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A scheme for distinguishing between binary signals of nonorthogonal coherent states with the minimum
average error is proposed. In contrast to the well-known Dolinar scheme, it does not use a feedback process.
Instead, it achieves the same minimum error bound by only unitary transformations and photon number
counting. It is shown that the required transformation should produce the appropriate Schro¨dinger-cat states.
An example of the Hamiltonian generating such a process is derived from a multiphoton nonlinear optical
process.@S1050-2947~96!03410-5#
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I. INTRODUCTION

How one can distinguish nonorthogonal quantum states is
one of the fundamental topics in quantum mechanics. Re-
cently it also has received much attention in application to
quantum communication, where different quantum states
representing certain messages are transmitted and received.
If the transmitted states are kept to be mutually orthogonal,
all the messages can be accurately extracted at the receiver
with von Neumann’s standard measurement@1#. However,
for many reasons, including noises in the transmitter, energy
loss in the channel, and so on, the delivered states in the
quantum communication system are nonorthogonal in almost
all cases. This causes errors in the extraction of the informa-
tion from the quantum states. To distinguish the nonorthogo-
nal quantum states optimally is an important key for the new
coming technology of quantum communication@2#.

We are interested in how one can achieve a low average
error in a decision among quantum-state signals. The deci-
sion process in quantum mechanics is expressed by the op-
erator defined on the Hilbert space, which is usually called
the detection operator. To derive the detection operator
achieving the minimum average error probability, one can
rely on the quantum detection theory@3–5#, which gives an
optimization strategy for certain cost functions. According to
it, the detection operator is expressed by the probability op-
erator measure~POM!, which is a set of nonnegative Her-
mitian operators satisfying the resolution of the identity and
describing a generalized quantum measurement including the
decision. It can also give a lower bound for the error prob-
ability, which is often called the Helstrom bound. Hereafter
we use the termoptimumfor achieving the Helstrom bound
in quantum hypothesis testing.

Only in the case of linearly independent and pure-state
signals, is the mathematical framework well established. In
this case, the optimum detection operator becomes a projec-
tion valued measure~PVM! which is anorthogonalresolu-
tion of the identity on the Hilbert space spanned by the signal
states, as the special case of the POM. It is the standard
measurement process, which is considered to be, in principle,
physically realizable. This meaning is well understood for

common observables in physics, such as position, momen-
tum and spin. That is, measurement results correspond to
eigenvalues of these observables and measurement proce-
dures are well known. In contrast, it does not seem easy to
imagine physical correspondence to the optimum detection
operators as the PVM for most linearly independent and
pure-state signals even if one is told it is in principle realiz-
able. It is so even for simple and commonly used optical
signals $ua&,u2a&%, which is binary phase-shift keyed
~BPSK!. In fact, the realization problem of the optimum de-
cision process has been a question, since the quantum detec-
tion theory was founded. Only in a few cases, are realizations
of the optimum decision process at a level of physical imple-
mentation@6,7#.

On the other hand, practical methods for achieving a
lower error probability, although still not optimum, have
been studied for particular quantum-state signals by heuristic
approach. We would like to mention two examples con-
cerned with BPSK signals$ua&,u2a&%. The conventional
method is the homodyne detection, where the quadrature-
phase amplitude is measured. The obtained error probability
is the minimum value in the classical detection theory.~Such
a limit in the classical detection theory is sometimes called
the standard quantum limit@8,9#. The Helstrom bound is
much lower than this.! The first example is an improved
scheme, simply by installing an optical Kerr medium in front
of the homodyne detector. Usuda and Hirota found that the
error probability can be reduced from the one obtained by
the conventional homodyne detection@10#. Its mechanism is
explained as a quantum interference due to the nonlinear
effect of the Kerr medium@11#. Unfortunately, the amount of
the error reduction is not so prominent compared to the Hel-
strom bound. The second example is more remarkable and is
known as the Kennedy receiver@12#. In this receiver, the
signal states,$ua&,u2a&% are transformed to the states
$u0&,u22a&% by combining a local oscillating field via a
beam splitter. They are then detected by a photon counter.
The obtained error probability only differs from the Hel-
strom bound by at most a factor of two, which may be con-
sidered to be near optimum.

Both examples consist of a state controller~Kerr medium
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or a beam splitter combining the signal lights with the local
oscillating light! and a detector~homodyne detector or pho-
ton counter, respectively!. This kind of detection scheme is
called the received quantum-state control in quantum com-
munication technology@13#. It is based on a practical idea
that the performance-improving process is best made at the
very last stage, after the main degradation of the signals
caused by transmission through long, distant, and noisy
channels has occurred. The scheme is summarized in Fig. 1.
The state controllers for both cases can be expressed by the
unitary operators:ÛK5eigâ

†2â2 for the Kerr medium where
g is an interaction parameter,â† and â are the creation and
annihilation operators, respectively, for the signal field, and
D̂(2a)5e2aâ†1a* â for the Kennedy receiver.

