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Optimum decision scheme with a unitary control process for binary quantum-state signals
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A scheme for distinguishing between binary signals of nonorthogonal coherent states with the minimum
average error is proposed. In contrast to the well-known Dolinar scheme, it does not use a feedback process.
Instead, it achieves the same minimum error bound by only unitary transformations and photon number
counting. It is shown that the required transformation should produce the appropriateliSgarecat states.

An example of the Hamiltonian generating such a process is derived from a multiphoton nonlinear optical
process[S1050-294{6)03410-5

PACS numbd(s): 42.50.Lc

[. INTRODUCTION common observables in physics, such as position, momen-
tum and spin. That is, measurement results correspond to
How one can distinguish nonorthogonal quantum states isigenvalues of these observables and measurement proce-
one of the fundamental topics in quantum mechanics. Redures are well known. In contrast, it does not seem easy to
cently it also has received much attention in application tamagine physical correspondence to the optimum detection
guantum communication, where different quantum statesperators as the PVM for most linearly independent and
representing certain messages are transmitted and receivguire-state signals even if one is told it is in principle realiz-
If the transmitted states are kept to be mutually orthogonal@ble. It is so even for simple and commonly used optical
all the messages can be accurately extracted at the receivagnals {|a),| —a)}, which is binary phase-shift keyed
with von Neumann’s standard measuremglit However, (BPSK). In fact, the realization problem of the optimum de-
for many reasons, including noises in the transmitter, energgision process has been a question, since the quantum detec-
loss in the channel, and so on, the delivered states in thiégon theory was founded. Only in a few cases, are realizations
guantum communication system are nonorthogonal in almosif the optimum decision process at a level of physical imple-
all cases. This causes errors in the extraction of the informamentation[6,7].
tion from the quantum states. To distinguish the nonorthogo- On the other hand, practical methods for achieving a
nal quantum states optimally is an important key for the newower error probability, although still not optimum, have
coming technology of quantum communicatic]. been studied for particular quantum-state signals by heuristic
We are interested in how one can achieve a low averagapproach. We would like to mention two examples con-
error in a decision among quantum-state signals. The decerned with BPSK signal§|a),|— a)}. The conventional
sion process in quantum mechanics is expressed by the opiethod is the homodyne detection, where the quadrature-
erator defined on the Hilbert space, which is usually calledohase amplitude is measured. The obtained error probability
the detection operator. To derive the detection operatois the minimum value in the classical detection the¢8uch
achieving the minimum average error probability, one cara limit in the classical detection theory is sometimes called
rely on the quantum detection thedi3-5], which gives an the standard quantum lim($8,9]. The Helstrom bound is
optimization strategy for certain cost functions. According tomuch lower than thi$. The first example is an improved
it, the detection operator is expressed by the probability opscheme, simply by installing an optical Kerr medium in front
erator measur¢POM), which is a set of nonnegative Her- of the homodyne detector. Usuda and Hirota found that the
mitian operators satisfying the resolution of the identity anderror probability can be reduced from the one obtained by
describing a generalized quantum measurement including titbe conventional homodyne detectit0]. Its mechanism is
decision. It can also give a lower bound for the error prob-explained as a quantum interference due to the nonlinear
ability, which is often called the Helstrom bound. Hereaftereffect of the Kerr mediuni11]. Unfortunately, the amount of
we use the ternoptimumfor achieving the Helstrom bound the error reduction is not so prominent compared to the Hel-
in quantum hypothesis testing. strom bound. The second example is more remarkable and is
Only in the case of linearly independent and pure-statknown as the Kennedy receivgt2]. In this receiver, the
signals, is the mathematical framework well established. Irsignal states{|a),|—«)} are transformed to the states
this case, the optimum detection operator becomes a proje¢{0),| —2a)} by combining a local oscillating field via a
tion valued measuréVM) which is anorthogonalresolu- beam splitter. They are then detected by a photon counter.
tion of the identity on the Hilbert space spanned by the signal’he obtained error probability only differs from the Hel-
states, as the special case of the POM. It is the standairom bound by at most a factor of two, which may be con-
measurement process, which is considered to be, in principlsjdered to be near optimum.
physically realizable. This meaning is well understood for Both examples consist of a state controlléerr medium
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thogonal resolution of the identityand not on the POM. In

