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Ground-state energy of a two-electron atom as a function oh=1/Z:
Singular points and asymptotic behavior
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We study the analytical properties of the exact ground-state ertg@gyof a two-electron atomic ion of
nuclear charg€ as a function of the parameter=1/Z. We find thatE(\) has a second-order pole at the point
A= of a\ complex plane. The principal part of the Laurent expansioB(@f about this point can be found
analytically: E(\)=—4—\%/4+0O(1/\?), \—o. We find a new singularity oE()\) at the point\;~9.41 of
a A complex plane[S1050-294{@6)10709-5

PACS numbd(s): 31.90+s

INTRODUCTION found numerically that in the vicinity of the singular point

A== the functionE(\) behaves a3 “ where the exponent

It is known[1] that with the help of the scaling transfor- a~2. We showed10] that if E(\) has other singular points
mation r;—r;/Z, the nonrelativistic Hamiltonian of a two- besides\g \.,, their coordinates are to satisfy Rg>\,.

electron atomic ion of nuclear charge can be written in In the present paper we show that2 exactly and there-
atomic units as fore E(\) has a second-order pole at the paiste of a
complex plane. We show that one can find an analytical ex-
Ho_ 1 v2_ 1 v2_ ot (1)  Pression describing the behavior B{\) when A—e. We
21 272 1y, gy show thatE(\) has another singularity at the poixt~9.41
of aA complex plane.
wherex=1/Z.
Below, we shall consider the lowest eigenvalue of the THEORY

HamiltonianH. Considering in(1) the operator of interelec-
tronic interaction as the perturbing operator, one can write We recall briefly some results which we shall need below.
for the ground-state eigenvalu€(\) the Rayleigh- In Ref.[10] we have shown that the functida(\) can be

Schralinger perturbation expansion in powersxof represented as
S Eool1- 2 " f i Ps | 3
E(x)=n§0 En\". ¥) M| 1=5) = |, fa®exp ——rdt. @)

This expansion was proven to have a nonzero radius ohereAs~1.097 660 79—the nearestXe=0 in the complex
convergencé2]. The serie€2) defines therefore an analytic M Plane singularity oE(\). Expanding both sides of E(3)
function E(\) regular inside some circle with the point=0  In powers of\, one can obtain front3) the following for-

as center. mula forqg(t) [10]:

The coefficientE,, for the ground state of a two-electron w0 N
atom were calculated in a number of work&-5]. In the = Enks LD (1) 4
present work we use the data from RE8] where the first i=o (n+1) " '

400 coefficientE,, were computed.

An important characteristic of an analytic function is the whereE, are the coefficients of the perturbation expansion
location and nature of its singular points. The radius of con{2), L ﬁl?(t)—the Laguerre polynomialg11]. Using the
vergence of the serie®) is determined by the nearest to known properties of the Laguerre polynomials one can de-
A=0 in the complex plane singularity of the functiog(\).  rive from (4) the following formula for the coefficientg,
This singular point oE(\) is well studied. It was showf6]  [10]:
that this singularity oE()\) is on the positive real axis of &
complex plane. In Ref6] it was shown also that this singu- _ |7 —ty (1)
lar point is an essential singularity &f(\). Various estima- En= fo tqe Ly (Hdt ®
tions of the position of this singular point were givig+8|.

In Ref. [9] we estimated the position of this singularity of By means of formuld4) the functiong(t) can be computed
E(\) as\¢~1.097 660 79. numerically. It is represented in Fig. 1. Our numerical inves-
If \ is outside the circle of convergence of the sef@®s  tigation of the functiorg(t) carried out in Ref[10] indicates
one must use some method of analytical continuation of sethat for larget values,q(t) behaves as®, where the expo-

