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A system of quantum reasoning for a closed system is developed by treating nonrelativistic quantum
mechanics as a stochastic theory. The sample space corresponds to a decomposition, as a sum of orthogonal
projectors, of the identity operator on a Hilbert space of histories. Provided a consistency condition is satisfied,
the corresponding Boolean algebra of histories, called aframework, can be assigned probabilities in the usual
way, and within a single framework quantum reasoning is identical to ordinary probabilistic reasoning. A
refinement rule, which allows a probability distribution to be extended from one framework to a larger~refined!
framework, incorporates the dynamical laws of quantum theory. Two or more frameworks which are incom-
patible because they possess no common refinement cannot be simultaneously employed to describe a single
physical system. Logical reasoning is a special case of probabilistic reasoning in which~conditional! prob-
abilities are 1~true! or 0 ~false!. As probabilities are only meaningful relative to some framework, the same is
true of the truth or falsity of a quantum description. The formalism is illustrated using simple examples, and the
physical considerations which determine the choice of a framework are discussed.@S1050-2947~96!07910-3#

PACS number~s!: 03.65.Bz, 03.65.Ca, 05.30.2d

I. INTRODUCTION

Despite its success as a physical theory, nonrelativistic
quantum mechanics is beset with a large number of concep-
tual difficulties. While the mathematical formalism is not at
issue, the physical interpretation of this formalism remains
controversial. Does a wave function describe a physical
property of a quantum system, or is it merely a means for
calculating something? Do quantum measurements reveal
preexisting properties of a measured system, or do they in
some sense create the properties they reveal? These are but
two of the questions which trouble both beginners and ex-
perts.

It would be wrong to dismiss these issues as mere ‘‘philo-
sophical problems.’’ The effective use of a mathematical
structure as part of a physical theory requires an intuitive
understanding of what the mathematics means, both in order
to relate it to the real world of laboratory experiment, and in
order to motivate the approximations which must be made
when the exact solution of some equation is a practical im-
possibility. In older domains of application of quantum
theory, such as scattering theory, there is by now a well-
developed set of rules, and while the justification for these is
somewhat obscure, once they have been learned, they can be
applied without worrying too much about ‘‘what is really
going on.’’ But when quantum mechanics is applied in an
unfamiliar setting, such as is happening at the present time in
the field of quantum computation@1#, its unresolved concep-
tual difficulties are a serious impediment to physical under-
standing, and advances which enable one to think more
clearly about the problem can lead to significant improve-
ments in algorithms, as illustrated in@2#.

The principal thesis of the present paper is that the major
conceptual difficulties of non-relativistic quantum theory
~which, by the way, are also present in relativistic theories!

can be eliminated, or at least tamed, by taking a point of
view in which quantum theory is fundamentally astochastic
theory, in terms of its description of the time development of
a physical system. The approach found in typical textbooks
is that the time development of a quantum system is gov-
erned by a deterministic Schro¨dinger equation up to the point
at which a measurement is made, the results of which can
then be interpreted in a probabilistic fashion. By contrast, the
point of view adopted here is that a quantum system’s time
evolution is fundamentally stochastic, with probabilities
which can be calculated by solving Schro¨dinger’s equation,
and deterministic evolution arises only in the special case in
which the relevant probability is one. This approach makes it
possible to recover all the results of standard textbook quan-
tum theory, and much else besides, in a manner which is
conceptually much cleaner and does not have to make ex-
cuses of the ‘‘for all practical purposes’’ variety, justly criti-
cized by Bell@3#.

Most of the tools needed to formulate time development
in quantum theory as a stochastic process have already ap-
peared in the published literature. They include the idea that
the properties of a quantum system are associated with sub-
spaces of an appropriate Hilbert space@4#, the concept of a
quantum history as a set of events at a sequence of succes-
sive times@5#, the use of projectors on a tensor product of
copies of the Hilbert space to represent these histories@6#,
the notion that a collection of such histories can, under suit-
able conditions~‘‘consistency’’!, form an event space to
which quantum theory ascribes probabilities@5,7–13#, and
rules which restrict quantum reasoning processes to single
consistent families of histories@9–11#.

The present paper thus represents an extension of the
‘‘consistent histories’’ procedure for quantum interpretation.
The element added to previous work is the systematic devel-
opment of the concept of aframework, the quantum counter-
part of the space of events in ordinary~‘‘classical’’! prob-
ability theory, and the use of frameworks in order to codify
and clarify the process of reasoning needed to discuss the*Electronic address: rgrif@cmu.edu
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time development of a quantum system. A framework is a
Boolean algebra of commuting projectors~orthogonal pro-
jection operators! on the Hilbert space of quantum histories,
Sec. II, which satisfies certainconsistency conditions, Sec.
III. Reasoning about how a quantum system develops in
time, Sec. V, then amounts to the application of the usual
rules of probability theory to probabilities defined on a
framework, together with an additionalrefinement rule
which permits one to extend a given probability distribution
to a refinement or enlargement of the original framework,
Sec. IV. In particular, the standard~Born! rule for transition
probabilities in a quantum system is a consequence of the
refinement rule for probabilities. Logical rules of inference,
in this context, are limiting cases of probabilistic rules in
which ~conditional! probabilities are one~true! or zero
~false!. Because probabilities can only be defined relative to
a framework, the notions of ‘‘true’’ and ‘‘false’’ as part of a
quantum description are necessarily framework dependent,
as suggested in@14#; this rectifies a problem@15# with
Omnès’s approach@10,11# to defining ‘‘truth’’ in the context
of consistent histories, and responds to certain objections
raised by d’Espagnat@16–19#.

The resulting structure is applied to various simple ex-
amples in Sec. VI to show how it works. These examples
illustrate how the intuitive significance of a projector can
depend upon the framework in which it is embedded, how
certain problems of measurement theory are effectively dealt
with by a consistent stochastic approach, and how the system
of quantum reasoning presented here can help untangle
quantum paradoxes. In particular, a recent criticism of the
consistent histories formalism by Kent@20#, involving the
inference with probability one from the same initial data, but
in two incompatible frameworks, of two events represented
by mutually orthogonal projection operators, is considered in
Sec. VI D with reference to a paradox introduced by Aha-
ronov and Vaidman@21#. For reasons explained there and in
Sec. VI B, such inferences do not, for the approach dis-
cussed in this paper, give rise to a contradiction.

Since the major conceptual difficulties of quantum theory
are associated with the existence ofincompatible frame-
works with no exact classical analog, Sec. VII is devoted to
a discussion of their significance, along with some comments
on how the world of classical physics can be seen to emerge
from a fundamental quantum theory. Finally, Sec. VIII con-
tains a brief summary of the conclusions of the paper, to-
gether with a list of open questions.

II. PROJECTORS AND HISTORIES

Ordinary probability theory@22# employs asample space
which is, in the discrete case, a collection ofsample points,
regarded as mutually exclusive outcomes of a hypothetical
experiment. To each sample point is assigned a non-negative
probability, with the sum of the probabilities equal to one.
An eventis then a set of one or more sample points, and its
probability is the sum of the probabilities of the sample
points which it contains. The events, under the operations of
intersection and union, form aBoolean algebra of events. In
this and the following two sections we introduce quantum
counterparts for each of these quantities. Whereas in many
physical applications of probability theory only a single

sample space is involved, and hence its identity is never in
doubt and its basic properties do not need to be emphasized,
in the quantum case one typically has to deal with many
different sample spaces and their corresponding event alge-
bras, and clear thinking depends upon keeping track of
which one is being employed in a particular argument.

The quantum counterpart of a sample space is adecom-
position of the identityon an appropriate Hilbert space. We
shall always assume that the Hilbert space isfinite dimen-
sional; for comments on this, see Sec. VIII B. On a finite-
dimensional space, such a decomposition of the identityI
corresponds to a~finite! collection of orthogonal projection
operators, orprojectors$Bi%, which satisfy

I5(
i
Bi , Bi

†5Bi , BiBj5d i j Bi . ~2.1!

The Boolean algebraB which corresponds to the event alge-
bra is then the collection of all projectors of the form

P5(
i

p iBi , ~2.2!

wherep i is either 0 or 1; different choices give rise to the
2n projectors which make upB in the case in which the sum
in ~2.1! containsn terms. We shall refer to the$Bi% as the
minimal elementsof B.

For a quantum system at a single time,I is the identity
operator on the usual Hilbert spaceH used to describe the
system, and projectors of the formP, or the subspace ofH
onto which they project, representpropertiesof the system.
~See Sec. VI for some examples.! The phase space of clas-
sical Hamiltonian mechanics provides a useful analogy in
this connection. Acoarse grainingof the phase space in
which it is divided up into a number of nonoverlapping cells
corresponds to~2.1!, whereBi is thecharacteristic function
of the i th cell, that is, the function which is 1 for points of
the phase space inside the cell, and 0 for points outside the
cell, andI the function which is 1 everywhere. The events in
the associated algebra correspond to regions which are
unions of some collection of cells, and their characteristic
functionsP again have the form~2.2!.

Projectors of the form~2.2! corresponding to a particular
decomposition of the identity~2.1! commute with each other
and form a Boolean algebraB, in which the negation of a
property, ‘‘notP,’’ corresponds to the complement

P̃5I2P ~2.3!

of the projectorP, and the meet and join operations are
defined by

P`Q5PQ, P~Q5P1Q2PQ. ~2.4!

Note thatP`Q corresponds to the conjunction of the two
properties: ‘‘P and Q,’’ whereasP~Q is the disjunction, ‘‘
P or Q.’’ Precisely the same definitions~2.3! and~2.4! apply
in the case of characteristic functions for the coarse graining
of a classical phase space, and the intuitive significance is
much the same as in the quantum case. Of course, two quan-
tum projectorsP andQ need not commute with each other,
in which case they cannot belong to the same Boolean alge-
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braB, and the properties ‘‘P and Q’’ and ‘‘ P or Q’’ are not
defined, that is, they are meaningless.~Note that at this point
our treatment diverges from traditional quantum logic as
based upon the ideas of Birkhoff and von Neumann@23#.!