Our question comes out along these studies;How can one
realize the Helstrom bound standing on the above scheme,
i.e., a unitary process as signal state control plus a well-
known physical measurement?

In recent papers@14,15#, the authors gave an answer. That
is, for $ua&,u2a&%, the state control is a unitary transforma-
tion expressed by the following operator:

Û~g!5expg~ ua&^2au2u2a&^au!, ~1!

whereg is a certain interaction parameter. And the photon
counting follows this transformation, in which one can dis-
tinguish the signals depending on whether the counted pho-
ton number is even or odd. The above operator would de-
scribe some kind of macroscopic quantum tunneling between
ua& andu2a&. However, it has been questioned how one can
realize this as a practical device. Toward this goal, this paper
is intended to study further the structure of the optimum
decision process with a unitary transformation as the state
control.

A realization method of the optimum decision between
$ua&,u2a&% was proposed by Dolinar@6#. It is based on a
photon counting measurement, including a feedback arrange-
ment where a local oscillating field depending causally on
the cumulated results in photon counting is added to the
signal field via a beam splitter. Dolinar derived this method
as an extension of the Kennedy receiver. Our method is quite
a different kind but achieves the same error performance as
the Dolinar method.

This paper is organized as follows. In Sec. II, we summa-
rize the theory of the optimum decision for binary signals of
linearly independent and pure states. The optimum detection
operator is constructed as the PVM. In addition, we briefly
mention the studies on the physical realization of the POM,
which may be, in general, a nonorthogonal resolution of the
identity. And we specify the problem addressed here which
focuses exclusively on the realization of the PVM~the or-

thogonal resolution of the identity!, and not on the POM. In
Sec. III, confining ourselves to the BPSK signals
$ua&,u2a&%, we will show how to realize the optimum deci-
sion process, based on the unitary transformation as the state
control and the photon counting. The mathematical structure
of the transformation is discussed and a Hamiltonian gener-
ating this process is derived based on the nonlinear quantum
optical phenomena. In Sec. IV, we derive the optimum de-
tection operators corresponding to the two equivalent realiza-
tion methods, the Dolinar method and ours. Their math-
ematical structures will be discussed. In Sec. V, we
summarize our results.

II. OPTIMUM DECISION PROCESS

In this section, we describe the optimum decision process
for linearly independent binary signals$ur1&,ur2&% with the
respective prior probabilitiesj1 andj2 (512j1). The over-
lap ^r1ur2& ([k) is assumed to be real nonzero value. Let
Hs be a Hilbert space spanned by them. The optimum detec-
tion operator is described by a probability operator measure
~POM! onHs , that is, a set of nonnegative definite operators
P̂i summing up to the identity operatorÎ s onHs ,

P̂i>0, P̂11P̂25 Î s , i51,2. ~2!

The operatorP̂i represents a quantum-mechanical process by
which we decide the received signal isr̂ i([ur i&^r i u). When
the transmitted signal is actuallyr̂ i , we know the probability
that the received signal is decided to ber̂ j as,

P~ j u i !5Tr~P̂j r̂ i !. ~3!

If the operatorsP̂i are orthogonal projectors,

P̂iP̂j5d i j P̂i ~4!

the POM is called projection valued measure~PVM!. Since
the signal states here are linearly independent and pure
states, the optimum detection operator becomes the PVM
~Kennedy’s lemma! @16#. That is, the operatorP̂i can be
expressed as

P̂i5uv i&^v i u ~ i51,2! ~5!

with a complete orthonormal set$uv i&% on Hs . This set is
determined so as to minimize the decision error probability
Pe , which is expressed as,

Pe512(
i51

2

j iTr~ r̂ iP̂i ! ~6!

512(
i51

2

j i u^v i ur i&u2. ~7!

The state vectorsuv i& are obtained as,

uv1&52@A~11c!/21kA~12c!/2~12k2!#ur1&

1A~12c!/2~12k2!ur2&, ~8!

FIG. 1. A scheme of the received quantum-state control. The
receiver consists of a state controller described by a unitary operator
Û and a well-known quantum measurement process, such as homo-
dyne detection, photon counting, and so on.
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uv2&52A~11c!/2~12k2!ur2&2@A~12c!/2

2kA~11c!/2~12k2!#ur1&, ~9!

with c5(122j2k
2)/A124j1j2k

2 @17,18#. Consequently,
the minimum error probability, that is, the Helstrom bound is

Pe~opt!5 1
2 ~12A124j1j2k

2!. ~10!

