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Consistent histories and quantum reasoning
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A system of quantum reasoning for a closed system is developed by treating nonrelativistic quantum
mechanics as a stochastic theory. The sample space corresponds to a decomposition, as a sum of orthogonal
projectors, of the identity operator on a Hilbert space of histories. Provided a consistency condition is satisfied,
the corresponding Boolean algebra of histories, callé@mework can be assigned probabilities in the usual
way, and within a single framework quantum reasoning is identical to ordinary probabilistic reasoning. A
refinement rule, which allows a probability distribution to be extended from one framework to a(le&fyezd
framework, incorporates the dynamical laws of quantum theory. Two or more frameworks which are incom-
patible because they possess no common refinement cannot be simultaneously employed to describe a single
physical system. Logical reasoning is a special case of probabilistic reasoning in (ebiatitiona) prob-
abilities are 1(true) or O (falsg. As probabilities are only meaningful relative to some framework, the same is
true of the truth or falsity of a quantum description. The formalism is illustrated using simple examples, and the
physical considerations which determine the choice of a framework are disc{84680-294{®6)07910-3

PACS numbsgs): 03.65.Bz, 03.65.Ca, 05.36d

[. INTRODUCTION can be eliminated, or at least tamed, by taking a point of
view in which quantum theory is fundamentallystochastic
Despite its success as a physical theory, nonrelativistitheory, in terms of its description of the time development of
guantum mechanics is beset with a large number of conce physical system. The approach found in typical textbooks
tual difficulties. While the mathematical formalism is not at is that the time development of a quantum system is gov-
issue, the physical interpretation of this formalism remainserned by a deterministic Schiimger equation up to the point
controversial. Does a wave function describe a physicaht which a measurement is made, the results of which can
property of a quantum system, or is it merely a means fothen be interpreted in a probabilistic fashion. By contrast, the
calculating something? Do quantum measurements revegbint of view adopted here is that a quantum system’s time
preexisting properties of a measured system, or do they isvolution is fundamentally stochastic, with probabilities
some sense create the properties they reveal? These are lutich can be calculated by solving ScHimger's equation,
two of the questions which trouble both beginners and exand deterministic evolution arises only in the special case in
perts. which the relevant probability is one. This approach makes it
It would be wrong to dismiss these issues as mere “philopossible to recover all the results of standard textbook quan-
sophical problems.” The effective use of a mathematicalttum theory, and much else besides, in a manner which is
structure as part of a physical theory requires an intuitiveconceptually much cleaner and does not have to make ex-
understanding of what the mathematics means, both in ordeuses of the “for all practical purposes” variety, justly criti-
to relate it to the real world of laboratory experiment, and incized by Bell[3].
order to motivate the approximations which must be made Most of the tools needed to formulate time development
when the exact solution of some equation is a practical imin quantum theory as a stochastic process have already ap-
possibility. In older domains of application of quantum peared in the published literature. They include the idea that
theory, such as scattering theory, there is by now a wellthe properties of a quantum system are associated with sub-
developed set of rules, and while the justification for these ispaces of an appropriate Hilbert spadé the concept of a
somewhat obscure, once they have been learned, they can ¢ggantum history as a set of events at a sequence of succes-
applied without worrying too much about “what is really sive times[5], the use of projectors on a tensor product of
going on.” But when guantum mechanics is applied in ancopies of the Hilbert space to represent these hist¢figs
unfamiliar setting, such as is happening at the present time ithe notion that a collection of such histories can, under suit-
the field of quantum computatidi], its unresolved concep- able conditions(“consistency”), form an event space to
tual difficulties are a serious impediment to physical underwhich quantum theory ascribes probabilitigs7—-13, and
standing, and advances which enable one to think moreules which restrict quantum reasoning processes to single
clearly about the problem can lead to significant improve-consistent families of historig®—11].
ments in algorithms, as illustrated [&]. The present paper thus represents an extension of the
The principal thesis of the present paper is that the majotconsistent histories” procedure for quantum interpretation.
conceptual difficulties of non-relativistic quantum theory The element added to previous work is the systematic devel-
(which, by the way, are also present in relativistic thegries opment of the concept of flamework the quantum counter-
part of the space of events in ordinaficlassical’”) prob-
ability theory, and the use of frameworks in order to codify
“Electronic address: rgrif@cmu.edu and clarify the process of reasoning needed to discuss the
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time development of a quantum system. A framework is asample space is involved, and hence its identity is never in
Boolean algebra of commuting projectaimrthogonal pro- doubt and its basic properties do not need to be emphasized,
jection operatonson the Hilbert space of quantum histories, in the quantum case one typically has to deal with many
Sec. I, which satisfies certaiconsistency conditionsSec.  different sample spaces and their corresponding event alge-
[ll. Reasoning about how a quantum system develops ifbras, and clear thinking depends upon keeping track of
time, Sec. V, then amounts to the application of the usuaWhich one is being employed in a particular argument.
rules of probability theory to probabilities defined on a The quantum counterpart of a sample space deeom-
framework, together with an additionalefinement rule position of the identityon an appropriate Hilbert space. We
which permits one to extend a given probability distributionshall always assume that the Hilbert spacdinge dimen-
to a refinement or enlargement of the original framework,sional for comments on this, see Sec. VIII B. On a finite-
Sec. IV. In particular, the standatBorn) rule for transition  dimensional space, such a decomposition of the idertity
probabilities in a quantum system is a consequence of theorresponds to #inite) collection of orthogonal projection
refinement rule for probabilities. Logical rules of inference, operators, oprojectors{B;}, which satisfy
in this context, are limiting cases of probabilistic rules in
which (conditiona) probabilities are one(true) or zero IzE B
(false). Because probabilities can only be defined relative to S
a framework, the notions of “true” and “false” as part of a
quantum description are necessarily framework dependenthe Boolean algebr& which corresponds to the event alge-
as suggested in14]; this rectifies a problen{15] with  brais then the collection of all projectors of the form
Omnes’s approach10,11] to defining “truth” in the context
of_ con5|ste,nt histories, and responds to certain objections PZZWiBiy 2.2)
raised by d’Espagndfl6—19. i

The resulting structure is applied to various simple ex-
amples in Sec. VI to show how it works. These examp|e§Nhere i is either 0 or 1; different choices give rise to the
illustrate how the intuitive significance of a projector can2" projectors which make up in the case in which the sum
depend upon the framework in which it is embedded, hown (2.1) containsn terms. We shall refer to thgB;} as the
certain problems of measurement theory are effectively deaminimal elementsf 5.
with by a consistent stochastic approach, and how the system For a quantum system at a single timeis the identity
of quantum reasoning presented here can help untangkperator on the usual Hilbert spage used to describe the
quantum paradoxes. In particular, a recent criticism of thesystem, and projectors of the forRy or the subspace off
consistent histories formalism by Kef20], involving the onto which they project, represeptopertiesof the system.
inference with probability one from the same initial data, but(See Sec. VI for some exampledhe phase space of clas-
in two incompatible frameworks, of two events representedsical Hamiltonian mechanics provides a useful analogy in
by mutually orthogonal projection operators, is considered irthis connection. Acoarse grainingof the phase space in
Sec. VI D with reference to a paradox introduced by Aha-which it is divided up into a number of nonoverlapping cells
ronov and Vaidmai21]. For reasons explained there and in corresponds t¢2.1), whereB; is the characteristic function
Sec. VI B, such inferences do not, for the approach disof theith cell, that is, the function which is 1 for points of
cussed in this paper, give rise to a contradiction. the phase space inside the cell, and O for points outside the

Since the major conceptual difficulties of quantum theorycell, andl the function which is 1 everywhere. The events in
are associated with the existence iotompatible frame- the associated algebra correspond to regions which are
works with no exact classical analog, Sec. VIl is devoted taunions of some collection of cells, and their characteristic
a discussion of their significance, along with some commentfunctionsP again have the forni2.2).
on how the world of classical physics can be seen to emerge Projectors of the forn§2.2) corresponding to a particular
from a fundamental quantum theory. Finally, Sec. VIl con-decomposition of the identit§2.1) commute with each other
tains a brief summary of the conclusions of the paper, toand form a Boolean algebrg, in which the negation of a
gether with a list of open questions. property, “notP,” corresponds to the complement

P=I-P 2.3
II. PROJECTORS AND HISTORIES

i . of the projectorP, and the meet and join operations are
Ordinary probability theory22] employs asample space gfined by

which is, in the discrete case, a collectionsaimple points

regarded as mutually exclusive outcomes of a hypothetical PAQ=PQ, PyQ=P+Q-PQ. (2.4
experiment. To each sample point is assigned a non-negative

probability, with the sum of the probabilities equal to one. Note thatP/AQ corresponds to the conjunction of the two
An eventis then a set of one or more sample points, and itroperties: ‘P and Q” whereasP\/Q is the disjunction, *
probability is the sum of the probabilities of the sampleP or Q.” Precisely the same definition®.3) and(2.4) apply
points which it contains. The events, under the operations ah the case of characteristic functions for the coarse graining
intersection and union, form Boolean algebra of eventin ~ of a classical phase space, and the intuitive significance is
this and the following two sections we introduce quantummuch the same as in the quantum case. Of course, two quan-
counterparts for each of these quantities. Whereas in martym projectors® andQ need not commute with each other,
physical applications of probability theory only a single in which case they cannot belong to the same Boolean alge-
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bra3, and the propertiesP and Q" and “ P or Q” are not v

defined, that is, they are meaningle@éote that at this point I= 2 Fi,
our treatment diverges from traditional quantum logic as

based upon the ideas of Birkhoff and von Neum@28l.) where the projectorsF;} will be referred to as theninimal

A history of a quantum-mechanical system can be thoughklementof F. The different projectors itf are of the form
of as a sequence of propertiesesents represented by pro-
jectorskq ,E,, ... ,E, on the Hilbert spacé{ at a succes- Y_E E 2.9
sion of timest,<t,<-. - - <t,,. The projectors corresponding T4 viris '
to different times are not required to belong to the same
Boolean algebra, and need not commute with each othewith eachv; either O or 1, and the corresponding Boolean
Following a suggestion by Ishalf], we shall represent such algebra is constructed using the obvious analog2 & and

