator strength@6#, which has been a
subject of controversy for many years. Although there have
been many calculations for the dispersion coefficients among
H, He, and Li ~see, for example,@2,7–11#!, the results in-
volving Li vary over a considerable range.

Due to the recent progress of ultracold collisions in both
theory and experiment@12#, precise forms of long-range in-
teraction potentials between various atoms become very im-
portant. The purpose of this paper is to present the results of
variational calculations in Hylleraas basis sets using multiple
nonlinear parameters. The use of our highly correlated wave
functions will improve upon previous calculations and pro-
vide more definitive values for the dispersion coefficients.

The theory of long-range forces is outlined in Sec. II. The
structures of the basis sets for one, two, and three electron
atomic systems are presented in Sec. III. Our final results are
tabulated and comparisons are made with the various previ-

ous calculations. In the Appendix, a derivation is given of
the dispersion coefficients for the Li(S) –Li(P) system.

II. FORMULATION

A. Ground-state dispersion coefficients

In this section, we concentrate on interactions between
atoms in their ground states. Using second-order perturbation
theory, the long-range part of interaction between two atoms
a and b in their ground states can be expanded in terms of a
series of inverse powers of the separationR @1,2#
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In Eq. ~5!, a la
a ( iv) is the dynamic 2la polarizability for atom

a at imaginary frequencyiv. The dynamic polarizability can
be expressed in terms of a sum over all intermediate states,
including the continuum~in atomic units throughout!:
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whereEn05En2E0, the sumi runs over all the electrons in
the atom,C0 is the ground-state wave function,E0 is the
corresponding ground state energy, andCn is thenth inter-
mediate eigenfunction with the associated eigenvalueEn .
An oscillator strengthf̄ n0

( l ) , which is independent of magnetic
quantum numberm is obtained by averaging over the initial-
state orientation degeneracy and summing over the final-state
degeneracy. It is convenient to introduce reduced matrix el-
ements through the Wigner-Eckart theorem@13#

K g8L8M 8U(
i
r i
lYlm~ r̂ i !UgLM L

5~21!L82M8S L8 l L

2M 8 m MD
3K g8L8I(

i
r i
lYl~ r̂ i !IgLL . ~8!

With the aid of a sum rule for the 3-j symbols, the oscillator
strength can be written

f̄ n0
~ l !5

8p

~2l11!2~2L011!
En0U K C0I(

i
r i
lYl~ r̂ i !ICnL U2,

~9!

whereL0 is the total angular momentum for the initial state.
Using the identity

2
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we can recast Eq.~5! into the equivalent form
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whereEn0
i 5En

i 2E0
i is the excitation energy for atom i and is

always positive for the atoms in the ground state. The pro-
cedure for evaluatingGab( l a ,l b) is to diagonalize the Hamil-
tonian in a basis set and sum over all intermediate states
directly according to Eq.~11!, and a convergence study can
be done by increasing the size of the basis set progressively.

The long-range part of the interaction between three
ground-state atoms is not exactly equal to the interaction
energies taken in pairs. There is a nonadditive term which
comes from the third-order perturbation. The leading terms
in the expression for the dispersion energy of the three-atom
system are@1,2#

Vabc52
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r ab
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C6
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6 2

C6
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6 2

nabc~3cosuacosubcosuc11!

~r abr bcr ca!
3 ,

~12!

whereua , ub , anduc are the internal angles of the triangle
formed by r ab , r bc and r ca , and nabc is the triple-dipole
constant defined by

nabc5
3

pE0
`

a1
a~ iv!a1

b~ iv!a1
c~ iv!dv. ~13!

B. Excited-state dispersion coefficients

For two like atoms that are not both in their ground states,
the perturbation theory for calculating the dispersion coeffi-
cients was given by Marinescu and Dalgarno@10#. They
worked out all the details for evaluating the dispersion coef-
ficients of alkali-metal dimers in different excited states
within a one-electron model potential formalism. In this
work, we examine the important case when one lithium atom
is in the 22Sground state and the other lithium atom is in the
2 2P state. A detailed derivation for many-electron systems
is given in the Appendix.

