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Proceeding towards the evaluation of the complete set of radiative corrections ofadrtierthe energy
levels of hydrogenlike systems, the second-order self-energy—vacuum-polarization contribution to the Lamb
shift of bound electrons is derived and calculated. We focus on the Uehling part of the vacuum-polarization
insertion in the effective photon interaction. Additional energy corrections of erflare also calculated. We
present a brief summary of various energy contributionskerand L-shell electrons in hydrogenlike and

lithiumlike high-Z ions.[S1050-29476)12509-9

PACS numbegs): 31.10+2z, 31.30.Jv

I. INTRODUCTION second-order QED corrections, indicated in Figs. 1 and 2.

The first-order self-energ§SE) correction for highZ ions

During the last few years, a considerable improvemenfFig. 1(a)] has been calculated employing many different
has been gained in precision measurements of the Lamb shiftethods, beginning from the pioneering elaborations of
in highly charged few-electron ions. For Li-like uranium, the Brown et al. [6] and Desiderio and Johns¢#] to the more
shift between the £, and the 2, levels was measured to accurate approach developed by M§8/9]. Recently Blun-
be 280.5%0.09 eV corresponding to a precision of dell and Snyderman presented an alternative approach
3x 10 4[1]. Measurements of thes],, Lamb shift in H-like ~ [10,11] of calculating the first-order self-energy also in a
uranium increased in precision from 5230 eV [2] to  non-Coulomb potential and thus they could include two-

429+ 63 eV achieved by Stoker et al.[3] and 47G-16 eV
measured by Beyest al.[4] recently. An experimental error
of 1 eV is reasonable in the near futy&.

This experimental success forces theoreticians to take into
consideration the higher-order quantum electrodynamical
(QED) corrections which contribute significantly at this level
of precision. These corrections have to be calculated nonper-
turbatively in aZ (« is the fine-structure constant a@dis
the nuclear charge numbesince aZ approaches unity for
high Z. A variety of corresponding calculations have been
performed during the last years for different first- and
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FIG. 1. Feynman graphs corresponding to QED corrections of
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FIG. 2. Feynman graphs corresponding to the second-order

first order in . The double solid line corresponds to the bound QED corrections in one-electron ions. The notations are the same as

electron, and the wavy line to the photon. in Fig. 1.
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electron Lamb shiff electron screeningeffects, by modify-

ing the electron orbitals in the SE computation. All these

methods are based on a nuclear potential expansion of the = +2 +
intermediate bound electron propagator in order to isolate

analytically and to subtract the mass divergency. For higher- N )

order QED corrections this procedure will be rather compli-
cated. Later the method of the partial-wave renormalization

(PWR) was developedPerssoret al. [12] and Quiney and
Grant[13]), which appears to be rather promising for the
higher-order QED calculations. This method has been ap- +2 +2 +
plied to the electron-screened self-enef§E) and to some
- J

of the combined self-energy—vacuum-polarizati@&EVP
two-photon diagrams. This approach is based on a spherical-
wave decomposition of the mass term in order to calculate
the SE more directly without employing the potential expan-
sion. FIG. 3. Potential expansion of the vacuum polarization loop in

The first-order vacuum-polarizatiaivP) correction[Fig. ~ the SVP)E correction. The wavy line with the cross at the end
1(b)] can be divided into two major parts. The first is the der_lot(_es the interaction with the nuclear field. The ordinary single
charge divergent Uehling part which can be renormalized!!d liné denotes the free-electron propagator.
and calculated quite easily and the second, more difficult to
elaborate, is the Wichmann-KrolWK) part. A good ap-
proximation of the Wichmann-Kroll part was first derived by ] o
Wichman and Kroll[14] and later a complete and accurate  The two other VPVP corrections are known asll&@-
calculation was accomplished by Soff and Mdhs). The — Sabry contribution$24]. They were computed by Beier and
numerical accuracy in calculating the first-order VP has beesOff [25] and later by Schneidest al. [26] in the Uehling
further improved recently by Perssenal.[16] . Moreover, ~@pproximation. This approximation is usually valid for
they have generalized their computational scheme to alsgoulomb-like VP corrections within the accuracy of a few
incorporate electron-screening effects on the VP. percent14—-18. . .