It is worth mentioning thatuv1& anduv2& are eigenvectors of
the Hermite operatorr̂22lr̂1 (l5j1 /j2), with the respec-
tive eigenvaluesv151/2$12l2A(11l)224lk2% and
v251/2$12l1A(11l)224lk2%. Actually, since the er-
ror probability is written as

Pe5j22j2Tr@~ r̂22lr̂1!P̂2#, ~11!

the minimum value ofPe is attained by maximizing the term
Tr@( r̂22lr̂1)P̂2#. Its maximum is simply the positive ei-
genvalue v2. Therefore P̂2 should be uv2&^v2u and
P̂15 Î s2P̂25uv1&^v1u.

As seen, the measurement with the above$P̂i% is a stan-
dard measurement in von Neumann’s sense. It is widely ac-
cepted that this type of measurement is in principle physi-
cally realizable. For example, in the case of binary
nonorthogonal signals of the spin-1/2 particle, the Stern-
Gerlach type measurement corresponds to$P̂i% @3#. The Hil-
bert space describing this system is spanned by spin-up and
-down states and is two dimensional, which is the same as
the signal space. However, in the case of the BPSK signals
$ua&,u2a&%, things are not that simple. The dimension of the
physical Hilbert space describing the single mode optical
field of which the signal states are made is larger than the
number of signals. Then the state evolving fromua& or
u2a& may go out of the minimal subspaceHs spanned by
$ua&,u2a&% in almost optical phenomena known so far. But
the optimum decision process is specified in the two-
dimensional spaceHs . It brings a difficulty in physical real-
izations of the optimum decision process. In fact, how to
implement the optimum quantum receiver as a practical de-
vice has been a question.

In closing this section, we briefly mention the realization
problem for nonorthogonal POM. Suppose the spin-1/2 par-
ticle, which may take three directions, separated in the angle
120° to each other with the same prior probabilities~@3#,
Sec. IV!. It forms linearly dependent ternary signals
r̂ i51/2(Î1s i) with s i5sxcosu i1sysinu i andu i5(2p i )/
3 (i51,2,3), wheresx andsy are the Pauli matrices. The
optimum detection operators can be described by the POM
P̂i51/3(Î1s i), which are nonorthogonal to each other.
These POM can be ideally physically realized by construct-
ing the PVM ~orthogonal projector! in an extended Hilbert
space based on the Naimark extention, where an ancillary
system, i.e., independently prepared quantum system, is
combined with the original system. A practical recipe was
also given by Peres@7#. This kind of realization problem,
how to convert a non-orthogonal POM into a PVM physi-
cally, is of great interest and only a few simple cases have
been studied so far. But it is beyond the scope of this paper.
The question addressed here is on the physical realization of

the PVM itself, not on the POM. Further we confine our-
selves to the case of commonly used binary optical signals.

III. UNITARY CONTROL PROCESS
FOR THE OPTIMUM DECISION

In this section, the method proposed in Ref.@14#, i.e., the
unitary transformation of Eq.~1! plus photon counting, is
analyzed in a more general form. Let us assume the prior
probabilitiesj1 and j2 for ua& and u2a&, respectively. A
convenient algorithm for obtaining the orthonormal set
$uv i&% constructing the optimum detection operator in the
case ofM -ary linearly independent signals is proposed by
Ban, Osaki, and Hirota@18#. In this method, an orthonormal
set$uh i&% is initially constructed from the signal states by the
Schmidt orthogonalization. Then one can get the set$uv i&%
by finding an appropriate unitary matrix transforming
$uh i&% into $uv i&%. The method in Ref.@14# can be inter-
preted along this algorithm.~The only exception is that the
initial orthonormal set consists of the even and odd coherent
states instead of the ones made by the Schmidt orthogonal-
ization.!

Here we shall construct an initial orthonormal set$uh i&%
in the following way for later convenience. First we trans-
form $ua&,u2a&% into $u0&,u22a&% by use of the displace-
ment operatorD̂(2a)5e2aâ†1aâ, as in the Kennedy re-
ceiver ~see Introduction!. In this sectiona is assumed to be
real. Second we prepareuh i& from $u0&,u22a&% by the
Schmidt orthogonalization,

uh1&5u0&, ~12!

uh2&5
u22a&2c0u0&

A12c0
2

, ~13!

wherec0 (5^0u22a&) is the real coefficient in the expan-
sion of the stateu22a&,

u22a&5 (
n50

`

cnun&, ~14!

with the photon-number states of the signal optical field
un&. Now the Hermite operator in Eq.~11! is expressed in the
following form:

D̂~2a!~ r̂22lr̂1!D̂
†~2a!

