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Variational calculations of dispersion coefficients for interactions among H, He, and Li atoms
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The dispersion coefficient8g, Cg, andC, for the interactions among H, He, and Li are calculated using
variational wave functions in Hylleraas basis sets with multiple exponential scale factors. With these highly
correlated wave functions, significant improvements are made upon previous calculations and our results
provide definitive values for these coefficientS1050-29476)03310-0

PACS numbg(s): 31.15.Pf, 32.10.Dk, 34.20.Cf

[. INTRODUCTION ous calculations. In the Appendix, a derivation is given of
the dispersion coefficients for the I9[—Li(P) system.
At large separation®, the interaction potential between
two neutral atoms can be expressed in terms of inverse pow- Il. FORMULATION
ers ofR, with the leading ternR™® [1,2]. The nature of the
long-range interaction can be described by the mutual per-
turbations of instantaneous multipoles of individual atoms. In this section, we concentrate on interactions between
The coefficient of th&R =€ term comes from an instantaneous atoms in their ground states. Using second-order perturbation
dipole-dipole interaction and the coefficient of tRe® term  theory, the long-range part of interaction between two atoms
from an instantaneous dipole-quadrupole interaction. a and b in their ground states can be expanded in terms of a
The precise evaluation of the dispersion coefficients beseries of inverse powers of the separativfil,2]
tween atoms is computationally challenging, because it re-
guires a summation over all intermediate states, including the _ Ce Cs Cyo N 0
continuum. In actual calculations, it is therefore essential to
have an adequate representation of the whole spectrum of the o
Hamiltonian. For atomic systems with more than one elecWhere the coefficient€, Cg, andC,, are
tron the central problem is the inclusion of electron-electron 3
correlations. o . Ce=—G,p(1,0), 2)
Recently, significant progress3,4] has been made in ™
variational calculations for the helium and lithium atoms us-
ing double and multiple basis sets in Hylleraas coordinates. c :EG (1,2 + EG (2,0 &)
The nonrelativistic energies for helium have been obtained to 8 o Jabt ™ 27 @b el
better than one part in 1Bfor the entire singly excited spec-
trum, whereas the nonrelativistic energies for the low-lying
states of lithium are accurate to a few parts if'4¢a0' [5].
We have also performed a high precision calculation for the
lithium 2 2S— 2 2P oscillator strengtfi6], which has been a where
subject of controversy for many years. Although there have
been many calculations for the dispersion coefficients among I R b
H, He, and Li(see, for example2,7-11), the results in- Gaslla:lb) f a(io)a (iw)do. ®
volving Li vary over a considerable range.
Due to the recent progress of ultracold collisions in bothin Eq. (5), af‘a(iw) is the dynamic 2 polarizability for atom

theory and experiment. 2], precise forms of long-range in- 3 at imaginary frequenciy. The dynamic polarizability can
teraction potentials between various atoms become very imye expressed in terms of a sum over all intermediate states,

portant. The purpose of this paper is to present the results Gficluding the continuungin atomic units throughoit
variational calculations in Hylleraas basis sets using multiple

A. Ground-state dispersion coefficients

14 14 35
ClOZ?Gab(ly?’)"' —Gan(3.D)+ ;Gab(Z,Z), (4)

nonlinear parameters. The use of our highly correlated wave £
functions will improve upon previous calculations and pro- a(w)= = a— (6)
n

vide more definitive values for the dispersion coefficients.