ries (2) to obtain the information abow(\). We have pro- nenta~2. We are going to prove thai=2 exactly.
posed such a method in R¢10]. We found thatE(\) has a Consider the system described by the Hamiltoniin
singular point\, at the point\= of a\ complex plane. We Let us suppose that the parameten (1) assumes very large
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4 8 12 16 20 24 28 32 When\— —x, one can treat operat&f as the perturbing
Odem—t e 0 o —_— operator. The Hamiltoniakl, is a sum of twg hydrogenlike
s ¢ Hamiltonians. The lowest eigenvalue df, is E°()
10 4 =—\%4—4. One can easily calculate the first-order correc-
15 4 tion to this eigenvalue. We shall not need its exact value
20 4 below. We shall use only the fact that, as elementary calcu-
254 lation shows, the order of magnitude of the first-order cor-
a0t rection toE°(\) is O(\"?) when\——. We have thus the
354 following perturbation expansion fd€(\) when\— —c:
40 + )\2 1
451 E(\)=——F—4+0| 7|, A——o. (10
0 4 A
q(t) (a.u.) Let us suppose that the perturbation expangi con-
verges for sufficiently larga. Then Eq.(10) will imply that
FIG. 1. Plot of the functiory(t). the functionE(\) has a second-order pole at the poirte.

Our numerical study of the functiog(t) confirms this hy-

negative values\——oo. This limiting case corresponds to pothesis.
the situation when one has two strongly attracting electrons One can see from Ed3) that in order to reproduce the
in the field of the nucleus of unit charge. This physical situ-asymptotic behavio(10), the functionq(t) from (3) should
ation can be considered in the framework of a perturbatiormave the following large-asymptotic behavior:
theory. Introducing the coordinates

N2 Nzt A2
O a~=27 7 4
R= 2 y p=ri—ry, (6)

t—oo, (11

i

This formula reproduces correctly the asymptotic behav-

one can rewrite the Hamiltoniafl) in the following way ior of the functionq(t). Let us represent the functiay(t) as

[12]: N2\ A2
q(t)y=— >4 +T—4—Z+Q(t). (12

N A\ ~ ~
H=- 4 A~ a * ;:H°+V' @) One can easily calculate the functigt) numerically. It

is represented in Fig. &olid curve. One can see, that for
the larget valuesq(t) tends to zero. The numerical analysis
of q(t) indicates that for the largevalues it decays expo-
where nentially ase™ ' where c~0.132. We note also thaj(t)
does not deviate appreciably from the exponential function
2 A\ for all values of the variablé. In Fig. 2 we present the plot
Ho=— T‘Aﬁ_ rT 0’ (8 of IN[G(t)/d(0)] (dashed curve One can see that the plot of
In[q(t)/q(0)] as afunction oft yields nearly a straight line.
Exponential decay ofj(t) implies that the perturbation
_ 1 1 9 expansion(10) converges for sufficiently largg\|. Indeed,
- ' ©) for the exponentially decaying(t) the integral

© thg
Jo tq(t)exp — =X dt (13

o C, C, C

.l In(@©/a©)

FIG. 2. Plots of the functionsq(t) (solid line and
IN[q(t)/q(0)] (dashed ling FIG. 3. Contour of integration in formulél4).
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is a regular function ok at the pointA=o and can be ex- TABLE I. Functionq(t) and approximatiori24).
panded into a convergent series in powers of for suffi-

ciently largen. Therefore the functiof(\) given by formula t q(t) (1) app

(3) has a second-order pole at the painte<. The leading 0 3.801 22 3.801 22

terms of the Laurent expansion B{\) about this point are 1 3'362 08 3'362 08

given by formula(10). > 2'959 07 2'959 07

The behavior of the functiog(t) can be understood with 3 2'599 02 2'600 42
the help of the following arguments. Using the inverse . :

