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Proceeding towards the evaluation of the complete set of radiative corrections of ordera2 to the energy
levels of hydrogenlike systems, the second-order self-energy–vacuum-polarization contribution to the Lamb
shift of bound electrons is derived and calculated. We focus on the Uehling part of the vacuum-polarization
insertion in the effective photon interaction. Additional energy corrections of ordera2 are also calculated. We
present a brief summary of various energy contributions forK- and L-shell electrons in hydrogenlike and
lithiumlike high-Z ions. @S1050-2947~96!12509-9#
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I. INTRODUCTION

During the last few years, a considerable improvement
has been gained in precision measurements of the Lamb shift
in highly charged few-electron ions. For Li-like uranium, the
shift between the 2s1/2 and the 2p1/2 levels was measured to
be 280.5960.09 eV corresponding to a precision of
331024 @1#. Measurements of the 1s1/2 Lamb shift in H-like
uranium increased in precision from 5206130 eV @2# to
429663 eV achieved by Sto¨hlker et al. @3# and 470616 eV
measured by Beyeret al. @4# recently. An experimental error
of 1 eV is reasonable in the near future@5#.

This experimental success forces theoreticians to take into
consideration the higher-order quantum electrodynamical
~QED! corrections which contribute significantly at this level
of precision. These corrections have to be calculated nonper-
turbatively inaZ (a is the fine-structure constant andZ is
the nuclear charge number! sinceaZ approaches unity for
high Z. A variety of corresponding calculations have been
performed during the last years for different first- and

second-order QED corrections, indicated in Figs. 1 and 2.
The first-order self-energy~SE! correction for high-Z ions

@Fig. 1~a!# has been calculated employing many different
methods, beginning from the pioneering elaborations of
Brown et al. @6# and Desiderio and Johnson@7# to the more
accurate approach developed by Mohr@8,9#. Recently Blun-
dell and Snyderman presented an alternative approach
@10,11# of calculating the first-order self-energy also in a
non-Coulomb potential and thus they could include two-

FIG. 1. Feynman graphs corresponding to QED corrections of
first order ina. The double solid line corresponds to the bound
electron, and the wavy line to the photon.

FIG. 2. Feynman graphs corresponding to the second-order
QED corrections in one-electron ions. The notations are the same as
in Fig. 1.
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electron Lamb shift~ electron screening! effects, by modify-
ing the electron orbitals in the SE computation. All these
methods are based on a nuclear potential expansion of the
intermediate bound electron propagator in order to isolate
analytically and to subtract the mass divergency. For higher-
order QED corrections this procedure will be rather compli-
cated. Later the method of the partial-wave renormalization
~PWR! was developed~Perssonet al. @12# and Quiney and
Grant @13#!, which appears to be rather promising for the
higher-order QED calculations. This method has been ap-
plied to the electron-screened self-energy~SE! and to some
of the combined self-energy–vacuum-polarization~SEVP!
two-photon diagrams. This approach is based on a spherical-
wave decomposition of the mass term in order to calculate
the SE more directly without employing the potential expan-
sion.

The first-order vacuum-polarization~VP! correction@Fig.
1~b!# can be divided into two major parts. The first is the
charge divergent Uehling part which can be renormalized
and calculated quite easily and the second, more difficult to
elaborate, is the Wichmann-Kroll~WK! part. A good ap-
proximation of the Wichmann-Kroll part was first derived by
Wichman and Kroll@14# and later a complete and accurate
calculation was accomplished by Soff and Mohr@15#. The
numerical accuracy in calculating the first-order VP has been
further improved recently by Perssonet al. @16# . Moreover,
they have generalized their computational scheme to also
incorporate electron-screening effects on the VP.

In addition to a complicated renormalization scheme, the
calculation of higher-order QED corrections also requires the
application of special numerical methods to perform the mul-
tiple summation over the complete bound-electron spectrum.
The most frequently used numerical scheme is theB-spline
method ~Johnsonet al. @17#! and the space discretization
method ~Salomonson and O¨ ster @18#!, used in@11,12# and
@16#.