A historyof a quantum-mechanical system can be thought
of as a sequence of properties orevents, represented by pro-
jectorsE1 ,E2 , . . . ,En on the Hilbert spaceH at a succes-
sion of timest1,t2,•••,tn . The projectors corresponding
to different times are not required to belong to the same
Boolean algebra, and need not commute with each other.
Following a suggestion by Isham@6#, we shall represent such
a history as a projector

Y5E1(E2(•••(En ~2.5!

on thehistory space

H̆5H(H(•••(H ~2.6!

consisting of the tensor product ofn copies ofH. ~We use
( in place of the conventional̂ to avoid confusion in the
case in whichH itself is the tensor product of two or more
spaces.! The numbern of times entering the history can be
arbitrarily large, but will always be assumed to be finite,
which ensures thatH̆ is finite dimensional as long asH itself
is finite dimensional.

The intuitive interpretation of a history of the form~2.5!
is that eventE1 occurs in the closed quantum system at time
t1, E2 occurs at timet2, and so forth. The consistent history
approach allows a realistic interpretation of such a history so
long as appropriate consistency conditions, Sec. III, are sat-
isfied. Following@6#, we shall allow as a possible historyany
projector on the space~2.6!, and not only those of the prod-
uct form ~2.5!. The intuitive significance of such ‘‘general-
ized histories’’ is not clear, because most physical applica-
tions which have appeared in the literature up to the present
time employ ‘‘product histories’’ of the form~2.5!.

One sometimes needs to compare two historiesY1 and
Y2 defined on two different sets of times, say
t18,t28,•••tp8 , and t19,t29,•••tq9 . It is then convenient to
extend both Y1 and Y2 to the collection of times
t1,t2,•••tn which is the union of these two sets, by intro-
ducing in the product~2.5! the identity operatorI on H at
every time at which the history was not originally defined.
We shall use the same symbols,Y1 andY2, for the exten-
sions as for the original histories, as this causes no confu-
sion, and the physical significance of the original history and
its extension is the same, because the propertyI is always
true.

A useful classical analogy of a quantum history is ob-
tained by imagining a coarse graining of the phase space, and
then thinking of the sequence of cells occupied by the phase
point corresponding to a particular initial state, for a se-
quence of different times. One must allow for different
coarse grainings at different times in order to have an analog
of the full flexibility possible in the quantum description.

A probabilistic description of a closed quantum system as
a function of time can be based upon a Boolean algebraF of
histories generated by a decomposition of the identity opera-
tor Ĭ on H̆:

Ĭ5(
i
Fi , Fi

†5Fi , FiF j5d i j Fi , ~2.7!

where the projectors$Fi% will be referred to as theminimal
elementsof F. The different projectors inF are of the form

Y5(
i

y iFi , ~2.8!

with eachy i either 0 or 1, and the corresponding Boolean
algebra is constructed using the obvious analogs of~2.3! and
~2.4!. We shall refer toF as afamily of histories, and, when
certain additional~consistency! conditions are satisfied, as a
framework.

III. WEIGHTS AND CONSISTENCY

Quantum dynamics is described by a collection of time
evolution operatorsT(t8,t), thought of as carrying the sys-
tem from timet to time t8, so that a stateuc(t)& evolving by
Schrödinger’s equation satisfies

uc~ t !&5T~ t,0!uc~0!&. ~3.1!

We assume that these operators satisfy the conditions

T~ t,t !5I , T~ t9,t8!T~ t8,t !5T~ t9,t !, T~ t8,t !†5T~ t,t8!,
~3.2!

which, among other things, imply thatT(t8,t) is unitary. If
the system has a time-independent Hamiltonian,T takes the
form

T~ t8,t !5exp@2 i ~ t82t !H/\#. ~3.3!

However, none of the results in this paper depends upon
assuming the form~3.3!.

Given the time transformation operators, we define the
weight operator

K~Y!5E1T~ t1 ,t2!E2T~ t2 ,t3!•••T~ tn21 ,tn!En ~3.4!

for the historyY in ~2.5!. It is sometimes convenient to de-
fine theHeisenberg projector

Êj5T~ t r ,t j !EjT~ t j ,t r ! ~3.5!

corresponding to the eventEj at time t j , wheret r is some
arbitrary reference time independent ofj , and the corre-
spondingHeisenberg weight operator

K̂~Y!5Ê1Ê2•••Ên . ~3.6!

For histories which are not of the form~2.5!, but are repre-
sented by more general projectors onH̆, one can follow the
procedure in@6# and define a weight operator by noting that
~3.4! also makes sense when theEj are arbitrary operators
~not just projectors!, and then use linearity,

K~Y81Y91Y-1••• !5K~Y8!1K~Y9!1K~Y-!1•••,
~3.7!

to extendK to a linear mapping from operators onH̆ to
operators onH.
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Next, we define an inner product on the linear space of
operators onH by means of

^A,B&5Tr@A†B#5^B,A&* . ~3.8!

In particular,̂ A,A& is positive, and vanishes only ifA50. In
terms of this inner product we define theweightof a history
Y as

W~Y!5^K~Y!,K~Y!&5^K̂~Y!,K̂~Y!&. ~3.9!

Intuitively speaking, the weight is like an unnormalized
probability. If W(Y)50, this means the historyY violates
the dynamical laws of quantum theory, and thus the prob-
ability that it will occur is zero. Next, define a function

u~XuY!5W~XY!/W~Y! ~3.10!

on pairs of historiesX andY, as long as the right side of
~3.10! makes sense, that is,XY5YX is a projector, and
W(Y).0. Under appropriate circumstances, described in
Secs. IV and V,u(XuY), which is obviously non-negative,
functions as a conditional probability ofX givenY, which is
why we write its arguments separated by a bar.

Let Y andY8 be projectors in the Boolean algebraF or
histories based upon~2.7!. In the analogous classical situa-
tion, whereW(Y) is the ‘‘volume’’ of phase space occupied
at a single time by all the points lying on trajectories which
pass, at the appropriate times, through all the cells specified
by the historyY, the weight function is additive in the sense
that

YY850 implies W~Y1Y8!5W~Y!1W~Y8!.
~3.11!

However, this equation need not hold for a quantum system,
becauseW is defined by the quadratic expression~3.9!. In-
deed, in order for~3.11! to hold it is necessary and sufficient
that for allY andY8 in F,

YY850 implies RêK~Y!,K~Y8!&50, ~3.12!

where Re denotes the real part. We shall refer to~3.12! as a
consistency condition, and, in particular, as theweakconsis-
tency condition, in contrast to thestrongconsistency condi-
tion:

YY850 implies ^K~Y!,K~Y8!&50. ~3.13!

Note that replacingK by K̂ everywhere in~3.12! or ~3.13!
leads to an equivalent condition.

The condition~3.13! is equivalent to the requirement that

jÞk implies ^K~F j !,K~Fk!&50, ~3.14!

for the $F j% in the decomposition of the identity~2.7!. In
other words, strong consistency corresponds to requiring that
the weight operators corresponding to the minimal elements
of F be orthogonal to each other. This orthogonality require-
ment, which was pointed out in@24#, is closely related to the
consistency condition employed by Gell-Mann and Hartle
@12,13#, the vanishing of the off-diagonal elements of an
appropriate ‘‘decoherence functional.’’ To express the weak

consistency condition in similar terms requires that one re-
place~3.8! with the inner product

^^A,B&&5Re~Tr@A†B# !5^^B,A&&, ~3.15!

which is appropriate when the linear operators onH are
thought of as forming areal vector space~i.e., multiplication
is restricted to real scalars!. BecauseF consists of sums with
real coefficients,~2.8!, a real vector space is not an unnatural
object to introduce into the formalism, even if it is somewhat
unfamiliar. Thus the counterpart of~3.14! in the case of weak
consistency is

jÞk implies ^^K~F j !,K~Fk!&&50. ~3.16!

The use of a weak consistency condition has the advantage
that it allows a wider class of consistent families in the quan-
tum formalism. However, greater generality is not always a
virtue in theoretical physics, and it remains to be seen
whether there are ‘‘realistic’’ physical situations where it is
actually helpful to employ weak rather than strong consis-
tency. In any case, the formalism developed below works
equally well if ^,& is replaced bŷ ^,&&, so that our use of the
former can be regarded as simply a matter of convenience of
exposition. For some further comments on the relationship of
our consistency conditions and those of Gell-Mann and
Hartle, see the Appendix.

Henceforth we shall refer to a consistent Boolean algebra
of history projectors as aframework, or consistent family,
and regard it as the appropriate quantum counterpart of the
event algebra in ordinary probability theory. Since a Boolean
algebra of histories is always based upon a decomposition of
the ~history! identity, as in~2.7!, we shall say that such a
decomposition isconsistentif its minimal elements satisfy
~3.14! or ~3.16!, as the case may be, and will occasionally, as
a matter of convenience, refer to such a decomposition as a
‘‘framework,’’ meaning thereby the corresponding Boolean
algebra which it generates.

While the consistency condition is not essential for defin-
ing a quantum probability, it is convenient for technical rea-
sons, and seems to be adequate for representing whatever can
be said realistically about aclosedquantum system.~Regard-
ing open quantum systems, see Sec. VIII B.! Note that while
the concept of consistency properly applies to a Boolean
algebra, or a decomposition ofĬ , an individual historyY can
be inconsistent in the sense thatK(Y) andK( Ĭ2Y) are not
orthogonal, and hence there exists no consistent family
which containsY.

It is sometimes convenient to focus one’s attention on a
Boolean algebra of histories for which the maximum element
is not the identityĬ on the history space, but a smaller pro-
jector. For example, one may be interested in a familyG of
histories for which there is a fixed initial event att1, corre-
sponding to the projectorA. In this case it is rather natural to
replace~2.7! with

Ă5(
i
Gi , Gi

†5Gi , GiGj5d i j Gi , ~3.17!

whereĂ is defined as

Ă5A(I(I •••I . ~3.18!
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The largest projector or maximum element on the Boolean
algebra of projectors generated by the$Gj%, in analogy with
~2.8!, is Ă rather thanĬ . If this algebra is consistent, which is
to say the weight operators corresponding to the different
Gi are mutually orthogonal, then one can add the projector
Ĭ2Ă to the algebra and the resulting family, whose maxi-
mum element is nowĬ , is easily seen to be consistent. The
same comment applies to families in which there is a fixed
final eventB, and to those, such as in@5#, with a fixed initial
and final event. However, if an eventC at an intermediate
time is held fixed, the consistency of the family based upon
the correspondingC̆ is not automatic. Once again, it seems
that for a description of closed quantum systems, the appro-
priate requirement is that an acceptable framework either be
a consistent Boolean algebra whose maximum element isĬ ,
or a subalgebra of such an algebra.