: FI=Fi, FFj=6;F, 2.7

a history as a projector (2.4). We shall refer taF as afamily of historiesand, when
certain additionalconsistency conditions are satisfied, as a
Y=E,OE,O---OF, (2.5  framework
on thehistory space ll. WEIGHTS AND CONSISTENCY

. Quantum dynamics is described by a collection of time
H=HOHO.--OH (2.6 evolution operatord (t’,t), thought of as carrying the sys-
tem from timet to timet’, so that a statgy(t)) evolving by
consisting of the tensor product of copies of H. (We use  Schralinger’s equation satisfies
© in place of the conventionab to avoid confusion in the
case in which{ itself is the tensor product of two or more |g(1))=T(t,0)[4(0)). (3.9
space9. The numbem of times entering the history can be
arbitrarily large, but will always be assumed to be finite,
which ensures that is finite dimensional as long &g itself T(t,0)=1, T t)T{,0O=T{"t), T t=T(tt"),
is finite dimensional. (3.2
The intuitive interpretation of a history of the forf@.5)
is that evenE; occurs in the closed quantum system at timeWhich, among other things, imply tha(t’,t) is unitary. If
t,, E, occurs at time,, and so forth. The consistent history the system has a time-independent Hamiltoniatakes the
approach allows a realistic interpretation of such a history s#orm
long as appropriate consistency conditions, Sec. lll, are sat-
isfied. Following[6], we shall allow as a possible histoapy

projector on the Sp".“c@.‘@' an_d hot only those of ‘t‘he prod- However, none of the results in this paper depends upon
uct form (2.5. The intuitive significance of such “general- assuming the forni3.3)

|_zed h|st_or|es” is not clear, _becaus_e most physical applica- Given the time transformation operators, we define the

tions which have appeared in the literature up to the prese%eight operator

time employ “product histories” of the forng2.5).
One ;ometimes needs 'to compare two histp]ﬂ@sand K(Y)=E T(t;,t)ExT(to,tg) - - T(th_1,t)E, (3.9

Y, defined on two different sets of times, say

1 <t;<---t,, andtj<t3<---tg. It is then convenient to for the historyY in (2.9). It is sometimes convenient to de-

extend both Y; and Y, to the collection of times fine theHeisenberg projector

t,<t,<---t,, which is the union of these two sets, by intro- -

ducing in the product2.5) the identity operatot on H at Ej=T(t t)E;T(L,t,) (3.9

every time at which the history was not originally defined. ) . .

We shall use the same symbols, andY,, for the exten- corresponding to the evel; at timet;, wheret, is some

sions as for the original histories, as this causes no confi@'Pitrary reference time independent pfand the corre-

sion, and the physical significance of the original history and®PendingHeisenberg weight operator

its extension is the same, because the propeity always - o -

true. propletty atway K(Y)=EjE;- - -Ej. (3.6)
A useful classical analogy of a quantum history is Ob'Fdor histories which are not of the forf2.5), but are repre-

tained by imagining a coarse graining of the phase space, an ~

ey ; sented by more general projectors Hnone can follow the
then thinking of the sequence of cells occupied by the phas . . : .
point corresponding to a particular initial state, for a Se_Srocedure ir[6] and define a weight operator by noting that

guence of different times. One must allow for different (3.4) also makes sense when the are arbitrary operators

coarse grainings at different times in order to have an analo&nOt just projectors; and then use linearity,

of the full flexibility possible in the quantum description. KOY Y +Y"+ - ) =K(Y)+K(Y)+ K"+ - -,
A probabilistic description of a closed quantum system as (3.7

a function of time can be based upon a Boolean algéboh .

histories generated by a decomposition of the identity operao extendK to a linear mapping from operators it to

tor | onH: operators or.

We assume that these operators satisfy the conditions

T, H)=exd —i(t' —t)H/A]. 3.3
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Next, we define an inner product on the linear space otonsistency condition in similar terms requires that one re-
operators ort{ by means of place(3.8) with the inner product

(A,B)=TI{ATB]=(B,A)*. (3.9 {{A,B))=ReTr{ATB])=((B,A)), (3.19

In particular,(A,A) is positive, and vanishes only&=0.In  which is appropriate when the linear operators Hnare

terms of this inner product we define theightof a history ~ thought of as forming @eal vector spacei.e., multiplication

Y as is restricted to real scalgrBecauseF consists of sums with
real coefficients(2.8), a real vector space is not an unnatural

W(Y)=(K(Y),K(Y))=(K(Y),K(Y)). (3.9  object to introduce into the formalism, even if it is somewhat

unfamiliar. Thus the counterpart ¢8.14) in the case of weak

Intuitively speaking, the weight is like an unnormalized consistency is

probability. If W(Y)=0, this means the history violates ) o

the dynamical laws of quantum theory, and thus the prob- j#k implies ((K(F;),K(Fy)))=0. (3.16

ability that it will occur is zero. Next, define a function The use of a weak consistency condition has the advantage

A(X|Y)=W(XY)/W(Y) (3.10 that it aIIovv_s a wider class of consistent fa_mili_es in the quan-
tum formalism. However, greater generality is not always a

on pairs of historiesX and Y, as long as the right side of Virtue in theoretical physics, and it remains to be seen
(3.10 makes sense, that i¥Y=YX is a projector, and whether there are “realistic” physical situations where it is
W(Y)>0. Under appropriate circumstances, described irfictually helpful to employ weak rather than strong consis-
Secs. IV and V,6(X|Y), which is obviously non-negative, tency. In any case, the formalism developed below works
functions as a conditional probability &f givenY, which is ~ €qually well if(,) is replaced by(,)), so that our use of the
why we write its arguments separated by a bar. former_ can be regarded as simply a matter of convenience of
Let Y andY’ be projectors in the Boolean algehfaor ~ €Xposition. For some fgr_ther comments on the relationship of
histories based upof2.7). In the analogous classical situa- OUr consistency conditions and those of Gell-Mann and
tion, whereW(Y) is the “volume” of phase space occupied Hartle, see the Appendix. _
at a single time by all the points lying on trajectories which H_enceforth.we shall refer to a consistent _Boolean a_Igebra
pass, at the appropriate times, through all the cells specifie®f history projectors as &ramework or consistent family

by the historyY, the weight function is additive in the sense @nd regard it as the appropriate quantum counterpart of the
that event algebra in ordinary probability theory. Since a Boolean

algebra of histories is always based upon a decomposition of
YY' =0 implies W(Y+Y")=W(Y)+W(Y"). the (history) identity, as in(2.7), we shall say that such a
(3.1)  decomposition isconsistentf its minimal elements satisfy
(3.14 or (3.16, as the case may be, and will occasionally, as
However, this equation need not hold for a quantum systems matter of convenience, refer to such a decomposition as a

becauseW is defined by the quadratic expressi9). In-  “framework,” meaning thereby the corresponding Boolean
deed, in order fo(3.11) to hold it is necessary and sufficient algebra which it generates.
that for allY andY’ in F, While the consistency condition is not essential for defin-

o ing a quantum probability, it is convenient for technical rea-
YY'=0 implies RgK(Y),K(Y"))=0, (312  gons, and seems to be adequate for representing whatever can
be said realistically about@osedquantum systen{Regard-
ing open quantum systems, see Sec. VIIJ Bote that while
the concept of consistency properly applies to a Boolean

algebra, or a decomposition bfan individual historyy can

where Re denotes the real part. We shall refe{3t@2 as a
consistency conditigrand, in particular, as theeakconsis-
tency condition, in contrast to th&rongconsistency condi-

tlon: be inconsistent in the sense thétY) andK (I —Y) are not
YY' =0 implies (K(Y),K(Y’))=0. (3.13  orthogonal, and hence there exists no consistent family
which containsy.
Note that replacind< by K everywhere in(3.12 or (3.13 It is sometimes convenient to focus one’s attention on a
leads to an equivalent condition. Boolean algebra of histories for which the maximum element

The condition(3.13 is equivalent to the requirement that is not the identityl on the history space, but a smaller pro-
jector. For example, one may be interested in a far§ilyf
j#k implies (K(F;),K(Fy))=0, (3.149 histories for which there is a fixed initial event @t corre-
sponding to the projectdk. In this case it is rather natural to
for the {F;} in the decomposition of the identit§2.7). In replace(2.7) with
other words, strong consistency corresponds to requiring that
the weight operators corresponding to the minimal elements
of F be orthogonal to each other. This orthogonality require-
ment, which was pointed out {f24], is closely related to the 5
consistency condition employed by Gell-Mann and HartlewhereA is defined as
[12,13, the vanishing of the off-diagonal elements of an .
appropriate “decoherence functional.” To express the weak A=AOIOI---I. (3.18