Considering the one-particle two-photon QED effects, the
second-order SESE, VPVP, SEVP, and S~VP!E corrections
~see Fig. 2! represent separately gauge-invariant sets. The
nondegenerate part~the irreducible part! of the SESE~a!
correction in Fig. 2 was calculated by Mitrushenkovet al.
@19# using a renormalization procedure similar to that of
Snyderman@10# combined with the space discretization
method. The remaining ‘‘reference’’ state part~see Lab-
zowskyet al. @20#! of this diagram and the two SESE~b!, ~c!
corrections in Fig. 2 are not yet calculated. The renormaliza-
tion procedure for these remaining SESE corrections has re-
cently been discussed by Labzowsky and Mitrushenkov@21#
and by Lindgren@22#.

The VPVP a correction in Fig. 2 was calculated by Pers-
son et al. @16#. The idea was to solve the bound-electron
Dirac equation for an extended nuclear charge distribution,
with and without an additional VP potential. By subtracting
the first-order VP correction from the difference in the
bound-state eigenvalues the effect of the VPVP~a! diagram
and higher-order vacuum-polarization effects could be ex-
tracted. In the present work this contribution was also recal-
culated using the same technique. Recently, the VPVP~a!
correction has also been calculated by Manakov and
Nekipelov @23# with the use of a point-nucleus Green func-
tion approach.

The two other VPVP corrections are known as Ka¨llén-
Sabry contributions@24#. They were computed by Beier and
Soff @25# and later by Schneideret al. @26# in the Uehling
approximation. This approximation is usually valid for
Coulomb-like VP corrections within the accuracy of a few
percent@14–16#.

The SEVP corrections were first elaborated on by
Lindgrenet al. @16,27#, who included the vacuum polariza-
tion in the orbitals when calculating the first-order self-
energy using PWR. By subtracting the ordinary first-order
SE, the effect of the SEVP a!,b!,c! graphs was obtained.
Note that this approach also takes into account automatically
the reference-state corrections. In this work, this contribution
has been recalculated with higher accuracy. The last remain-
ing closed electron loop diagram, the S~VP!E correction, has
not been evaluated up to now. The investigation of the Ue-
hling part of S~VP!E is presented in this paper.

In addition to the second-order SE and VP contributions,
the polarizability of the nucleus and the recoil effect due to
its finite mass cause binding energy corrections of the same
order of magnitude. The nuclear polarization was compiled
by Plunienet al. @28,29#. The recoil effect to all orders in
aZ was derived recently by Artemyevet al. @30#.

II. THEORY

For the calculation of the S~VP!E correction, which is
both charge and mass divergent, we shall employ the Ue-
hling approximation. The potential expansion for the VP
loop in the S~VP!E correction is depicted in Fig. 3. The first
diagram of this expansion is charge divergent and after a
standard charge renormalization we obtain the Uehling ap-
proximation that gives one part of the S~VP!E correction.
We call this part S~VP!E1. The remaining diagrams, which
we denote S~VP!E2, in Fig. 3 are not charge divergent even
though special care has to be devoted to the spurious gauge
dependent part of the Delbru¨ck scattering term. The terms
S~VP!E1 and S~VP!E2 have different orders of magnitude in
the low-Z limit: ( a)2(Za)4mc2 and (a)2(Za)5mc2 corre-

FIG. 3. Potential expansion of the vacuum polarization loop in
the S~VP!E correction. The wavy line with the cross at the end
denotes the interaction with the nuclear field. The ordinary single
solid line denotes the free-electron propagator.
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spondingly @31–33#. In our further derivations we restrict
ourselves to the S~VP!E1 part. This part is also mass diver-
gent and we shall use PWR to mass renormalize the
S~VP!E1 correction.