From now on we shall adopt the following as a fundamen-
tal principle of quantum reasoning:A meaningful description
of a (closed) quantum-mechanical system, including its time
development, must employ a single framework.

IV. PROBABILITIES AND REFINEMENTS

Throughout this section, and in the rest of the paper, a
frameworkwill be understood to be a Boolean algebra of
projectors on the history space, based upon a decomposition
of the identity as in~2.7!, and satisfying a consistency con-
dition, either~3.12! or ~3.13!. In the special case where only
a single time is involved, the consistency condition is not
needed~or is automatically satisfied!.

A probability distributionPr() on a frameworkF is an
assignment of a non-negative number Pr(Y) to every history
Y in F by means of the formula

Pr~Y!5(
i

y iPr~Fi !5(
i

u~PuFi !Pr~Fi !, ~4.1!

where the y i are defined in~2.8!, and the probabilities
Pr(Fi) of the minimal elements are arbitrary, subject only to
the conditions

Pr~Fi !>0, (
i
Pr~Fi !51, ~4.2!

W~Fi !50 implies Pr~Fi !50. ~4.3!

Of course,~4.2! are the usual conditions of any probability
theory, while~4.3!, using the weightW defined in~3.9!, ex-
presses the requirement that zero probability be assigned to
any history which is dynamically impossible. IfW(Fi) is
zero, u(PuFi) is undefined, and we set the corresponding
term in the second sum in~4.1! equal to zero, which is plau-
sible in view of ~4.3!. In addition, note that, because the
weights are additive for histories in a~consistent! frame-
work, ~4.3! implies that wheneverW(Y) is zero, Pr(Y) van-
ishes.

Apart from the requirement~4.3!, quantum theory by it-
self does not specify the probability distribution on the dif-
ferent histories. Thus these probabilities must be assigned on
the basis of various data known or assumed to be true for the
quantum system of interest. A typical example is one in

which a system is known, or assumed, to be in an initial state
uc0& at an initial timet0, which would justify assigning prob-
abilities 1 and 0, respectively, to the projectors

c05uc0&^c0u, c̃05I2c0 ~4.4!

at the initial time.
The process of refining a probability distribution plays an

important role in the system of quantum reasoning described
in Sec. V below. We shall say that the frameworkG is a
refinementof F, andF a coarseningof G, providedF,G,
that is, provided every projector which appears inF also
appears inG. A collection$Fi% of two or more frameworks is
said to becompatibleprovided there is a common refine-
ment, i.e., some frameworkG such thatFi,G for every i . If
the collection is compatible, there is a smallest~coarsest!
common refinement, and we shall call this the framework
generated bythe collection, or simply thegeneratedframe-
work. ~Note that in constructing refinements it may be nec-
essary to extend certain histories to additional times by in-
troducing an identity operator at these times, as discussed
above in Sec. II.!

Frameworks not compatible with each other are called
incompatible. Incompatibility ofF1 andF2 can arise in two
somewhat different ways. First, some of the projectors in
F1 may not commute with projectors inF2, and thus one
cannot construct the Boolean algebra of projectors needed
for a common refinement. Second, even if the common Bool-
ean algebra can be constructed, it may not be consistent,
despite the fact that the algebras for bothF1 and F2 are
consistent.

Given a probability distribution Pr() onF and a refine-
ment G of F, we can define a probability Pr8() on G by
means of therefinement rule:

Pr8~G!5(
i

u~GuFi !Pr~Fi !. ~4.5!

Here G is any projector inG, and if Pr(Fi) is zero, the
corresponding term in the sum is set equal to zero, thus
avoiding any problems whenu is undefined. Note that~4.5!
assigns zero probability to anyG having zero weight, and in
particular to minimal elements ofG with zero weight. Hence
Pr8() satisfies the analog of~4.3!, and it is easily checked
that it satisfies the conditions corresponding to~4.2!. In view
of ~4.1! and the fact thatG is a refinement ofF, Pr8(F) and
Pr(F) are identical for anyFPF. Consequently there is little
danger of confusion if the prime is omitted from Pr8().

It is straightforward to show that ifG is a refinement of
F, Pr8() the probability onG obtained by applying the re-
finement rule to Pr() onF, andJ a refinement ofG, then the
same refined probability Pr9() on J is obtained either by
applying the refinement rule to Pr8() on G, or by regarding
J as a refinement ofF, and applying the refinement rule
directly to Pr(). Note that ifA is a projector which occurs in
some refinement ofF, then Pr(A) is the same in any refine-
ment ofF in which A occurs. This follows from noting that
Pr(A) is given by~4.5!, with A in the place ofG, and that
u(AuFi) is simply a ratio of weights, and thus does not de-
pend upon the framework.~The same comment applies, of
course, ifA is a member ofF, and hence a member of every
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refinement ofF.! Thus, relative to the properties just dis-
cussed, the refinement rule is internally consistent.

The significance of the refinement rule can best be appre-
ciated by considering some simple examples. As a first ex-
ample, letF be the family whose minimal elements are the
two projectorsc0 andc̃0 at the single timet0, see~4.4!, and
G a refinement whose minimal elements are of the form

c0(c1
a , c̃0(c1

a , ~4.6!

where the statesuc1
a&, with a51,2, . . . form an orthonormal

basis ofH, and the corresponding projectorsc1
a , defined

using dyads as in~4.4!, represent properties of the quantum
system at timet1. Using the fact that

W~c0(c1
a!5 z^c1

auc0& z2, ~4.7!

and the assumption that Pr(c0(I )51 in F, one arrives at
the conclusion that

Pr~c0(c1
a!5 z^c1

auc0& z2 ~4.8!

in G, which is just the Born rule for transition probabilities.
Thus in this example the refinement rule embodies the con-
sequences of quantum dynamics for the time development of
the system.

A second example involves only a single time. Let the
projectorD on a subspace of dimensiond be a minimal
element ofF to which is assigned a probabilityp. If in the
refinementG of F one has two minimal elementsD1 and
D2, projectors onto subspaces of dimensiond1 and d2,
whose sum isD, then in the refined probability Pr8(), D1 is
assigned a probabilitypd1 /d andD2 a probabilitypd2 /d.
That is to say, the original probability is split up according to
the sizes of the respective subspaces. While in this example
the refinement rule is not a consequence of the dynamical
laws of quantum theory, it is at least not inconsistent with
them.

The following result on conditional probabilities is some-
times useful. LetD be a minimal element of a framework
D having positive weight, and assign toD the probability

Pr~D !51, Pr~ Ĭ2D !50. ~4.9!

Let E be a refinement ofD, andE some element ofE with
positive weight such that

ED5E. ~4.10!

Then forE8 any element ofE,

Pr~E8uE!5u~E8uE!. ~4.11!

We omit the derivation, which is straightforward. Note that it
is essential thatD be a minimal element ofD, and that~4.10!
be satisfied; it is easy to construct examples violating one or
the other of these conditions for which~4.11! does not hold.

V. QUANTUM REASONING

The type of quantum reasoning we shall focus on in this
section is that in which one starts with some information
about a system, known or assumed to be true, and from these

initial data tries to reach validconclusionswhich will be true
if the initial data are correct. As is usual in logical systems,
the rules of reasoning do not by themselves certify the cor-
rectness of the initial data; they merely serve to define a valid
process of inference. Note that the term ‘‘initial’’ refers to
the fact that these data represent the beginning of a logical
argument, and has nothing to do with the temporal order of
the data and conclusions in terms of the history of the quan-
tum system. Thus the conclusions of the argument may well
refer to a point in time prior to that of the initial data.

Since quantum mechanics is a stochastic theory, the initial
data and the final conclusions will in general be expressed in
the form of probabilities, and the rules of reasoning are rules
for deducing probabilities from probabilities. In this context,
‘‘logical rules’’ for deducing true conclusions from true pre-
mises refer to limiting cases in which certain probabilities
are 1~true! or 0 ~false!. Since probabilities in ordinary prob-
ability theory always refer to some sample space, we must
embed quantum probabilities referring to properties or the
time development of a quantum system in an appropriate
framework. Both the initial data and the final conclusions of
a quantum argument should be thought of as labeled by the
corresponding frameworks. Likewise, the truth or falsity of a
quantum proposition, and more generally its probability, is
relative to the framework in which it occurs.

As long as only a single framework is under discussion,
the rules of quantum reasoning are the usual rules for ma-
nipulating probabilities. In particular, if the initial data are
given as a probability distribution Pr( ) on a frameworkD,
we can immediately say that a proposition represented by a
projectorD in D with Pr(D)51 is true ~in the framework
D and assuming the validity of the initial data!, whereas if
Pr(D)50, the proposition is false~with the same qualifica-
tions!. Given a frameworkD, there are certain propositions
for which the probability is 1 for any probability distribution
satisfying the rules~4.2! and~4.3!, and we call thesetautolo-
gies; their negations arecontradictions. For example, given
anyDPD, the proposition ‘‘D or notD,’’ which maps onto
the projectorD~( Ĭ2D)5 Ĭ , is always true, whereas any his-
tory inD which has zero weight, meaning that it violates the
dynamical laws, is always false.

Arguments which employ only a single framework are too
restrictive to be of much use in quantum reasoning. Hence
we add, as a fundamental principle, the followingrefinement
rule: if a probability distribution Pr( ) is given for a frame-
work F, andG is a refinement ofF, then one can infer the
probability distribution Pr8( ) on G given by the refinement
rule introduced in Sec. IV, see~4.5!. As noted in Sec. IV, the
refinement rule embodies all the dynamical consequences of
quantum theory. Replacing Pr8( ) by Pr( ) will generally
cause no confusion, because the two are identical onF.

Thus the general scheme for quantum reasoning is the
following. One begins with data in the form of a probability
distribution Pr( ) on a frameworkD, calculates the refined
probability distribution on a refinementE of D, and applies
the standard probability calculus to the result. Note that the
internal consistency of the refinement rule of Sec. IV has the
following important consequence: If a historyA occurs in
some refinement ofD, then Pr(A) is the same in any refine-
ment ofD in which A occurs. In particular, it is impossible
to deduce from the same initial data that some proposition
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A is both true~probability 1! and false~probability 0!. In this
sense the scheme of quantum reasoning employed here is
internally consistent.