lo> S #i1a> [Homodyn Detection §x,> <x, | < i H
rm— > Coproier | Photon Couniing 1 noen 1’ Sec. ll, confining ourselves to the BPSK signals
lexl | 0 [§1-e> : {|a),|— @)}, we will show how to realize the optimum deci-
N sion process, based on the unitary transformation as the state

control and the photon counting. The mathematical structure
FIG. 1. A scheme of the received quantum-state control. hof the transformation is discussed and a Hamiltonian gener-

receiver consists of a state controller described by a unitary operat(ﬂ't'ng this process is derived based on the nonlinear quantum

U and a well-known guantum measurement process, such as homgpt'_caI phenomena. In Sec. _IV' we derive the. optimum (;ie-
dyne detection, photon counting, and so on. tection operators corresponding to the two equivalent realiza-

tion methods, the Dolinar method and ours. Their math-

or a beam splitter combining the signal lights with the local®matical structures will be discussed. In Sec. V, we
oscillating ligh) and a detectothomodyne detector or pho- SUmmarize our results.

ton counter, respectively This kind of detection scheme is

called the received quantum-state control in quantum com- Il. OPTIMUM DECISION PROCESS

munication technology13]. It is based on a practical idea

that the performance-improving process is best made at t
very last stage, after the main degradation of the signal
caused by transmission through long, distant, and nois ,
channels has occurred. The scheme is summarized in Fig. P (p1lp2) (=) is assumed to be real nonzero value. Let

The state controllers for both cases can be expressed by tizll'ésnbg aegitlgfir; Sdpeascc?isggnt?eg b>r/otl?§gi]llitThoe ggi{g‘rurr:eiifg
unitary operatorsU «=€'98'°# for the Kerr medium where b yap y op

. ) . N - . POM) onH,, that is, a set of nonnegative definite operators
g is an interaction parameted] anda are the creation and ( ) on g P

annihilation operators, respectively, for the signal field, ano;rli summing up to the identity operatby on Hs,
D(— a):e*“éu“*afor the Kennedy receiver. =0 T1L+1L=1 =12 )
Our guestion comes out along these studitmy can one e TS o
realize the Helstrom bound standing on the above schem
i.e., a unitary process as signal state control plus a well-
known physical measurement?
In recent papergl4,15, the authors gave an answer. That
is, for {|a@),|— )}, the state control is a unitary transforma-
tion expressed by the following operator:

In this section, we describe the optimum decision process
r linearly independent binary signalép,),|p,)} with the
spective prior probabilities; andé, (=1—&,). The over-

The operatofl; represents a quantum-mechanical process by
which we decide the received signalgg=|p;){pi|). When

the transmitted signal is actually, we know the probability
that the received signal is decided to peas,

” P(j[D)=Tr(IT;py). )
U(y)=expy(|a){—a|—|— a){a|), 1) -
|a)(=al=|=a)a] If the operatordl; are orthogonal projectors,
where vy is a certain interaction parameter. And the photon L R
counting follows this transformation, in which one can dis- L1 = 6 IT; (4)

tinguish the signals depending on whether the counted pho-
ton number is even or odd. The above operator would dethe POM is called projection valued measiRy/M). Since
scribe some kind of macroscopic quantum tunneling betweethe signal states here are linearly independent and pure
|a) and|—a). However, it has been questioned how one carstates, the optimum detection operator becomes the PVM
realize this as a practical device. Toward this goal, this papefKennedy’s lemma[16]. That is, the operatofl; can be
is intended to study further the structure of the optimumexpressed as
decision process with a unitary transformation as the state A
control. M=o (wi] (=12 (5