5D̂~2a!~v1uv1&^v1u1v2uv2&^v2u!D̂†~2a!

5~c0
22l!uh1&^h1u1~12c0

2!uh2&^h2u1c0A12c0
2

3~ uh1&^h2u1uh2&^h1u!. ~15!

The right-hand side of the last equality can be diagonalized
by a simple rotation of the basis$uh i&%,

D̂~2a!~ r̂22lr̂1!D̂
†~2a!

5Ûs
†~g!~v1uh1&^h1u1v2uh2&^h2u!Ûs~g!, ~16!

with the unitary operator in the form,
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Ûs~g!5expg~ uh1&^h2u2uh2&^h1u!, ~17!

where the parameterg is chosen as

g52tan21S A124j1j2k
22112j2k

2

A124j1j2k
21122j2k

2D 1/2. ~18!

By substituting Eq.~16! into Eq.~11!, the error probability is
written as

Pe~opt!5j1z^h2uÛs~g!D̂~2a!ua& z2

1j2z^h1uÛs~g!D̂~2a!u2a& z2. ~19!

It corresponds to the channel model shown in Fig. 2. The
solid lines represent the correct decision channels while the
dotted lines the error channels. The detection process is now
decomposed into the unitary transformation by
Ûs(g)D̂(2a) and the standard measurement by the or-
thogonal projectorsuh1&^h1u and uh2&^h2u. The operator
Ûs(g) transforms the signal states,D̂(2a)ua& (5u0&) and
D̂(2a)ua& (5u22a&) into the superposition states between
uh1& and uh2& as,

Ûs~g!u0&5cosguh1&2 singuh2&, ~20!

Ûs~g!u22a&5~c0cosg1A12c0
2 sing!uh1&

1~2c0sing1A12c0
2 cosg!uh2&. ~21!

In the decision of these states, one should note that the state
uh1& is the vacuum state while the stateuh2& only contains
finite number of photons$u1&,u2&•••%. It means that the de-
cision by$uh1&^h1u,uh2&^h2u% can be physically replaced by
$u0&^0u,(n51

` un&^nu%, that is, the photon counting judging
the photons are registered or not. This corresponds to the
orthogonal resolution of the identityÎ on the whole Hilbert
space describing the signal optical field,

u0&^0u1 (
n51

`

un&^nu5 Î . ~22!

The error probability is rewritten as,

Pe~opt!5j1(
n51

`

z^nuÛs~g!D̂~2a!ua& z2

1j2z^0uÛs~g!D̂~2a!u2a& z2. ~23!

We would like to call the process described by
Ûs(g)D̂(2a) the unitary control process. By this process,
one can appropriately control the input signals for reaching
the optimum decision in well-known measurement such as
photon counting.

Now the problem is the unitary process described by
Ûs(g). It represents a simple rotation of the state vectors in
the plane spanned by$u0&,u22a&%. Its generator
uh1&^h2u2uh2&^h1u describes a transition process between
the statesuh1& and uh2&, each of which has macroscopic
quantum coherence. Compare them with the nonorthogonal
signals of spin-1/2 particles with two orientations of polar-
ization. Then one can take$uh1&,uh2&% as the spin-up and
-down states$u↑&,u↓&%. And the rotation in the signal plane
can be caused by irradiating the spin particles with certain
alternating magnetic fields. Unlike this spin-1/2 case, the
transition process between the statesuh1& and uh2& of the
present case does not seem so trivial.

It produces a so-called Schro¨dinger-cat state, that is, a
superposition state of distinct quantum states with macro-
scopic coherenceuh1& and uh2&. In the works so far, the
optical Kerr effect is commonly known as a unitary process
producing the Schro¨dinger-cat state@19#, whose unitary evo-
lution is described by the operatorÛK5eigâ

†2
â2, as men-

tioned in the introduction. If one inputs the coherent state
ua& into the Kerr medium withg5p/2, the output state is in
a superposition ofua& and u2a& with the same probability
amplitudes. However, one can find no particular merits for
quantum communication in this Schro¨dinger-cat state.~The
role of the Schro¨dinger-cat state in quantum communication
is systematically studied in Ref.@20#.! Rather for certain re-
gions of small values ofg, this effect can cause the reduction
in decision error probability, being installed in front of the
homodyne detector as explained in the introduction, although
the output state from the Kerr medium is not like the
Schrödinger-cat state any more.