Even in the case of ‘‘complete ignorance,’’ that is to say,
in the absence of any initial data, this scheme can generate
useful results. Consider the trivial frameworkD5$0, Ĭ % for
which the only probability assignment consistent with~4.2!
and ~4.3! is Pr(Ĭ )51. Let E be any framework which uses
the same Hilbert space asD, and which is therefore a refine-
ment ofD. For anyE8 andE in E with W(E).0, ~4.11!
applies, so that a logical consequence of complete ignorance
is

Pr~E8uE!5u~E8uE!. ~5.1!

For example, if we apply~5.1! to the case whereE is the
framework consisting of the elements in~4.6!, one conse-
quence is

Pr~c1
auc0!5 z^c1

auc0& z2. ~5.2!

Hence while we cannot, in the absence of initial data, say
what the initial state is, we can nevertheless assert thatif the
initial state isc0 at t0, then at t1 the probability ofc1

a is
given by ~5.2!. Thus even complete ignorance allows us to
deduce the Born formula as aconditionalprobability.

In the case in which some~nontrivial! initial data are
given, perhaps consisting of separate pieces of information
associated with different frameworks, these must first be
combined into a single probability distribution associated
with a single framework before the process of refinement can
begin. For example, the data may consist of a collection of
pairs$(Di ,Di)%, whereDi is known or assumed to be true in
frameworkDi . If the $Di% are incompatible frameworks, the
initial data must be rejected as mutually incompatible; they
cannot all apply to the same physical system. If they are
compatible, letD be the framework they generate, and let

D5D1D2D3••• ~5.3!

be the projector corresponding to the simultaneous truth of
the differentDi . Then we assign probability 1 toD and 0 to
its complementĬ2D in the frameworkD. @Of course, this
probability assignment is impossible ifW(D)50, which in-
dicates inconsistency in the initial data.# Note that ifD is a
minimal element ofD, then conditional probabilities are
given directly in terms of theu function, ~4.11!, for anyE
satisfying~4.10!.

Of course, in general the initial data may be given not in
the form of certain projectors known~or assumed! to be true,
but instead as probabilities in different frameworks. If the
frameworks are incompatible, the data, of course, must be
rejected as mutually incompatible. If the frameworks are
compatible, the data must somehow be used to generate a
probability distribution on the generated frameworkD. We
shall not discuss this process, except to note that because it
can be carried out in the single frameworkD, whatever
methods are applicable for the corresponding case of ‘‘clas-
sical probabilities’’ can also be applied to the quantum prob-
lem.

The requirement that the initial data be embodied in a
single framework is just a particular example of the general

principle already stated at the end of Sec. III: quantum de-
scriptions, and thus quantum reasoning referring to such de-
scriptions, must employ a single framework. This require-
ment is not at all arbitrary when one remembers that
probabilities in probability theory only have a meaning rela-
tive to some sample space or algebra of events, and that the
quantum framework is playing the role of this algebra. Prob-
abilities in classical statistical mechanics satisfy precisely the
same requirement, where it is totally uninteresting because
there is never any problem combining information of various
sorts into a common description using, say, a single coarse
graining of the phase space~or a family of coarse grainings
indexed by the time!. What distinguishes quantum from clas-
sical reasoning is the presence in the former, but not in the
latter, of incompatible frameworks. Thus the rules governing
incompatible frameworks are necessarily part of the founda-
tions of quantum theory itself.

Note that the system of reasoning employed here doesnot
allow a ‘‘coarsening rule’’ in which, ifF is a refinement of
E, and a probability distribution Pr( ) is given onF, one can
from this deduce a probability distribution Pr* ( ) onE which
is simply the restriction of Pr( ) toE, i.e.,

EPE: Pr* ~E!5Pr~E!. ~5.4!

The reason such a coarsening rule is not allowed is that if it
is combined with the refinement rule, the result is a system
of reasoning which is internally inconsistent. For example, if
we start with the probability distribution Pr( ) onF, define
Pr* on E by means of~5.3!, and then apply the refinement
rule to Pr* in order to derive a probability Pr* 8 on F, the
latter will in general not coincide with the original Pr( ).
Worse than this, there are cases in which successive applica-
tions of coarsening and refinement to different quantum
frameworks can lead to contradictions: starting with
Pr(A)51 in one framework one can eventually deduce
Pr(A)50 in the same framework. To be sure, it is the com-
bination of coarsening and refinement which gives rise to
inconsistencies, and the system of reasoning would be valid
if only the coarsening rule were permitted. However, such a
system would not be very useful. And, indeed, there is a
sense in which a coarsening rule is also not really needed. If
F is a refinement ofE, and a probability distribution is given
onF, then it already assigns a probability to every projector
E in E, in the sense thatE is already an element ofF. But
once again this serves to emphasize the fact that the question
of which sample space one is using, while usually a trivial
and uninteresting question in classical physics, is of utmost
importance in quantum theory.

One way of viewing the difference between quantum and
classical reasoning is that whereas in both cases the validity
of a conclusion depends upon the data from which it was
derived, in the classical case one can forget about the data
once the conclusion has been obtained, and no contradiction
will arise when this conclusion is inserted as the premise of
another argument. In the quantum case, it is safe to forget the
original dataas a probability distribution, but the fact that
the data were embodied in a particularframeworkcannot be
ignored: the conclusion must be expressed relative to a
framework, and since that framework is either identical to, or
has been obtained by refinement of the one containing the
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initial data, the ‘‘framework aspect’’ of the initial data has
not been forgotten. The same is true, of course, in the clas-
sical case, but the framework can safely be ignored, because
classical physics does not employ incompatible frameworks.

Another way in which quantum reasoning is distinctly
different from its classical counterpart is that from thesame
data it is possible to drawdifferent conclusionsin mutually
incompatible frameworks. Because the frameworks are in-
compatible, the conclusions cannot be combined, a situation
which is bizarre from the perspective of classical physics,
where it never arises. See the examples below, and the dis-
cussion in Sec. VII A.

VI. EXAMPLES

A. Spin-half particle

As a first example, consider a spin-one-half particle, for
which the Hilbert space is two dimensional, and a framework
Z corresponding to a decomposition of the identity:

I5Z11Z2, Z65uZ6&^Z6u, ~6.1!

where uZ1& and uZ2& are the states in whichSz has the
values11/2 and21/2, respectively, in units of\. Within
this framework, the statement ‘‘Sz51/2 or Sz521/2’’ is a
tautology because it corresponds to the projectorI , see~2.4!,
which has probability 1 no matter what probability distribu-
tion is employed. Also, ifSz51/2 is true~probability 1!, then
Sz521/2 is false~probability 0!, because Pr(Z1)1Pr(Z2)
is always equal to one.

Of course, we come to precisely the same type of conclu-
sion if, instead ofZ, we use the frameworkX corresponding
to

I5X11X2, X65uX6&^X6u, ~6.2!

where

uX1&5~ uZ1&1uZ2&)/A2, uX2&5~ uZ1&2uZ2&)/A2
~6.3!

are states in whichSx is 11/2 or21/2. However, the frame-
worksZ andX are clearly incompatible because the projec-
tors X6 do not commute withZ6. Therefore, whereas
Sz51/2 is a meaningful statement, which may be true or
false within the frameworkZ, it makes no sense within the
frameworkX, and, similarly,Sx51/2 is meaningless within
the frameworkZ. Consequently, ‘‘Sz51/2and Sx51/2’’ is a
meaningless statement within quantum mechanics inter-
preted as a stochastic theory, because a meaningful descrip-
tion of a quantum system must belong to some framework,
and there is no framework which contains bothSz51/2 and
Sx51/2 at the same instant of time.

A hint that ‘‘Sz51/2 and Sx51/2’’ is meaningless can
also be found in elementary textbooks, where the student is
told that there is no way of simultaneouslymeasuringboth
Sz and Sz , because attempting to measure one component
will disturb the other in an uncontrolled way. While this is
certainly true, one should note that the fundamental reason
no simultaneous measurement of both quantities is possible
is that there is nothing to be measured: the simultaneous
values do not exist. Even very good experimentalists cannot

measure what is not there; indeed, this inability helps to dis-
tinguish them from their less talented colleagues. We return
to the topic of measurement in Sec. VI C below.

As an application of the refinement rule of Sec. V, we can
start with ‘‘complete ignorance,’’ expressed by assigning
probability 1 toI in the frameworkD5$0, I %, and refine this
to a probability onZ. The result is

Pr~Z1!51/25Pr~Z2!, ~6.4!

that is, the particle is unpolarized. Were we instead to use
X as a refinement ofD5$0, I%, the conclusion would be

Pr~X1!51/25Pr~X2!. ~6.5!

Thus we have a simple example of how quantum reasoning
starting from a particular datum@in this case the rather trivial
Pr(I )51# can reach two different conclusions in two differ-
ent frameworks. Each conclusion is correct by itself, in the
sense that it could be checked by experimental measurement,
but the conclusions cannot be combined into a common de-
scription of a single quantum system.

B. Harmonic oscillator

The intuitive or ‘‘physical’’ meaning of a projector on a
subspace of the quantum Hilbert space depends to some ex-
tent on the framework in which this projector is embedded,
as illustrated by the following example.

Let un& with energy (n11/2)\v denote thenth energy
eigenstate of a one-dimensional oscillator.~In order to have a
finite-dimensional Hilbert space, we must introduce an upper
bound forn; sayn,1080.! Throughout the following discus-
sion it will be convenient to assume that the energy is ex-
pressed in units of\v, or, equivalently,\v51.

Define the projectors

Bn5un&^nu, P5B11B2 , P̃5I2P. ~6.6!

In any framework which contains it,P can be interpreted to
mean that ‘‘the energy is less than 2,’’ but in general it isnot
correct to think ofP as meaning ‘‘the energy is 1/2 or
3/2.’’ The latter is a correct interpretation ofP in the frame-
work based on

I5B01B11 P̃, ~6.7!

because the projectorsB0 andB1 can be interpreted as say-
ing that the energy is 1/2 and 3/2, respectively, andP is their
sum; see~2.4!. However, it is totally incorrect to interpret
P to mean ‘‘the energy is 1/2 or 3/2’’ whenP is an element
in the framework based on

I5C11C21 P̃, ~6.8!

whereC1 andC2 are projectors onto the states

u1&5~ u0&1u1&)/A2, u2&5~ u0&2u1&)/A2. ~6.9!