First we recapitulate the main features of the PWR ap-
proach for the lowest-order self-energy, following Persson
et al. @12#. The renormalized first-order bound-electron self-
energy shift for a stateFa(x)5^xua& can formally be written
@8# as the real part of the bound self-energy and the mass
counter term

DEbound
SE ~a!5 lim

L→`

ReH ie2E d3x2E d3x1

3E dz

2p
Fa

†~x2!a
nSF~x2 ,x1 ,Ea2z!amFa~x1!

3DFnm
L ~x22x1 ,z!

2dm~L!E d3xFa
†~x!bFa~x!J , ~1!

whereSF denotes the temporal Fourier transformed electron
propagator. The corresponding covariant Pauli-Villars regu-
larized photon propagator

DFnm
L ~x22x1 ,z!52gnmE d3k

~2p!3
eik•~x22x1!

3H 1

z22k21 ie
2

1

z22k22L21 ie J
~2!

is introduced in order to define a rigorous subtraction scheme
that yields the correct Lorentz invariant shift. The lack of a
simple analytical structure of the bound-electron propagator
sets further constraints on how to cancel the divergencies in
Eq. ~1!. To handle this, one usually performs a potential
expansion of the bound-electron propagator into a free-
electron propagator plus higher-order Coulomb scatterings.
For the lowest-order self-energy this procedure was success-
fully applied by, for instance, Mohr@8,9#. However, its gen-
eralization to higher-order diagrams is not obvious. The po-

tential expansion procedure generates new charge
divergencies which also have to be isolated and canceled.

In the PWR, an alternative approach is chosen. Start with
the expression in Eq.~1!, which can be written as

DEbound
SE ~a!5 lim

L→`

Re$~B2BL!2~M2ML!%, ~3!

whereB andBL are the two parts which result from a sepa-
ration of the first term in Eq.~1! into aL-independent part
and aL-dependent part of the regulated photon propagator in
Eq. ~2!. The difference (M2ML) is an alternative way of
writing the regulated mass term given in Eq.~1!.

Let us consider first the unrenormalized bound state SE,
i.e., theB part. According to Eqs.~1! and~3! the correspond-
ing expression reads

B5 ie2E d3x2E d3x1E dz

2p
Fa

†~x2!

3anSF~x2 ,x1 ,Ea2z!DFnm~x22x1 ,z!amFa~x1!,

~4!

where the time-independent unregulated photon propagator,
DFnm , and the time-independent electron propagator,SF ,
have been introduced

SF~x2 ,x1 ,z!5(
n

Fn~x2!Fn
†~x1!

z2En~12 ih!
5

^x2un&^nux1&
z2En~12 ih!

~5!

DFnm~x22x1 ,z!52gnmE d3k

~2p!3
eik•~x22x1!

z22k21 i e
, k5uku,

~6!

where the sum overn denotes a summation over positive and
negative energy states. Evaluating thez integration by means
of complex contour integration

E dz

2p

1

~z22k21 ih!

1

@Ea2z2En~12 ih8!#

52
i

2k@Ea2En2sgn~En!k#
~7!

we obtain

B52a2pE d3x2E d3x1E d3k

~2p!3
1

k(n
Fa

†~x2!e
ik•x2amFn~x2!Fn

†~x1!a
me2 ik•x1Fa~x1!

Ea2En2sgn~En!k

52
a

4p2E d3k
1

k(n
^auame

ik•x2un&^nue2 ik•x1amua&
Ea2En2sgn~En!k

. ~8!

The angular part of thek integration can be worked out next.
Employing the standard spherical wave expansion

sin@kux22x1u#
kux22x1u

5(
l50

`

~2l11! j l~kr1! j l~kr2!C
l~1!•Cl~2!,

~9!

where the dot product between the angular tensors implies

Cl~2!•Cl~1!5
4p

2l11 (
m52 l

l

Ylm~V2!Ylm* ~V1!, ~10!

we end up with the partial-wave decomposition forB:

54 2807SECOND-ORDER SELF-ENERGY VACUUM- . . .