The theory of Iong—_range forces is outlined in Sec. . Thewith the 2-pole oscillator strengtmﬂg being defined by
structures of the basis sets for one, two, and three electron
<\I’O \I’n>

atomic systems are presented in Sec. lll. Our final results are 2
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: (7)

> 1Y im(FD)

a
tabulated and comparisons are made with the various previ- fﬂ(%:mEno :
1
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whereE,,=E,— Eg, the sumi runs over all the electrons in B. Excited-state dispersion coefficients

the atom,¥, is the ground-state wave functiok, is the For two like atoms that are not both in their ground states,
corresponding ground state energy, ald is thenth inter-  yhe perturbation theory for calculating the dispersion coeffi-
mediate eigenfunction with the associated eigenvdiye  cients was given by Marinescu and Dalgarfi®]. They

An oscillator strengtlf}, which is independent of magnetic worked out all the details for evaluating the dispersion coef-
quantum numbem is obtained by averaging over the initial- ficients of alkali-metal dimers in different excited states

state orientation degeneracy and summing over the final-staigithin a one-electron model potential formalism. In this

degeneracy. It is convenient to introduce reduced matrix elwork, we examine the important case when one lithium atom

ements through the Wigner-Eckart theorgis] is in the 22S ground state and the other lithium atom is in the
22P state. A detailed derivation for many-electron systems
LM’ N vLM is given in the Appendix.
<7 Z Yim(T)] Y > The zero-order wave function for the I9(-Li( P) system

, can be written as a symmetrized product of two individual

—(— l)Lr,Mr L L atomic wave functions

-M" m M
1
" Y O=—[W,(LiM;1)Wy(L,My;p)
><<y'|_' 2.: r:Y|(ri)‘yL>. 8) V2o f

, , _ +BYA(LiM1;p)Wy(LoM3;1) ], (14
With the aid of a sum rule for the Bsymbols, the oscillator
strength can be written wherer and p represent all the internal coordinates for the
two atoms, respectivelyl.; and L, are their total orbital

2 angular momentaM, and M, are the associated magnetic
wherel is the total angular momentum for the initial state.

0 8
fro= 2 Eno
(21+1)%(2Ly+1)

I ~
Z riYi(ri) ' quantum numbers, anfl=+1 describes the symmetry due
to the Pauli exclusion principle. FollowingdlLO], first-order

perturbation theory yields the interaction energy

Using the identity Cgﬂfﬁl
V<1)(L2M2;B)=—W, (15
fo do __ 1 b>0 (10
7)o @+ )02+ wd) ablatb)’ & 10 ere
we can recast E(5) into the equivalent form cM2b (1)t LM A 2L,
(2 ¢(p) 2,1~ P (2Lo+1)*\ L+ M,
Gap(lailp) == S fr6 'wo (11) 2
b ) — 5 ' N
abllar el ™o & B2 EP (E%+ED,) X <«Ifa<o;r> > YLD wb<L2;r>> :
I

whereE,; o= E|,— Ej is the excitation energy for atom i and is (16)
always positive for the atoms in the ground state. The pro-
cedure for evaluating,(l,.,lp,) is to diagonalize the Hamil- The first-order energy correction is proportional@oThere-
tonian in a basis set and sum over all intermediate statefore, for two unlike atoms 8=0) in the asymptotic region
directly according to Eq(11), and a convergence study can where overlap between two atoms can be neglected, there is
be done by increasing the size of the basis set progressivelgo first-order correction to the interaction. For two like at-
The long-range part of the interaction between threeoms, however, there is a first-order correction to the interac-
ground-state atoms is not exactly equal to the interactiotion energy as long as two atoms are in different angular
energies taken in pairs. There is a nonadditive term whiclmomentum states. For the H)-Li( P) system, the interac-
comes from the third-order perturbation. The leading termsion is proportional toR™3. The interaction between two
in the expression for the dispersion energy of the three-atorground-state atoms is always attractjgee Eq.1)] but the

system arg1,2] interaction between two like atoms in different angular mo-
mentum states is equally likely to be attractive and repulsive.
B Ce® C° C§" wapd3C0H,c08,c0H,+1) The leading energy correction obtained from the second-
Vapc= — Tgb B r_gc B r_ga_ (Faf b ca)® ' order perturbation theory for the Lf-Li( P) system is
(12 M,
whered,, 6,, and 6, are the internal an i Vo= — — (17)
2 O, A gles of the triangle R6
formed byr,p,, rpc andr.,, and v, is the triple-dipole
constant defined by where
3(= .. . . Qs
Vabc=;j0 ai(lw)a?(l w)ai(io)dw. (13 Cgﬂz=§ W (18