BecauseC1 andC2 do not commute withB0 andB1, the
assertion that ‘‘the energy is 1/2’’ makes no sense if we use
~6.8!, and the same is true of ‘‘the energy is 3/2.’’ Combin-
ing them with ‘‘or’’ does not help the situation unless one

2766 54ROBERT B. GRIFFITHS



agrees that ‘‘the energy is 1/2 or 3/2’’ is a sort of shorthand
for the correct statement that ‘‘the energy is not greater than
3/2.’’ And since even the latter can easily be misinterpreted,
it is perhaps best to use the projectorP itself, as defined in
~6.6!, rather than an ambiguous English phrase, if one wants
to be very careful and avoid all misunderstanding.

The meaning ofP in the smallest framework which con-
tains it, the one based upon

I5P1 P̃, ~6.10!

involves an additional subtlety. Since neitherB0 nor B1 are
part of this framework, it is, at least formally, incorrect to say
that within this frameworkP means ‘‘the energy is 1/2 or
3/2.’’ On the other hand, the~assumed! truth of P in ~6.10!
corresponds to Pr(P)51, and since~6.7! is a refinement of
~6.10!, the refinement rule allows us to conclude that the
probability ofB01B1 in ~6.7! is also equal to one, and there-
fore ‘‘B0 or B1’’ is true in the framework~6.7!. And since, at
least in informal usage, the ‘‘meaning’’ of a physical state-
ment includes various logical consequences which the physi-
cist regards as more or less intuitively obvious, part of the
informal meaning or ‘‘aura’’ ofP in the framework~6.10! is
‘‘ B0 or B1.’’ However, because of the possibility of making
alternative logical deductions from the truth ofP, such as ‘‘
C1 or C2,’’ the best policy, if one wants to be precise, is to
pay attention to the framework, and say that the truth ofP in
~6.10! means that ‘‘the energy is 1/2 or 3/2in the framework
based upon~6.7!.’’ To be sure, in informal discourse one
might omit the final qualification on the grounds that the
phrase ‘‘the energy is 1/2 or 3/2’’ itself singles out the ap-
propriate framework. The point, in any case, is that quantum
descriptions necessarily take place inside frameworks, and
clear thinking requires that one be able to identify which
framework is being used at any particular point in an argu-
ment.

As another example of a possible pitfall, suppose that we
know that the energy is 5/2. Can we conclude from this that
the energy isnot equal to 1/2? There is an almost unavoid-
able temptation to say that the second statement is an imme-
diate consequence of the first, but in fact it is or is not de-
pending upon the framework one is using. To say that the
energy is 5/2 means that we are employing a framework
which includesB2 as one of its elements. If this framework
also includesB0, the fact thatB0 is false ~probability 0!
follows at once from the assumption thatB1 is true ~prob-
ability 1!, by an elementary argument of probability theory,
so that, indeed, the energy is not equal to 1/2. If the frame-
work does not includeB0, but has some refinement which
does includeB0, we can again conclude thatwithin this re-
fined framework—which, note, is not the original
framework—the energy is not equal to 1/2. However, if the
original framework is incompatible withB0 ~e.g., it might
containC1), then the fact that the energy is 5/2 doesnot
imply that the energy is not equal to 1/2. Ignoring differences
between different frameworks quickly leads to paradoxes, as
in the example in Sec. VI D below.

C. Measurement of spin

Textbook discussions of quantum measurement suffer
from two distinct but related ‘‘measurement problems.’’ The

first is that the use of unitary time development can result in
MQS ~macroscopic quantum superposition! or ‘‘Schröd-
inger’s cat’’ states, which must then somehow be explained
away in a manner which has been justly criticized by Bell
@3#. The second is that many measurements of properties of
quantum particles, such as energy or momentum, when ac-
tually carried out in the laboratory result in large changes in
the measured property. Since one is generally interested in
the property of the particle before its interaction with the
measurement apparatus, the well-known von Neumann ‘‘col-
lapse’’ description of the measurement is unsatisfactory
~quite aside from the never-ending debate about what such a
‘‘collapse’’ really means!. The system of quantum reasoning
developed in Sec. V resolves both problems through the use
of appropriate frameworks, as illustrated in the following
discussion of the measurement of the spin of a spin-half par-
ticle.

The particle and the measuring apparatus should be
thought of as a single closed quantum system, with Hilbert
space

H5S^A. ~6.11!

HereS is the two-dimensional spin space for the spin-half
particle, andA is the Hilbert space for all the remaining
degrees of freedom: the particles constituting the apparatus,
and the center of mass of the spin-half particle. We consider
histories involving three times,t0,t1,t2, and suppose that
the relevant unitary time development, indicated by°, has
the form

uZ1A&°uZ1A8&°uP1&,

uZ2A&°uZ2A8&°uP2&, ~6.12!

where uZ1& and uZ2& are the spin states forSz equal to
61/2, as in~6.1!, uA& is a state onA at timet0 in which the
particle is traveling towards the apparatus, and the apparatus
is ready for the measurement,uA8& is the corresponding state
at t1, with the particle closer to, but still not at the apparatus,
and uP1& and uP2& are states onH at t2, after the measure-
ment is complete, which correspond to the apparatus indicat-
ing, through the position of a pointer, the results of measur-
ing Sz for the particle. Note that the spin state of the particle
at t2 is included inuP1& and uP2&, and we donot assume
that it remains unchanged during the measuring process.
Such a description using only pure states is oversimplified,
but we will later indicate how essentially the same results
come out of a more realistic discussion.

To keep the notation from becoming unwieldy, we use the
following conventions. A letter outside a ket indicates the
dyad for the corresponding projector; e.g.,A stands for
uA&^Au. Next, we make no distinction in notation between
A as a projector onA and as the projectorI ^A on S^A;
similarly, Z1 stands both for the projector onS and for
Z1

^ I onH. Finally, projectors on the history spaceH̆ carry
subscripts which indicate the time, as in the following ex-
amples:

A05A(I(I , P2
15I(I(P1. ~6.13!
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We first consider a framework associated with the decom-
position

Ĭ5Ã01$Z0
1A01Z0

2A0%$P2
11P2

21P2* %, ~6.14!

containing seven minimal elements, of the identity onH̆,
where

Ã5I2A, P*5I2~P11P2!. ~6.15!

The family generated by~6.14! is easily shown to be consis-
tent, and the following weights are a consequence of~6.12!:

W~Z0
1A0P2

1!515W~Z0
2A0P2

2!,

W~Z0
2A0P2

1!505W~Z0
1A0P2

2!. ~6.16!

In addition, weights of histories which include bothA0 and
P2* vanish. Note that the weights are additive, so that, for
example,

W~A0P2
1!5W~Z0

1A0P2
1!1W~Z0

2A0P2
1!51. ~6.17!

If we assume that the initial data correspond either to ‘‘com-
plete ignorance,’’ see the remarks preceding~5.1!, or to
probability 1 for A0 in the framework corresponding to
Ĭ5A01Ã0, see~4.9!, we can equate probabilities which in-
cludeA0 as a condition with the correspondingu functions,
~4.11!, and the latter can be computed using~3.10!. The re-
sults include

Pr~P2
1uZ0

1A0!51, Pr~P2
2uZ0

1A0!50, ~6.18!

Pr~P2
1uA0!51/25Pr~P2

2uA0!, ~6.19!

Pr~Z0
1uP2

1A0!51, Pr~Z0
2uP2

1A0!50. ~6.20!

The probabilities in~6.18! are certainly what we would ex-
pect: if att0 we haveSz51/2, then att2 the apparatus pointer
will surely be in stateP1 and not in stateP2. On the other
hand, if we are ignorant ofSz at t0, the results in~6.19! are
those appropriate for an unpolarized particle. Equally reason-
able is the result~6.20!, which tells us that if att2 the pointer
is at P1, the spin of the particle att0 was given by
Sz51/2, notSz521/2; that is, the measurement reveals a
property which the particle had before the measurement took
place.

Next consider, as an alternative to~6.14!, the framework
based upon

Ĭ5Ã01$X0
1A01X0

2A0%$P2
11P2

21P2* %, ~6.21!

where X1 and X2 are projectors associated with
Sx561/2, see~6.3!. It is straightforward to check consis-
tency and calculate the weights:

W~X0
1A0P2

1!51/25W~X0
2A0P2

2!,

W~X0
2A0P2

1!51/25W~X0
1A0P2

2!. ~6.22!

Once again, weights of histories which include bothA0 and
P2* vanish. With the same assumptions as before~ignorance,
or A0 at t0), we obtain

Pr~P2
1uX0

1A0!51/2, Pr~P2
2uX0

1A0!51/2, ~6.23!

Pr~X0
1uP2

1A0!51/2, Pr~X0
2uP2

1A0!51/2. ~6.24!

In addition, the probabilities in~6.19! are the same in the
new framework as in the old, which is not surprising, since
they make no reference toSz or Sx at t0.

Everyone agrees that~6.23!, assigning equal probability
to the pointer statesP1 and P2 if at t0 the spin state is
Sx51/2, is the right answer. What is interesting is that, with
the formalism used here, the right answer emerges without
having to make the slightest reference to a MQS state, and
thus there is no need to make excuses of the ‘‘for all practical
purposes’’ type in order to get rid of it. How have we evaded
the problem of Schro¨dinger’s cat?

The answer is quite simple: there is no MQS state att2 in
the decomposition of the identity~6.21!, and therefore there
is no reference to it in any of the probabilities. To be sure,
we could have investigated an alternative framework based
upon

Ĭ5Ã01$X0
1A01X0

2A0%$Q2
11Q2

21P2* %, ~6.25!

where

uQ1&5~ uP1&1uP2&)/A2, uQ2&5~ uP1&2uP2&)/A2
~6.26!

are MQS states. Using this framework one can calculate, for
example,

Pr~Q2
1uX0

1A0!51, Pr~Q2
2uX0

1A0!50. ~6.27!

Note that there is no contradiction between~6.27! and~6.23!,
because they have been obtained using mutually incompat-
ible frameworks. Here is another illustration of the fact that
quantum reasoning based upon the same data will lead to
different conclusions, depending upon which framework is
employed. However, conclusions from incompatible frame-
works cannot be combined, and the overall consistency of
the reasoning scheme is guaranteed, see the discussion in
Sec. V, by the fact that only refinements of frameworks are
permitted and coarsening is not allowed.