A=2 G, G[=Gi, GG=8G, (317
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The largest projector or maximum element on the Booleamwhich a system is known, or assumed, to be in an initial state
algebra of projectors generated by &}, in analogy with | o) at an initial timety, which would justify assigning prob-
(2.8), is A rather tharl . If this algebra is consistent, which is abilities 1 and 0, respectively, to the projectors

to say the weight operators corresponding to the different -

G; are mutually orthogonal, then one can add the projector Yo=o){ol, ¥o=1—tho (4.9

| —A to the algebra and the resulting family, whose maxi-
mum element is now, is easily seen to be consistent. The
same comment applies to families in which there i-S.E.l fixed,
final eventB, and to those, such as[if], with a fixed initial in Sec. V below. We shall say that the framewafKis a

and final event. However, if an ever@@ at an intermediate refinementof , and F a coarseningof G, provided FC G

time is held fixed, the consistency of the family based upon; . is, providéd every projector which, appearsﬁnalscy)

the corresponding is not automatic. Once again, it Seems 5ph0ars/irg. A collection{Z;} of two or more frameworks is

that for a description of closed quantum systems, the apprasaig to becompatibleprovided there is a common refine-

priate requirement is that an acceptable framework either anent, i.e., some framewoik such thatF, C G for everyi. If

a consistent Boolean algebra whose maximum elemeint is the collection is compatible, there is a smallésbarsest

or a subalgebra of such an algebra. common refinement, and we shall call this the framework
From now on we shall adopt the foIIOWing asa fundamen-generated byhe collection, or s|mp|y thgenerated’rame_

tal principle of quantum reasoning: meaningful description  work. (Note that in constructing refinements it may be nec-

of a (closed) quantum-mechanical system, including its tim@ssary to extend certain histories to additional times by in-

at the initial time.
The process of refining a probability distribution plays an
portant role in the system of quantum reasoning described

development, must employ a single framework troducing an identity operator at these times, as discussed
above in Sec. ).
IV. PROBABILITIES AND REFINEMENTS Frameworks not compatible with each other are called

incompatible Incompatibility of 7; and ¥, can arise in two

Throughogt this section, and in the rest of the paper, Lomewhat different ways. First, some of the projectors in
frameworkwill be understood to be a Boolean algebra of]__ may not commute with projectors i, and thus one
21

projectors on the history space, based upon a decompositid

: . . C . cannot construct the Boolean algebra of projectors needed
OT _the |d_ent|ty as in2.7), and sat|sfy|ng_a consistency con- for a common refinement. Second, even if the common Bool-
dition, either(3.12 or (3.13. In the special case where only ' '

X . =7 X . ean algebra can be constructed, it may not be consistent,
a single time is involved, the consistency condition is notdes ite the fact that the algebras for bofp and 7, are
neededor is automatically satisfied P 9 2

A probability distributionPr() on a frameworkF is an consistent.

assignment of a non-negative numbenBrfo every history Given a probability distribution Pr() otF and a refine-
Y in F by means of the formula ment G of F, we can define a probability R) on G by

means of theefinement rule

Pr(Y) =2 uPr(F)=2 6(P|F)PIF), (4.1 Pr(G)=3 H(GIF P @5
where thew;, are defined in(2.8), and the probabilities

Pr(F,) of the minimal elements are arbitrary, subject only to€ré G is any projector ing, and if PrF;) is zero, the
the conditions corresponding term in the sum is set equal to zero, thus

avoiding any problems whe# is undefined. Note tha#.5)
assigns zero probability to ary having zero weight, and in

Pr(Fi)=0, 2 Pr(F)=1, (4.2 particular to minimal elements @ with zero weight. Hence
Pr() satisfies the analog q#.3), and it is easily checked
W(F;)=0 implies P(F;)=0. (4.3 that it satisfies the conditions corresponding4®). In view

of (4.1 and the fact thag is a refinement ofF, Pr (F) and

Of course,(4.2) are the usual conditions of any probability Pr(F) are identical for anyr € 7. Consequently there is little
theory, while(4.3), using the weighWV defined in(3.9), ex-  danger of confusion if the prime is omitted from’Pr.
presses the requirement that zero probability be assigned to It is straightforward to show that iff is a refinement of
any history which is dynamically impossible. W(F;) is 7, Pr'() the probability onG obtained by applying the re-
zero, 9(P|F;) is undefined, and we set the correspondingfinement rule to Pr() otF, andJ a refinement ofj, then the
term in the second sum i@.1) equal to zero, which is plau- same refined probability Af) on 7 is obtained either by
sible in view of (4.3. In addition, note that, because the applying the refinement rule to ®) on G, or by regarding
weights are additive for histories in @onsistent frame- J as a refinement ofF, and applying the refinement rule
work, (4.3) implies that whenevew(Y) is zero, Prfr) van-  directly to Pr(). Note that ifA is a projector which occurs in
ishes. some refinement af, then Prf\) is the same in any refine-

Apart from the requirement4.3), quantum theory by it- ment of 7 in which A occurs. This follows from noting that
self does not specify the probability distribution on the dif- Pr(A) is given by(4.5), with A in the place ofG, and that
ferent histories. Thus these probabilities must be assigned of(A|F;) is simply a ratio of weights, and thus does not de-
the basis of various data known or assumed to be true for theend upon the frameworKThe same comment applies, of
guantum system of interest. A typical example is one incourse, ifA is a member ofF, and hence a member of every
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refinement ofF.) Thus, relative to the properties just dis- initial data tries to reach vali¢onclusionsvhich will be true

cussed, the refinement rule is internally consistent.

if the initial data are correct. As is usual in logical systems,

The significance of the refinement rule can best be apprehe rules of reasoning do not by themselves certify the cor-
ciated by considering some simple examples. As a first extectness of the initial data; they merely serve to define a valid
ample, letF be the family whose minimal elements are theprocess of inference. Note that the term “initial” refers to

two projectorsyy and ¢ at the single time,, see(4.4), and
G a refinement whose minimal elements are of the form

boOPT,  PoOYT,

where the statds/y), with «=1,2, ... form an orthonormal
basis of’H, and the corresponding projectogd’, defined

(4.6

the fact that these data represent the beginning of a logical
argument, and has nothing to do with the temporal order of
the data and conclusions in terms of the history of the quan-
tum system. Thus the conclusions of the argument may well
refer to a point in time prior to that of the initial data.

Since quantum mechanics is a stochastic theory, the initial
data and the final conclusions will in general be expressed in

using dyads as i4.4), represent properties of the quantum the form of probabilities, and the rules of reasoning are rules

system at time;. Using the fact that

W( Oy =Kuilvo)l, 4.7

and the assumption that Ri{®1)=1 in F, one arrives at
the conclusion that

P o@ ¥) = (4] o) ? (4.8

in G, which is just the Born rule for transition probabilities.
Thus in this example the refinement rule embodies the co
sequences of quantum dynamics for the time development

the system.

A second example involves only a single time. Let the

projectorD on a subspace of dimensiah be a minimal
element ofF to which is assigned a probabilify. If in the
refinementg of F one has two minimal element3; and
D,, projectors onto subspaces of dimensidn and d,,
whose sum iD, then in the refined probability Ry), D is
assigned a probabilitpd, /d and D, a probability pd,/d.

That is to say, the original probability is split up according to
the sizes of the respective subspaces. While in this examp
the refinement rule is not a consequence of the dynamic%
laws of quantum theory, it is at least not inconsistent with

them.

The following result on conditional probabilities is some- i . i
K the projectoD\/(1 —D) =1, is always true, whereas any his-

times useful. LetD be a minimal element of a framewor
D having positive weight, and assign Tthe probability
P(D)=1, P(l1—D)=0. 4.9

Let £ be a refinement oD, andE some element of with
positive weight such that

ED=E. (4.10
Then forE’ any element of,
PRE’|E)=6(E'|E). (4.11)

We omit the derivation, which is straightforward. Note that it

is essential thad be a minimal element db, and that4.10

n

for deducing probabilities from probabilities. In this context,
“logical rules” for deducing true conclusions from true pre-
mises refer to limiting cases in which certain probabilities
are 1(true) or O (false. Since probabilities in ordinary prob-
ability theory always refer to some sample space, we must
embed quantum probabilities referring to properties or the
time development of a quantum system in an appropriate
framework. Both the initial data and the final conclusions of
a quantum argument should be thought of as labeled by the
corresponding frameworks. Likewise, the truth or falsity of a
c'*uantum proposition, and more generally its probability, is

?elative to the framework in which it occurs.

As long as only a single framework is under discussion,
the rules of quantum reasoning are the usual rules for ma-
nipulating probabilities. In particular, if the initial data are
given as a probability distribution Pr( ) on a framewdpk
we can immediately say that a proposition represented by a
projectorD in D with Pr(D)=1 is true(in the framework
D and assuming the validity of the initial datavhereas if
Pr(D)=0, the proposition is falséwith the same qualifica-
ions). Given a frameworkD, there are certain propositions
f‘fﬁr which the probability is 1 for any probability distribution

atisfying the rule$4.2) and(4.3), and we call thestautolo-
gies their negations areontradictions For example, given
anyD e D, the proposition ‘D or notD,” which maps onto

tory in D which has zero weight, meaning that it violates the
dynamical laws, is always false.

Arguments which employ only a single framework are too
restrictive to be of much use in quantum reasoning. Hence
we add, as a fundamental principle, the followisdinement
rule: if a probability distribution Pr( ) is given for a frame-
work F, andg is a refinement ofF, then one can infer the
probability distribution Pr( ) on G given by the refinement
rule introduced in Sec. IV, sgd.5). As noted in Sec. IV, the
refinement rule embodies all the dynamical consequences of
quantum theory. Replacing ®r) by Pr( ) will generally
cause no confusion, because the two are identicaFon

Thus the general scheme for quantum reasoning is the
following. One begins with data in the form of a probability

be satisfied; it is easy to construct examples violating one oflistribution Pr(') on a frameworlD, calculates the refined

the other of these conditions for whi¢h.11) does not hold.