2826 YAN, BABB, DALGARNO, AND DRAKE 54

TABLE I. The algebraic coefficient&(1,1,1\,1,M5). TABLE II. Values of the static polarizabilities;(0), «,(0),
and a5(0) for the ground-state H, He, and Li atoms.
A=0 A=1 A=2
M,—0 %Wz é—?wz 411—82772 System a4(0) ay(0) a3(0)
H 45 15 131.25
M,==%1 22 22 in? He 1.38319217446) 2.445083 101 10.620 328 &)
Li 164.1112) 1423.2665) 39 650.498)

and the wave functions are expanded from doubled basis

2 sets. The explicit form for the wave function is

> ()

Q= ‘<q,a(0;r)

‘x(l;r)>

W(ry,ra)= Ek [ai(jllg)(ijk(al:Bl)+ai(j2|<))(ijk(a2:ﬁz)]
X D G(1,1,1N,1,M,) .

A +exchange, (22)
2

X (199 andi+j+k=Q. A complete optimization is then performed

with respect to the two sets of nonlinear parameterss;

In Eqg. (18), the summation should exclude one term that.and a2,82. The screened hydrogenic wave function is also

included explicitly in the basis set. These techniques yield
gives rise toE?’=E©. Note thatCy? is independent of e aues ¥

) _ much improved convergence relative to single basis set cal-
B. The values ofG are listed in Table I. culations.

It should be noted that the terms with=1 in Eq. (19), For the lithium atom, the basis set is also constructed in
which corresponds to transitions between even parity stat@gylleraas coordinateft]
P¢ and odd parity stateP°, are missing in one-electron S
model potential method$10]. The dominant contribution {¢>wt(at,ﬁt,yt)zr111r122r133r11122r12233r13311 e 1T Ar2mmrsy
comes from the radiative transition between the lowest dou- (23
bly excited doublet statesPp2p?P¢, which is stable against
autoionization[14], to the singly excited doublet state \_Nher_e My den_otes_ a sextuple of _integer powers |-, ]3
1s?2p?P°. The contribution of the\=1 term to Cy'2 is  J12: J23, @ndjay, indext labels different sets of nonlinear
0.980 82(5) forM,= =1, and 0.392 32(2) foM,=0. parametersy, Bi, andy,. Except for some truncations, all

terms are included such that

<‘I'b(1§P)’; piY1(p))

w(k;p)>

Ill. CALCULATIONS AND RESULTS i1t ot jatjotjostjn=<Q. (24)

For the hydrogen atom, the following Sturmian basis se
[15] is used to diagonalize the Hamiltonian:

{r'le” 2L (22 gr)}, (20) \P(rl,rz,u):AZ 2 Ay b (@B )
I

where L?*2)(gr) is the generalized Laguerre polynomial
and the paramete® is chosen to bg8=2/(1+1). This basis

set has proven to be numerically stable as the size of tha similar optimization is also performed with respect to all

The wave function is expanded from the multiple basis sets

X(angular function(spin functior). (25)

basis set is enlarged. the nonlinear parameters.
For the helium atom, the basis set is constructed using Table Il contains the values of the static polarizabilities
Hylleraas coordinatefl6] @1(0), a,(0), anda3(0) for H, He, and Li in their ground
ok states. Tables Il and IV present the comparison with se-
{xijp=rararie «r-rrz}, (21)  lected previous calculations for He and Li. Using the Stur-

TABLE Ill. Comparison of static polarizabilitiea(0), a,(0), andas(0) for He(11S).