Laplace transform formula, one obtains frdB8) 4 2.280 10 2.283 55

5 1.999 09 2.004 39

E(2) 6 1.752 40 1.758 83

tq(t)—-277I —;r-e“dz (14 7 1.536 45 1.543 03

¢ 8 1.347 78 1.353 50

wherez=\J/(As—\) and the contour of integratioQ is o 1.18318 1.18710

. . . 10 1.039 66 1.041 05

chosen so that all singular points B{z) are situated on the 1 0.914 52 0.912 89
left of C. As we have mentioned above, all singular points of . '

12 0.805 33 0.800 46

E(z) are located in the left-half plane ofzacomplex plane.
Therefore, we can choose for the contdDrin (14) any

straight line Ref) =a>0. The functiorE(\) considered as a . _
function of a variablez has a second-order pole at the point If E(z) has another singular poig in the left half plane of

z=0. Using formula(10) one can obtain the first few terms a complex z plane, its coordlnate_s are t(.) satisfy:
of a Laurent expansion d&(z) about the poinz=0: Re_(zz)<Re(zl). In the\ complex plane this inequality can be
written as

A2 AZ A2
_ > 2 _
B(2)=—7215,74 4+O(z) (19 Re(\,) >\5> 1
|)\2_)\s|2 )\1_)\5

~0.12. (20)

The integral along the contou€ in formula (14) can be
represented as a sum of two integrals, the integral takeWhus if, besides\s and\,, E(\) has another singular point
around the circleC, and the integral taken along the contour ),, its coordinates in the. complex plane must satisfy in-
C,, as shown in Fig. 3. equality (20).
We turn now to more detailed study of the properties of
f E(z) ethz+f E(ZZ) e“dz). 16 the functionq(t). It was shown in Ref[6] that the large-
2

at)=5— 72 order coefficients of the perturbation expansi@hhave the

following largetn asymptotic behavior:

2mit

Using the expansio(iL5) one can see that the integral around
the circleC, gives forq(t) a second-order polynomial coin- En~n5e‘“”m, (21)
ciding with the right-hand side of Eq11),

2.2 L2 2 where 8~—1.94 anda~0.272.
1 E(2) e?ldz= — Ast E_ As (17) While calculating the coefficient&,, with n>2 one can

- + . - ~
27t Jc, 2° 24 4 4 substitute in(5) the functionq(t) instead ofg(t). [Sinceq(t)
andq(t) differ by the second-order polynomial, both meth-
The functiong(t) defined by Eq(12) can be therefore ex- ods of calculation give identical results due to the orthogo-

pressed as nality properties of the Laguerre polynomidlés we have
seen the function(t) is nearly an exponential functice
E(2) However,q(t) cannot be an exponential function exactly.
at)=5— 2t Jo, 2 e’'dz (18 1f G(t) were an exponential functio&(\) calculated accord-

One can move the contou®, to the left until it meets a TABLE Il. CoefficientsE,,, with exact and approximate values.

singular point of the functioi(z)/z>. If we suppose that the
nearest to the=0 singular point is on the negative real axis "
at some poingz=—c, ¢>0, then it is easy to see that for the g -1 ~0.999 177

Eﬁxact Eﬁpp

large positivet the functiong(t) will be exponentially de- 1 0.625 0.623 261
caying ase” . We have thus reason to believe tEf¥) has  » —0.157 666 —0.157 332
a singular point az, = — ¢, wherec~0.132. Coming back to 3 0.008 699 0.009 766
the variablex we obtain the position of the singular poxt 4 —0.000 889 —0.000536
in ax complex plane: 5 —0.001 036 ~0.001 142
6 —0.000 613 —0.000 804
7 —0.000 372 —0.000 522