The zero-order wave function for the Li(S)-Li( P) system
can be written as a symmetrized product of two individual
atomic wave functions

C~0!5
1

A2
@Ca~L1M1 ;r !Cb~L2M2 ;r!

1bCa~L1M1 ;r!Cb~L2M2 ;r !#, ~14!

wherer andr represent all the internal coordinates for the
two atoms, respectively,L1 and L2 are their total orbital
angular momenta,M1 andM2 are the associated magnetic
quantum numbers, andb561 describes the symmetry due
to the Pauli exclusion principle. Following@10#, first-order
perturbation theory yields the interaction energy

V~1!~L2M2 ;b!52
C2L211
M2b

R2L211 , ~15!

where
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~16!

The first-order energy correction is proportional tob. There-
fore, for two unlike atoms (b50) in the asymptotic region
where overlap between two atoms can be neglected, there is
no first-order correction to the interaction. For two like at-
oms, however, there is a first-order correction to the interac-
tion energy as long as two atoms are in different angular
momentum states. For the Li(S)-Li( P) system, the interac-
tion is proportional toR23. The interaction between two
ground-state atoms is always attractive@see Eq.~1!# but the
interaction between two like atoms in different angular mo-
mentum states is equally likely to be attractive and repulsive.

The leading energy correction obtained from the second-
order perturbation theory for the Li(S)-Li( P) system is

V~2!52
C6
M2

R6 , ~17!

where

C6
M25(

st

Vst

Est
~0!2E~0! ~18!
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with

Vst5U K Ca~0;r !I(
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r iY1~ r̂ i !Ix~1;r !L U2
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l

G~1,1,1,l,1,M2!
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j
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In Eq. ~18!, the summation should exclude one term that
gives rise toEst

(0)5E(0). Note thatC6
M2 is independent of

b. The values ofG are listed in Table I.
It should be noted that the terms withl51 in Eq. ~19!,

which corresponds to transitions between even parity states
Pe and odd parity statePo, are missing in one-electron
model potential methods@10#. The dominant contribution
comes from the radiative transition between the lowest dou-
bly excited doublet state 1s2p2p2Pe, which is stable against
autoionization @14#, to the singly excited doublet state
1s22p2Po. The contribution of thel51 term to C6

M2 is
0.980 82(5) forM2561, and 0.392 32(2) forM250.

III. CALCULATIONS AND RESULTS

For the hydrogen atom, the following Sturmian basis set
@15# is used to diagonalize the Hamiltonian:

$r le2br /2Ln
~2l12!~br !%, ~20!

whereLn
(2l12)(br ) is the generalized Laguerre polynomial

and the parameterb is chosen to beb52/(l11). This basis
set has proven to be numerically stable as the size of the
basis set is enlarged.

For the helium atom, the basis set is constructed using
Hylleraas coordinates@16#

$x i jk5r 1
i r 2

j r 12
k e2ar12br2%, ~21!

and the wave functions are expanded from doubled basis
sets. The explicit form for the wave function is

C~r1 ,r2!5(
i jk

@ai jk
~1!x i jk~a1 ,b1!1ai jk

~2!x i jk~a2 ,b2!#

6exchange, ~22!

andi1 j1k<V. A complete optimization is then performed
with respect to the two sets of nonlinear parametersa1 ,b1
anda2 ,b2. The screened hydrogenic wave function is also
included explicitly in the basis set. These techniques yield
much improved convergence relative to single basis set cal-
culations.

For the lithium atom, the basis set is also constructed in
Hylleraas coordinates@4#

$f t,m t
~a t ,b t ,g t!5r 1

j 1r 2
j 2r 3

j 3r 12
j 12r 23

j 23r 31
j 31 e2a tr12b tr22g tr3%,

~23!

wherem t denotes a sextuple of integer powersj 1, j 2, j 3,
j 12, j 23, and j 31, index t labels different sets of nonlinear
parametersa t , b t , andg t . Except for some truncations, all
terms are included such that

j 11 j 21 j 31 j 121 j 231 j 31<V. ~24!