V. QUANTUM REASONING

probability distribution on a refinemet of D, and applies
the standard probability calculus to the result. Note that the
internal consistency of the refinement rule of Sec. IV has the
following important consequence: If a histody occurs in

The type of quantum reasoning we shall focus on in thissome refinement db, then Pr@) is the same in any refine-
section is that in which one starts with some informationment of D in which A occurs. In particular, it is impossible
about a system, known or assumed to be true, and from the$e deduce from the same initial data that some proposition
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A is both true(probability 1) and false(probability 0. In this  principle already stated at the end of Sec. Ill: quantum de-
sense the scheme of quantum reasoning employed here dsriptions, and thus quantum reasoning referring to such de-
internally consistent. scriptions, must employ a single framework. This require-
Even in the case of “complete ignorance,” that is to say,ment is not at all arbitrary when one remembers that
in the absence of any initial data, this scheme can generafgobabilities in probability theory only have a meaning rela-
useful results. Consider the trivial framewdfk={0, 1} for  tive to some sample space or algebra of events, and that the
which the only probability assignment consistent wih2)  quantum framework is playing the role of this algebra. Prob-
and (4.3 is Pr()=1. Let £ be any framework which uses abilities in classical statistical mechanics satisfy precisely the
the same Hilbert space @ and which is therefore a refine- S@me requirement, where it is totally uninteresting because
ment of D. For anyE’ and E in & with W(E)>0, (4.11) there is never any problem combining information of various

applies, so that a logical consequence of complete ignoran%ms_i”to a common description us_ing, say, a singl_e_coarse
is graining of the phase spager a family of coarse grainings

indexed by the time What distinguishes quantum from clas-
Pr(E'|E)=6(E'|E). (5.1)  sical reasoning is the presence in the former, but not in the
latter, of incompatible frameworks. Thus the rules governing
For example, if we apply5.1) to the case wher€ is the  incompatible frameworks are necessarily part of the founda-
framework consisting of the elements (4.6), one conse- tions of quantum theory itself.
quence is Note that the system of reasoning employed here does
ol s e 2 allow a “coarsening rule” in which, ifF is a refinement of
Pr(y] o) =Kl o)l (5.2 &, and a probability distribution Pr( ) is given ¢f one can

Hence while we cannot, in the absence of initial data, sa;‘?"’m this deduce a probability distribution™Rr) on & which

what the initial state is, we can nevertheless assertfttia¢ ' simply the restriction of Pr( ) t@, i.e.,
initial state isyq at ty, thenat t, the probability of 7 is
given by (5.2). Thus even complete ignorance allows us to

deduce the Born formula ascanditional probability. ) ) ) o
In the case in which soménontrivial) initial data are The reason such a coarsening rule is not allowed is that if it

given, perhaps consisting of separate pieces of informatiols, cOMbined with the refinement rule, the result is a system
associated with different frameworks, these must first b&f reasoning which is internally inconsistent. For example, if
combined into a single probability distribution associatedVe Start with the probability distribution Pr() ofi, define

with a single framework before the process of refinement caf™” on € by means of(S.3), and then apply the refinement
begin. For example, the data may consist of a collection ofUl€ to PF in order to derive a probability Pf on 7, the
pairs{(D;,D;)}, whereD; is known or assumed to be true in latter will in g_eneral not commdg Wlth the or|g|nf_;1l Pr( )._
frameworkD; . If the {D;} are incompatible frameworks, the Worse than this, t_here are cases in which successive applica-
initial data must be rejected as mutually incompatible; theylions of coarsening and refinement to different quantum
cannot all apply to the same physical system. If they ardrameworks can lead to contradictions: starting with

compatible, letD be the framework they generate, and let Pr(A)=1 in one framework one can eventually deduce
Pr(A)=0 in the same framework. To be sure, it is the com-

D=D;D,Dj--- (5.3 bination of coarsening and refinement which gives rise to
inconsistencies, and the system of reasoning would be valid
be the projector corresponding to the simultaneous truth of only the coarsening rule were permitted. However, such a
the differentD; . Then we assign probability 1 @ and 0to  system would not be very useful. And, indeed, there is a
its complement —D in the frameworkD. [Of course, this sense in which a coarsening rule is also not really needed. If
probability assignment is impossibleW(D) =0, which in-  Fis a refinement of, and a probability distribution is given
dicates inconsistency in the initial dat&ote that ifD isa  on F, then it already assigns a probability to every projector
minimal element ofD, then conditional probabilities are E in &, in the sense thek is already an element of. But
given directly in terms of the& function, (4.11), for any E once again this serves to emphasize the fact that the question
satisfying(4.10. of which sample space one is using, while usually a trivial
Of course, in general the initial data may be given not inand uninteresting question in classical physics, is of utmost
the form of certain projectors knowjr assumeyto be true, importance in quantum theory.
but instead as probabilities in different frameworks. If the One way of viewing the difference between quantum and
frameworks are incompatible, the data, of course, must belassical reasoning is that whereas in both cases the validity
rejected as mutually incompatible. If the frameworks areof a conclusion depends upon the data from which it was
compatible, the data must somehow be used to generatederived, in the classical case one can forget about the data
probability distribution on the generated framewdk We  once the conclusion has been obtained, and no contradiction
shall not discuss this process, except to note that becausewill arise when this conclusion is inserted as the premise of
can be carried out in the single framewofk whatever another argument. In the quantum case, it is safe to forget the
methods are applicable for the corresponding case of “claseriginal dataas a probability distribution but the fact that
sical probabilities” can also be applied to the quantum probthe data were embodied in a particufeameworkcannot be
lem. ignored: the conclusion must be expressed relative to a
The requirement that the initial data be embodied in aramework, and since that framework is either identical to, or
single framework is just a particular example of the generahas been obtained by refinement of the one containing the

Ee& Pr(E)=PKE). (5.4)
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initial data, the “framework aspect” of the initial data has measure what is not there; indeed, this inability helps to dis-

not been forgotten. The same is true, of course, in the claginguish them from their less talented colleagues. We return

sical case, but the framework can safely be ignored, becauge the topic of measurement in Sec. VI C below.

classical physics does not employ incompatible frameworks. As an application of the refinement rule of Sec. V, we can
Another way in which quantum reasoning is distinctly start with “complete ignorance,” expressed by assigning

different from its classical counterpart is that from $@me  probability 1 tol in the frameworkD={0, 1}, and refine this

datait is possible to drawdifferent conclusionsn mutually  to a probability onZ. The result is

incompatible frameworksBecause the frameworks are in-

compatible, the conclusions cannot be combined, a situation PHZ")=1/2=PrZ"), (6.4

which is bizarre from the perspective of classical physics

where it never arises. See the examples below, and the di

cussion in Sec. VII A.

gw_at is, the particle is unpolarized. Were we instead to use
X as a refinement db={0, I}, the conclusion would be

el _

VI. EXAMPLES PIXT)=1/2=PIXT). €9

Thus we have a simple example of how quantum reasoning

. ] . ) starting from a particular datufin this case the rather trivial

As a first example, consider a spin-one-half particle, forpy()=1] can reach two different conclusions in two differ-

which the Hilbert space is two dimensional, and a frameworkent frameworks. Each conclusion is correct by itself, in the

Z corresponding to a decomposition of the identity: sense that it could be checked by experimental measurement,
=zt +7", z°=|z"XZ"|, 6.1) but_ th_e conclus_ions cannot be combined into a common de-

scription of a single quantum system.

A. Spin-half particle

where |Z*) and |Z7) are the states in whicls, has the _ _
values+1/2 and — 1/2, respectively, in units of. Within B. Harmonic oscillator

this framework, the statementS,=1/2 or S,= -1/2" is a The intuitive or “physical” meaning of a projector on a
tautology because it corresponds to the projectsee(2.4),  subspace of the quantum Hilbert space depends to some ex-
which has probability 1 no matter what probability distribu- tent on the framework in which this projector is embedded,
tion is employed. Also, i5,= 1/2 is true(probability 1), then  as illustrated by the following example.
S,=—1/2 is false(probability 0, because PH")+Pr(Z") Let |n) with energy fi+1/2)%w denote thenth energy
is always equal to one. eigenstate of a one-dimensional oscillatém.order to have a

Of course, we come to precisely the same type of conclufinite-dimensional Hilbert space, we must introduce an upper
sion if, instead ofZ, we use the frameworR’ corresponding  bound forn; sayn< 106%°.) Throughout the following discus-
to sion it will be convenient to assume that the energy is ex-
pressed in units ok w, or, equivalentlyfw=1.

I=XT+X7, XT=[XTNXT, (6.2 Define the projectors
where B,=|n)(n|, P=B;+B,, P=I-P. (6.6
IXH)=(Z")+|Z7 )12, |X7>:(|Z+>_|Zf>)/\/(§6 In any framework which contains i can be interpreted to

mean that “the energy is less than 2,” but in general itd$
correct to think of P as meaning “the energy is 1/2 or
3/2.” The latter is a correct interpretation Bfin the frame-
work based on

are states in whicl, is +1/2 or — 1/2. However, the frame-
works Z and X are clearly incompatible because the projec-
tors X* do not commute withZ=. Therefore, whereas
S,=1/2 is a meaningful statement, which may be true or |=B.+B.+P 6.7)
false within the frameworkZ, it makes no sense within the orELE T ’

framework X, and, similarly,S,=1/2 is meaningless vyithin because the projectoBy, andB, can be interpreted as say-
the frameworkz. Consequently, S,=1/2and §=1/2"isa  jng that the energy is 1/2 and 3/2, respectively, Brig their
meaningless statement within quantum mechanics intelsym: see(2.4). However, it is totally incorrect to interpret

preted as a stochastic theory, because a meaningful descrip-iy mean “the energy is 1/2 or 3/2” wheR is an element
tion of a quantum system must belong to some frameworkiy, the framework based on

and there is no framework which contains b&h=1/2 and
S,=1/2 at the same instant of time. |=C*+C +P, (6.9

A hint that “S,=1/2 and §=1/2" is meaningless can
also be found in elementary textbooks, where the student ighereC* andC~ are projectors onto the states
told that there is no way of simultaneoustyeasuringboth
S, and S,, because attempting to measure one component |+)=(|0)+]1)/V2, |[=)=(]0)—[1))/\2. (6.9
will disturb the other in an uncontrolled way. While this is
certainly true, one should note that the fundamental reasoBecauseC* and C~ do not commute wittB, and B, the
no simultaneous measurement of both quantities is possibssertion that “the energy is 1/2" makes no sense if we use
is that there is nothing to be measured: the simultaneou.8), and the same is true of “the energy is 3/2.” Combin-
values do not exist. Even very good experimentalists cannang them with “or” does not help the situation unless one
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agrees that “the energy is 1/2 or 3/2" is a sort of shorthandfirst is that the use of unitary time development can result in
for the correct statement that “the energy is not greater thamQS (macroscopic quantum superpositionr “Schrod-
3/2.” And since even the latter can easily be misinterpretedinger’s cat” states, which must then somehow be explained
it is perhaps best to use the projeckiitself, as defined in away in a manner which has been justly criticized by Bell
(6.6), rather than an ambiguous English phrase, if one wantE3]. The second is that many measurements of properties of

to be very careful and avoid all misunderstanding. guantum particles, such as energy or momentum, when ac-
The meaning of in the smallest framework which con- tually carried out in the laboratory result in large changes in

tains it, the one based upon the measured property. Since one is generally interested in
- the property of the particle before its interaction with the

|=P+P, (6.10  measurement apparatus, the well-known von Neumann “col-

ol dditional subtl . . lapse” description of the measurement is unsatisfactory
INVOIves an a itiona su tlety. Since neltmg nor B, are (quite aside from the never-ending debate about what such a
part of this framework, it is, at least formally, incorrect to Say“collapse” really means The system of quantum reasoning
that within this frameworkP means “the energy is 1/2 or geyeloped in Sec. V resolves both problems through the use
3/2.” On the other hand, theassumegltruth of P'in (6.10 ot appropriate frameworks, as illustrated in the following

corresponds to PR) =1, and since6.7) is a refinement of  giscyssion of the measurement of the spin of a spin-half par-
(6.10, the refinement rule allows us to conclude that thejjqje.