In addition to a complicated renormalization scheme, the The SEVP corrections were first elaborated on by
calculation of higher-order QED corrections also requires thd-indgrenet al. [16,27], who included the vacuum polariza-
application of special numerical methods to perform the muldion in the orbitals when calculating the first-order self-
tiple summation over the complete bound-electron spectrun£nergy using PWR. By subtracting the ordinary first-order
The most frequently used numerical scheme isBrepline ~ SE. the effect of the SEVP)&),c) graphs was obtained.
method (Johnsonet al. [17]) and the space discretization Note that this approach aIsp takes into account autom.atlc.ally
method (Salomonson and €er [18]), used in[11,12 and the reference-state corrections. In this work, this contribution
[16]. has been recalculated with higher accuracy. The last remain-

Considering the one-particle two-photon QED effects, thdnd closed electron loop diagram, the/®)E correction, has
second-order SESE, VPVP, SEVP, anVB)E corrections ot been evaluated up to now. The investigation of the Ue-
(see Fig. 2 represent separately gauge-invariant sets. Th8ling part of 3VP)E is presented in this paper.
nondegenerate patthe irreducible pajtof the SESE(a) In addition to the second-order SE and VP contributions,
correction in Fig. 2 was calculated by Mitrushenkeval. —the polarizability of the nucleus and the recoil effect due to
[19] using a renormalization procedure similar to that ofltS finite mass cause binding energy corrections of the same
Snyderman[10] combined with the space discretization Order of magnitude. The nuclear polarization was compiled
method. The remaining “reference” state pagee Lab- DY Plunienet al. [28,29. The recoil effect to all orders in
zowskyet al.[20]) of this diagram and the two SESE), () ~ @Z was derived recently by Artemyest al. [30].
corrections in Fig. 2 are not yet calculated. The renormaliza-

a) S(VP)E b) Uehling ¢c) Delbriick

d) Remainder

tion procedure for these remaining SESE corrections has re- Il. THEORY
cently been discussed by Labzowsky and Mitrusherji2dy '
and by Lindgrer22]. For the calculation of the (§P)E correction, which is

The VPVP a correction in Fig. 2 was calculated by Pers-both charge and mass divergent, we shall employ the Ue-
son et al. [16]. The idea was to solve the bound-electronhling approximation. The potential expansion for the VP
Dirac equation for an extended nuclear charge distributionloop in the SVP)E correction is depicted in Fig. 3. The first
with and without an additional VP potential. By subtracting diagram of this expansion is charge divergent and after a
the first-order VP correction from the difference in the standard charge renormalization we obtain the Uehling ap-
bound-state eigenvalues the effect of the VP@Pdiagram  proximation that gives one part of the\8)E correction.
and higher-order vacuum-polarization effects could be exWe call this part &/P)E1. The remaining diagrams, which
tracted. In the present work this contribution was also recalwe denote 8/P)E2, in Fig. 3 are not charge divergent even
culated using the same technique. Recently, the VRPYP though special care has to be devoted to the spurious gauge
correction has also been calculated by Manakov andlependent part of the Deltwk scattering term. The terms
Nekipelov[23] with the use of a point-nucleus Green func- S(VP)E1 and $VP)E2 have different orders of magnitude in
tion approach. the lowZ limit: (a)?(Za)*mc and (@)%(Za)°mc corre-
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spondingly[31—-33. In our further derivations we restrict tential expansion procedure generates new charge
ourselves to the (¥P)E1 part. This part is also mass diver- divergencies which also have to be isolated and canceled.
gent and we shall use PWR to mass renormalize the Inthe PWR, an alternative approach is chosen. Start with
S(VP)E1 correction. the expression in Eq1), which can be written as