The wave function is expanded from the multiple basis sets

C~r1 ,r2 ,r3!5A(
t

(
m t

at,m t
f t,m t

~a t ,b t ,g t!

3~angular function!~spin function!. ~25!

A similar optimization is also performed with respect to all
the nonlinear parameters.

Table II contains the values of the static polarizabilities
a1(0), a2(0), anda3(0) for H, He, and Li in their ground
states. Tables III and IV present the comparison with se-
lected previous calculations for He and Li. Using the Stur-

TABLE I. The algebraic coefficientsG(1,1,1,l,1,M2).

l50 l51 l52

M250 64
81p

2 16
81p

2 176
405p

2

M2561 16
81p

2 40
81p

2 152
405p

2

TABLE II. Values of the static polarizabilitiesa1(0), a2(0),
anda3(0) for the ground-state H, He, and Li atoms.

System a1(0) a2(0) a3(0)

H 4.5 15 131.25
He 1.383 192 174 40~5! 2.445 083 101~2! 10.620 328 6~2!

Li 164.111~2! 1423.266~5! 39 650.49~8!

TABLE III. Comparison of static polarizabilitiesa1(0), a2(0), anda3(0) for He(1
1S).

Author ~year! Reference a1(0) a2(0) a3(0)

Luyckx et al. ~1977! @17# 1.379 2.430 10.48
Thakkar~1981! @18# 1.383 12 2.443 44 10.614 4
Bishop and Pipin~1993! @7# 1.383 192 2.445 083 10.620 360
Caffarelet al. ~1993! @19# 1.382 7 2.406 6 10.36
Jamiesonet al. ~1995! @9# 1.383 192
Chen~1995! @20# 1.383 32
Chen and Chung~1996! @11# 1.383 27 2.445 66 10.625 2
This work 1.383 192 174 40~5! 2.445 083 101~2! 10.620 328 6~2!
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mian basis sets containing up to 70 terms yields the well-
known exact results for the H atom. For He, the largest size
of a basis set for the ground state is 504. For the intermediate
states, the largest sizes of basis sets are 728, 733, and 792,
respectively for theP, D, andF symmetries. Table III shows
that our value fora1(0) is in perfect agreement with the best
previous results of Bishop and Pipin@7# and Jamieson, Drake
and Dalgarno@9# within the first seven digits. However, our
value ofa1(0), aswell asa2(0) anda3(0), hasconverged
to several more significant figures, as indicated by the ex-
trapolation uncertainty in parentheses. For Li, with the fixed
size of the basis set 919 for the ground state, Table V con-
tains the convergence studies ofa1(0) in both length and
velocity forms, as the number of terms for the intermediate
P symmetry is progressively increased. As a further numeri-
cal check, we calculateda1(0) for the Li atom by solving an
inhomogeneous equation, using the Dalgarno-Lewis method
@21# as follows:

a l~0!52
8p

2l11K C~2 2S!U(
i
r i
lYlm~ r̂ i !UC1L , ~26!

whereC1 satisfies the inhomogeneous equation

~H02E0!C11F(
i
r i
lYlm~ r̂ i !2E1GC~2 2S!50. ~27!

In the above equation,H0 is the unperturbed Li Hamiltonian,
E0 is the Li ground-state energy, and

E15K C~2 2S!U(
i
r i
lYlm~ r̂ i !UC~2 2S!L . ~28!

Equation ~27! is solved variationally by expandingC1 in
terms of a Hylleraas basis set. The two procedures are
equivalent. Using basis sets up to 2136,a1(0) converges
monotonically to 164.109 8. Based on these convergence
studies, our final extrapolated value ofa1(0) is
164.111(2). Wehave also done similar convergence studies
for a2(0) anda3(0). Ourresults fora1(0) anda2(0) are in
good accord with the results of Pipin and Bishop@22#. The
model potential results of Marinescu, Sadeghpour, and Dal-
garno @8# agree with the present calculations at the 0.05%
and 0.1% levels fora2(0) anda3(0), respectively.

