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We study the analytical properties of the exact ground-state energyE~l! of a two-electron atomic ion of
nuclear chargeZ as a function of the parameterl51/Z. We find thatE~l! has a second-order pole at the point
l5` of a l complex plane. The principal part of the Laurent expansion ofE~l! about this point can be found
analytically: E(l)5242l2/41O(1/l2), l→`. We find a new singularity ofE~l! at the pointl1'9.41 of
a l complex plane.@S1050-2947~96!10709-5#

PACS number~s!: 31.90.1s

INTRODUCTION

It is known @1# that with the help of the scaling transfor-
mation r i→r i /Z, the nonrelativistic Hamiltonian of a two-
electron atomic ion of nuclear chargeZ can be written in
atomic units as
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wherel51/Z.
Below, we shall consider the lowest eigenvalue of the

HamiltonianH̃. Considering in~1! the operator of interelec-
tronic interaction as the perturbing operator, one can write
for the ground-state eigenvalueE~l! the Rayleigh-
Schrödinger perturbation expansion in powers ofl,

E~l!5 (
n50

`

Enl
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This expansion was proven to have a nonzero radius of
convergence@2#. The series~2! defines therefore an analytic
functionE~l! regular inside some circle with the pointl50
as center.

The coefficientsEn for the ground state of a two-electron
atom were calculated in a number of works@3–5#. In the
present work we use the data from Ref.@6# where the first
400 coefficientsEn were computed.

An important characteristic of an analytic function is the
location and nature of its singular points. The radius of con-
vergence of the series~2! is determined by the nearest to
l50 in the complexl plane singularity of the functionE~l!.
This singular point ofE~l! is well studied. It was shown@6#
that this singularity ofE~l! is on the positive real axis of al
complex plane. In Ref.@6# it was shown also that this singu-
lar point is an essential singularity ofE~l!. Various estima-
tions of the position of this singular point were given@6–8#.
In Ref. @9# we estimated the position of this singularity of
E~l! asls'1.097 660 79.

If l is outside the circle of convergence of the series~2!,
one must use some method of analytical continuation of se-
ries ~2! to obtain the information aboutE~l!. We have pro-
posed such a method in Ref.@10#. We found thatE~l! has a
singular pointl` at the pointl5` of al complex plane. We

found numerically that in the vicinity of the singular point
l5` the functionE~l! behaves asla where the exponent
a'2. We showed@10# that if E~l! has other singular points
besidesls ,l` , their coordinates are to satisfy Re~l!.ls .

In the present paper we show thata52 exactly and there-
fore E~l! has a second-order pole at the pointl5` of a l
complex plane. We show that one can find an analytical ex-
pression describing the behavior ofE~l! when l→`. We
show thatE~l! has another singularity at the pointl1'9.41
of a l complex plane.

THEORY

We recall briefly some results which we shall need below.
In Ref. @10# we have shown that the functionE~l! can be
represented as

E~l!S 12
l
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`

tq~ t !expH 2
tls

ls2l J dt, ~3!

wherels'1.097 660 79—the nearest tol50 in the complex
l plane singularity ofE~l!. Expanding both sides of Eq.~3!
in powers ofl, one can obtain from~3! the following for-
mula forq(t) @10#:

q~ t !5 (
n50

` Enls
n

~n11!
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whereEn are the coefficients of the perturbation expansion
~2!, L n

(1)(t)—the Laguerre polynomials@11#. Using the
known properties of the Laguerre polynomials one can de-
rive from ~4! the following formula for the coefficientsEn
@10#:

En5E
0

`

tq~ t !e2tLn
~1!~ t !dt. ~5!

By means of formula~4! the functionq(t) can be computed
numerically. It is represented in Fig. 1. Our numerical inves-
tigation of the functionq(t) carried out in Ref.@10# indicates
that for large-t values,q(t) behaves asta, where the expo-
nenta'2. We are going to prove thata52 exactly.

Consider the system described by the Hamiltonian~1!.
Let us suppose that the parameterl in ~1! assumes very large
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negative valuesl→2`. This limiting case corresponds to
the situation when one has two strongly attracting electrons
in the field of the nucleus of unit charge. This physical situ-
ation can be considered in the framework of a perturbation
theory. Introducing the coordinates

RW 5
rW11rW2
2

, rW 5rW12rW2 , ~6!

one can rewrite the Hamiltonian~1! in the following way
@12#:
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Whenl→2`, one can treat operatorV̂ as the perturbing
operator. The HamiltonianĤ0 is a sum of two hydrogenlike
Hamiltonians. The lowest eigenvalue ofĤ0 is E0~l!
52l2/424. One can easily calculate the first-order correc-
tion to this eigenvalue. We shall not need its exact value
below. We shall use only the fact that, as elementary calcu-
lation shows, the order of magnitude of the first-order cor-
rection toE0~l! is O~l22! whenl→2`. We have thus the
following perturbation expansion forE~l! whenl→2`:

E~l!52
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4
241OS 1l2D , l→2`. ~10!