A realization method of the optimum decision between
{la),|— )} was proposed by Dolindi6]. It is based on a with a complete orthonormal s¢tw;)} on Hs. This set is
photon counting measurement, including a feedback arrangetetermined so as to minimize the decision error probability
ment where a local oscillating field depending causally onP_, which is expressed as,
the cumulated results in photon counting is added to the
signal field via a beam splitter. Dolinar derived this method 2 .
as an extension of the Kennedy receiver. Our method is quite Pe= 1—2 ETr(pilly) (6)
a different kind but achieves the same error performance as =1
the Dolinar method. )

This paper is organized as follows. In Sec. Il, we summa- —1_ 2 El(wil o2 @
rize the theory of the optimum decision for binary signals of &~ Si\@ilpi/l
linearly independent and pure states. The optimum detection
operator is constructed as the PVM. In addition, we brieflyThe state vectorkw;) are obtained as,
mention the studies on the physical realization of the POM,
yvh|ch may be, in gengral, a nonorthogonal resolution of ;he lw)=—[V(1+c)2+ k\(1—c)/2(1— k?)]|p1)
identity. And we specify the problem addressed here which
focuses exclusively on the realization of the P\(Me or- +V(1=c)/2(1-?)|p,), 6)]
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lwy)=—(1+¢)/2(1—k?)|p,) —[ [(1—c)2 the PVM itself, not on the POM. Further we confine our-

selves to the case of commonly used binary optical signals.

—k\(1+¢)/2(1= k)] pa), 9
lil. UNITARY CONTROL PROCESS
with c=(1-2¢x%)/1-4£1&,«” [17,18. Consequently, FOR THE OPTIMUM DECISION

the minimum error probability, that is, the Helstrom bound is
In this section, the method proposed in Ré#], i.e., the
Po(oph) = (1—1—4£,6,69). (100  unitary transformation of Eq(1) plus photon counting, is
analyzed in a more general form. Let us assume the prior
It is worth mentioning thatw,) and|w,) are eigenvectors of Probabilities¢; and &, for |) and|—a), respectively. A
the Hermite operatop,—\p; (A=¢;/&,), with the respec-  convenient algorithm for obtaining the orthonormal set
tive eigenvalues w;=1/2{1—\x—\(1+N\)2—4x«?} and {|wi)} ConstrucFing the. optimum detgction operator in the
w,=1/2{1— N+ (1+\)?—4\k?}. Actually, since the er- €ase ofM-ary linearly independent signals is proposed by

ror probability is written as Ban, Osaki, and Hirot&l8]. In this method, an orthonormal
set{| »;)} is initially constructed from the signal states by the
Po=&,— &TH (pa—Ap)TL], (11) Schmidt orthogonalization. Then one can get the{tet)}

by finding an appropriate unitary matrix transforming

the minimum value oP,, is attained by maximizing the term {l7)} into {|“’i>.}' The .method in Ref[14] can _be inter-
TH(pp—\p )f[ 1. Its maximum is simply the positive ei- _pr.e_ted along this algorlthn(The only exception is that the

p2=AP1) 112 ~ initial orthonormal set consists of the even and odd coherent
genvalue w,. Therefore I, should be [w)(wz| and  giates instead of the ones made by the Schmidt orthogonal-
=1~ TL=|w){w]. R ization)

As seen, the measurement with the abfllg} is a stan- Here we shall construct an initial orthonormal $g#;)}

dard measurement in von Neumann'’s sense. It is widely adn the following way for later convenience. First we trans-
cepted that this type of measurement is in principle physiform {|a),|—«)} into {|0),|—2a)} by use of the displace-
cally realizable. For example, in the case of binaryment operatorf)(—a)ze*“‘?‘ +aa as in the Kennedy re-

nonorthogonal signals of the spin-1/2 particle, the Sterngeiver(see Introduction In this sectiona is assumed to be

Gerlach type measurement corresponddtg [3]. The Hil-  real. Second we preparey;) from {|0),|—2a)} by the
bert space describing this system is spanned by spin-up argthmidt orthogonalization,