Author (yean Reference a4(0) a»(0) a3(0)
Luyckx et al. (1977 [17] 1.379 2.430 10.48
Thakkar(198) [18] 1.38312 2.443 44 10.614 4
Bishop and Pipin1993 [7] 1.383 192 2.445 083 10.620 360
Caffarelet al. (1993 [19] 1.3827 2.406 6 10.36
Jamiesoret al. (1995 [9] 1.383192

Chen(1995 [20] 1.383 32

Chen and Chung1996 [11] 1.383 27 2.445 66 10.625 2

This work 1.383 192 174 48) 2.445 083 10(2) 10.620 328 @)
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TABLE IV. Comparison of static polarizabilities;(0), a,(0), anda(0) for Li(2 2S).

Author (yean Reference a41(0) a,(0) a3(0)
Maeder and Kutzelniggl979 [23] 164.3 1383 36 795
Muszyrskaet al. (1982 [24] 163.8

Pipin and Wonicki (1983 [25] 163.9

Pouchan and Bishof1984 [26] 164(2)

Midiller et al. (1984 [27] 163.7

Knowles and Meatl{1986 [28] 165.8 1486 36 495
Maroulis and Thakkaf1989 [29] 164.5 1428

Pipin and Bisho1992 [22] 164.1 1423

Ponomarenko and Shestak@®993 [30] 165.2

Marinescuet al. (1994 [8] 1424 39 688
Wang and Chung1994) [31] 164.08

Mérawaet al. (1994 [32] 164.8 1430

Kassimi and Thakka(1994 [33] 164.21)

Laughlin (1995 [34] 163.91

This work 164.1102) 1 423.2665) 39 650.498)
Experiment(1974 [35] 164.03.49

mian basis sets containing up to 70 terms yields the wellin the above equatiot], is the unperturbed Li Hamiltonian,
known exact results for the H atom. For He, the largest siz&,, is the Li ground-state energy, and

of a basis set for the ground state is 504. For the intermediate

states, the largest sizes of basis sets are 728, 733, and 792, ) | N
respectively for thé®, D, andF symmetries. Table Ill shows E1:<‘I’(2 S)‘Ei riYim(ri)
that our value for4(0) is in perfect agreement with the best
previous results of Bishop and Pidin] and Jamieson, Drake

and Dalgarnd9] within the first seven digits. However, our terms of a Hylleraas basis set. The two procedures are

value of @1(0), aswell asa,(0) anda3(0), hasconverged , 4 .
to several more significant figures, as indicated by the eX(_—:-quwaIent. Using basis sets up to 2136(0) converges

trapolation uncertainty in parentheses. For Li, with the fixedmOHOtCJr]'CalIIy to 164.109 8. Based on these convergence

size of the basis set 919 for the ground state, Table V con§tUdleS’ our final extrapolated value ofy(0) s

tains the convergence studies @f(0) in both length and ]}0?4'1(15)2 ;'n\éve ?ggleglﬁ?egaﬂg fs;:ml?(r))c (;rr:\éerg(%r;caerztil:]dles
velocity forms, as the number of terms for the intermediate . %2 AN %1 *2

P symmetry is progressively increased. As a further numeri—gOOd accord with the results of Pipin and Bisti@2]. The

cal check, we calculated, (0) for the Li atom by solving an model potential results of Marinescu, Sadeghpour, and Dal-

inhomogeneous equation, using the Dalgarno-Lewis methofo o [8] agree with the present calculations at the 0.05%
[21] as ?O”OWS' q ' 9 9 and 0.1% levels fow,(0) anda3(0), respectively.

Table VI shows our values of the two-body dispersion
coefficientsCg, Cg, andC,, for the ground state H, He, and
qu> (26) Li atoms. For the H-H case, these coefficients can be calcu-
' lated to arbitrarily high precision. Our value @f is in com-
plete agreement with the value of Margoliash and Meath
[36]. Comparisons with the previous calculations for
He(11S)-He(1'S) and Li(229)-Li(22S) are listed in
Tables VIl and VIII.
W(229)=0. (27) For the He-He case, 0@6 andCgq are in excellent agree-
ment with the results of Bishop and Pigdiv], but more pre-

V(2 28)> ) (29

Equation (27) is solved variationally by expandin®, in

8

@(0)=- 2|+1<\If<228)’2i [Yin(Fi)

whereV, satisfies the inhomogeneous equation

(Ho—Ep) ¥+

Zi Y im(Fi)—Ey

TABLE V. Convergence of Li(ZS) «4(0) and Li(22S)-Li(2 2S) Cg in length and velocity forms.