probability of Bo+B; in (6.7) is also equal to one, and there-  The particle and the measuring apparatus should be

fore *Bg or B is true in the framework(6.7). And since, at thought of as a single closed quantum system, with Hilbert
least in informal usage, the “meaning” of a physical state-gpace

ment includes various logical consequences which the physi-

cist regards as more or less intuitively obvious, part of the H=5® A. (6.11
informal meaning or “aura” ofP in the framework(6.10 is

“Bo or B,.” However, because of the possibility of making Here S is the two-dimensional spin space for the spin-half
alternative logical deductions from the truth®f such as “  particle, andA is the Hilbert space for all the remaining
C* or C",” the best policy, if one wants to be precise, is to degrees of freedom: the particles constituting the apparatus,
pay attention to the framework, and say that the trutR @l and the center of mass of the spin-half particle. We consider
(6.10 means that “the energy is 1/2 or 3f2the framework histories involving three timeg,<t;<t,, and suppose that

based upon(6.7).” To be sure, in informal discourse one the relevant unitary time development, indicated-by has
might omit the final qualification on the grounds that thethe form

phrase “the energy is 1/2 or 3/2” itself singles out the ap-
propriate framework. The point, in any case, is that quantum 1Z* AV |Z T A Y|P,
descriptions necessarily take place inside frameworks, and
clear thinking requires that one be able to identify which
framework is being used at any particular point in an argu-
ment.

As another example of a possible pitfall, suppose that wavhere |Z*) and |Z~) are the spin states fo8, equal to
know that the energy is 5/2. Can we conclude from this that=1/2, as in(6.1), |A) is a state ond at timet, in which the
the energy isot equal to 1/2? There is an almost unavoid- particle is traveling towards the apparatus, and the apparatus
able temptation to say that the second statement is an immés ready for the measuremefd’) is the corresponding state
diate consequence of the first, but in fact it is or is not de-att;, with the particle closer to, but still not at the apparatus,
pending upon the framework one is using. To say that th@nd|P") and|P~) are states oft{ att,, after the measure-
energy is 5/2 means that we are employing a frameworknent is complete, which correspond to the apparatus indicat-
which includesB, as one of its elements. If this framework ing, through the position of a pointer, the results of measur-
also includesB,, the fact thatB, is false (probability 0  ing S, for the particle. Note that the spin state of the particle
follows at once from the assumption tHaf is true (prob-  att, is included in|P*) and|P ™), and we donot assume
ability 1), by an elementary argument of probability theory, that it remains unchanged during the measuring process.
so that, indeed, the energy is not equal to 1/2. If the frameSuch a description using only pure states is oversimplified,
work does not includé,, but has some refinement which but we will later indicate how essentially the same results
does includeB,, we can again conclude thaiithin this re-  come out of a more realistic discussion.
fined framework-which, note, is not the original To keep the notation from becoming unwieldy, we use the
framework—the energy is not equal to 1/2. However, if thefollowing conventions. A letter outside a ket indicates the
original framework is incompatible witlB, (e.g., it might dyad for the corresponding projector; e.d, stands for
containC™), then the fact that the energy is 5/2 domst |AY(A|. Next, we make no distinction in notation between
imply that the energy is not equal to 1/2. Ignoring differencesA as a projector ond and as the projectadr® A on S® A;
between different frameworks quickly leads to paradoxes, asimilarly, Z* stands both for the projector of and for

|Z7A)=[Z7 A )= |P7), (6.12

in the example in Sec. VI D below. Z"®| onH. Finally, projectors on the history spagécarry
subscripts which indicate the time, as in the following ex-
C. Measurement of spin amples:

Textbook discussions of quantum measurement suffer . .
from two distinct but related “measurement problems.” The Ao=AOI0I, P;=10IOP". (6.13
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We first consider a framework associated with the decom-

position

1=Ao+{ZE Ao+ Zg AHPS +P; + P}, (6.14
containing seven minimal elements, of the identity ’&m
where

A=1-A, P*=I—(P*+P"). (6.19

The family generated bg6.14) is easily shown to be consis-
tent, and the following weights are a consequenc&df?):

W(Zg AgP; ) =1=W(Z;AoP;),
W(Zy AgP5 ) =0=W(Zj AsP; ). (6.16

In addition, weights of histories which include boty and
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Pr(PS [X{Ag)=1/2, PP, |XiAg)=1/2, (6.23

Pr(Xg|P3 Ag)=1/2, P(Xy|P;Ag)=1/2. (6.29
In addition, the probabilities if6.19 are the same in the
new framework as in the old, which is not surprising, since
they make no reference ), or S, attg.

Everyone agrees th#6.23), assigning equal probability
to the pointer state®” and P~ if at t, the spin state is
S,=1/2, is the right answer. What is interesting is that, with
the formalism used here, the right answer emerges without
having to make the slightest reference to a MQS state, and
thus there is no need to make excuses of the “for all practical
purposes” type in order to get rid of it. How have we evaded
the problem of Schidinger’s cat?

The answer is quite simple: there is no MQS statk
the decomposition of the identifp.21), and therefore there

P% vanish. Note that the weights are additive, so that, foris no reference to it in any of the probabilities. To be sure,

example,

W(AGP; ) =W(Z5AgP; ) +W(Zg AgP;)=1. (6.17)

we could have investigated an alternative framework based
upon

I =Ao+{XZ Ao+ XgAcHQF +Q; +P%}, (6.2

If we assume that the initial data correspond either to “com-

plete ignorance,” see the remarks precediggl), or to
probability 1 for Ay in the framework corresponding to
I =Ay+ A, see(4.9, we can equate probabilities which in-
clude Ay as a condition with the correspondirgfunctions,
(4.11), and the latter can be computed usii3gl0. The re-
sults include

PrP;|ZgA0)=1, PIP;|ZgA0)=0, (6.18
Pr(P3|Ag)=1/2=Pr(P;|Ay), (6.19
Pr(Zg|P,Ag)=1, PIZy|P,A)=0. (6.20

The probabilities in(6.18 are certainly what we would ex-
pect: if atty we haveS,=1/2, then at, the apparatus pointer
will surely be in stateP™ and not in statd®~. On the other
hand, if we are ignorant d, atty, the results in6.19 are

where

QD)=(IPTY+|P N2, [Q7)=(IP")—|P7))/\2
(6.26

are MQS states. Using this framework one can calculate, for
example,
Pr(Q;[XgA0)=1, PIQ;[X5Ag)=0.  (6.27)
Note that there is no contradiction betwdér27) and(6.23),
because they have been obtained using mutually incompat-
ible frameworks. Here is another illustration of the fact that
quantum reasoning based upon the same data will lead to
different conclusions, depending upon which framework is
employed. However, conclusions from incompatible frame-
works cannot be combined, and the overall consistency of

those appropriate for an unpolarized particle. Equally reasorf® réasoning scheme is guaranteed, see the discussion in

able is the resul6.20, which tells us that if at, the pointer
is at P, the spin of the particle at, was given by

S,=1/2, notS,=—1/2; that is, the measurement reveals a
property which the particle had before the measurement took

place.
Next consider, as an alternative (®.14), the framework
based upon

1=Ao+{X¢ Ag+ Xg AoHPs +P5 + P}, (6.21)

Sec. V, by the fact that only refinements of frameworks are
permitted and coarsening is not allowed.
Also note that the framework generated by
1=Ro+{Zg Ao+ Zo AgH{Qs +Q, +P5}  (6.28
is just as acceptable as that based uf@t4), and one can
perfectly well calculate various probabilities, such as
Pr(Q; |Zg Ao), by means of it. In this case the initial state
corresponds to a definite value 8f, and yet the states at

where )(7L and X~ are projectors associated with t2 are MQS states. What this shows is that the real “mea-

S,=*1/2, see(6.9. It is straightforward to check consis-
tency and calculate the weights:

W(Xg AgP5 ) =1/2=W(Xy AP ),
W(Xq AgP5 ) =1/2=W(Xy AP ). (6.22

Once again, weights of histories which include béthand
P% vanish. With the same assumptions as befieorance,
or Ag attp), we obtain

surement problem” is not the presence of MQS states in
certain frameworks; instead, it comes about because one is
attempting to address a particular questidd™— or
P~?—by means of a framework in which this question has
no meaning, and hence no answer. Trying to claim that the
projector Q" is somehow equivalent to the density matrix
(P*+P7)/2 for all practical(or any othey purposes is sim-

ply making a second mistake in order to correct the results of
a more fundamental mistake: using the wrong framework for
discussing pointer positions. A major advantage of treating
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guantum mechanics as a stochastic theory from the outseipt be too surprising, as long as one can make sense of this
rather than adding a probabilistic interpretation as some sorh the appropriate Hilbert spadef histories.
of addendum, is that it frees one from having to think that a In place of(6.29 we could, of course, use a framework
guantum system “must” develop unitarily in time, and then . -
being forced to make a thousand excuses when the corre- | =Ag+{Xg Ao+ XoAoH{X{ + X H{P; +P, +P3}
sponding framework is incompatible with the world of ev- (6.32
eryday experience.