-down states and is two dimensional, which is the same as

the signal space. However, in the case of the BPSK signals |71)=10), (12
{|a),|— a)}, things are not that simple. The dimension of the

physical Hilbert space describing the single mode optical |—2a)—co|0)

field of which the signal states are made is larger than the | 72)= > (13
number of signals. Then the state evolving frgm) or V1-¢co

| —a) may go out of the minimal subspadé; spanned by ) o .
{|a),|— @)} in almost optical phenomena known so far. But Whereco (=(0|—2a)) is the real coefficient in the expan-
the optimum decision process is specified in the two-Sion of the stat¢—2a),
dimensional spacg(s. It brings a difficulty in physical real- .
izations of the optimum decision process. In fact, how to
implement the opr')[imum guantum rgceiver as a practical de- |_2a>:nzo Cal ), (14
vice has been a question.
In closing this section, we briefly mention the realizationwijth the photon-number states of the signal optical field

problem for nonorthogonal POM. Suppose the spin-1/2 partn). Now the Hermite operator in E¢L1) is expressed in the
ticle, which may take three directions, separated in the anglfyllowing form:

120° to each other with the same prior probabilitig3],

Sec. V). It forms linearly dependent ternary signals f)(—a)(f)z—)\f)l)f)T(—a)

pi=1/2(1+ o) with oy= o,c0; + o,sind; and 6;= (2i)/ R N

3 (i=1,2,3), wheres, and o, are the Pauli matrices. The =D(— ) (w10 ){(01|+ sl w){w,|)DT(— )
optimum detection operators can be described by the POM _ , s —
II;=1/3(1 + ¢;), which are nonorthogonal to each other. = (o= M) 7) (sl +(1=c0) [ 72)( 2l +Cov1—Co
These POM can be ideally physically realized by construct- X (| g 7ol + 720 (). (15)

ing the PVM (orthogonal projectgrin an extended Hilbert

space based on the Naimark extention, where an ancillaryhe right-hand side of the last equality can be diagonalized

system, i.e., independently prepared quantum system, isy a simple rotation of the bas{$7;)},
combined with the original system. A practical recipe was

also given by Peref7]. This kind of realization problem, D(—a)(p,—Npy)D1(— )

how to convert a non-orthogonal POM into a PVM physi- . ~

cally, is of great interest and only a few simple cases have  =U!(y)(w1|7:){(71] + 2| 72){ 72| ) Us( %), (16)
been studied so far. But it is beyond the scope of this paper.

The question addressed here is on the physical realization @fith the unitary operator in the form,
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e
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FIG. 2. The channel model for the BPSK signflla),| — a)}.
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We would like to call the process described by

U<(y)D(— «) the unitary control process. By this process,

one can appropriately control the input signals for reaching
the optimum decision in well-known measurement such as
photon counting.

_ Now the problem is the unitary process described by

The signal states are transformed by the unitary process describégly(y). It represents a simple rotation of the state vectors in

by U¢(y)D(— a). They are then detected by the P\l ){ 7,| and

the plane spanned by{|0),|—2a)}. Its generator

| 72){1,|. The solid lines represent the correct decision channels} 7, )( 5,| — | 72){ 71| describes a transition process between

while the dotted lines the error channels.

Us(y)=expy(| 7272l = | m2)mal), (17)
where the parametey is chosen as
(V1= 4g 8K 1+ 28,62\ M2
y=—tan ! . (19

VI—4&16,k%+1—26,K2

By substituting Eq(16) into Eq.(11), the error probability is
written as

Pe(0pt) = £1/( 75| Us(7)D(— @) |a)?

+&(mlU(y)D(—a)| - ). (19

the stateg ;) and |#,), each of which has macroscopic
quantum coherence. Compare them with the nonorthogonal
signals of spin-1/2 particles with two orientations of polar-
ization. Then one can taki 7,),| 7,)} as the spin-up and
-down stateq|1),||)}. And the rotation in the signal plane
can be caused by irradiating the spin particles with certain
alternating magnetic fields. Unlike this spin-1/2 case, the
transition process between the states) and|»,) of the
present case does not seem so trivial.