In each of the Schro¨dinger-cat states required here, either
of two coefficients are very small, sing in Eq. ~20! and
c0cosg1A12c0

2sing in Eq. ~21!. They are directly related
to the minimum error probability in such a way that

Pe~opt!5j1sin
2g1j2~c0cosg1A12c0

2sing!2. ~24!

As the generatoruh1&^h2u2uh2&^h1u producing such super-
position states, we shall consider here the Hamiltonian rep-
resenting some nonlinear optical medium. In fact, it can be
expanded in a power series in the creation and annihilation
operators as

uh1&^h2u2uh2&^h1u5
c0

A12c0
2 S (l50

`
~2â†! l âl

l !

3 (
n51

`
~22aâ!n

n!
2h. c.D . ~25!

Unlike the Hamiltonian for the optical Kerr medium, it in-
cludes a power series of nonlinear terms inâ and â† up to
infinite order. But in some cases we do not necessarily re-
quire all of these terms. Suppose that the signal poweruau2 is
small, where the decision error due to nonorthogonality be-

FIG. 2. The channel model for the BPSK signals$ua&,u2a&%.
The signal states are transformed by the unitary process described
by Ûs(g)D̂(2a). They are then detected by the PVMuh1&^h1u and
uh2&^h2u. The solid lines represent the correct decision channels,
while the dotted lines the error channels.
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comes more serious. In such a weak signal case, the trans-
formed stateu22a& might be replaced by the following fi-
nite sum of the Fock states in a good approximation,

ur28&5 (
n50

M

cn8un&, cn85
cn

A(n50
M cn

2 , ~26!

whereM is taken to be large enough for the given amplitude
uau to ensure that

(
n5M11

`

cn
2!Pe~opt!. ~27!

The new orthogonal bases are

uh18&5u0&, ~28!

uh28&5
ur28&2c08u0&

A12c08
2
. ~29!

And let us denote the subspace spanned by them asHs8 . The
generator becomes

uh18&^h28u2uh28&^h18u5(
l50

`
~2â†! l âl

l ! (
n51

M

dn
ân

An!
2h. c.,

~30!

wheredn5(cn8/A12c08
2), This is still a power series of non-

linear terms up to infinite order.
One should note that the optimum decision process needs

not to be confined in the two-dimensional space. For ex-
ample, adding terms like (n>3(n8>1(cnn8uvn&^vn8u
1cnn8

* uvn8&^vnu) with $uv i&u i53,4, . . .% being orthogonal

to $uv1&,uv2&%, to the PVM, P̂1 and P̂2 in Eq. ~5! never
affects the optimum decision, that is, results in the same
error probability. The new PVM with these additional terms
represent physically different processes from the original
ones, although their effects on the signal states are com-
pletely equivalent. Thus, in the case that the dimension of the
physical Hilbert space of the optical field is larger than the
total number of signals, the PVM describing the optimum
decision strategy is not unique. Therefore, there are various
kind of physically different realization of the optimum deci-
sion strategy.

This fact enables us to simplify the generator in Eq.~30!,
which is derived by the direct translation of the projectors
u0&^nu and u0&^nu into the expression withâ and â† in the
whole Fock space. So the first two summations in the right-
hand side of Eq.~30! transformany state in the whole Fock
space into the vacuum stateu0&. But we are not concerned
with the Fock stateun& with n.M , since they are not the
constituents of the signal states. In other words, they do not
enter the receiver, therefore they are not necessarily trans-
formed into the vacuum stateu0&. Then the higher-order
terms in the right-hand side of Eq.~30! can be neglected, and
the generator can be replaced by the following operatorP̂,

P̂5(
l50

M
~2â†! l âl

l ! (
n51

M

dn
ân

An!
2h. c., ~31!

The new generatorP̂ is related to the old one
uh18&^h28u2uh28&^h18u in the following way:

P̂5uh18&^h28u2uh28&^h18u1R̂, ~32!

with

R̂5 (
n5M11

`

(
k51

M

cn1k,n~ un&^n1ku2un1k&^nu!, ~33!

where

cn1k,n5~21!M
~n21!!

M ! ~n212M !!
A@~n1k!! #/~n!k! !dk .

~34!

The generatorP̂ is directly related to the Hamiltonian for a
nonlinear optical medium which can cause multiphoton pro-
cesses up to 3M th order simultaneously. Then the unitary

operatorÛs(g) can be replaced byÛNL(g)5eg P̂. So one
possible way realizing the optimum decision process is the
unitary control process byÛNL(g)D̂(a) for the signal states
and the successive photon counting. The corresponding
channel model is depicted in Fig. 3. The definition of the
lines are the same as in Fig. 2.