While the framework based updi®.21) solves the first
measurement problem in the case of a particle whictat deduce the results
hasS,=1/2, and is traveling towards an apparatus which will I N Dyt A Y
measures,, it does not solve the second measurement prob- PX;[P2 XoAo) =1, PIX;|P2XoA0)=0, (6.33
lem, that of shovying that if the apparatus is in e state at in place of(6.31). Note, however, that6.32 and (6.29 are
to, then the particle actually was in the st&g=1/2 before  jhcompatible frameworks, so that one cannot comibéid1)
the measurement. Indeed, we cannot even introduce the prgpq (6.33 in any way.
jectorsZ; andZ, into the family based or6.21, because  what is the physical significance of two conclusions,
they do not commute witiXy and X, . However, nothing  (6.31) and(6.33, based upon the same initial data, which are
prevents us from introducing them at the later tigeand  incompatible because the deductions were carried out using

appropriate for discussing the value $f att;, and from it

considering the following refinement ¢8.21): incompatible frameworks? One way of thinking about this is
. - to note that(6.31) could be verified by an appropriate ideal-
I =Ao+{Xg Ao+ XgAH{Z +Z1 HP; + P, +P3}. ized measurement which would determine the valus,at

(6.29  t, without perturbing it, and similarly(6.33 could be
, , . checked by a measurement®fatt,; which did not perturb
Aftgr checking consistency, one can calculate the followingpat quantity25]. However, carrying out both measurements
weights: at the same time is not possible.
_ o In summary, the solution of quantum measurement prob-
W(Xg AoZy P3)=1/2=W(Xq AoZ P7), lems, which has hitherto led to a never-ending debate, con-
B . N o sists in choosing an appropriate framework. If one wants to
W(XgApZy Py)=112=W(X5A0Z1 Py).  (6.30  find out what the predictions of quantum theory are for the
. _ _ _ position of a pointer at the end of a measurement, it is nec-
In addition, all the weights wittZ; followed by P, , or  essary(and sufficientto use a framework containing projec-
Z; followed by P, , vanish. Conditional probabilities can tors corresponding to the possible positions. If one wants to
then be computed in the same way as before, athong  know how the pointer position is correlated with the corre-
others the following results: sponding property of the particle before the measurement
took place, it is necessaf@nd sufficientto employ a frame-
Pr(Z;|P;XgAg)=1, PKZ;|P;X5A0)=0. (6.3)  work containing projectors corresponding to this property at
the time in question. While these criteria do not define the
That is, given the initial conditioX* A att,, and the pointer  framework uniquely, they suffice, because the consistency of
stateP ™ att,, one can be certain th; was equal to 1/2 and  the quantum reasoning process as discussed in Sec. V en-
not —1/2 at the timet; before the measurement took place. sures that the same answers will be obtained in any frame-
It may seem odd that we can discuss a history in whichwork in which one can ask the same questions.
the particle ha§,=1/2 atty andS,=1/2 att, in the absence As noted above, a description of the measurement process
of a magnetic field which could reorient its spin. To see whybased solely upon pure states, agaril2), is not very real-
there is no inconsistency in this, note that whereas in théstic. It would be more reasonable to replace the one-
two-dimensional Hilbert spac§ appropriate for a spin-half dimensional projectoré, A’, with projectors of very high
particle at a single time there is no way to describe a particlglimension(corresponding to a macroscopic entrpp¥his
which simultaneously haS,=1/2 andS,=1/2, the same is can, indeed, be done without changing the main conclusions.
not true in the history spac8OS for the two timesty and  Thus letA be a projector onto a subspace.4fof arbitrarily
t;, which is four dimensional, and hence analogous to théarge(but finite) dimension spanned by an orthonormal basis

tensor product space appropriate for describing twon-  |a;), and replace the unitary time evoluti¢é.12 with
identica) spin-half particles. The fact that the “incompat-

ible” spin states occur at different times is the reason that all 1Z*aj)—[z"a])—|b]"),

13 projectors on the right side ¢6.29 commute with one

another. To be sure, spin directions cannot be chosen arbi- IZ’aj>H|Z’aj >H|bj’>, (6.349

trarily at a sequence of different times without violating the

consistency conditions, but in the caseg®R29 these condi- Where the| aj’) are, again, a collection of orthonormal states
tions are satisfied. It is also useful to remember that were win A, while the|bji) are orthonormal states dri, the exact
applying classical mechanics to a spinning body, there wouldature of which is of no particular interest aside from the fact
be no problem in ascribing a definite value to theompo-  that they satisfy6.35 below. Note in particular that nothing
nent of its angular momentum at one time, and to the is said about the spin of the particletat as that is entirely
component of its angular momentum at a later time. That thigrrelevant for the measuring process. Next we assume that
is (sometimegpossible in the quantum case should therefore®* and P~ are projectors onto enormous subspacesg{of
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(macroscopic entropycorrgsponQing -to.the. physical prop- | ={®+ D HW,+V,}, (6.39

erty that the apparatus pointer is pointing in theand the

— direction, respectively. As in all cases where one associand consider two refinements. In the first, generated by

ates quantum projectors with macroscopic events, there will . _ _ _

be some ambiguity in the precise definition, but all that mat- | ={®y+ DPHA +AH T, +T,}, (6.39

ters for the present discussion is that, forjall ) ) )
and easily shown to be consistent, an elementary calculation

P*lb/)=Ib), P*|b;)=0, yields the result

P-Ib;)=Ib;), P~|b/)=0. (639 PR Bo¥2)=1. (.49
The second refinement is generated by

Using these definitions, one can work out the weights corre- . ~ ~ _

sponding to the familie$6.14), (6.21), (6.29, and (6.32. | ={Dy+Do}{B;+B {W¥,+V¥,}, (6.41

From them one obtains the same conditional probabilities as

before:(6.18) to (6.20), (6.23 and(6.24), (6.31), and(6.33,  and within this framework,

respectively. Nor are these probabilities altered if, instead of

assuming complete ignorance, or an initial statatt,, one PI(B,|®oW,)=1. (6.42

introduces an initial probability distribution which assigns to

each|a;) a probabilityp; in such a way that the total prob-

ability of A is 1. Thus, while the simplifications employed in the projectorsA andB, and thush, andB,, is zero. Conse-
(6.12 and the following discussion make it easier to do thequently, wereB, an element of the framewor(.39, (6.40

, . . would imply that Prg,|®o¥,)=0, in direct contradiction
calculat|c_)ns, they do not affect the final conclusions. to (6.42). %ﬁt of courlee| tﬁeré) is no contradiction when one
As a final remark, it may be noted th_at we have made NQollows the rules of Sec. V, becau® andA; can never

use of_dec_oheren_cem the sense of_the Interaction of a sys- belong to the same refinement(@£38. Thus this paradox is
tem with its e_n\{lronmenf27], in discussing measurement good illustration of the importance of paying attention to
problems. This is not to suggest that decoherence is irrel;

t to the th f i t quite th he framework in order to avoid contradictions when reason-
evant to the theory of quantum measurement, guite the thg about a quantum system, and provides a nice illustration

posite is the case. For example, the fact that certain physic%lf the pitfall pointed out at the end of Sec. VI B
properties, such as pointer positions in a properly designe ' '

apparatus, have a certain stability in the course of time de-
spite perturbations from a random environment, while other VII. SOME ISSUES OF INTERPRETATION
physical properties do not, is a matter of both theoretical and A. Incompatible frameworks

practical interest. However, the phenomenon of decoherence

not, in and of itself ify which framework i . X L7 . .
does not, in and of itself, specify ch framework is to beBressed in the terminology used in this paper, is the existence

employed in describing a measurement; indeed, in order t wallv i tible f K £ which
understand what decoherence is all about, one needs to uggmu ually Incompatiblié frameworks, any one of which can,
t least potentially, apply to a particular physical system,

an appropriate framework. Hence decoherence is not the cof- .
pprop hereas twdgor more cannot be applied to the same system.

rect conceptual tool to disentangle conceptual dilemma; . . ;
brought about by mixing descriptions from incompatible _hereas _the reasoning procedures descrlbe_d in Sec. V pro-
frameworks. vide an internally consistent way of dealing wlth this
“framework problem,” it is, as is always the case in quan-
tum theory, very easy to become confused through habits of
D. Three state paradox mind based upon classical physics. The material in this sec-
Aharonov and Vaidmar21] (also see Kenf20]) have tion is intended to address at least some of these sources of
introduced a class of paradoxes, of which the following is theconfusion at a more intuitive level, assuming that Sec. V is
simplest example, in which a particle can be in one of thregsound at the formal level.
5tates;|A>, |B>, or |C>, and in which the unitary dynamics It will be useful to consider the explicit example dis-
for a set of three times,<t;<t, is given by the identity cussed in Sec. VI C, in which a spin-half particle with

The paradox comes about by noting that the product of

The central conceptual difficulty of quantum theory, ex-

operator:|A)—|A), etc. Define S,=1/2 at timet, is later, att,, subjected to a measurement
of S,, and this measurement yields the resyi= 1/2. There
|®)=(|A)+|B)+C))/V3, is then a frameworkz, (6.29, in which one can conclude
Z, with probability one: that is, the particle was in a state
|\P):(|A>+|B)—|C>)/\/§, (6.36 S,=1/2 at the intermediate timg,. And there is another,

incompatible, frameworlk’, (6.32, in which, on the basis of
and, consistent with our previous notation, let a letter outsidéhe same initial data, one can concludg with probability
a ket denote the corresponding projector, and a tilde itone: that is, the particle was in a st@g=1/2 att;.