Table VI shows our values of the two-body dispersion
coefficientsC6, C8, andC10 for the ground state H, He, and
Li atoms. For the H-H case, these coefficients can be calcu-
lated to arbitrarily high precision. Our value ofC6 is in com-
plete agreement with the value of Margoliash and Meath
@36#. Comparisons with the previous calculations for
He(11S)-He(11S) and Li(22S)-Li(2 2S) are listed in
Tables VII and VIII.

For the He-He case, ourC6 andC8 are in excellent agree-
ment with the results of Bishop and Pipin@7#, but more pre-

TABLE IV. Comparison of static polarizabilitiesa1(0), a2(0), anda3(0) for Li(2
2S).

Author ~year! Reference a1(0) a2(0) a3(0)

Maeder and Kutzelnigg~1979! @23# 164.3 1383 36 795
Muszyńskaet al. ~1982! @24# 163.8
Pipin and Woz´nicki ~1983! @25# 163.9
Pouchan and Bishop~1984! @26# 164~2!

Müller et al. ~1984! @27# 163.7
Knowles and Meath~1986! @28# 165.8 1486 36 495
Maroulis and Thakkar~1989! @29# 164.5 1428
Pipin and Bishop~1992! @22# 164.1 1423
Ponomarenko and Shestakov~1993! @30# 165.2
Marinescuet al. ~1994! @8# 1424 39 688
Wang and Chung~1994! @31# 164.08
Mérawaet al. ~1994! @32# 164.8 1430
Kassimi and Thakkar~1994! @33# 164.2~1!

Laughlin ~1995! @34# 163.91
This work 164.111~2! 1 423.266~5! 39 650.49~8!

Experiment~1974! @35# 164.0~3.4!

TABLE V. Convergence of Li(22S) a1(0) and Li(22S)-Li(2 2S) C6 in length and velocity forms.

No. of terms a1(0) ~length! a1(0) ~velocity! C6 ~length! C6 ~velocity!

56 164.002 165.218 1389.76 1409.91
139 164.048 164.201 1391.21 1393.56
307 164.082 164.131 1392.37 1393.08
623 164.095 164.107 1392.80 1392.92
1175 164.105 164.108 1393.17 1393.17
1846 164.107 164.108 1393.23 1393.21
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cise by about three orders of magnitude. As forC10, a small
disagreement of about 1 ppm exists. The value of Jamieson
Drake, and Dalgarno@9# for C6 also agrees with our value.

For the Li-Li case, convergence studies forC6 in both
length and velocity forms are listed in Table V. The agree-
ment between the two forms is satisfactory. From Table VIII,
it can be seen that the result of Stacey and Dalgarno@41# for
C6 is in close agreement with the present calculation. The
model potential results of Marinescu, Sagedhpour, and Dal-
garno@8# for C6, C8, andC10 differ from our calculations at
the 0.1–0.3 % level.

Table IX lists the triple-dipole constantsnabc for the com-
binations among three ground-state atoms H, He, and Li,
together with the previous values of Stacey and Dalgarno
@41#. The overall agreement is about 1%.

Finally, Tables X and XI list values ofC3 andC6 and a
comparison with the previous calculations for the interaction
between the ground state Li(22S) and the excited state
Li(2 2P). C3, which is proportional to the square of the reso-
nant dipole matrix element, has recently been calculated to
high precision@6#. As for C6, our values agree with the
model potential calculations of Marinescu and Dalgarno@10#
at about the 0.3% level.
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APPENDIX

We discuss the dispersion coefficients for the Li(S)-
Li( P) system. The zero-order wave function for this system

can be written as a symmetrized product of two individual
atomic wave functions

C~0!5
1

A2
@Ca~L1M1 ;r !Cb~L2M2 ;r!