No. of terms a4(0) (length a4(0) (velocity) Cg (length Ce (velocity)

56 164.002 165.218 1389.76 1409.91
139 164.048 164.201 1391.21 1393.56
307 164.082 164.131 1392.37 1393.08
623 164.095 164.107 1392.80 1392.92
1175 164.105 164.108 1393.17 1393.17

1846 164.107 164.108 1393.23 1393.21
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TABLE VI. Values of Cg4, Cg, andC,q for two ground-state atoms.

System Cs Cg Cyo

H-H 6.499 026 705 405 839 313 13 124.399 083 583 622 343 609 59 3285.828 414 967 421 697 8725
He-He 1.460 977 837 @B) 14.117 857 34(5) 183.691 070 &)

Li-Li 1393.39(16) 83 425.84.2) 73721(1)x 10?

H-He 2.821 343 915 28) 41.836 376 16(8) 871.540 4711)

He-Li 22.50711) 1083.165) 72 602.11)

Li-H 66.5365) 3279.992) 223 016.65)

cise by about three orders of magnitude. As@p, a small  can be written as a symmetrized product of two individual
disagreement of about 1 ppm exists. The value of Jamiesaatomic wave functions
Drake, and Dalgarnf9] for Cg also agrees with our value.
For the Li-Li case, convergence studies f0g in both
length and velocity forms are listed in Table V. The agree-
ment between the two forms is satisfactory. From Table VIII,
it can be seen that the result of Stacey and Dalgptdbfor
Ce is in close agreement with the present calculation. The
model potential results of Marinescu, Sagedhpour, and Dawherer and p represent all the internal coordinates for the
garno[8] for Cg, Cg, andC, differ from our calculations at two atoms, respectivelyl,; and L, are their total orbital
the 0.1-0.3 % level. angular momentaM, and M, are the associated magnetic
Table IX lists the triple-dipole constantg,.for the com-  quantum numbers, an=*1 describes the symmetry due
binations among three ground-state atoms H, He, and Lo the Pauli exclusion principle. Followird.0], the interac-
together with the previous values of Stacey and Dalgarndion potential for two neutral atoms is
[41]. The overall agreement is about 1%.

1
YO =[P (LM ;1)W(LMs;
\/5[ a(LiM ;¥ L(LoM5;p)

+ BV (LiM1;p) V(LMo ], (A1)

Finally, Tables X and XI list values of; andCg and a V_i % ViL A2
comparison with the previous calculations for the interaction & & RTLAD (A2)

between the ground state Lif8) and the excited state

Li(2 ?P). C3, which is proportional to the square of the reso-where
nant dipole matrix element, has recently been calculated to
high precision[6]. As for Cg, our values agree with the RN —12 wol L - ~
model potential calculations of Marinescu and Dalgdrh@ Vie=(=1) (L) % % KiCripyYiu(T Y- u(py)-