First we recapitulate the main features of the PWR ap- SE o
proach for the lowest-order self-energy, following Persson AEb"““C(a)_A“TwRe{(B_BA)_(M “Moh @)
et al.[12]. The renormalized first-order bound-electron self-
energy shift for a stat® ,(x) =(x|a) can formally be written whereB andB, are the two parts which result from a sepa-
[8] as the real part of the bound self-energy and the masstion of the first term in Eq(1) into a A-independent part

counter term and aA -dependent part of the regulated photon propagator in
Eqg. (2). The difference M1 —M,) is an alternative way of
SE — ol o3 3 writing the regulated mass term given in Ed).
ABbound @) AI|anRe+|e f d Xzf ™, Let us consider first the unrenormalized bound state SE,

i.e., theB part. According to Egqg1) and(3) the correspond-

dz ing expression reads
X f 5 ®Lxp) a"Se(xp X1, Ea—=2) @ Py(Xq)

dz
—in2 3 3 ot
XDéVﬂ(XZ_Xlaz) B_Ie fd XZJ d le ZWCI)a(XZ)
xaVSF(XZIXl1Ea_Z)DFV,U,(XZ_lez)a'u(I)a(Xl)a

4

whereS; denotes the temporal Fourier transformed electrorwhere the time-independent unregulated photon propagator,
propagator. The corresponding covariant Pauli-Villars reguDg,,, and the time-independent electron propagag,
larized photon propagator have been introduced

e L Lo Pi(x1)  (xln)(n|xy)
gl e S XA =2 T ) T 2 Byt

—sm(A) f d3x<1>;<x>ﬂ<ba<x>}. 1)

d3k
)3

DéVM(XZ_XlYZ):_gVﬂf (2’7T (5)

1 1
Z2—K+ie Z°—K—AZ%+ie

d3k eik-(xzfxl)
DFVM(XZ_Xlrz):_gV,u (277)3 22_k2+i61 k:|k|'

) (6)

g/here the sum over denotes a summation over positive and
negative energy states. Evaluating thategration by means
?f complex contour integration

X

is introduced in order to define a rigorous subtraction schem
that yields the correct Lorentz invariant shift. The lack of a
simple analytical structure of the bound-electron propagato
sets further constraints on how to cancel the divergencies in dz 1 1

Eqg. (1). To handle this, one usually performs a potential J 5T L ——— —
expansion of the bound-electron propagator into a free- 2m (Z2= ki) [Bamz=Bo(1=in)]
electron propagator plus higher-order Coulomb scatterings. i

For the lowest-order self-energy this procedure was success- =- 2K[E,—E,—sgr(E, K] (7)
fully applied by, for instance, MoH#8,9]. However, its gen- a n

eralization to higher-order diagrams is not obvious. The powe obtain

Bk 1o PLxo)e® X2a, B (X)) DT (x) ™ kXD 4(x;)
_ 3 3 - a ¥ n\A2 n\~1 a\Ml
B= “ZWJO' X'Jd le 2Tk E. E,— SOELK

1« (a|a,e**n)(n|e k*iqaH|a
:_izfdgk_2< |2 nKn| atla) @®
A7 k4 E,—E,—sgnE,)k

The angular part of thk integration can be worked out next. where the dot product between the angular tensors implies
Employing the standard spherical wave expansion

| | 4 ! .
Sk —x|] <& C'(2)-C'(D=57 2 Yin(Q)Yi(Q1), (10
TMhomx] & A Dikriike) C'(1)-C'(2), m="!