complement, thus The first issue raised by this example is the following.
_ The rules of reasoning in Sec. V allow us to infer the truth of
A=|A)A|, A=1-A=B+C. (6.37  Z inframeworkZ, and the truth oK, in frameworkX, but

we cannot infer the truth ;" and X; , because they do not
Let us begin with the framework based upon belong to the same framework. This is quite different from a
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classical system, in which we are accustomed to think thaframework, whereas the discussion of interference between
whenever an assertidh is true about a physical system, in two parts of a wave going off in different directions, but later
the sense that it can be correctly inferred from some knowmnited by a system of mirrors, requires another. While this
(or assumeddata, andF is true in the same sense, thEn fact is appreciated at an intuitive level by practicing physi-
and F must be true. As d'Espagnat has emphasizedists, they tend to find it confusing, because the general prin-
[16,17,19, this is always a valid conclusion in standard sys-ciples of Sec. V are not as yet contained in standard text-
tems of logic. But in quantum theory, as interpreted in thisbooks.

paper, such is no longer the case. Note that there is no formal A classical analogy, that of “coarse graining” in classical
difficulty involved: once we have agreed that quantum me-statistical mechanics, is helpful in seeing why the physicist's
chanics is a stochastic theory in which the concept of “true” freedom in choosing a quantum framework does not make
corresponds to “probability one,” then precisely becausequantum theory subjective, or imply that this choice influ-
probabilities(classical or quantujnonly make sense within ences physical reality. As noted in Sec. Il, coarse graining
some algebra of events, the truth of a quantum proposition ifeans dividing the classical phase space into a series of cells
necessarily labeled, at least implicitly, by that algebra, whichyf finite volume. From the point of view of classical mechan-
in the quantum case we call a framework. The existence ofs such a coarse graining is, of course, arbitrary; cells are

incompatible quantum frameworks is no more or less surghosen because they are convenient for discussing certain

prising than the. existence of noncommuting operators reéPrésroplems, such as macroscophermodynamig irrevers-
senting dynamical variables; indeed, there is a sense i

. ) . ility. But this does not make classical statistical mechanics
which the former is a direct consequence of the latter. Thu y

. - . . subjective theory. And, in addition, no one would ever
physicists who are willing to accept the basic mathematica, 1€ y d, X e would eve

f K loved i tum th ith it lassi uppose that by choosing a particular coarse graining, the
ralmewor emps ?.V‘?t mhqu?(;l unt1 b eor:y, \Iiwd tlhs tn_onc aSSIitheoretical physicist is somehow influencing the system. If,
cal noncommutativity, should not be shocked that Incompaly g ., se it s convenient for his calculations, he chooses one

ible frameworks arise when quantum probabilities are incor—Coarse graining for times preceding a certaity, and a dif-

porated into the theory in a consistent, rather thaa@hqc ferent coarse graining for later times, it would be bizarre to

manner. If the dependence of truth on a framework V|olate§Suppose that this somehow induced a “change” in the sys-

classical intuition, the remedy is to revise that intuition bytem att

workmg_ through example:'s, as in Sec. VI. . To be sure, no classical analogy can adequately represent
Precisely the same point can be made using the exampI[ﬁ

. X . e quantum world. In particular, any two classical coarse
in . VID. In he importan f using th rr L . ' '

Sec : deed, the importa ce o using the correct rainings are compatible: a common refinement can always
framework is perhaps even clearer in this case, where th

) : e constructed by using the intersections of cells from the
projectorsA a.ndB cor_nmute with each other. two families. And one can always imagine replacing the

A chor;]d |fssue r;’:used by .the. gpproach of Seﬁ' v can bl oarse grainings by an exact specification of the state of the
stated In the form of a question: does quantum theory itse ystem. An analogy which comes a bit closer to the quantum

H H 9 H H [ bR / X ) N
e o Hees et e et or s U Gan be conscie by mposing th e hat one
paper, p an only use coarse grainings in which the cells have “vol-

guantum theory presented here is subjective? Or that it some

how implies that physical reality is influenced by the choices mes” which are integer multiples o, for a classical sys-
P Phy y y tem with P degrees of freedom. Two coarse grainings which
made by a physicidil7,19?

In response, the first thing to note is that while the choiceSatISfy this condition will not, in general, have a common

of framework is not specified by quantum theory, it is alsorefinement which also satisfies this condition.
far from arbitrary Thug in ourex%ar%ple given theyi’nitial data While classical analogies cannot settle things, they are
in the form ofS,— 1/2 att, and the results of the measure- useful in suggesting ways in which the formalism of Sec. V

ment ofS, att,, Z is the unique coarsest framework which can be understood in an intuitive way. Eventually, of course,
: 2 ; uantum theory, because it is distinctly different from clas-
contains the data and allows us to discuss the valug, at q Y y

the timet.. To b i t of this f ksical physics, must be understood on its own terms, and an
€ imet,. To be sure, any refinement of this Tramework ;. ;i1 /e understanding of the quantum world must be devel-
would be equally acceptable, but it is also the case that an

e i id lead t isely th babilit ped by working through examples, such as those in Sec. VI,
refinement would 1ead 1o precisely the same probability Ointerpreted by means of a sound and consistent mathematical
S, at the timet,, conditional upon the initial data. The sam

e .
e . ; formalism, such as that of Sec. V.
holds for the more general situation discussed in Sec. V: any

refinement of the smallestoarsestframework which con-
tains the data and conclusions will lead to the same probabil-
ity for the latter, conditional upon the former. This is also the ~Both Gell-Mann and Hartl¢13], and Omne [26] have
case for various sorts of quantum reasoning constantly endiscussed how classical physics expressed in terms of suit-
ployed in practice in order to calculate, for example, a dif-able “hydrodynamic” variables emerges as an approxima-
ferential cross section. tion to a fully quantum-mechanical description of the world
In a certain sense, the very fact that incompatible framewhen the latter is carried out using suitable frameworks.
works are incompatible is what brings about the quasiWhile these two formulations differ somewhat from each
uniqueness in the choice of frameworks just mentioned. Cemther, and from the approach of the present paper, both are
tain questions are meaningless unless one uses a framewdy&sically compatible with the point of view found in Secs.
in which they mean something, and the same is true of initiall-V. It is not our purpose to recapitulate or even summarize
data. Differential scattering cross sections require one type dhe detailed technical discussions by these authors, but in-

B. Emergence of the classical world
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stead to indicate the overall strategy, as viewed from theists are unlikely to be worried by small deviations from
perspective of this paper, and comment on how it relates texact orthogonality, as long as these do not introduce signifi-
the problem of incompatible frameworks discussed above. cant inconsistencies into the probabilities calculated from the
The basic strategy of Gell-Mann and Hartle can beweights. To be sure, there are issues here which deserve
thought of as the search for a suitable “quasiclassical’further study.
framework, a consistent family whose Boolean algebra in- There are likely to be many different frameworks which
cludes projectors appropriate for representing coarse-graineate equally good for the purpose of deriving hydrodynamics
variables, such as average density and average momentifrom quantum theory, and among these a number which are
inside volume elements which are not too small, variablegnutually incompatible. Is this a serious problem? Not unless
which can plausibly be thought of as the quantum counterene supposes that quantum theory must single out a single
parts of properties which enter into hydrodynamic and otheframework, a possibility entertained by Dowker and Kent
macroscopic descriptions of the world provided by classica[15]. If, on the contrary, the analogy of classical coarse
physics. Hence it is necessary to first find suitable commutgrainings introduced earlier is valid, one would expect that
ing projectors representing appropriate histories, and thethe same ‘“coarse-grained” classical laws would emerge
show that the consistency conditions are satisfied for the cofrom any framework which is compatible with this sort of
responding Boolean algebra. Omsnetates his strategy in *“quasiclassical” description of the world. The internal con-
somewhat different terms which, however, are generallysistency of the reasoning scheme of Sec. V, which can be
compatible with the point of view just expressed. thought of as always giving the same answer to the same
Both Gell-Mann and Hartle, and Omseemploy consis- question, points in this direction, although this is another
tency conditions which, unlike those in the present paperopic which deserves additional study.
involve a density matrix; see the discussion in the Appendix. There are, of course, many frameworks which ac
However, the difference is probably of no great importancequasiclassical and are incompatible with a “hydrodynamic”
when discussing ‘“quasiclassical” systems involving largedescription of the world, and there is no principle of quantum
numbers of particles, for the following reason. In classicaltheory which excludes the use of such frameworks. How-
statistical mechanics one knovi@r at least believeshat for  ever, the existence of alternative frameworks does not invali-
macroscopic  systems the choice of ensemble—date conclusions based upon a quasiclassical framework.
microcanonical, canonical, or grand—is for many purposed#\gain, it may help to think of the analogy of coarse grain-
unimportant, and, indeed, the average behavior of the erings of the classical phase space. The existence of coarse
semble will be quite close to that of a “typical” member. grainings in which a classical system exhibits no irreversible
Stated in other words, the use of probability distributions is abehavior—they can be constructed quite easily if one allows
convenience which is not “in principle” necessary. Presum-the choice of cells to depend upon the time—does not invali-
ably an analogous result holds for quantum systems of maalate conclusions about thermodynamic irreversibility drawn
roscopic size: the use of a density matrix, both as an “initialfrom a coarse graining chosen to exhibit this phenomenon.
condition” and as part of the consistency requirement maySimilarly, in the quantum case, if we are interested in the
be convenient, but it is not absolutely necessary when one tthydrodynamic” behavior of the world, we are naturally led
discussing the behavior of a closed system. For an exampte employ quasiclassical frameworks in which hydrodynamic
in which the final results are to a large degree independent ofariables make sense, rather than alternative frameworks in
what one assumes about the initial conditions, see the discughich such variables are meaningless.
sion at the end of Sec. VI C. This suggests an answer to a particular concern raised by
The task of finding an appropriate quasiclassical consisDowker and Ken{15]: If we, as human beings living in a
tent family is made somewhat easier by two facts. The first igjuantum world, have reason to belieyeased upon our
that decoherenci27], in the sense of the interaction of cer- memories and the likethat this world has been “quasiclas-
tain degrees of freedom with an “environment,” can be sical” up to now, why should we assume that it will continue
quite effective in rendering the weight operators correspondto be so tomorrow? In order not to be trapped in various
ing to minimal elements of a suitably chosen family almostphilosophical subtleties such as whetiand if so, how
orthogonal, in the sense discussed in Sec(liithe present human thought and belief can be represented by physical
context one should think of the relevant degrees of freedonprocesses, let us consider an easier problem in which there is
as those represented by the hydrodynamic variables, and tikecomputer inside a closed box, which we as physi¢mis-
“environment” as consisting of the remaining “micro- side the box have been describing up till now in quasiclas-
scopic” variables which are smoothed out, or ignored, insical terms. Suppose, further, that one of the inputs to the
order to obtain a hydrodynamic descriptipithe second is computer is the output of a detector, also inside the box,
that the weight operators depend continuously on projectorsieasuring radioactive decay of some atoms. What would
which form their arguments, and hence it is at least plausibléappen if, ten minutes from now, we were to abandon the
that if the former are almost orthogonal, small changes in thguasiclassical framework for one in which, say, there is a
projectors can be made in order to achieve exact orthogonatoherent quantum superposition of the computer in distinct
ity [15]. Since there is in any case some arbitrariness irmacroscopic states? Of course, nothing particular would hap-
choosing the quantum projectors which represent particulgpen to anything inside the box; we, on the other hand, would
coarse-grained hydrodynamic variables, small changes ino longer be able to describe the object in the box as a
these projectors are unimportant for their physical interpreecomputer, because the language consistent with such a de-
tation. Thus exact consistency does not seem difficult tecription would be incompatible with the framework we
achieve “in principle,” even if in practice theoretical physi- were using for our description. The main point can be made
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using an even simpler example: consider a spin-half particl@isiory space(. This seems satisfactory for exploring those
in zero magnetic field, and a history in whiG=1/2 at a  conceptual difficulties which are already present in the finite-
time to<t;, andS,=1/2 at a timet,>t;. Nothing at all is  dimensional case, and allows a simple exposition with a
happening to the particle at timig; the only change is in our minimal number of technical conditions and headaches. And,
manner of describing it. Additional criticisms of consistent as a practical matter, in any situation in which a finite physi-
history ideas with reference to quasiclassical frameworkgal system can be thought of as possessing a finite entropy
will be found in[15,28; responding to them is outside the S, it is reasonable to suppose that the “right physics” will