at about the 0.3% level. (A3)
ACKNOWLEDGMENTS In the above equation] (L, ...)=(2+1)(2L+1)---, and
Research support by the National Science Foundation, the [+L\/1+L\1¥2
Natural Sciences and Engineering Research Council of Kf = | (A4)
Canada, and the U.S. Department of Energy, Office of Basic tu/\Ltu
Energy Sciences, is gratefully acknowledged.
1. The first-order energy
APPENDIX . L
The first-order energy is given by
We discuss the dispersion coefficients for the Qi D1 L
Li(P) system. The zero-order wave function for this system ViP=3A1+ 3R+ BA; (A5)
TABLE VII. Comparison ofCg, Cg, andC,, for the He(11S)-He(1'S) system.
Author (yean Reference Cs Cs Cio
Luyckx et al. (1977 [17] 1.458 14.06 182.16
Glover and Weinhold1977) [37] 1.459 755)
Margoliash and Meatli1978 [36] 1.458
Bartolotti (1980 [38] 1.4638 14.131 183.47
Thakkar(198) [18] 1.460 82 14,1118 183.600
Rerat et al. (1993 [39] 1.4593 13.883
Bishop and Pipin1993 [7] 1.460 977 8 14.117 855 183.691 25
Jamiesoret al. (1995 [9] 1.460 978
Chen(1995 [40] 14611 14.120 183.74
Chen and Chung1996 [11] 1.461 06 14.120 8 183.765
This work 1.460 977 837 &8) 14.117 857 34(%) 183.691 070 &)
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TABLE VIII. Comparison ofCg, Cg, andCy, for the Li(22S)-Li(2 2S) system.

Author (yean Reference 10%Cq 10 %Cq 10 6Cy,

Stacey and Dalgarn(1968 [41] 1.391

Manakov and Ovsianniko{1977) [42] 1.360

Margoliash and Meati1978 [36] 1.387

Maeder and Kutzelniggl979 [23] 1.389 8.089 6.901

Miiller et al. (1984 [27] 1.386

Bussery and Aubert-Foen (1985 [43] 1.383 7.578 3 4.816 675

Marinescuet al. (1994 [8] 1.388 8.324 7.365

Mérawaet al. (1994 [32] 1.407 8 8.431 65

This work 1.393 3016) 8.342 5842) 7.372 11)

with

Ar=(V,(LiM ;1) P(LoM,;p)|

XV|W,(LiM ;1) ¥ L(LoMy;p)), (A6)
A=(Po(LiM1;p) P (LM ;1)

XV[¥,(LiM1;p)Pp(LoM;;r)), (A7)
Az=(¥ (LM ;N ¥ L(L,M;;p)]

XV|Wo(LiM1;p)Wp(LMy;1)). (A8)

Substituting Eq(A2) into Eq. (A6), one has

(D47
A= e (LD VG
o

E rEYI/.L(Fi)

><<‘1’a(|-1|\/|1;r) ‘I’a(LlMl;r)>

X<‘I’b(L2M2;P)‘§j: piY L () ‘I'b(LzMzip)>-
(A9)
From the Wigner-Eckart theorem E@), one has

TABLE IX. Values of the triple-dipole constants, for the
three ground-state atoms H, He, and Li.

System Cs (This work) Cs (Ref.[41))
H-H-H 21.642 464 510 635978 338 11

He-H-H 8.102 240 874(@)

He-He-H 3.268 064 896(1)

He-He-He 1.479 558 606(B)

Li-H-H 275.9797) 276
Li-He-H 89.83(@5) 89.6
Li-He-He 29.8245) 29.6
Li-Li-H 6 133.5(5) 6.12< 10°
Li-Li-He 1917.275) 1.91x 10°
Li-Li-Li 170 595(6) 1.69x 10°

> YL

<‘I’a(L1M1:r)

‘Pa(L1M1;r)>
1 | Ll)
-M; p M

Z rY(F)

:(_1)L1—M1(

><<‘I’a(L1;r) ‘Pa(Ll;r)>- (A10)

For L;=0, the 3§ symbol is zero whenl=1. Thus,
A;=0. Similarly, A,=0. For A;, after using the Wigner-
Eckart theorem, we obtain

(—1) 4 P
Az= RIFLFI (I,L) KIL
ILw

><<‘I’a(L1;r)

Z r!Ym’

‘I’b(Lz;r)>

><<‘I’b(Lz;p) ‘ 2 prYL(p) ‘I’a(Ll;p)>g,

(A11)

where, forL,=0,
L, I L,
— Ml

X( L, L L
-Mz —u My
(—1)te M2

:2L2—+15|,L25L,L2

n My

13

=My

(A12)

TABLE X. Values of C; and Cq for the interaction between
Li(2 2S) and Li(22P).