Also note that the framework generated by

Ĭ5Ã01$Z0
1A01Z0

2A0%$Q2
11Q2

21P2* % ~6.28!

is just as acceptable as that based upon~6.14!, and one can
perfectly well calculate various probabilities, such as
Pr(Q2

1uZ0
1A0), by means of it. In this case the initial state

corresponds to a definite value ofSz , and yet the states at
t2 are MQS states. What this shows is that the real ‘‘mea-
surement problem’’ is not the presence of MQS states in
certain frameworks; instead, it comes about because one is
attempting to address a particular question—P1 or
P2?—by means of a framework in which this question has
no meaning, and hence no answer. Trying to claim that the
projectorQ1 is somehow equivalent to the density matrix
(P11P2)/2 for all practical~or any other! purposes is sim-
ply making a second mistake in order to correct the results of
a more fundamental mistake: using the wrong framework for
discussing pointer positions. A major advantage of treating
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quantum mechanics as a stochastic theory from the outset,
rather than adding a probabilistic interpretation as some sort
of addendum, is that it frees one from having to think that a
quantum system ‘‘must’’ develop unitarily in time, and then
being forced to make a thousand excuses when the corre-
sponding framework is incompatible with the world of ev-
eryday experience.

While the framework based upon~6.21! solves the first
measurement problem in the case of a particle which att0
hasSx51/2, and is traveling towards an apparatus which will
measureSz , it does not solve the second measurement prob-
lem, that of showing that if the apparatus is in theP1 state at
t2, then the particle actually was in the stateSz51/2 before
the measurement. Indeed, we cannot even introduce the pro-
jectorsZ0

1 andZ0
2 into the family based on~6.21!, because

they do not commute withX0
1 andX0

2 . However, nothing
prevents us from introducing them at the later timet1, and
considering the following refinement of~6.21!:

Ĭ5Ã01$X0
1A01X0

2A0%$Z1
11Z1

2%$P2
11P2

21P2* %.
~6.29!

After checking consistency, one can calculate the following
weights:

W~X0
1A0Z1

1P2
1!51/25W~X0

2A0Z1
2P2

2!,

W~X0
2A0Z1

1P2
1!51/25W~X0

1A0Z1
2P2

2!. ~6.30!

In addition, all the weights withZ1
1 followed by P2

2 , or
Z1

2 followed by P2
1 , vanish. Conditional probabilities can

then be computed in the same way as before, with~among
others! the following results:

Pr~Z1
1uP2

1X0
1A0!51, Pr~Z1

2uP2
1X0

1A0!50. ~6.31!

That is, given the initial conditionX1A at t0, and the pointer
stateP1 at t2, one can be certain thatSz was equal to 1/2 and
not 21/2 at the timet1 before the measurement took place.

It may seem odd that we can discuss a history in which
the particle hasSx51/2 att0 andSz51/2 att1 in the absence
of a magnetic field which could reorient its spin. To see why
there is no inconsistency in this, note that whereas in the
two-dimensional Hilbert spaceS appropriate for a spin-half
particle at a single time there is no way to describe a particle
which simultaneously hasSx51/2 andSz51/2, the same is
not true in the history spaceS(S for the two timest0 and
t1, which is four dimensional, and hence analogous to the
tensor product space appropriate for describing two~non-
identical! spin-half particles. The fact that the ‘‘incompat-
ible’’ spin states occur at different times is the reason that all
13 projectors on the right side of~6.29! commute with one
another. To be sure, spin directions cannot be chosen arbi-
trarily at a sequence of different times without violating the
consistency conditions, but in the case of~6.29! these condi-
tions are satisfied. It is also useful to remember that were we
applying classical mechanics to a spinning body, there would
be no problem in ascribing a definite value to thex compo-
nent of its angular momentum at one time, and to thez
component of its angular momentum at a later time. That this
is ~sometimes! possible in the quantum case should therefore

not be too surprising, as long as one can make sense of this
in the appropriate Hilbert space~of histories!.

In place of~6.29! we could, of course, use a framework

Ĭ5Ã01$X0
1A01X0

2A0%$X1
11X1

2%$P2
11P2

21P2* %
~6.32!

appropriate for discussing the value ofSx at t1, and from it
deduce the results

Pr~X1
1uP2

1X0
1A0!51, Pr~X1

2uP2
1X0

1A0!50, ~6.33!

in place of~6.31!. Note, however, that~6.32! and ~6.29! are
incompatible frameworks, so that one cannot combine~6.31!
and ~6.33! in any way.

What is the physical significance of two conclusions,
~6.31! and~6.33!, based upon the same initial data, which are
incompatible because the deductions were carried out using
incompatible frameworks? One way of thinking about this is
to note that~6.31! could be verified by an appropriate ideal-
ized measurement which would determine the value ofSz at
t1 without perturbing it, and similarly~6.33! could be
checked by a measurement ofSx at t1 which did not perturb
that quantity@25#. However, carrying out both measurements
at the same time is not possible.

In summary, the solution of quantum measurement prob-
lems, which has hitherto led to a never-ending debate, con-
sists in choosing an appropriate framework. If one wants to
find out what the predictions of quantum theory are for the
position of a pointer at the end of a measurement, it is nec-
essary~and sufficient! to use a framework containing projec-
tors corresponding to the possible positions. If one wants to
know how the pointer position is correlated with the corre-
sponding property of the particle before the measurement
took place, it is necessary~and sufficient! to employ a frame-
work containing projectors corresponding to this property at
the time in question. While these criteria do not define the
framework uniquely, they suffice, because the consistency of
the quantum reasoning process as discussed in Sec. V en-
sures that the same answers will be obtained in any frame-
work in which one can ask the same questions.

As noted above, a description of the measurement process
based solely upon pure states, as in~6.12!, is not very real-
istic. It would be more reasonable to replace the one-
dimensional projectorsA, A8, with projectors of very high
dimension~corresponding to a macroscopic entropy!. This
can, indeed, be done without changing the main conclusions.
Thus letA be a projector onto a subspace ofA of arbitrarily
large~but finite! dimension spanned by an orthonormal basis
uaj&, and replace the unitary time evolution~6.12! with

uZ1aj&°uZ1aj8&°ubj
1&,

uZ2aj&°uZ2aj8&°ubj
2&, ~6.34!

where theuaj8& are, again, a collection of orthonormal states
in A, while theubj

6& are orthonormal states onH, the exact
nature of which is of no particular interest aside from the fact
that they satisfy~6.35! below. Note in particular that nothing
is said about the spin of the particle att2, as that is entirely
irrelevant for the measuring process. Next we assume that
P1 and P2 are projectors onto enormous subspaces ofH
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~macroscopic entropy! corresponding to the physical prop-
erty that the apparatus pointer is pointing in the1 and the
2 direction, respectively. As in all cases where one associ-
ates quantum projectors with macroscopic events, there will
be some ambiguity in the precise definition, but all that mat-
ters for the present discussion is that, for allj ,

P1ubj
1&5ubj

1&, P1ubj
2&50,

P2ubj
2&5ubj

2&, P2ubj
1&50. ~6.35!

Using these definitions, one can work out the weights corre-
sponding to the families~6.14!, ~6.21!, ~6.29!, and ~6.32!.
From them one obtains the same conditional probabilities as
before:~6.18! to ~6.20!, ~6.23! and~6.24!, ~6.31!, and~6.33!,
respectively. Nor are these probabilities altered if, instead of
assuming complete ignorance, or an initial stateA at t0, one
introduces an initial probability distribution which assigns to
eachuaj& a probabilitypj in such a way that the total prob-
ability of A is 1. Thus, while the simplifications employed in
~6.12! and the following discussion make it easier to do the
calculations, they do not affect the final conclusions.

As a final remark, it may be noted that we have made no
use ofdecoherence, in the sense of the interaction of a sys-
tem with its environment@27#, in discussing measurement
problems. This is not to suggest that decoherence is irrel-
evant to the theory of quantum measurement; quite the op-
posite is the case. For example, the fact that certain physical
properties, such as pointer positions in a properly designed
apparatus, have a certain stability in the course of time de-
spite perturbations from a random environment, while other
physical properties do not, is a matter of both theoretical and
practical interest. However, the phenomenon of decoherence
does not, in and of itself, specify which framework is to be
employed in describing a measurement; indeed, in order to
understand what decoherence is all about, one needs to use
an appropriate framework. Hence decoherence is not the cor-
rect conceptual tool to disentangle conceptual dilemmas
brought about by mixing descriptions from incompatible
frameworks.

D. Three state paradox

Aharonov and Vaidman@21# ~also see Kent@20#! have
introduced a class of paradoxes, of which the following is the
simplest example, in which a particle can be in one of three
states:uA&, uB&, or uC&, and in which the unitary dynamics
for a set of three timest0,t1,t2 is given by the identity
operator:uA&°uA&, etc. Define

uF&5~ uA&1uB&1C&)/A3,

uC&5~ uA&1uB&2uC&)/A3, ~6.36!

and, consistent with our previous notation, let a letter outside
a ket denote the corresponding projector, and a tilde its
complement, thus

A5uA&^Au, Ã5I2A5B1C. ~6.37!

Let us begin with the framework based upon

Ĭ5$F01F̃0%$C21C̃2%, ~6.38!

and consider two refinements. In the first, generated by

Ĭ5$F01F̃0%$A11Ã1%$C21C̃2%, ~6.39!

and easily shown to be consistent, an elementary calculation
yields the result

Pr~A1uF0C2!51. ~6.40!

The second refinement is generated by

Ĭ5$F01F̃0%$B11B̃1%$C21C̃2%, ~6.41!

and within this framework,

Pr~B1uF0C2!51. ~6.42!

The paradox comes about by noting that the product of
the projectorsA andB, and thusA1 andB1, is zero. Conse-
quently, wereB1 an element of the framework~6.39!, ~6.40!
would imply that Pr(B1uF0C2)50, in direct contradiction
to ~6.42!. But of course there is no contradiction when one
follows the rules of Sec. V, becauseB1 andA1 can never
belong to the same refinement of~6.38!. Thus this paradox is
a good illustration of the importance of paying attention to
the framework in order to avoid contradictions when reason-
ing about a quantum system, and provides a nice illustration
of the pitfall pointed out at the end of Sec. VI B.