N1=N\s ~9.41. (19

1
1+=
Cc
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ing to (3) would be a rational function ok and the large- lating q(t) according to4) the round-off errors and errors in

order coefficient€E(n) would decay exponentially as °" E, and \, lead to the error inq(t). The functionq(t)

with someb>0. is therefore known with some inaccuracy. We estimate
One can show that in order to reproduce %7an1/2 thata(t) is accurate to four decimal placeS for15. This

behavior ofE,,, the functiong(t) must have a singular point Ccircumstance did not allow us to increase the accuracy of our

on the negativé-axis. Indeed, for large the Laguerre poly- approximation forg(t). _
nomials oscillate rapidly13]: We would like to make one observation frof@4). The

parametere in formula (24) is very small. One should note

that this circumstance does not depend on the particular type
+0(n" ), of approximation used if24). As we have seen, the function

22) q(t) is nearly an exponential function. On the other hand, to

reproduce correctly the asymptoti2l), q(t) must have a
Using the standard methods of asymptotic evaluation of insingular point on the negative real axis. Both these require-
tegrals of rapidly oscillating functionfl4], one can show ments lead to the presence of a small parameter in any for-
that if q(t) has a branch point or logarithmic singularity on mula approximating the functiog(t).
the negative real axis, the integr@) will have the asymp- An interesting question is what can play the role of a
totic of type (21). One can verify it directly. For example, small parameter in the problem considered. The smallness of
if g(t) = (1+at)”, a>0, direct calculation of the integré) the deviation ofg(t) from the exponential function signifies

1 3
(D)4 — U2¢ — 3/4,1/4 _or
Ly (1) \/;e t~3%n cos{z\mt 7}

gives that there may exist some kind of perturbation expansion in
powers of a small parameter in the Coulomb three-body
© F'(n—vy) problem.
tq(He ‘LM (t)dt=(n+1)a? ———
1 REMARKS AND PROSPECTS
xXUln—vy,—y—-1, 5>, 23 We summarize the analytic propertiesif\) as follows.
The functionE(\) has a second-order pole at the pointee.
whereU (b, c,z)—a confluent hypergeometric functi¢hl]. It can be represented as
Using the known properties & (b,c,z), one can show that \2
for n—oo, trjelgxﬂession on trDe right-_hand side(B8) be—. E(N)=—4— _+E()\), (25)
haves asn™” exd —2(n/a)Y?], giving the asymptotic 4
(21) with an appropriate choice of the parameters in L~ . _
formula (23). where the functionE(\) is regular at the point\=o
The numerical investigation of the functid@(t) shows 2nd E(\)=0O(1/\?) in the vicinity of this point. The func-
that it can be approximated by the following formula: tion E(\) has an essential singularity at the poirg
~1.097 660 79, and another singular point\gt=9.41. If
ﬁ(t)appza(o)(ljtat)fe*“, (24) E(\) has any other singular points, their coordinates must
satisfy inequality(20).
where ¢=0.132175, €=0.008 958 14, anda=1.860 37. Our results indicate that some small parameter may be

From Table | one can see that the approximafigt) ., is  present in the theory of a two-electron atom. Whether one
accurate to better than 1 part in 100 fa£[0,12. We note  can construct the perturbation expansion using the fact of the
also that function(24) gives a reasonable approximation to presence of this small parameter is an open question. In the
the low-order coefficientk,, . In Table Il we present the first case of a positive answer to this question one might hope to
few exactE, (the data from Ref[6]) and E, calculated calculate analytically the numerical constants introduced so

according to(5) with q(t) given by (12) and (24). We ob-  far (\4,c). We believe this question deserves further consid-
serve a good agreement for the coefficieBtSE, ,E,. To eration.
achieve better agreement &, with n>2, one should use

more exact approximation t?j(_t). We did not succeed in ACKNOWLEDGMENTS
constructing such an approximation due to the following
problem of a numerical character. While calculatigft) The author is grateful to Dr. S. N. Gordienko for useful

according ta12) one obtaingj|(t) with some error due to the discussions. Financial support by the Russian Foundation of
error in\g. This numerical error i(t) grows witht. There  Fundamental ReseardfProject Code No. 93-02-14284s
is another source of the numerical inaccuracy. While calcuacknowledged.
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