B5(
l50

`

Bl

52
a

p(
l50

`

~2l11!E dk
k2

k

3(
n

^auam j l~kr2!C
l un&^nu j l~kr1!Clamua&

Ea2En2sgn~En!k
. ~11!

Note that in Eq.~8!, there is a logarithmic divergence ink. In
Eq. ~11! the divergency is moved from thek integration to
the outer sum over partial waves. For eachl value thek
integration is finite. Thus, the partial-wave expansion serves
as an effective cut-off. TheBL term can be worked out in an
analogous way,

BL5(
l50

`

BL
l

52
a

p(
l50

`

~2l11!E dk
k2

k8

3(
n

^auam j l~kr2!C
l un&^nu j l~kr1!Clamua&

Ea2En2sgn~En!k8
,

~12!

wherek85Ak21L2.

We now turn to the second part of Eq.~1!, i.e., the bound-
state mass counter term. This term is defined as the free-
electron self-energy calculated for a momentum distribution
determined by the bound state~French and Weisskopf@34#!.
We start with the expression for the free-electron self-energy
in Feynman gauge, which is analogous to Eq.~8!,

DEfree
SE ~p,r !52a

1

4p2E d3k
1

kE d3q

3(
s

^p,r uame
ik•x2uq,s&^q,sue2 ik•x1amup,r &

Ep,r2Eq,s2sgn~Eq,s!k
,

~13!

where the ketup,r & describes the free-electron state with the
momentump and spin projectionr , i.e.,cp,r(x)5^xup,r &.

Taking the free-electron self-energy sandwiched between
the bound-state momentum distribution, we can express the
mass term in the following form:

M52a
1

4p2 (
r ,r 8,s

E d3pE d3p8E d3qE d3k
1

k
^aup,r &

3
^p,r uame

ik•x2uq,s&^q,sue2 ik•x1amup8,r 8&
Ep,r2Eq,s2sgn~Eq,s!k

^p8,r 8ua&

~14!

or in the partial-wave form which is analogous to Eq.~11!,

M5(
l50

`

Ml

52
a

p(
l50

`

~2l11! (
r ,r 8,s

E d3pE d3p8E d3qE dk
k2

k
^aup,r &

^p,r uam j l~kr2!C
l uq,s&^q,su j l~kr1!Clamup8,r 8&

Ep,r2Eq,s2sgn~Eq,s!k
^p8,r 8ua&.

~15!

TheML term looks similar to theM term in Eq.~15! and can
be identified directly by replacingk by k8 in the denomina-
tors as in Eq.~12!. There are, however, ambiguities concern-
ing the uniqueness of this mass term. The mass term is natu-
rally associated with the mass in the Dirac equation and
therefore proportional tob. The mass term given in Eq.~14!
has the disadvantage of not being explicitly proportional to
b. This is a well-known problem that was discussed exten-
sively in the early days of QED. To justify the use of Eq.
~14!, it is explicitly shown in@35# that the partial-wave mass
term in Eq.~14! is identical to the standard one.

By using the above derived expressions in the partial-
wave form and since thel -dependent part of the photon
propagator can be factored out, we can write the self-energy
as

DEbound
SE ~a!5 lim

L→`

ReH (
l50

`

Bl2BL
l 2Ml1ML

l J ~16!

or since every term is finite we can reorder them to yield

DEbound
SE ~a!5ReH (

l50

`

~Bl2Ml !2 lim
L→`

(
l50

`

~BL
l 2ML

l !J .
~17!

The correction term, the last part of the above expression can
be shown to be zero when the limitL→` is taken@34#. This
is not always the case in higher-order effects and for in-
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stance, for the self-energy in an external magnetic field the
correction term gives rise to a finite shift@34#.