Let us estimate the achievable error probabilities after
neglecting higher-order terms in our detection scheme.
Figure 4 shows the performance of different truncations
of M as well as the Helstrom bound and the error probability
in the Kennedy receiver. All of them are normalized by
the standard quantum limit~SQL! which is reached
by the conventional homodyne detection where the quadra-
ture phase amplitudeX̂51/2(â1â†) is measured, and
given by Pe(SQL)51/2erfc(A2Ns) with erfc(x)5(2/
(Ap)*x

`dt e2t2. It represents the minimum bound in classi-
cal detection theory. The horizontal axis is the signal power
Ns5uau2. As seen, the Kennedy receiver which merely shifts
the signals$ua&,u2a&% to $u0&,u22a&% and then counts the
photon number, improves the performance drastically. For
Ns.1, it differs from the Helstrom bound by a factor of two.
To eliminate this difference, we should install another trans-
formation represented byÛNL(g) between the above dis-
placement operation and the photon counting in the Kennedy
receiver. The effect of neglecting higher-order terms appears
in the larger side of the signal power. NonlinearityM re-
quired for the accurate transformation becomes small as the
signal power decreases. ForNs,0.8,M54 seems enough.
Figure 5 shows how the error probabilities increase asM

FIG. 3. The channel model for the BPSK signals$ua&,u2a&%
modified from the one in Fig. 2 by the physical consideration. The
unitary control process for the signal states is described by
ÛNL(g)D̂(2a). They are then detected by the photon counter. The
solid lines represent the correct decision channels, while the dotted
lines the error channels.
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goes down from 3 to 1~solid lines! in such a weak signal
region. The dotted, dashed, and one-dotted lines represent
the Helstrom bound@Pe~opt!#, the error probability by the
Kennedy receiver@Pe~Kenn!# and the SQL@Pe~SQL!#, re-
spectively. In the lowest caseM51, the deviation from the
Helstrom bound is apparent, however, it can still overcome
the Kennedy receiver. The corresponding generatorP̂ can be
realized as a passive medium with certain nonlinear suscep-
tibilities up to the third order. Such a kind of Hamiltonian
has already been proposed by Kilin and Horoshko@21# in the
context of a one-photon Fock state generation from the
vacuum state input. In the case ofM52, one can get some
hints for realizingP̂ in the work by Leon´ski and Tanas´ @22#,
where two-photon Fock state generation by similar nonlinear
optical phenomena is proposed. For larger signal power, the
cavity QED scheme with the two-channel Raman interaction,
proposed recently by Law and Eberly@23#, seems useful. It
allows the vacuum state to evolve to an arbitrarily prescribed
superposition of Fock states. If such a pure-state evolution is
truly attainable in the cavity QED scheme, i.e., spontaneous
decay of atomic level and cavity damping can be ignored as
assumed in Ref.@23#, this scheme can be applicable for the
unitary control process required in our detection method.

IV. THE OPTIMUM DETECTION OPERATOR
FOR BINARY COHERENT-STATE SIGNALS

As mentioned in the introduction, Dolinar proposed the
practical receiver, for the first time, which can achieve the
Helstrom bound for binary coherent-state signals@6#. Both
the Dolinar receiver and our method are not derived by direct
use of the quantum detection theory. Actually the resulting
detection operators are quite different from the one obtained
by the quantum detection theory. It might be meaningful to
discuss here the relation among them.

At first, the Dolinar method for$ua&,u2a&% is briefly re-
viewed based on Holevo’s formalism@24#. In the receiver,
the signal field is combined by a local oscillating field~LOF!

through a beam splitter, and is then detected by a photon
counter. The LOF is set depending causally on the actual
output of the photon counter, and is quickly changed every
time after a single photon is registered. Since the probability
that a single photon is detected during certain interval de-
pends on the intensity of the field coming into the photon
counter, the probability of a certain cumulative outcome can
be controlled by adjusting the LOF. It is optimally chosen so
as to maximize the probability that even number photons are
detected under the signalua&. This kind of receiver may be
identified with the set of all possible feedback functions with
the LOF. Let us denote the cumulative outcome ofn photons
as tWn5(tn , . . . ,t1) where a single photon is registered only
at each time oft1 , . . . ,tn during a periodT. The effect of the
feedback field during the interval@ tk ,tk11) can be described
by the following Hamiltonian:

ĤI~ t !5 i\j~ t; tWk!~2âa* eivt1â†ae2 ivt!, ~35!

wherej(t; tWk) represents the beating effect by the feedback
field, andv being the angular frequency of the signal field.
The Heisenberg evolution due to the Hamiltonian
\vâ†â1ĤI(t) is expressed as follows:

â~ t !5â0~ t !1z~ t; tWk!e
2 ivt, ~36!

where the first term represents the free evolution
â0(t)5âe2 ivt and

z~ t; tWk!5aE
tk

t

dt to j~t; tWk!. ~37!