(99  we end up with the partial-wave decomposition Bir
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> We now turn to the second part of E4), i.e., the bound-
Bzz B' state mass counter term. This term is defined as the free-
1=0 electron self-energy calculated for a momentum distribution
0l K2 determined by the bound stateérench and WeisskopB4]).
=——> (2I+ 1)J dk— We start with the expression for the free-electron self-energy
=0 k in Feynman gauge, which is analogous to B,

(ala,ji(krp)C'n)(nlj(kry) C'a|a)

X 2 . (11
—_E — 1 1
n Ea—En—sgnEpk AEfSr’Se p,r)=-— amJ‘ dskgj‘ d3q
Note that in Eq(8), there is a logarithmic divergencelnin «S (prla, e *q,s)(q,sle”" *1a*|p,r)
Eqg. (11) the divergency is moved from tHe integration to S Epr—Eqs—SINEq ok ’

the outer sum over partial waves. For edchkalue thek
integration is finite. Thus, the partial-wave expansion serves (13)
as an effective cut-off. ThB, term can be worked out in an

analogous way, where the ketp,r) describes the free-electron state with the

momentump and spin projectiom, i.e., ¥, (X)=(x|p,r).

o Taking the free-electron self-energy sandwiched between
BAZE BIA the bound-state momentum distribution, we can express the
=0 mass term in the following form:

— (2|+1)fdk—,
mi=0 k Mo 1Efd3fd3’fd3fd3k} |
Sagp 2 | dR) A | dd alpr)

s (aladi(kr Cnyrliickry Cla’la)
“ FamEamsonEC ((prlaeasiasle Fap)
JI'a
(12 Epr—Eqs—SOMEq ok P
(14
wherek’ = Jk?+ A2, or in the partial-wave form which is analogous to Efjl),
M=> M
=0

a o k? (p.r|a,ji(krp)Clla,s)(q,slj(kr))Cla®|p’,r")
=—=> (21+1 fd3 fd3 ’fd3fdk— , C ' r'|a).
2 ¢ )”Z’S p| d°' | dq| dk(alpr) E,E,. SOnEq K (P'r'la)

(15

TheM , term looks similar to thé term in Eq.(15) and can AESE {a@)= lim Re{ > B'-B\—-M'+ M'A] (16)
be identified directly by replacing by k' in the denomina- Ao 120
tors as in Eq(12). There are, however, ambiguities concern-
ing the uniqueness of this mass term. The mass term is nat@ since every term is finite we can reorder them to yield
rally associated with the mass in the Dirac equation and
therefore proportional t@. The mass term given in E¢L4)
has the disadvantage of not being explicitly proportional to * *
e{lzo (B'=MH— lim X (B} —M))

B. This is a well-known problem that was discussed exten- AESS {a)=R Py
A—owl=

sively in the early days of QED. To justify the use of Eq.
(14), it is explicitly shown in[35] that the partial-wave mass (17)
term in Eqg.(14) is identical to the standard one.

By using the above derived expressions in the partial-
wave form and since thé-dependent part of the photon The correction term, the last part of the above expression can
propagator can be factored out, we can write the self-energlge shown to be zero when the limit— o is taken[34]. This
as is not always the case in higher-order effects and for in-
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A /A\ A /A
AESF = AELIS - MBS = E -z .

A A/

AE?(E = AEigund - AEﬁ:e = E - 2

A <A;
FIG. 5. Graphical representation of the renormalization proce-
dure for the mixed self-energy-vacuum-polarization correction in

. . N PWR roach. The notations are th m in Fig. 4.
FIG. 4. Graphical representation of the renormalization proce- approac e notations are the same as in Fig

dure for the self-energy correction in PWR approach. Heree-
notes the bound-electron state. The triangles denote the Fourier ex-

pansion of the staté in terms of plane waves. The summation (p,rIaﬂj|(kr2)C'|q,s><q,s|j|(kr1)C'a“|p’,r’}
represents the partial-wave expansion. The pa&.  and X E _E _ E. Ok