1bCa~L1M1 ;r!Cb~L2M2 ;r !#, ~A1!

wherer andr represent all the internal coordinates for the
two atoms, respectively,L1 and L2 are their total orbital
angular momenta,M1 andM2 are the associated magnetic
quantum numbers, andb561 describes the symmetry due
to the Pauli exclusion principle. Following@10#, the interac-
tion potential for two neutral atoms is

V5(
l51

`

(
L51

`
VlL

Rl1L11 , ~A2!

where

VlL5~21!L4p~ l ,L !21/2(
i j

(
m

KlL
m r i

lr j
LYlm~ r̂ i !YL2m~ r̂j !.

~A3!

In the above equation, (l ,L, . . . )5(2l11)(2L11)•••, and

KlL
m 5F S l1L

l1m D S l1L

L1m D G1/2. ~A4!

1. The first-order energy

The first-order energy is given by

V~1!5 1
2A11

1
2A21bA3 ~A5!

TABLE VI. Values ofC6, C8, andC10 for two ground-state atoms.

System C6 C8 C10

H-H 6.499 026 705 405 839 313 13 124.399 083 583 622 343 609 59 3 285.828 414 967 421 697 872 5
He-He 1.460 977 837 68~5! 14.117 857 340~5! 183.691 070 5~7!

Li-Li 1 393.39~16! 83 425.8~4.2! 73 721(1)3102

H-He 2.821 343 915 28~6! 41.836 376 162~8! 871.540 471~1!

He-Li 22.507~1! 1 083.16~5! 72 602.1~1!

Li-H 66.536~5! 3 279.99~2! 223 016.6~5!

TABLE VII. Comparison ofC6, C8, andC10 for the He(11S)-He(11S) system.

Author ~year! Reference C6 C8 C10

Luyckx et al. ~1977! @17# 1.458 14.06 182.16
Glover and Weinhold~1977! @37# 1.459 7~55!
Margoliash and Meath~1978! @36# 1.458
Bartolotti ~1980! @38# 1.463 8 14.131 183.47
Thakkar~1981! @18# 1.460 82 14.111 8 183.600
Rérat et al. ~1993! @39# 1.459 3 13.883
Bishop and Pipin~1993! @7# 1.460 977 8 14.117 855 183.691 25
Jamiesonet al. ~1995! @9# 1.460 978
Chen~1995! @40# 1.461 1 14.120 183.74
Chen and Chung~1996! @11# 1.461 06 14.120 8 183.765
This work 1.460 977 837 68~5! 14.117 857 340~5! 183.691 070 5~7!
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with

A15^Ca~L1M1 ;r !Cb~L2M2 ;r!u

3VuCa~L1M1 ;r !Cb~L2M2 ;r!&, ~A6!

A25^Ca~L1M1 ;r!Cb~L2M2 ;r !u

3VuCa~L1M1 ;r!Cb~L2M2 ;r !&, ~A7!

A35^Ca~L1M1 ;r !Cb~L2M2 ;r!u

3VuCa~L1M1 ;r!Cb~L2M2 ;r !&. ~A8!

Substituting Eq.~A2! into Eq. ~A6!, one has

A15(
lLm

~21!L4p

Rl1L11 ~ l ,L !21/2KlL
m

3K Ca~L1M1 ;r !U(
i
r i
lYlm~ r̂ i !UCa~L1M1 ;r !L

3K Cb~L2M2 ;r!U(
j

r j
LYL2m~ r̂j !UCb~L2M2 ;r!L .

~A9!

From the Wigner-Eckart theorem Eq.~8!, one has

K Ca~L1M1 ;r !U(
i
r i
lYlm~ r̂ i !UCa~L1M1 ;r !L

5~21!L12M1S L1 l L 1

2M1 m M1
D

3K Ca~L1 ;r !I(
i
r i
lYl~ r̂ i !ICa~L1 ;r !L . ~A10!