By defining the intensity operator as

L̂~ t; tWk![m@ â†1z~ t; tWk!#@ â1z~ t; tWk!#, ~38!

wherem is the interaction parameter with the detector, the
probability of n photons being counted during the interval
T is given by

Pi~n;T!5H ^r i uĜ1~T!ur i&, ~n is even!

^r i uĜ2~T!ur i&, ~n is odd!
~39!

with

FIG. 5. The comparison of the error performance in a weak
signal region. The error probabilities forM51, 2, and 3 are shown
by the solid lines. Physical realizations of the generatorP̂ for
M51 and 2 are mentioned in the text. The Helstrom bound
@Pe~opt!#, the error probability of the Kennedy receiver
@Pe~Kenn!# and the SQL@Pe~SQL!# are represented by the dotted,
dashed, and one-dotted lines, respectively.

FIG. 4. The achievable error probabilities after neglecting
higher-order terms in the unitary transformation. The horizontal
axis is the signal powerNs5uau2 in the BPSK signals
$ua&,u2a&%. The error probabilities corresponding toM54, 8, and
12 are shown by the solid lines. The dotted and dashed lines corre-
spond to the Helstrom bound and the error probability of the
Kennedy receiver. All of them are normalized by the SQL which is
given in the text. The effect of neglecting higher-order terms than
M in the unitary transformationÛNL(g) is revealed in the larger
side of the signal power.
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Ĝ1~T!5:expH 2E
0

T

dt L̂~ t;0!J
1 (

k51

` E
0

T

dt2kE
0

t2k
dt2k21•••E

0

t2
dt1

3L̂~ t2k ; tW2k21!•••L̂~ t1 ;0!•expH 2E
t2k

T

dt L̂~ t; tW2k!

2•••2E
t1

t2
dt L̂~ t;t1!2E

0

t1
dt L̂~ t;0!J :, ~40!

Ĝ2~T!5:(
k51

` E
0

T

dt2k21E
0

t2k21
dt2k22•••E

0

t2
dt1

3L̂~ t2k21 ; tW2k22!•••L̂~ t1 ;0!•expH 2E
t2k21

T

dt

3L̂~ t; tW2k21!2•••2E
t1

t2
dt L̂~ t;t1!

2E
0

t1
dt L̂~ t;0!J :, ~41!

wherei51 or 2,ur1&5ua& andur2&5u2a&, and : : indicates
the normally ordered expression. These operators satisfy the
resolution of the identityĜ11Ĝ25 Î , whereÎ is the unit op-
erator of the whole Hilbert space. One should note that the
above equations become inapplicable for an unbounded time
interval. Here we assume a small value ofT. For the opti-
mum decision,j(t; tWk) and equivalentlyz(t; tWk) via Eq. ~37!
is set in such a way that the phase is changed inp just after
tk , and the absolute intensity decreases monotonically ast
increases,

z~ t; tWk!5~21!k11
a

f ~ t !
, ~42!

f ~ t !5A124j1j2exp~24muau2t !. ~43!

Then the intensity operators are classified in the following
two kinds:

L̂1~ t ![L̂~ t; tW2k!5mF â†2 a*

f ~ t !GF â2
a

f ~ t !G , ~44!

L̂2~ t ![L̂~ t; tW2k21!5mF â†1 a*

f ~ t !GF â1
a

f ~ t !G . ~45!

And it is easy to see that the operatorsĜ1 andĜ2 satisfy the
following differential equations:

d

dT
Ĝ1~T!5:2@L̂1~T!1L̂2~T!#Ĝ1~T!1L̂2~T!:, ~46!

d

dT
Ĝ2~T!5:2@L̂1~T!1L̂2~T!#Ĝ2~T!1L̂1~T!:. ~47!

We will assume the initial condition

Ĝ1~0!55
Î , for j1.j2 ,

1

2
Î , for j15j2 ,

0, for j1,j2 ,

~48!

and consider the casej1.j2, from which it is easy to solve
the problem for other cases. With the initial condition
Ĝ2(0)50, the solution of the equation forĜ2(T) is ex-
pressed as

Ĝ2~T!5:E
0

T

dt L̂1~ t !expS 2E
t

T

dt@L̂1~t!1L̂2~t!# D :.
~49!