In summary, the partial-wave renormalization procedure
for the first-order self-energy can be written as

DER
SE~a!5ReH (l50

`

~Bl2Ml !J
52

a

p(
l50

`

~2l11!ReH E dkk

3(
n

^auam j l~kr2!C
l un&^nu j l~kr1!Clamua&

Ea2En2sgn~En!k

2 (
r ,r 8,s

E d3pE d3p8E d3qE dkk̂ aup,r &

3
^p,r uam j l~kr2!C

l uq,s&^q,su j l~kr1!Clamup8,r 8&
Ep,r2Eq,s2sgn~Eq,s!k

3^p8,r 8ua&%. ~18!

Graphically the PWR procedure can be represented as dis-
played in Fig. 4.

Comparing the graphs in Figs. 1~a! and 3~b! we can ob-
serve that they differ only by changing the usual photon
propagator in Fig. 1~a! to the ‘‘effective’’ photon propagator
in Fig. 3~b!. We can use the known renormalized expression
for the first-order polarization function leading to the follow-
ing expression for the Fourier transform of the ‘‘effective’’
propagator~see, for example, Bogoljubov and Shirkov@36#!:

D̃Fmn
L ~k2!5

a

p
I ~k2!DFnm

L ~k2!, ~19!

I ~k2!52k2E
0

1
dvv2S 12

1

3
v2D

4m22 i e82k2~12v2!
, ~20!

FIG. 4. Graphical representation of the renormalization proce-
dure for the self-energy correction in PWR approach. HereA de-
notes the bound-electron state. The triangles denote the Fourier ex-
pansion of the stateA in terms of plane waves. The summation
represents the partial-wave expansion. The partsDEbound

SE and
DEfree

SE correspond to the bound and free electrons andDER
SE is the

renormalized electron self-energy correction.

FIG. 5. Graphical representation of the renormalization proce-
dure for the mixed self-energy-vacuum-polarization correction in
PWR approach. The notations are the same as in Fig. 4.

TABLE I. Different two-photon closed electron-loop energy contributions to the 1s1/2 state for various
hydrogenlike high-Z ions. The second column relates our terminology to the notation used by Pachucki. Our
numerical values~Num! are compared to the recently derived (Za) expansions (Za-ex! which are correct to
order (a)2(Za)5mc2. All values are given in eV.

Z 70 82 92

^r 2&1/2 5.41 fm 5.50 fm 5.86 fm

Diagram Za-ex Num Za-ex Num Za-ex Num

VPVP~a! VI ~1! 20.006 20.025 20.013 20.083 20.024 20.217
VPVP~b!,~c! IV1VI ~2! 20.049 20.185 20.047 20.393 20.015 20.716
SEVP III 0.184 0.206 0.406 0.534 0.722 1.139
S~VP!E1 II 0.005 0.030 0.002 0.068 20.007 0.130
S~VP!E2 V 20.037 20.082 20.145

Sum 0.097 0.026 0.266 0.126 0.531 0.336
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wherek25z22k2. Then the time-independent unregularized
propagatorD̃Fnm(x2 ,x1 ,z) can be presented in the form

D̃Fnm~x22x1 ,z!5
a

p
gmnE d3k

~2p!3
eik•~x22x1!

3E
0

1
dvv2S 12

1

3
v2D

~12v2!S 4m22 i e8

12v2
2z21k2D .

~21!

The basic idea is now to cast the renormalized expression for
DER

S(VP)E1(a) in a form which is analogous to theDER
SE ex-

pression. We consider first the analogousB part which can
be written as

BS~VP!E15 ie2E d3x2E d3x1E dz

2p
Fa

1~x2!

3anS~x2 ,x1 ,Ea2z!D̃Fmn~x22x1 ,z!amFa~x1!.

~22!

By using the expressions for the propagators@Eqs. ~2! and
~21!# the integration overz can be performed. Denoting

K2[
4m2

12v2
1k2 ~23!

we get

E dz

2p

1

@Ea2En~12 ih!2z#

1

K22z22 i e

5
i

2K

1

Ea2En2KsgnEn
. ~24!