For L150, the 3-j symbol is zero whenl>1. Thus,
A150. Similarly, A250. For A3, after using the Wigner-
Eckart theorem, we obtain

A35(
lLm

~21!L4p

Rl1L11 ~ l ,L !21/2KlL
m

3K Ca~L1 ;r !I(
i
r i
lYl~ r̂ i !ICb~L2 ;r !L

3K Cb~L2 ;r!I(
j

r j
LYL~ r̂j !ICa~L1 ;r!L g,

~A11!

where, forL150,

g5~21!L12M1S L1 l L 2

2M1 m M2
D ~21!L22M2

3S L2 L L1

2M2 2m M1
D

5
~21!L22M2

2L211
d l ,L2dL,L2dm,2M2

. ~A12!

TABLE VIII. Comparison ofC6, C8, andC10 for the Li(2 2S)-Li(2 2S) system.

Author ~year! Reference 1023C6 1024C8 1026C10

Stacey and Dalgarno~1968! @41# 1.391
Manakov and Ovsiannikov~1977! @42# 1.360
Margoliash and Meath~1978! @36# 1.387
Maeder and Kutzelnigg~1979! @23# 1.389 8.089 6.901
Müller et al. ~1984! @27# 1.386
Bussery and Aubert-Fre´con ~1985! @43# 1.383 7.578 3 4.816 675
Marinescuet al. ~1994! @8# 1.388 8.324 7.365
Mérawaet al. ~1994! @32# 1.407 8 8.431 65
This work 1.393 39~16! 8.342 58~42! 7.372 1~1!

TABLE IX. Values of the triple-dipole constantsnabc for the
three ground-state atoms H, He, and Li.

System C6 ~This work! C6 ~Ref. @41#!

H-H-H 21.642 464 510 635 978 338 11
He-H-H 8.102 240 874 3~2!

He-He-H 3.268 064 896 1~1!

He-He-He 1.479 558 606 3~1!

Li-H-H 275.979~7! 276
Li-He-H 89.830~5! 89.6
Li-He-He 29.824~5! 29.6
Li-Li-H 6 133.5~5! 6.123103

Li-Li-He 1 917.27~5! 1.913103

Li-Li-Li 170 595~6! 1.693105

TABLE X. Values of C3 andC6 for the interaction between
Li(2 2S) and Li(22P).

M2 b C3 C6

0 1 11.000 226~15! 2 075.05~5!

0 –1 –11.000 226~15! 2 075.05~5!

61 1 –5.500 113 3~74! 1 406.08~5!

61 –1 5.500 113 3~74! 1 406.08~5!
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Since@13#

^L8uuYl uuL&5~21!L82L^LuuYl uuL8&, ~A13!

we finally have

V~1!~L2M2 ;b!52
C2L211
M2b

R2L211 , ~A14!

where

C2L211
M2b

5b~21!11L21M2
4p

~2L211!2 S 2L2

L21M2
D

3U K Ca~0;r !I(
i
r i
L2YL2

~ r̂ i !ICb~L2 ;r !L U2.
~A15!

2. The second-order energy

Let the complete set of the system be

$x~LsMs ;r !v~LtMt ;r!% ~A16!

with the energy eigenvalueEst
(0)5Es

(0)1Et
(0) The energy for

the unperturbed system isE(0)5E1
(0)1E2

(0) . According to
the second-order perturbation theory, the second-order en-
ergy is

V~2!52(
st

z^C~0!uVux~LsMs ;r !v~LtMt ;r!& z2

Est
~0!2E~0!

52(
st

T

Est
~0!2E~0! , ~A17!

whereT can be written as

T5B11B21bB3 ~A18!

with

B15
1

2 (
LsMs

(
LtMt

^Ca~L1M1 ;r !Cb~L2M2 ;r!u

3Vux~LsMs ;r !v~LtMt ;r!&2, ~A19!

B25
1

2 (
LsMs

(
LtMt

^Ca~L1M1 ;r!Cb~L2M2 ;r !u

3Vux~LsMs ;r !v~LtMt ;r!&2, ~A20!