AEZE, correspond to the bound and free electrons ARG is the pr~Eqs7SOMEq,s

renormalized electron self-energy correction. X(p’,r'|a)}. (18)

stance, for the self-energy in an external magnetic field th&raphically the PWR procedure can be represented as dis-

correction term gives rise to a finite shji4]. played in Fig. 4.
In summary, the partial-wave renormalization procedure Comparing the graphs in Figs(al and 3b) we can ob-
for the first-order self-energy can be written as serve that they differ only by changing the usual photon

propagator in Fig. (B) to the “effective” photon propagator

in Fig. 3(b). We can use the known renormalized expression
for the first-order polarization function leading to the follow-
ing expression for the Fourier transform of the “effective”
propagatoKsee, for example, Bogoljubov and Shirki86]):

[’

AEEE(a)zRe{Sb (B'—=M")

" (2|+1)Re“dkk
TI=0 _ a
Dr,.,(K2)=—1(k*)Dg,, (K?), (19

(ala,j (kr,)C'[n)(n|j (kry)Ca”|a)
X e B sanEK

—rgs J d3pf d3p’f d3qJ dkk(alp,r)

3

1
N dvvz(l——vz)
2y — _ L2
I(k )_ k fO 4m2_i61_k2(1_v2) ’ (20)

TABLE I. Different two-photon closed electron-loop energy contributions to thg, ktate for various
hydrogenlike highZ ions. The second column relates our terminology to the notation used by Pachucki. Our
numerical valuesNum) are compared to the recently derivetl) expansionsZ«-ex) which are correct to
order (@)?(Za)®md?. All values are given in eV.

VA 70 82 92

(r2)12 5.41 fm 5.50 fm 5.86 fm
Diagram Za-ex Num Za-ex Num Za-ex Num
VPVP(a) VI(1) -0.006 -0.025 -0.013 —-0.083 —0.024 -0.217
VPVP(b),(c) IV+VI(2) -0.049 -0.185 —-0.047 -0.393 -0.015 —0.716
SEVP 1 0.184 0.206 0.406 0.534 0.722 1.139
S(VP)E1 Il 0.005 0.030 0.002 0.068 —0.007 0.130
S(VP)E2 \% —0.037 —0.082 —0.145

Sum 0.097 0.026 0.266 0.126 0.531 0.336
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wherek®=z°—k?. Then the time-independent unregularized svper 2 [ , dz
propagatorD,,,(X,,X;,2) can be presented in the form B =lie J d Xzf d le 77 Pa (%)

X aVS(XZ X1, Eq— Z)DFMV(XZ_XI 4 a#q)a(xl) .

~ a d*k O (22
PrunXe=%1,2)= 2 Guy (2m)3° By using the expressions for the propagati#ss. (2) and
1 (21)] the integration over can be performed. Denoting
L dvvz(l— 502) 5 4m? 5
o - K?= 15 +k 23
| L L
1-v° we get
27 [Ex—En(1—in)—z] KEZ—Z%—ie
i 1

The basic idea is now to cast the renormalized expression for
AESVPEa) in a form which is analogous to theESE ex-
pression. We consider first the analogd@ipart which can  Including also the corresponding mass counter term, this can
be written as be written in the same form as E@.9),

" 2K E,— E,—KsgrE,’ (24

AE%VP)El(a) _ Re{ Z (BIS(VP)El_ MIS(VP)El)]
=0

2 oo
:_%E)(zulme{fdkkz; (ala,ji(kry)C'ny(nlj (kr;)C'a*|a)

1 dvv?(1— 1v?)