VII. SOME ISSUES OF INTERPRETATION

A. Incompatible frameworks

The central conceptual difficulty of quantum theory, ex-
pressed in the terminology used in this paper, is the existence
of mutually incompatible frameworks, any one of which can,
at least potentially, apply to a particular physical system,
whereas two~or more! cannot be applied to the same system.
Whereas the reasoning procedures described in Sec. V pro-
vide an internally consistent way of dealing with this
‘‘framework problem,’’ it is, as is always the case in quan-
tum theory, very easy to become confused through habits of
mind based upon classical physics. The material in this sec-
tion is intended to address at least some of these sources of
confusion at a more intuitive level, assuming that Sec. V is
sound at the formal level.

It will be useful to consider the explicit example dis-
cussed in Sec. VI C, in which a spin-half particle with
Sx51/2 at timet0 is later, att2, subjected to a measurement
of Sz , and this measurement yields the resultSz51/2. There
is then a frameworkZ, ~6.29!, in which one can conclude
Z1

1 with probability one: that is, the particle was in a state
Sz51/2 at the intermediate timet1. And there is another,
incompatible, frameworkX, ~6.32!, in which, on the basis of
the same initial data, one can concludeX1

1 with probability
one: that is, the particle was in a stateSx51/2 at t1.

The first issue raised by this example is the following.
The rules of reasoning in Sec. V allow us to infer the truth of
Z1

1 in frameworkZ, and the truth ofX1
1 in frameworkX, but

we cannot infer the truth ofZ1
1 and X1

1 , because they do not
belong to the same framework. This is quite different from a
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classical system, in which we are accustomed to think that
whenever an assertionE is true about a physical system, in
the sense that it can be correctly inferred from some known
~or assumed! data, andF is true in the same sense, thenE
and F must be true. As d’Espagnat has emphasized
@16,17,19#, this is always a valid conclusion in standard sys-
tems of logic. But in quantum theory, as interpreted in this
paper, such is no longer the case. Note that there is no formal
difficulty involved: once we have agreed that quantum me-
chanics is a stochastic theory in which the concept of ‘‘true’’
corresponds to ‘‘probability one,’’ then precisely because
probabilities~classical or quantum! only make sense within
some algebra of events, the truth of a quantum proposition is
necessarily labeled, at least implicitly, by that algebra, which
in the quantum case we call a framework. The existence of
incompatible quantum frameworks is no more or less sur-
prising than the existence of noncommuting operators repre-
senting dynamical variables; indeed, there is a sense in
which the former is a direct consequence of the latter. Thus
physicists who are willing to accept the basic mathematical
framework employed in quantum theory, with its nonclassi-
cal noncommutativity, should not be shocked that incompat-
ible frameworks arise when quantum probabilities are incor-
porated into the theory in a consistent, rather than anad hoc,
manner. If the dependence of truth on a framework violates
classical intuition, the remedy is to revise that intuition by
working through examples, as in Sec. VI.

Precisely the same point can be made using the example
in Sec. VI D. Indeed, the importance of using the correct
framework is perhaps even clearer in this case, where the
projectorsA andB commute with each other.

A second issue raised by the approach of Sec. V can be
stated in the form of a question: does quantum theory itself
specify a unique framework? And if the answer is ‘‘no,’’ as
maintained in this paper, does this mean the interpretation of
quantum theory presented here is subjective? Or that it some-
how implies that physical reality is influenced by the choices
made by a physicist@17,19#?

In response, the first thing to note is that while the choice
of framework is not specified by quantum theory, it is also
far from arbitrary. Thus in our example, given the initial data
in the form ofSx51/2 at t0 and the results of the measure-
ment ofSz at t2, Z is the unique coarsest framework which
contains the data and allows us to discuss the value ofSz at
the time t1. To be sure, any refinement of this framework
would be equally acceptable, but it is also the case that any
refinement would lead to precisely the same probability of
Sz at the timet1, conditional upon the initial data. The same
holds for the more general situation discussed in Sec. V: any
refinement of the smallest~coarsest! framework which con-
tains the data and conclusions will lead to the same probabil-
ity for the latter, conditional upon the former. This is also the
case for various sorts of quantum reasoning constantly em-
ployed in practice in order to calculate, for example, a dif-
ferential cross section.

In a certain sense, the very fact that incompatible frame-
works are incompatible is what brings about the quasi-
uniqueness in the choice of frameworks just mentioned. Cer-
tain questions are meaningless unless one uses a framework
in which they mean something, and the same is true of initial
data. Differential scattering cross sections require one type of

framework, whereas the discussion of interference between
two parts of a wave going off in different directions, but later
united by a system of mirrors, requires another. While this
fact is appreciated at an intuitive level by practicing physi-
cists, they tend to find it confusing, because the general prin-
ciples of Sec. V are not as yet contained in standard text-
books.

A classical analogy, that of ‘‘coarse graining’’ in classical
statistical mechanics, is helpful in seeing why the physicist’s
freedom in choosing a quantum framework does not make
quantum theory subjective, or imply that this choice influ-
ences physical reality. As noted in Sec. II, coarse graining
means dividing the classical phase space into a series of cells
of finite volume. From the point of view of classical mechan-
ics, such a coarse graining is, of course, arbitrary; cells are
chosen because they are convenient for discussing certain
problems, such as macroscopic~thermodynamic! irrevers-
ibility. But this does not make classical statistical mechanics
a subjective theory. And, in addition, no one would ever
suppose that by choosing a particular coarse graining, the
theoretical physicist is somehow influencing the system. If,
because it is convenient for his calculations, he chooses one
coarse graining for timest preceding a certaint0, and a dif-
ferent coarse graining for later times, it would be bizarre to
suppose that this somehow induced a ‘‘change’’ in the sys-
tem att0.

To be sure, no classical analogy can adequately represent
the quantum world. In particular, any two classical coarse
grainings are compatible: a common refinement can always
be constructed by using the intersections of cells from the
two families. And one can always imagine replacing the
coarse grainings by an exact specification of the state of the
system. An analogy which comes a bit closer to the quantum
situation can be constructed by imposing the rule that one
can only use coarse grainings in which the cells have ‘‘vol-
umes’’ which are integer multiples ofhP, for a classical sys-
tem withP degrees of freedom. Two coarse grainings which
satisfy this condition will not, in general, have a common
refinement which also satisfies this condition.

While classical analogies cannot settle things, they are
useful in suggesting ways in which the formalism of Sec. V
can be understood in an intuitive way. Eventually, of course,
quantum theory, because it is distinctly different from clas-
sical physics, must be understood on its own terms, and an
intuitive understanding of the quantum world must be devel-
oped by working through examples, such as those in Sec. VI,
interpreted by means of a sound and consistent mathematical
formalism, such as that of Sec. V.

B. Emergence of the classical world

Both Gell-Mann and Hartle@13#, and Omne`s @26# have
discussed how classical physics expressed in terms of suit-
able ‘‘hydrodynamic’’ variables emerges as an approxima-
tion to a fully quantum-mechanical description of the world
when the latter is carried out using suitable frameworks.
While these two formulations differ somewhat from each
other, and from the approach of the present paper, both are
basically compatible with the point of view found in Secs.
II–V. It is not our purpose to recapitulate or even summarize
the detailed technical discussions by these authors, but in-
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stead to indicate the overall strategy, as viewed from the
perspective of this paper, and comment on how it relates to
the problem of incompatible frameworks discussed above.

The basic strategy of Gell-Mann and Hartle can be
thought of as the search for a suitable ‘‘quasiclassical’’
framework, a consistent family whose Boolean algebra in-
cludes projectors appropriate for representing coarse-grained
variables, such as average density and average momentum
inside volume elements which are not too small, variables
which can plausibly be thought of as the quantum counter-
parts of properties which enter into hydrodynamic and other
macroscopic descriptions of the world provided by classical
physics. Hence it is necessary to first find suitable commut-
ing projectors representing appropriate histories, and then
show that the consistency conditions are satisfied for the cor-
responding Boolean algebra. Omne`s states his strategy in
somewhat different terms which, however, are generally
compatible with the point of view just expressed.

Both Gell-Mann and Hartle, and Omne`s, employ consis-
tency conditions which, unlike those in the present paper,
involve a density matrix; see the discussion in the Appendix.
However, the difference is probably of no great importance
when discussing ‘‘quasiclassical’’ systems involving large
numbers of particles, for the following reason. In classical
statistical mechanics one knows~or at least believes! that for
macroscopic systems the choice of ensemble—
microcanonical, canonical, or grand—is for many purposes
unimportant, and, indeed, the average behavior of the en-
semble will be quite close to that of a ‘‘typical’’ member.
Stated in other words, the use of probability distributions is a
convenience which is not ‘‘in principle’’ necessary. Presum-
ably an analogous result holds for quantum systems of mac-
roscopic size: the use of a density matrix, both as an ‘‘initial
condition’’ and as part of the consistency requirement may
be convenient, but it is not absolutely necessary when one is
discussing the behavior of a closed system. For an example
in which the final results are to a large degree independent of
what one assumes about the initial conditions, see the discus-
sion at the end of Sec. VI C.

The task of finding an appropriate quasiclassical consis-
tent family is made somewhat easier by two facts. The first is
that decoherence@27#, in the sense of the interaction of cer-
tain degrees of freedom with an ‘‘environment,’’ can be
quite effective in rendering the weight operators correspond-
ing to minimal elements of a suitably chosen family almost
orthogonal, in the sense discussed in Sec. III.~In the present
context one should think of the relevant degrees of freedom
as those represented by the hydrodynamic variables, and the
‘‘environment’’ as consisting of the remaining ‘‘micro-
scopic’’ variables which are smoothed out, or ignored, in
order to obtain a hydrodynamic description.! The second is
that the weight operators depend continuously on projectors
which form their arguments, and hence it is at least plausible
that if the former are almost orthogonal, small changes in the
projectors can be made in order to achieve exact orthogonal-
ity @15#. Since there is in any case some arbitrariness in
choosing the quantum projectors which represent particular
coarse-grained hydrodynamic variables, small changes in
these projectors are unimportant for their physical interpre-
tation. Thus exact consistency does not seem difficult to
achieve ‘‘in principle,’’ even if in practice theoretical physi-

cists are unlikely to be worried by small deviations from
exact orthogonality, as long as these do not introduce signifi-
cant inconsistencies into the probabilities calculated from the
weights. To be sure, there are issues here which deserve
further study.