B35 (
LsMs

(
LtMt

^Ca~L1M1 ;r !Cb~L2M2 ;r!u

3Vux~LsMs ;r !v~LtMt ;r!&^Ca~L1M1 ;r!

3Cb~L2M2 ;r !uVux~LsMs ;r !v~LtMt ;r!&.

~A21!

After using the Wigner-Eckart theorem, we obtain

B15
1

2(lLm
(

l 8L8m8
(
LsLt

(
MsMt

~4p!2

Rl1L1 l 81L812
~21!L1L8~ l ,L,l 8,L8!21/2KlL

m Kl 8L8
m8 K Ca~L1 ;r !I(

i
r i
lYl~ r̂ i !Ix~Ls ;r !L

3K Cb~L2 ;r!I(
j

r j
LYL~ r̂j !Iv~Lt ;r!L K Ca~L1 ;r !I(

i
r i
l 8Yl 8~ r̂ i !Ix~Ls ;r !L

3K Cb~L2 ;r!I(
j

r j
L8YL8~ r̂j !Iv~Lt ;r!L S L1 l L s

2M1 m Ms
D S L2 L Lt

2M2 2m Mt
D

3S L1 l 8 Ls

2M1 m8 Ms
D S L2 L8 Lt

2M2 2m8 Mt
D . ~A22!

TABLE XI. Comparison ofC6 for the Li(2 2S)-Li(2 2P) system.

Author ~year! Reference C6(M250) C6(M2561)

Konowalov and Fish~1983! @44# 2100~50! 1750~100!
Vigné-Maeder~1984! @45# 2025 1374
Bussery and Aubert-Fre´con ~85! @43# 1927 1301
Marinescu and Dalgarno~1995! @10# 2066 1401
This work 2075.05~5! 1406.08~5!
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For L150, the product of four 3-j symbols becomes

d l ,Lsd l 8,Lsdm,2Ms
dm8,2Ms

1

2Ls11 S L2 L Lt

2M2 Ms Mt
D

3S L2 L8 Lt

2M2 Ms Mt
D . ~A23!

DefiningG1 by

G1~L,L8,Ls ,Lt ,L2 ,M2!5~21!L1L8
~4p!2

2~2Ls11!2

3~L,L8!21/2 (
MsMt

KLsL
2MsK

LsL8

2Ms

3S L2 L Lt

2M2 Ms Mt
D

3S L2 L8 Lt

2M2 Ms Mt
D , ~A24!

we have

B15 (
LL8LsLt

1

R2Ls1L1L812
G1~L,L8,Ls ,Lt ,L2 ,M2!

3U K Ca~0;r !I(
i
r i
LsYLs

~ r̂ i !Ix~Ls ;r !L U2
3K Cb~L2 ;r!I(

j
r j
LYL~ r̂j !Iv~Lt ;r!L

3K Cb~L2 ;r!I(
j

r j
L8YL8~ r̂j !Iv~Lt ;r!L . ~A25!

Consider the leading term ofR26. The only choice is
Ls51, L51, andL851. If another atom is in theL251
state, thenLt50, 1, and 2. For this case,

B15
1

R6 U K Ca~0;r !I(
i
r iY1~ r̂ i !Ix~1;r !L U2

3(
l

G1~1,1,1,l,1,M2!

3U K Cb~1;r!I(
j

r jY1~ r̂j !Iv~l;r!L U2. ~A26!

Similarly, for B2 with L150, we have

B25 (
l l 8LsLt

1

R2Lt1 l1 l 812
G2~ l ,l 8,Lt ,Ls ,L2 ,M2!

3U K Ca~0;r!I(
j

r j
LtYLt

~ r̂j !Iv~Lt ;r!L U2
3K Cb~L2 ;r !I(

i
r i
lYl~ r̂ i !Ix~Ls ;r !L

3K Cb~L2 ;r !I(
i
r i
l 8Yl 8~ r̂ i !Ix~Ls ;r !L ~A27!

with

G2~ l ,l 8,Lt ,Ls ,L2 ,M2!