scope of the present paper. emerge when one restricts one’s attention to a subspace of
‘H with dimension of order eXff¥kg]. Nonetheless, introduc-
VIIl. CONCLUSION ing such a cutoff, even for the case of a single particle in a
finite box, is mathematically awkward, and for this reason
A. Summary alone it would be worthwhile to construct the appropriate

The counterpart for a closed quantum system of the everfxtension of the arguments given in this paper to(treat
space of classical probability theory is a framework: a Bool-I€ast somginfinite-dimensional case. For some steps in this

ean algebra of commuting projectors on the spéthZ.G), dérggtlga, see the work of Isham and his collaborators
of quantum histories chosen in such a way that the weighﬁ T

operators of its minimal elements are orthogor(ld4) or It is not necessary to require that the Boolean algebra of
(3.16). This ensures that the corresponding weights are addrjlstorles introduced in Sec. Il satisfy the consistency condi-

tive, (3.11). A refinement of a framework is an enlarged fons of Sec. 11l in order to introduce a probability distribu-

Boolean algebra which again satisfies the consistenc condti-On on the former. Consistency becomes an issue only when
. 9 9 cy 6ne considers refinements of a framework, and wants to de-
are called compatible. but in aeneral different uanturrﬁﬁne a refined probability. Even so, one can introduce refine-
P e 9 quantuM_onts of an inconsistent framework, with probabilities
frameworks are incompatible with one another, a situation . . .
. . given by (4.5, by demanding that for each the weight
which has no classical analog. . .
. . ... ._operator associated with; be a sum of mutually orthogonal
Given some framework and an associated probability dis-

tribution, the rules for quantum reasoning, Sec. V, are thé’velglht operators of those minimal elemegtof the refine-

usual rules for manipulating probabilities, with “true” and mentg whose sum ig; . The open question is whether there

“false” corresponding tolconditiona) probabilities equal to is some physical app.lication for such a geqeralized system of
1 and 0, respectively. In addition, a probability distributionframeworks and refinement rules. Consistent frameworks

defined on one framework can be extended to a refinement 3£ 1© be sqfficient for descr_ibing closed quantum systems,
this framework using4.5). This refinement rule incorporates ut it is possible that generalized frameworks would be of

the laws of quantum dynamics into the theory: for example,s'ome use in thinking about an open system: a subsystem of a

the Born formula emerges as a conditional probabi(&y?2), iofrg;gztg;gr';mh'ggﬂs srg:?ilfn‘(‘jeer:v?rfotgrigrﬁeo? tsg/:tsensw_ls
even in the absence of any initial data. 9 9 y

The refinement rule allows descriptions in compatibletenclv?]];l;”iﬁ;ezzheme of quantum reasonina presented in this
frameworks to be combined, or at least compared, in a com- 4 9p

mon refinement. However, there is no way of comparing orﬁgfigcsrse‘év'ge t?]peplluclaegmti)\//’etrr:?rr\esaers ifrto"’“nnetgfbtﬁesgg?s?ﬁ;
combining descriptions belonging to incompatible frame- y 9 C

works, and it is a mistake to think of them as simultaneousl)):"’lse of cpunterfactgals, SUCh. as the counter had not been
applying to the same physical system located directly behind the slithenthe particle would have

Quantum reasoning allows one, on the basis of the samé; : A_naIy;ing these req_uires comparjng two si.tl.Jations
initial data, to reach different conclusions in different, some-Wh".:h difer in some specific way—e.g., In the position oc-
cupied by some counter—and it is not clear how to embed

times mutually incompatible, refinements. However, the sys—his in the scheme discussed in Sec. V. Inasmuch as many

tem is internally consistent in the sense that the probabilit)5 Lantum paradoxes. including some. of the ones associated
assigned to any history on the basis of some initial datd! P ' 9

(which must be given in a single frameworis independent with double-slit diffraction, and certain derivations of Bell's

of the refinement in which that history occurs. Hence it isinequality qnd analogoug results,.makef use Of. counterfactu-
l[s, analyzing them requires considerations which go beyond

impossible to conclude that some consequence of a given s . .
of initial data is both true and false. Nevertheless, probabili—%ose in the present paper. As philosophers have yet 1o reach

ties are only meaningful with reference to particular frame_general agreement on a satlsfacto_ry scheme for counteriac-
works. and the same is the case for “true” and “false” tgal reasoning applied to the classical wo.[r'Jii]Z an exten-
regarded as limiting cases in which a probability is 1 or p.Ston which covers all of quantum reasoning is likely to be

Hence a basic condition for sound quantum reasoning igjfficult. On the other hand, one suffig:ient to han'dle the spe-
keeping track of the framework employed at a particularc'al sorts of Counte_rfactual reasoning found in common
point in an argument. quantum paradoxes is perhap_s a simpler prqblem.

Can the structure of reasoning developed in this paper for
nonrelativistic quantum mechanics be extended to relativistic
guantum mechanics and quantum field theory? Various ex-

The entire technical discussion in Secs. 1I-V is basedamples suggest that the sort of peculiar nonlocality which is
upon a finite-dimensional Hilbert spad¢ for a quantum often thought to arise from violations of Bell's inequality and

system at a single time, and likewise a finite-dimensionalvarious EPR paradoxes will disappear when one enforces the

B. Open questions
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rules of reasoning given in Sec. V. While this is encouragingwhere bothp and p’ are density matrices, thought of as
it is also the case that localitior the lack theregfin non-  associated with the initial and final time, respectively. Still
relativistic quantum theory has yet to be carefully analyzednore general possibilities have been proposed by Isham
from the perspective presented in this paper, and hence must al. [30]. While Omne’s approaci33] is somewhat dif-

be considered among the open questions. And, of coursggrent, his consistency condition also employs a density ma-
getting rid of spurious nonlocalities is only a small stepyix in a manner similar tqgA1).

along the way towards a fully relativistic theory. Certainly one cannot object to eithéAl) or (A2), or
some completely different definition, on purely mathematical
ACKNOWLEDGMENTS grounds. If, on the other hang, is to be interpreted as rep-

It is a pleasure to acknowledge useful correspondencEeSenting something like a probability distribution for the
and/or conversations with B. d’Espagnat, F. Dowker, SPhysical system at an initial time, the following consider-
Goldstein, L. Hardy, J. Hartle, C. Isham, A. Kent, R. Orspne ations favor(3.8). First, given that an arbitrary probability
M. Redhead, E. Squires, and L. Vaidman. Financial supporistribution can be introduced once a framework has been
for this research has been provided by the National Sciencgpecified, Sec. IV, and this can refer to the initial time, or the

Foundation through Grant No. PHY-9220726. final time, or to anything in between, there is (abvioug
gain in generality from introducing a density matrix into the
APPENDIX: operator inner product. Second, in the scheme outlined in
CONSISTENCY USING A DENSITY MATRIX Secs. -1V, the conditions for choosing a framework are

) o . ] . independent of the probability one chooses to assign to the
The consistency condition introduced in Sec. Il differs in corresponding histories, whereas employitfil) or (A2)
a small but not insignificant way from the one introduced bycoyples the acceptability of a framework and the probability
Gell-Mann and Hartlef12,13, based upon a decoherence ggsigned to its histories in a somewhat awkward way. Third,
funcnonal. The Iatt.er employs a densny matrix and amounts(3.8) is obviously a simpler construction than eithél) or
in effect, to replacing the operator inner prod(@) by (A2), and there seems to be no physical situation in nonrel-
_ + ativistic quantum mechanics in which it is not perfectly ad-
(A.B)=TIA'pB], (A1) equate. To be sure, all of these considerations have a certain
wherep is a density matriXpositive operator with unit trage ~ @€sthetic character, and elegance is not always a good guide

or, [32], by to developing a physical theory, even when there is agree-
ment as to what is most elegant. The reader will have to
(A,B)=Tr{ATpBp'], (A2)  make up his own mind.
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