It leads to the following results:

Ĝ1~T!5:
1

2 S Î1 j12j2
f ~T!

e22~ â†â1uau2!D
1

aâ†1a* â
f ~T! (

n51

`
$22~ â†â1uau2!%n21

n!
:,

~50!

Ĝ2~T!5:
1

2 S Î2 j12j2
f ~T!

e22~ â†â1uau2!D
2

aâ†1a* â
f ~T! (

n51

`
$22~ â†â1uau2!%n21

n!
:.

~51!

In the ideal case ofmT51, it can be easily seen thatĜ1 and
Ĝ2 are equivalent on the signal spaceHs , to the detection
operatorsP̂1 and P̂2, respectively, in Eqs.~5!, ~8!, and ~9!
with ur1&5ua& and ur2&5u2a&.

On the other hand, the detection operator in our scheme in
Sec. III are obtained as

Ŷi5D̂†~2a!Ûs
†~g!P̂i8Ûs~g!D̂~2a! ~ i51,2!, ~52!

whereP̂185u0&^0u andP̂285(n51
` un&^nu. It is easy to get

Ŷ15 Î s
f2112j1k

2

2 f
1

1

2 f
:$~112j1k

2!e22a~ â†2a* !

3e2~ â†2a* !~ â2a!1h.c.%:, ~53!

Ŷ25 Î2Ŷ1 , ~54!

where f[ f (1/m) @see Eq.~43!#. Here note thatÎ s and Î are
the unit operators of the signal and the whole Hilbert spaces,
respectively. Generally,Ŷi is different from Ĝi in matrix
components on the space outsideHs . For example, consider
the other coherent stateua8&(a8Þ6a), and make the ortho-
normal basisuh3& as,
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uh3&5
D̂~2a!ua8&2uh1&^h1uh3&2uh2&^h2uh3&

A12u^h1uh3&u22u^h2uh3&u2
.

~55!

Then all of the components$^h i uŶ1uh3&% ( i51,2,3) are
zero, while $^h i uĜ1uh3&% have, in general, nonzero value.
Thus$Ĝi% and$Ŷi% are two different kinds of extension into
the whole Hilbert space from$P̂i% on the two-dimensional
spaceHs .

As long as the error performance for the BPSK signals is
concerned, the Kennedy receiver seems enough in practical
application as shown in the preceding section. The detection
operator representing the Kennedy receiver is expressed by
the following PVM @25#:

P̂1
K5ua&^au, ~56!

P̂2
K5 Î2ua&^au. ~57!

Compared to this detection operator,$Ĝi% and $Ŷi% seems
much more difficult not only mathematically but in physical
realization. In lowering the error level of the Kennedy re-
ceiver to the Helstrom bound~the gap is only a factor!, a
significant difficulty seems to be there. This difficulty di-
rectly appears in the process represented byÛNL(g), which
is the only difference between our scheme and the Kennedy
receiver.

Finally, it could be an interesting question whether the
operators$Ĝi% representing the Dolinar receiver belong to the
class of operators of the formÛ†P̂i8Û with a unitary operator
Û just like Ŷi , although they seem physically different. The
former is based on the feedback measurement so the detec-
tion process is stochastic, while the latter keeps the unitarity
till the last step measurement by$P̂i8%.

V. SUMMARY

The decision process with a minimum error for BPSK
signals is discussed. Since they are linearly independent, the
optimum detection operator becomes the PVM on the two-
dimensional Hilbert space spanned by the signal states. How-
ever, its physical realization is not trivial. In this paper, we
demonstrated a physical scheme consisting of the unitary
transformations of the signal states and the simple photon
counting. The required unitary control process is supposed to
generate the appropriate Schro¨dinger-cat states. The example
of the Hamiltonian to generate such a process was derived
from a nonlinear optical phenomenon. But how to implement
this kind of nonlinear effect in the practical device is the
remaining problem in quantum optics.

Our scheme was also compared to the Dolinar method by
deriving the detection operator as the PVM defined on the
whole Hilbert space of the signal optical field. Although, as
is expected, both detection operators coincide on the minimal
subspace spanned by the binary signal states, they are not
equivalent to each other physically, therefore they lead to
different forms on the whole space. The considerations there
give rise to a question of whether the PVM for the Dolinar
receiver can be expressed in the similar form to our scheme
asÛ†P̂i8Û with P̂185u0&^0u, P̂285(n51

`un&^nu and a certain
unitary operatorÛ.
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