5
~4p!2

2~2Lt11!2
~ l ,l 8!21/2

3 (
MsMt

KlL t

MtK
l 8Lt

Mt S L2 l L s

2M2 Mt Ms
D

3S L2 l 8 Ls

2M2 Mt Ms
D . ~A28!

For R26, Lt51, l51, l 851. Thus, for the case ofL251,
B2 becomes

B25
1

R6 U K Ca~0;r!I(
j

r jY1~ r̂j !Iv~1;r!L U2
3(

l
G2~1,1,1,l,1,M2!

3U K Cb~1;r !I(
i
r iY1~ r̂ i !Ix~l;r !L U2. ~A29!

Finally, for B3 with L150, we have

B35 (
Ll 8LsLt

1

RLs1Lt1L1 l 812
G3~L,l 8,Ls ,Lt ,L2 ,M2!

3K Ca~0;r !I(
i
r i
LsYLs

~ r̂ i !Ix~Ls ;r !L
3K Ca~0;r!I(

j
r j
LtYLt

~ r̂j !Iv~Lt ;r!L
3K Cb~L2 ;r!I(

j
r j
LYL~ r̂j !Iv~Lt ;r!L

3K Cb~L2 ;r !I(
i
r i
l 8Yl 8~ r̂ i !Ix~Ls ;r !L , ~A30!

with
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G3~L,l 8,Ls ,Lt ,L2 ,M2!5~21!L1Ls
~4p!2

~2Ls11!~2Lt11!

3~L,l 8!21/2

3 (
MsMt

~21!Ms1MtKLsL
2MsK

l 8Lt

Mt

3S L2 L Lt

2M2 Ms Mt
D

3S L2 l 8 Ls

2M2 Mt Ms
D . ~A31!

The only term which contributesR26 is the one with
Ls51, Lt51, l 851, andL51. For the case ofL251, one
obtains

B35
1

R6G3~1,1,1,1,1,M2!K Ca~0;r !I(
i
r iY1~ r̂ i !Ix~1;r !L

3K Ca~0;r!I(
j

r jY1~ r̂j !Iv~1;r!L
3K Cb~1;r!I(

j
r jY1~ r̂j !Iv~1;r!L

3K Cb~1;r !I(
i
r iY1~ r̂ i !Ix~1;r !L . ~A32!

For theS stateCa(0;r ), the parity is11, and for theP state
Cb(1;r ), the parity is21. Since these two states cannot be
connected simultaneously to a third parity eigenstate by a
dipole operator,B3 is therefore zero.

For two like atoms the spectra$x(LM ;r )% and
$v(LM ;r)% are identical andB1 andB2 can be combined.
The final expression for the second-order energy correction
to the Li(S)-Li( P) system is

V~2!52
C6
M2

R6 , ~A33!

where

C6
M25(

st

Vst

Est
~0!2E~0! ~A34!

with

Vst5U K Ca~0;r !I(
i
r iY1~ r̂ i !Ix~1;r !L U2

3(
l

G~1,1,1,l,1,M2!

3U K Cb~1;r!I(
j

r jY1~ r̂j !Iv~l;r!L U2. ~A35!

In Eq. ~A35!, G is defined by

G~1,1,1,l,1,M2!5G1~1,1,1,l,1,M2!1G2~1,1,1,l,1,M2!.

~A36!

It is easy to see that

G1~1,1,1,l,1,M2!5G2~1,1,1,l,1,M2!. ~A37!

The algebraic coefficientsG(1,1,1,l,1,M2) are listed in
Table I.
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@19# M. Caffarel, M. Rérat, and C. Pouchan, Phys. Rev. A47, 3704

~1993!.
@20# M.-K. Chen, J. Phys. B28, 1349~1995!.
@21# A. Dalgarno and J. T. Lewis, Proc. R. Soc. London Ser. A233,

70 ~1955!.
@22# J. Pipin and D. M. Bishop, Phys. Rev. A45, 2736~1992!.
@23# F. Maeder and W. Kutzelnigg, Chem. Phys.42, 95 ~1979!.
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