There are likely to be many different frameworks which
are equally good for the purpose of deriving hydrodynamics
from quantum theory, and among these a number which are
mutually incompatible. Is this a serious problem? Not unless
one supposes that quantum theory must single out a single
framework, a possibility entertained by Dowker and Kent
@15#. If, on the contrary, the analogy of classical coarse
grainings introduced earlier is valid, one would expect that
the same ‘‘coarse-grained’’ classical laws would emerge
from any framework which is compatible with this sort of
‘‘quasiclassical’’ description of the world. The internal con-
sistency of the reasoning scheme of Sec. V, which can be
thought of as always giving the same answer to the same
question, points in this direction, although this is another
topic which deserves additional study.

There are, of course, many frameworks which arenot
quasiclassical and are incompatible with a ‘‘hydrodynamic’’
description of the world, and there is no principle of quantum
theory which excludes the use of such frameworks. How-
ever, the existence of alternative frameworks does not invali-
date conclusions based upon a quasiclassical framework.
Again, it may help to think of the analogy of coarse grain-
ings of the classical phase space. The existence of coarse
grainings in which a classical system exhibits no irreversible
behavior—they can be constructed quite easily if one allows
the choice of cells to depend upon the time—does not invali-
date conclusions about thermodynamic irreversibility drawn
from a coarse graining chosen to exhibit this phenomenon.
Similarly, in the quantum case, if we are interested in the
‘‘hydrodynamic’’ behavior of the world, we are naturally led
to employ quasiclassical frameworks in which hydrodynamic
variables make sense, rather than alternative frameworks in
which such variables are meaningless.

This suggests an answer to a particular concern raised by
Dowker and Kent@15#: If we, as human beings living in a
quantum world, have reason to believe~based upon our
memories and the like! that this world has been ‘‘quasiclas-
sical’’ up to now, why should we assume that it will continue
to be so tomorrow? In order not to be trapped in various
philosophical subtleties such as whether~and if so, how!
human thought and belief can be represented by physical
processes, let us consider an easier problem in which there is
a computer inside a closed box, which we as physicists~out-
side the box! have been describing up till now in quasiclas-
sical terms. Suppose, further, that one of the inputs to the
computer is the output of a detector, also inside the box,
measuring radioactive decay of some atoms. What would
happen if, ten minutes from now, we were to abandon the
quasiclassical framework for one in which, say, there is a
coherent quantum superposition of the computer in distinct
macroscopic states? Of course, nothing particular would hap-
pen to anything inside the box; we, on the other hand, would
no longer be able to describe the object in the box as a
computer, because the language consistent with such a de-
scription would be incompatible with the framework we
were using for our description. The main point can be made
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using an even simpler example: consider a spin-half particle
in zero magnetic field, and a history in whichSx51/2 at a
time t0,t1, andSz51/2 at a timet2.t1. Nothing at all is
happening to the particle at timet1; the only change is in our
manner of describing it. Additional criticisms of consistent
history ideas with reference to quasiclassical frameworks
will be found in @15,28#; responding to them is outside the
scope of the present paper.

VIII. CONCLUSION

A. Summary

The counterpart for a closed quantum system of the event
space of classical probability theory is a framework: a Bool-
ean algebra of commuting projectors on the spaceH̆, ~2.6!,
of quantum histories chosen in such a way that the weight
operators of its minimal elements are orthogonal,~3.14! or
~3.16!. This ensures that the corresponding weights are addi-
tive, ~3.11!. A refinement of a framework is an enlarged
Boolean algebra which again satisfies the consistency condi-
tions. Two or more frameworks with a common refinement
are called compatible, but in general different quantum
frameworks are incompatible with one another, a situation
which has no classical analog.

Given some framework and an associated probability dis-
tribution, the rules for quantum reasoning, Sec. V, are the
usual rules for manipulating probabilities, with ‘‘true’’ and
‘‘false’’ corresponding to~conditional! probabilities equal to
1 and 0, respectively. In addition, a probability distribution
defined on one framework can be extended to a refinement of
this framework using~4.5!. This refinement rule incorporates
the laws of quantum dynamics into the theory: for example,
the Born formula emerges as a conditional probability,~5.2!,
even in the absence of any initial data.

The refinement rule allows descriptions in compatible
frameworks to be combined, or at least compared, in a com-
mon refinement. However, there is no way of comparing or
combining descriptions belonging to incompatible frame-
works, and it is a mistake to think of them as simultaneously
applying to the same physical system.

Quantum reasoning allows one, on the basis of the same
initial data, to reach different conclusions in different, some-
times mutually incompatible, refinements. However, the sys-
tem is internally consistent in the sense that the probability
assigned to any history on the basis of some initial data
~which must be given in a single framework! is independent
of the refinement in which that history occurs. Hence it is
impossible to conclude that some consequence of a given set
of initial data is both true and false. Nevertheless, probabili-
ties are only meaningful with reference to particular frame-
works, and the same is the case for ‘‘true’’ and ‘‘false’’
regarded as limiting cases in which a probability is 1 or 0.
Hence a basic condition for sound quantum reasoning is
keeping track of the framework employed at a particular
point in an argument.

B. Open questions

The entire technical discussion in Secs. II–V is based
upon a finite-dimensional Hilbert spaceH for a quantum
system at a single time, and likewise a finite-dimensional

history spaceH̆. This seems satisfactory for exploring those
conceptual difficulties which are already present in the finite-
dimensional case, and allows a simple exposition with a
minimal number of technical conditions and headaches. And,
as a practical matter, in any situation in which a finite physi-
cal system can be thought of as possessing a finite entropy
S, it is reasonable to suppose that the ‘‘right physics’’ will
emerge when one restricts one’s attention to a subspace of
H with dimension of order exp@S/kB#. Nonetheless, introduc-
ing such a cutoff, even for the case of a single particle in a
finite box, is mathematically awkward, and for this reason
alone it would be worthwhile to construct the appropriate
extension of the arguments given in this paper to the~or at
least some! infinite-dimensional case. For some steps in this
direction, see the work of Isham and his collaborators
@6,29,30#.

It is not necessary to require that the Boolean algebra of
histories introduced in Sec. II satisfy the consistency condi-
tions of Sec. III in order to introduce a probability distribu-
tion on the former. Consistency becomes an issue only when
one considers refinements of a framework, and wants to de-
fine a refined probability. Even so, one can introduce refine-
ments of an inconsistent frameworkF, with probabilities
given by ~4.5!, by demanding that for eachi , the weight
operator associated withFi be a sum of mutually orthogonal
weight operators of those minimal elementsGj of the refine-
mentG whose sum isFi . The open question is whether there
is some physical application for such a generalized system of
frameworks and refinement rules. Consistent frameworks
seem to be sufficient for describing closed quantum systems,
but it is possible that generalized frameworks would be of
some use in thinking about an open system: a subsystem of a
closed system in which the remainder of the closed system is
regarded as forming some sort of ‘‘environment’’ of the sys-
tem of interest.

While the scheme of quantum reasoning presented in this
paper has wide applicability, there are certain to be situations
not covered by the rules given in Sec. V. One of these is the
case of counterfactuals, such as ‘‘if the counter had not been
located directly behind the slit,then the particle would have
. . . .’’ Analyzing these requires comparing two situations
which differ in some specific way—e.g., in the position oc-
cupied by some counter—and it is not clear how to embed
this in the scheme discussed in Sec. V. Inasmuch as many
quantum paradoxes, including some of the ones associated
with double-slit diffraction, and certain derivations of Bell’s
inequality and analogous results, make use of counterfactu-
als, analyzing them requires considerations which go beyond
those in the present paper. As philosophers have yet to reach
general agreement on a satisfactory scheme for counterfac-
tual reasoning applied to the classical world@31#, an exten-
sion which covers all of quantum reasoning is likely to be
difficult. On the other hand, one sufficient to handle the spe-
cial sorts of counterfactual reasoning found in common
quantum paradoxes is perhaps a simpler problem.

Can the structure of reasoning developed in this paper for
nonrelativistic quantum mechanics be extended to relativistic
quantum mechanics and quantum field theory? Various ex-
amples suggest that the sort of peculiar nonlocality which is
often thought to arise from violations of Bell’s inequality and
various EPR paradoxes will disappear when one enforces the
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rules of reasoning given in Sec. V. While this is encouraging,
it is also the case that locality~or the lack thereof! in non-
relativistic quantum theory has yet to be carefully analyzed
from the perspective presented in this paper, and hence must
be considered among the open questions. And, of course,
getting rid of spurious nonlocalities is only a small step
along the way towards a fully relativistic theory.
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APPENDIX:
CONSISTENCY USING A DENSITY MATRIX

The consistency condition introduced in Sec. III differs in
a small but not insignificant way from the one introduced by
Gell-Mann and Hartle@12,13#, based upon a decoherence
functional. The latter employs a density matrix and amounts,
in effect, to replacing the operator inner product~3.8! by

^A,B&5Tr@A†rB#, ~A1!

wherer is a density matrix~positive operator with unit trace!
or, @32#, by

^A,B&5Tr@A†rBr8#, ~A2!

where bothr and r8 are density matrices, thought of as
associated with the initial and final time, respectively. Still
more general possibilities have been proposed by Isham
et al. @30#. While Omnès’s approach@33# is somewhat dif-
ferent, his consistency condition also employs a density ma-
trix in a manner similar to~A1!.

Certainly one cannot object to either~A1! or ~A2!, or
some completely different definition, on purely mathematical
grounds. If, on the other hand,r is to be interpreted as rep-
resenting something like a probability distribution for the
physical system at an initial time, the following consider-
ations favor~3.8!. First, given that an arbitrary probability
distribution can be introduced once a framework has been
specified, Sec. IV, and this can refer to the initial time, or the
final time, or to anything in between, there is no~obvious!
gain in generality from introducing a density matrix into the
operator inner product. Second, in the scheme outlined in
Secs. II–IV, the conditions for choosing a framework are
independent of the probability one chooses to assign to the
corresponding histories, whereas employing~A1! or ~A2!
couples the acceptability of a framework and the probability
assigned to its histories in a somewhat awkward way. Third,
~3.8! is obviously a simpler construction than either~A1! or
~A2!, and there seems to be no physical situation in nonrel-
ativistic quantum mechanics in which it is not perfectly ad-
equate. To be sure, all of these considerations have a certain
aesthetic character, and elegance is not always a good guide
to developing a physical theory, even when there is agree-
ment as to what is most elegant. The reader will have to
make up his own mind.
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