Let us suppose that the perturbation expansion~10! con-
verges for sufficiently largel. Then Eq.~10! will imply that
the functionE~l! has a second-order pole at the pointl5`.
Our numerical study of the functionq(t) confirms this hy-
pothesis.

One can see from Eq.~3! that in order to reproduce the
asymptotic behavior~10!, the functionq(t) from ~3! should
have the following large-t asymptotic behavior:
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This formula reproduces correctly the asymptotic behav-
ior of the functionq(t). Let us represent the functionq(t) as

q~ t !52
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One can easily calculate the functionq̃(t) numerically. It
is represented in Fig. 2~solid curve!. One can see, that for
the large-t valuesq̃(t) tends to zero. The numerical analysis
of q̃(t) indicates that for the large-t values it decays expo-
nentially ase2ct where c'0.132. We note also thatq̃(t)
does not deviate appreciably from the exponential function
for all values of the variablet. In Fig. 2 we present the plot
of ln[ q̃(t)/q̃(0)] ~dashed curve!. One can see that the plot of
ln[ q̃(t)/q̃(0)] as afunction of t yields nearly a straight line.

Exponential decay ofq̃(t) implies that the perturbation
expansion~10! converges for sufficiently largeulu. Indeed,
for the exponentially decayingq̃(t) the integral

E
0

`

tq̃~ t !expH 2
tls

ls2l J dt ~13!

FIG. 2. Plots of the functionsq̃(t) ~solid line! and
ln[ q̃(t)/q̃(0)] ~dashed line!. FIG. 3. Contour of integration in formula~14!.

FIG. 1. Plot of the functionq(t).
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is a regular function ofl at the pointl5` and can be ex-
panded into a convergent series in powers of 1/l for suffi-
ciently largel. Therefore the functionE~l! given by formula
~3! has a second-order pole at the pointl5`. The leading
terms of the Laurent expansion ofE~l! about this point are
given by formula~10!.

The behavior of the functionq(t) can be understood with
the help of the following arguments. Using the inverse
Laplace transform formula, one obtains from~3!

tq~ t !5
1

2p i EC
E~z!

z2
eztdz, ~14!

where z5ls/(ls2l) and the contour of integrationC is
chosen so that all singular points ofE(z) are situated on the
left of C. As we have mentioned above, all singular points of
E(z) are located in the left-half plane of az complex plane.
Therefore, we can choose for the contourC in ~14! any
straight line Re(z)5a.0. The functionE~l! considered as a
function of a variablez has a second-order pole at the point
z50. Using formula~10! one can obtain the first few terms
of a Laurent expansion ofE(z) about the pointz50:
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The integral along the contourC in formula ~14! can be
represented as a sum of two integrals, the integral taken
around the circleC1 and the integral taken along the contour
C2, as shown in Fig. 3.
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Using the expansion~15! one can see that the integral around
the circleC1 gives forq(t) a second-order polynomial coin-
ciding with the right-hand side of Eq.~11!,

1
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The functionq̃(t) defined by Eq.~12! can be therefore ex-
pressed as

q̃~ t !5
1

2p i t EC2
E~z!

z2
eztdz. ~18!

One can move the contourC2 to the left until it meets a
singular point of the functionE(z)/z2. If we suppose that the
nearest to thez50 singular point is on the negative real axis
at some pointz52c, c.0, then it is easy to see that for the
large positivet the functionq̃(t) will be exponentially de-
caying ase2ct. We have thus reason to believe thatE(z) has
a singular point atz152c, wherec'0.132. Coming back to
the variablel we obtain the position of the singular pointl1
in a l complex plane:

l15lsS 11
1

cD'9.41. ~19!

If E(z) has another singular pointz2 in the left half plane of
a complex z plane, its coordinates are to satisfy:
Re~z2!,Re~z1!. In thel complex plane this inequality can be
written as

Re~l2!2ls

ul22lsu2
.

1

l12ls
'0.12. ~20!

Thus if, besidesls andl1, E~l! has another singular point
l2, its coordinates in thel complex plane must satisfy in-
equality ~20!.

We turn now to more detailed study of the properties of
the functionq̃(t). It was shown in Ref.@6# that the large-
order coefficients of the perturbation expansion~2! have the
following large-n asymptotic behavior:

En;nbe2an1/2, ~21!

whereb'21.94 anda'0.272.
While calculating the coefficientsEn with n.2 one can

substitute in~5! the functionq̃(t) instead ofq(t). @Sinceq̃(t)
andq(t) differ by the second-order polynomial, both meth-
ods of calculation give identical results due to the orthogo-
nality properties of the Laguerre polynomials.# As we have
seen the functionq̃(t) is nearly an exponential functione2ct.
However, q̃(t) cannot be an exponential function exactly.
If q̃(t) were an exponential function,E~l! calculated accord-

TABLE I. Function q̃(t) and approximation~24!.