M> B Cs Ce

0 1 11.000 2261L5) 2 075.0%5)
0 -1 —11.000 22@5) 2 075.0%5)
*1 1 —5.500 113 @4 1 406.085)
*1 -1 5.500 113 @4) 1 406.085)
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TABLE XI. Comparison ofCq for the Li(22S)-Li(2 2P) system.
Author (yeay Reference Ce(M,=0) Ce(M,==*1)
Konowalov and Fisi{1983 [44] 210050 17501100
Vigne-Maeder(1984 [45] 2025 1374
Bussery and Aubert-Feen (85) [43] 1927 1301
Marinescu and Dalgarn@995 [10] 2066 1401
This work 2075.0%5) 1406.085)
Since[13] whereT can be written as
(L IVilILy= (=D " " XL[Y|IL), (A13)
T=B,+B,+ 8B A18
we finally have 1+ B2+ BBs (A18)
CMzﬁ
2L ,+1 ith
V(LM )=~ et (A1) "
where 1
Bi=52 2 (Wa(LiMyi)Wp(LM;:p)|
4 2L, 20 Mg UM,
CgﬂL . = B(- 1)1+L2+M2—2
(2L D7 Lo+ M, XV x(LsMs;n o(LMq:p))?, (A19)
2
X <\Ifa(o;r> 2 wb<L2;r>>
1
(A19) Bo=52 2 (Va(LiM1;p)Wp(LoMyir)]
LSMS LtMl
2. The second-order energy XV|x(LsMg;r)w(LM;;p))?, (A20)
Let the complete set of the system be
{x(LsMs;no(LM;p)} (A16)
with the energy eigenvalugY=E{+ E{®) The energy for o e V(LM 1) W(LoMy; )|
the unperturbed system B©=E{®+EQ . According to sts Tt
the second-order perturbation theory, the second-order en- XV|x(LsMg;r)o(LiM;p) (P (L1M1;p)
ergy is
NCE E (¥ OV x(LMg;r) (L M;;p))]? XWh(LoM2iD)|Vx(LsMs:r) o(LM¢;p)).
T EQ_EO (A21)
-3 T
T4 EQ—gO" (AL After using the Wigner-Eckart theorem, we obtain
RS IO 4+)2< DL L) TGS Wo(Lyin) | 2 V() | x(Lsi)
2|L,u|,|_,Mr (T, Mgm, RIFLFI7+L +2 o L TeEr = T XA
><<~1fb<Lz;p>‘Ej PrYL(D) w(Lt:p>><«Ifa<L1;r> 2 X(Ls:r)>
, L, | Ls>< L, L Lt)
X Wy(Ly; YL (p) | o(Ly; (
< A ,,)H; Py YL ()| oL p>> My om MM, - M,
L " L L L’ L
x| 1 S)( ; , ‘). (A22)
—My " Mg/\=Mp; —u' M,
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For L,=0, the product of four 3- symbols becomes
Bo= > —i 75 G2 LiLs L2, My)
L, R
1 L, L L, L 2
O L Pu-MPut M3 T\, ML M, x| ¥4(0;p) 2 prYL(P)| o(Li:p)
L, L' L,
X . X : YO (F; :
_M2 MS Mt) (A23) <\I}b(|—21r) ZI r|Y|(rI)‘X(LSIr)>
X (W (L,:r r'Y L (F Lo:r A27
Defining G, by < o(L2ir)| 20 1) .<.>’x< s >> (A27)
with
Gy(L,L' LoLi,LpM )=(—1)L+L’ﬂ
1 1 ybgybt 2, 2 2(2L5+1)2 ,
Gz(lal 1Lt!LS!L21M2)
X(L,L’)’l’ZM% K[S“L"SKL’S“L”,S (42 R
o RETPIIEE AL
( L, L Lt) L | L
_M M M X KMtKMt 2 S
’ ° t Mzs';/'t ' IILI(_MZ My Mg
X( L, L’ Lt) (A24) L oL
) 2 S
-M, Mg M X . A2
2 Mg M M, M, Ms) (A28)
we have ForR 6 L,=1,1=1,1'=1. Thus, for the case df,=1,
B, becomes
B]_: —,Gl(L,L,,L 1Lt:L21M2) 1 ~ 2
LT R2LstL+L+2 s Bz=$ T,(0;p) ; piY1(py) | w(1;p)
2
X|{ WL(0;0)| > risY (F)] x(Lsir)
alOsn) |2 1YL (T s x; Ga(1,1,1N,1,Mp)
. L ~ . 2
X<\I’b(|‘2”’)H; PiYL(PY) “’(L“p)> X <‘lfb(1;r) 2 rin(Fi)‘X(A;r)> (A29)
X ( Wy(L m)HZ P YL ()| (L ;p>>. (A25)
< b2 T L t Finally, for B; with L;=0, we have
Consider the leading term oR ®. The only choice is B.= Ga(Ll' Lo L Lo M
Le=1,L=1, andL’=1. If another atom is in the,=1 ° LEH etz oabl bbbz M)
state, therL;=0, 1, and 2. For this case,
><<‘I’a(0;r) Z r:_SYLS(Fi)X(LS;r)>
By= 5| | wo(0in)| S rvai)| x(1in) |2 Ly o n
R R I ’ X<‘I’a(0ip)‘§j: P YL (p) w(Lt;P)>
X Gy(1,1,1N,1.M A
zx: il ALM) ><<‘Ifb(Lz:p)‘; prYL(Py) w(Lt;p)>
X|{ Wy(1; Y1(p; \;p) ) |2 (A26 'y 2
< o ”)‘;”J 1)} et ”)> (A20) x<wb<L2;r> S 1Y) X(Ls;r)>, (A30)