Including also the corresponding mass counter term, this can
be written in the same form as Eq.~18!,

DER
S~VP!E1~a!5ReH (

l50

`

~Bl
S~VP!E12Ml

S~VP!E1!J
52

a2

p2(
l50

`

~2l11!ReH E dkk2(
n

^auam j l~kr2!C
l un&^nu j l~kr1!Clamua&

3E
0

1 dvv2~12 1
3 v

2!

A4m21k2~12v2!@~Ea2En!A12v22A4m21k2~12v2!sgnEn#
2 (

r ,r 8,s
E d3pE d3p8E dkk2

3(
q

^aup,r &^p,r uam j l~kr2!C
l uq,s&^q,su j l~kr1!Clamup8,r 8&

3E
0

1 dvv2~12 1
3 v

2!

A4m22k2~12v2!@~Ep,r2Eq,s!A12v22A4m21k2~12v2!sgnEq,s#
J . ~25!

The diagramatic representation of the PWR indicated by this
equation is depicted in Fig. 5. Unlike the first-order self-
energy@Fig. 1~a!#, it can be shown explicitely that the ex-
pression inside the Re parenthesis in Eq.~25! generates no
imaginary part for excited states. Accordingly, the process
given by diagram Fig. 3~b! does not contribute to the line-
width of excited electron states.

III. NUMERICAL RESULTS AND DISCUSSION

For the S~VP!E1 contribution, the angular and radial in-
tegration in Eqs.~14!, ~15! can be performed by following
the lines given in@8# with one extra integration over the
parameterv. The results for this effect and the other closed
electron-loop effects for the 1s1/2 state in some hydrogenlike
high-Z ions are shown in Table I. For all contributions a
homogeneously charged nucleus of the specified radius is
employed. All values were recalculated here except those of

the VPVP b!,c! contributions, which are taken from@26#. In
this table we also give a comparison with the leading terms
in the (Za)-expansion, correct to ordera2(Za)5mc2, for the
different closed electron-loop effects@31–33#. Considering
the (Za)-expansion result, it can be noted that the only con-
tributions of ordera2(Za)4mc2 come from the S~VP!E1
@31# and the VPVP c! @37,38# diagrams.

Even though the calculation of closed electron-loop ef-
fects is not complete, it is interesting to note that the differ-
ent effects@S~VP!E1, SEVP, and VPVP# are numerically
significant but cancel to a large extent when added. As ex-
pected, there is also a substantial deviation if one compares
our numerical values with the (Za)-expansion results. The
difference is due to our inclusion of higher-order terms in
(Za), nuclear-size effects and relativistic effects. To com-
plete the closed electron-loop effects one has to calculate the
S~VP!E2 effect and higher-order in (Za) Källén-Sabry con-
tributions. Both these missing effects can hopefully be cal-
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culated soon, but the major difficulty are the remaining
SESE effects.

The numerical results for the lowest-lying states in hydro-
genlike uranium U911 are given in Table II, which displays
all first- and second-order QED corrections to the Dirac
binding energy in the field of a point nucleus. The finite-size
correction is obtained assuming a Fermi distribution with
^r 2&1/255.860 fm for the nuclear charge distribution. The
absolute difference between the binding energy obtained for
a homogeneously charged sphere and that for the Fermi dis-
tribution with the same rms radius implies an estimate for an
uncertainty, which merely amounts to 0.36 eV. For details
we refer to Ref.@39#. All first-order corrections presented
here were obtained utilizing a uniform sphere model for the
nuclear charge distribution. For the fundamental constants
we employed the values 1/137.036 fora, 386.159323 fm for
the electron Compton wavelength, and 510999.06 eV for the
electron rest mass. The self-energy was compiled according
to the methods described in@40# and @41#. Minor important
modifications are caused by different values of nuclear radii
employed in the calculation. Also the VPVP a! contribution
was reevaluated. Its values have also been confirmed utiliz-
ing the Wichmann-Kroll charge density compiled by Soff
and Mohr @15#. Although they employed a spherical shell
model for the nuclear charge distribution, no difference be-
tween the compilations occured at the considered level of
precision. The recoil correction@30# includes both reduced
mass and relativistic recoil corrections. Note that it amounts

to 0.51 eV when using the more precise values of Table I in
@30# instead of 0.50 eV due to the contributions stated ex-
plicitely in that article.