- dp | d®p’ | dkk?
o VAT 1= 0P (E4— Ey) V1= 07— AmE-+ k21— 07)sgrE, EJ DJ pJ

X% (alp,r)(p.rle,ji(kro)C'la,s)(a.s|ji(kr)Clak|p’,r")

(29

Xfl dvv?(1- 3v?)
0 \Am2—k¥(1—v?)[(Ep,—Eqs) V1—v2—VAm?+k¥(1—v?)sgrE, o |

The diagramatic representation of the PWR indicated by thishe VPVP b,c) contributions, which are taken frop26]. In
equation is depicted in Fig. 5. Unlike the first-order self-this table we also give a comparison with the leading terms
energy[Fig. 1(a)], it can be shown explicitely that the ex- in the (Z«)-expansion, correct to orde(Za)°md?, for the
pression inside the Re parenthesis in E2p) generates no (different closed electron-loop effeci81-33. Considering
imaginary part for excited states. Accordingly, the procesghe (Za)-expansion result, it can be noted that the only con-
given by diagram Fig. ®) does not contribute to the line- trputions of ordera?(Za)*mc come from the 8/P)E1
width of excited electron states. [31] and the VPVP £[37,39 diagrams.

Even though the calculation of closed electron-loop ef-
fects is not complete, it is interesting to note that the differ-
ent effects[S(VP)E1, SEVP, and VPVPare numerically

For the SVP)E1 contribution, the angular and radial in- significant but cancel to a large extent when added. As ex-
tegration in Egs(14), (15 can be performed by following pected, there is also a substantial deviation if one compares
the lines given in[8] with one extra integration over the our numerical values with theZ@)-expansion results. The
parametew. The results for this effect and the other closeddifference is due to our inclusion of higher-order terms in
electron-loop effects for thesl,, state in some hydrogenlike (Z«), nuclear-size effects and relativistic effects. To com-
high-Z ions are shown in Table I. For all contributions a plete the closed electron-loop effects one has to calculate the
homogeneously charged nucleus of the specified radius &(VP)E2 effect and higher-order irZg) Kallén-Sabry con-
employed. All values were recalculated here except those dfibutions. Both these missing effects can hopefully be cal-

[ll. NUMERICAL RESULTS AND DISCUSSION
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TABLE Il. Binding energies and first- and second-order QED correctionssph 12s;,,, and 24,
electrons in H-like uraniumZ=92). All values are given in eV.

1S 25y 2P Reference
Binding energyEg —132279.96 —34215.49 —34215.49
for point nucleus:
Correction Order
Finite size 198.82 37.77 4.42 [39]
— Uehling —93.58 —16.46 -2.90 [16]
— WK 4.99 0.82 0.21 [16]
Total VP ma(aZ)* —88.60 —15.64 -2.70
SE ma(aZ)* 355.05 65.42 9.55 (40,41
SESE a(irr) ma?(aZ)® -0.97 -0.08 0.01 [19]
SESE a(red) ma?(aZ)* remain to be compiled
+ SESE b,0)
VPVP g ma?(aZ)® -0.22 —0.04 0.00 [16], This work
VPVP b,c)  ma?(az)? -0.72 -0.12 —-0.02 [25]
SEVP 3-0 ma?(aZ)® 1.14 0.21 0.02 [27], This work
S(VP)E ma?(az)? 0.13 0.02 0.00 This work
Recaoil m 0.51 0.13 0.09 30,3
mm(a/Z)2 [ 8
Nuclear pol. m 5 -0.18 —-0.03 0.00 [28,29
mm(aZ)
Sum of corrections 464.96 87.64 11.37
Total binding energy  —131815.00 —34127.85 —34204.12
Reduced mass m ) 0.30 0.08 0.08
mm(aZ)
Lamb shift(Theory 464.66 87.56 11.29
Lamb shift (Expt.) 470 (16) [4]