Similarly, for B, with L;=0, we have with
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(4m)?
' —(_ L+Ls
G3(L1| 1LSIL'[1L21M2) ( 1) (2LS+1)(2L1+1)
X(Llll)—l/z
_ 1 \Mgt+ My ~Mg M
XMESI:J/M (=4 Kiw SK"'t—t
L, L L
X
—M; Mg M,
L, ' L
X . A3l
<_M2 v, Ms) Ay

The only term which contributeR © is the one with
Ls=1,L=1,1"=1, andL=1. For the case of,=1, one
obtains

Bg=%eg<1,1,1,1,1w|2><wo;r) 2 riY1<fi)’x(1;r>>
><<~lfa<o;p> 2 piY1(p) w(l;p>>
><<~1fb<1;p> 2 piY1(p) w(l;p>>
x<‘lfb<1;r> 2 rivl<ﬂ>’x(1;r>>. (A32)

For theS stateW ,(0;r), the parity is+1, and for theP state
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For two like atoms the spectrax(LM;r)} and
{w(LM;p)} are identical and; and B, can be combined.

The final expression for the second-order energy correction

to the Li(S)-Li( P) system is

) G
Ve =— R (A33)
where
M Qs
Cq zzg EO_EO (A34)
with
R 2
Qst=<‘1'a(0;r) Z riYa(r;) x(l;r)>
X D G(1,1,1N,1,M,)
A
R 2
X <\I,b(1;P)’; piY1(p;) w(k;p)> : (A35)

In Eq. (A35), G is defined by

G(1,1,AN 1, M5)=G(1,1,AN,1,M,) +G»(1,1,1\,1,M>).
(A36)
It is easy to see that

Gy(1,1,10,1,M,) =Gy(1,1, 1,1, M,).  (A37)

¥(1;r), the parity is—1. Since these two states cannot be
connected simultaneously to a third parity eigenstate by &he algebraic coefficient$3(1,1,1\,1,M,) are listed in

dipole operatorB; is therefore zero.
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