The Lamb shift for a single energy level by convention
@42# includes all corrections beyond the point nucleus Dirac
eigenvalue except the non-relativistic reduced mass correc-
tion and contributions due to hyperfine structure. The re-
duced mass correction is given by2m/(m1M )EB , where
M is the nuclear mass andEB denotes the Dirac point-
nucleus binding energy. To obtain the proper Lamb shift, this
correction has to be subtracted from the sum of corrections.
In the end of Table II we compare our theoretical values for
the Lamb shift with the most recent corresponding experi-
mental value@4# for the ground state of uranium.

In Table III we display the result for the 2p1/222s1/2
transition in lithiumlike uranium U891. The first line of Table
III corresponds to the relativistic many-body perturbation
theory calculation. This calculation differs from the full QED
result, which is still absent, by the following details: in
RMBPT there are~1! no retardation,~2! no virtual pairs~i.e.
no negative energy intermediate states!, and ~3! no cross-
photon Feynman graphs. The rough estimate of these correc-
tions leads to the possible error given in the first line of
Table III. The small two-photon reference-state corrections,
also absent in RMBPT, are given separately. The nuclear
size corrections are included in RMBPT, as well as in SE,
VP, and corresponding screening corrections. However, the
uncertainty in the nuclear size correction, obtained from the

TABLE II. Binding energies and first- and second-order QED corrections of 1s1/2, 2s1/2, and 2p1/2
electrons in H-like uranium (Z592). All values are given in eV.

1s1/2 2s1/2 2p1/2 Reference

Binding energyEB 2132279.96 234215.49 234215.49
for point nucleus:

Correction Order
Finite size 198.82 37.77 4.42 @39#
2 Uehling 293.58 216.46 22.90 @16#
2 WK 4.99 0.82 0.21 @16#
Total VP ma(aZ)4 288.60 215.64 22.70
SE ma(aZ)4 355.05 65.42 9.55 @40,41#
SESE a! ~irr! ma2(aZ)5 20.97 20.08 0.01 @19#
SESE a! ~red! ma2(aZ)4 remain to be compiled
1 SESE b!,c!
VPVP a! ma2(aZ)5 20.22 20.04 0.00 @16#, This work
VPVP b!,c! ma2(aZ)4 20.72 20.12 20.02 @25#
SEVP a!–c! ma2(aZ)5 1.14 0.21 0.02 @27#, This work
S~VP!E ma2(aZ)4 0.13 0.02 0.00 This work
Recoil

m
m

M
(aZ)2

0.51 0.13 0.09 @30,38#

Nuclear pol.
m
m

M
(aZ)2

20.18 20.03 0.00 @28,29#

Sum of corrections 464.96 87.64 11.37
Total binding energy 2131815.00 234127.85 234204.12

Reduced mass
m
m

M
(aZ)2

0.30 0.08 0.08

Lamb shift ~Theory! 464.66 87.56 11.29
Lamb shift ~Expt.! 470 (16) @4#
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results of Ynnermanet al. @43#, which amounts to 0.03 eV,
appears to be of the same order of magnitude as the second
order QED corrections.

The analysis based on the Table III leads to the conclu-
sions that the further refinement of the 2p1/222s1/2 energy
shift calculation for hydrogenlike uranium requires first the
full QED calculation of one- and two-photon exchange
graphs and second the reduction of the nuclear size uncer-
tainty. We should emphasize that the nuclear polarization
and recoil have to be taken into account on this level of
accuracy.

Note added.Recently we received a copy of unpublished
work @46# by S. Mallampalli and J. Sapirstein on the same

subject. We are grateful for making their results available to
us prior to publication.
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