culated soon, but the major difficulty are the remainingto 0.51 eV when using the more precise values of Table | in
SESE effects. [30] instead of 0.50 eV due to the contributions stated ex-
The numerical results for the lowest-lying states in hydro-plicitely in that article.
genlike uranium Bt are given in Table 1I, which displays The Lamb shift for a single energy level by convention
all first- and second-order QED corrections to the Dirac[42] includes all corrections beyond the point nucleus Dirac
binding energy in the field of a point nucleus. The finite-sizeeigenvalue except the non-relativistic reduced mass correc-
correction is obtained assuming a Fermi distribution withtion and contributions due to hyperfine structure. The re-
(r?Y2=5.860 fm for the nuclear charge distribution. The duced mass correction is given bym/(m+M)Eg, where
absolute difference between the binding energy obtained favl is the nuclear mass anHg denotes the Dirac point-
a homogeneously charged sphere and that for the Fermi digucleus binding energy. To obtain the proper Lamb shift, this
tribution with the same rms radius implies an estimate for arcorrection has to be subtracted from the sum of corrections.
uncertainty, which merely amounts to 0.36 eV. For detaildn the end of Table Il we compare our theoretical values for
we refer to Ref[39]. All first-order corrections presented the Lamb shift with the most recent corresponding experi-
here were obtained utilizing a uniform sphere model for themental valugd4] for the ground state of uranium.
nuclear charge distribution. For the fundamental constants In Table Il we display the result for the ,—2s;)»
we employed the values 1/137.036 for386.159323 fm for  transition in lithiumlike uranium €. The first line of Table
the electron Compton wavelength, and 510999.06 eV for théll corresponds to the relativistic many-body perturbation
electron rest mass. The self-energy was compiled accordintpeory calculation. This calculation differs from the full QED
to the methods described jA0] and[41]. Minor important  result, which is still absent, by the following details: in
modifications are caused by different values of nuclear radiRMBPT there ar€l) no retardation(2) no virtual pairs(i.e.
employed in the calculation. Also the VPVP eontribution  no negative energy intermediate stateand (3) no cross-
was reevaluated. Its values have also been confirmed utilizzhoton Feynman graphs. The rough estimate of these correc-
ing the Wichmann-Kroll charge density compiled by Soff tions leads to the possible error given in the first line of
and Mohr[15]. Although they employed a spherical shell Table Ill. The small two-photon reference-state corrections,
model for the nuclear charge distribution, no difference bealso absent in RMBPT, are given separately. The nuclear
tween the compilations occured at the considered level oize corrections are included in RMBPT, as well as in SE,
precision. The recoil correctiof80] includes both reduced VP, and corresponding screening corrections. However, the
mass and relativistic recoil corrections. Note that it amountsincertainty in the nuclear size correction, obtained from the
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TABLE lll. 2 pyjp— 25y, shift in Li-like U.

Correction Order of magnitude Numerical value Reference
and scaling (eV)
RMBPT ma(aZ) 322.3315) Lindgrenet al.[12,27]
SE ma(aZ)* —55.87 Lindgrenret al. [12]
SE screening ma?(az)® 1.55 Lindgrenet al.[12]
VP ma(aZ)* 12.94 Perssoet al. [16]
VP screening ma?(az)® —0.39 Perssomet al.[16]
SESE a (irr) ma?(aZ)® 0.09 Mitrushenkowet al. [19]
SEVP ma?(az)® -0.19 Lindgrenet al. [27]
S(VP)E ma?(az)® -0.02 This work
VPVP g ma?(az)® 0.03 This work, Perssoet al.[16]
VPVP b),0) ma?(az)* 0.10 Schneider, Greiner, and S¢#5]
Two-photon ma?(az)® 0.04 Lindgrenet al. [27]
reference state
(box)
Two-photon ma?(az)® —-0.02 Labzowsky and Tokma4]
reference state
(cross
Recaoll m 5 —-0.08 Artemyevet al. [30], Blundell [45]
mm(aZ)
Nuclear polarization m 5 0.03 Plunieret al.[28,29
mm(aZ)
Total theory 280.5d15)
Experiment 280.5®@) Schweppeet al. [1]

results of Ynnermart al. [43], which amounts to 0.03 eV, subject. We are grateful for making their results available to

appears to be of the same order of magnitude as the second prior to publication.

order QED corrections.
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