t q̃(t) q̃(t)app

0 3.801 22 3.801 22
1 3.362 08 3.362 08
2 2.959 07 2.959 07
3 2.599 02 2.600 42
4 2.280 10 2.283 55
5 1.999 09 2.004 39
6 1.752 40 1.758 83
7 1.536 45 1.543 03
8 1.347 78 1.353 50
9 1.183 18 1.187 10
10 1.039 66 1.041 05
11 0.914 52 0.912 89
12 0.805 33 0.800 46

TABLE II. CoefficientsEn , with exact and approximate values.

n En
exact En

app

0 21 20.999 177
1 0.625 0.623 261
2 20.157 666 20.157 332
3 0.008 699 0.009 766
4 20.000 889 20.000 536
5 20.001 036 20.001 142
6 20.000 613 20.000 804
7 20.000 372 20.000 522
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ing to ~3! would be a rational function ofl and the large-
order coefficientsE(n) would decay exponentially ase2bn

with someb.0.
One can show that in order to reproduce thenbe2an1/2

behavior ofEn , the functionq̃(t) must have a singular point
on the negative-t axis. Indeed, for largen the Laguerre poly-
nomials oscillate rapidly@13#:

Ln
~1!~ t !;

1

Ap
et/2t23/4n1/4 cosF2Ant2 3p

4 G1O~n21/4!.

~22!

Using the standard methods of asymptotic evaluation of in-
tegrals of rapidly oscillating functions@14#, one can show
that if q̃(t) has a branch point or logarithmic singularity on
the negative real axis, the integral~5! will have the asymp-
totic of type ~21!. One can verify it directly. For example,
if q̃(t)5 (11at)g, a.0, direct calculation of the integral~5!
gives

E
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`

tq̃~ t !e2tLn
~1!~ t !dt5~n11!ag

G~n2g!

G~2g!

3US n2g,2g21,
1

aD , ~23!

whereU(b,c,z)—a confluent hypergeometric function@11#.
Using the known properties ofU(b,c,z), one can show that
for n→`, the expression on the right-hand side of~23! be-
haves asn2g /225/4exp@22(n/a)1/2#, giving the asymptotic
~21! with an appropriate choice of the parametersa,g in
formula ~23!.

The numerical investigation of the functionq̃(t) shows
that it can be approximated by the following formula:

q̃~ t !app5q̃~0!~11at!ee2ct, ~24!

where c50.132 175, e50.008 958 14, anda51.860 37.
From Table I one can see that the approximationq̃(t)app is
accurate to better than 1 part in 100 fortP@0,12!. We note
also that function~24! gives a reasonable approximation to
the low-order coefficientsEn . In Table II we present the first
few exactEn ~the data from Ref.@6#! and En calculated
according to~5! with q(t) given by ~12! and ~24!. We ob-
serve a good agreement for the coefficientsE0 ,E1 ,E2 . To
achieve better agreement forEn with n.2, one should use
more exact approximation toq̃(t). We did not succeed in
constructing such an approximation due to the following
problem of a numerical character. While calculatingq̃(t)
according to~12! one obtainsq̃(t) with some error due to the
error inls . This numerical error inq̃(t) grows witht. There
is another source of the numerical inaccuracy. While calcu-

latingq(t) according to~4! the round-off errors and errors in
En and ls lead to the error inq(t). The function q̃(t)
is therefore known with some inaccuracy. We estimate
that q̃(t) is accurate to four decimal places fort,15. This
circumstance did not allow us to increase the accuracy of our
approximation forq̃(t).

We would like to make one observation from~24!. The
parametere in formula ~24! is very small. One should note
that this circumstance does not depend on the particular type
of approximation used in~24!. As we have seen, the function
q̃(t) is nearly an exponential function. On the other hand, to
reproduce correctly the asymptotic~21!, q̃(t) must have a
singular point on the negative real axis. Both these require-
ments lead to the presence of a small parameter in any for-
mula approximating the functionq̃(t).

An interesting question is what can play the role of a
small parameter in the problem considered. The smallness of
the deviation ofq̃(t) from the exponential function signifies
that there may exist some kind of perturbation expansion in
powers of a small parameter in the Coulomb three-body
problem.

REMARKS AND PROSPECTS

We summarize the analytic properties ofE~l! as follows.
The functionE~l! has a second-order pole at the pointl5`.
It can be represented as

E~l!5242
l2

4
1Ẽ~l!, ~25!

where the functionẼ~l! is regular at the pointl5`
and Ẽ(l)5O(1/l2) in the vicinity of this point. The func-
tion Ẽ~l! has an essential singularity at the pointls
'1.097 660 79, and another singular point atl1'9.41. If
E~l! has any other singular points, their coordinates must
satisfy inequality~20!.

Our results indicate that some small parameter may be
present in the theory of a two-electron atom. Whether one
can construct the perturbation expansion using the fact of the
presence of this small parameter is an open question. In the
case of a positive answer to this question one might hope to
calculate analytically the numerical constants introduced so
far ~ls ,c!. We believe this question deserves further consid-
eration.
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