It produces a so-called Scliinger-cat state, that is, a
superposition state of distinct quantum states with macro-
scopic coherencén,) and |7,). In the works so far, the
optical Kerr effect is commonly known as a unitary process
producing the Schiinger-cat stat€19], whose unitary evo-
lution is described by the operattl,=e'%98' ‘a2, as men-
tioned in the introduction. If one inputs the coherent state

It corresponds to the channel model shown in Fig. 2. Thda) into the Kerr medium witlg= /2, the output state is in
solid lines represent the correct decision channels while tha superposition ofa) and|—a) V\_Ilth the same probab[llty
dotted lines the error channels. The detection process is noamplitudes. However, one can find no particular merits for

decomposed into the unitary transformation

by quantum communication in this Scliinger-cat state(The

U«(y)D(—«) and the standard measurement by the orfole of the Schrdinger-cat state in quantum communication

thogonal projectorg 771)( 71| and |7,){7,|. The operator
U4(y) transforms the signal stateB(— @)|«) (=|0)) and
D(—a)|a) (=]|—2a)) into the superposition states between
|71) and|7,) as,

Us(7)]0)=cosy| 1) — siny| ), (20)

U(9)|—2a)=(cocosy+\1—c3 siny)| 7,)
+(—cosiny++/1— co7 cosy)| 7,). (21

In the decision of these states, one should note that the state

| 71) is the vacuum state while the stdtg,) only contains

finite number of photon§|1),|2)- - -}. It means that the de-
cision by{| 7:){71l,| 72){ .|} can be physically replaced by
{[0)(0

is systematically studied in Ref20].) Rather for certain re-
gions of small values dd, this effect can cause the reduction
in decision error probability, being installed in front of the
homodyne detector as explained in the introduction, although
the output state from the Kerr medium is not like the
Schralinger-cat state any more.

In each of the Schidinger-cat states required here, either
of two coefficients are very small, sinin Eq. (20) and
CoCOoSy+ \/1—cozsiny in Eqg. (21). They are directly related
to the minimum error probability in such a way that

P.(0pt) = &;SirPy+ &,(cocosy+ y1—cisiny)2.  (24)

As the generatof71){ 7,| — | 72){ 71| producing such super-
position states, we shall consider here the Hamiltonian rep-
resenting some nonlinear optical medium. In fact, it can be

,Zn_1/n)(n[}, that is, the photon counting judging expanded in a power series in the creation and annihilation

the photons are registered or not. This corresponds to thgperators as

orthogonal resolution of the identiﬁyon the whole Hilbert
space describing the signal optical field,

00l + %, In)(n|=I.

(22
The error probability is rewritten as,
Pe(0ph=£; 3, Kn|Us(7)D(~ a)[e)?
+&[0[0(yD(-a)—a)?. (23

c “ (—ah'a
|771><772|_|772><771|:\/1—00(2)(26 |1
x> (_nya) —h. c.). (25)
n=1 n:

Unlike the Hamiltonian for the optical Kerr medium, it in-
cludes a power series of nonlinear termsaimnda’ up to
infinite order. But in some cases we do not necessarily re-
quire all of these terms. Suppose that the signal pouwiéris
small, where the decision error due to nonorthogonality be-
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comes more serious. In such a weak signal case, the trans-

formed statd —2«) might be replaced by the following fi-

nite sum of the Fock states in a good approximation,

Cn

M
I\ C, ny, C,:—,
|P2> ngo n| > n \/m

(26)

whereM is taken to be large enough for the given amplitude

|| to ensure that

0

> c2<P(opt). (27)
n=M+1
The new orthogonal bases are
|71)=10), (28)
) —co|0
|P2> o| ) (29)

| 75)= N
0

And let us denote the subspace spanned by theri.asThe
generator becomes

! ! ’ ’ - (_aT)a
|771><772|_|772><771|:|_20—“ nzl dn\/ﬁ_h.c.,
(30

loy —= Unu(PD (-0}l —+ |0X0l

~

X T l:i::llnxnl

-0&)—Uni(YD (-a)1-00)

FIG. 3. The channel model for the BPSK signéla),| — a)}
modified from the one in Fig. 2 by the physical consideration. The
unitary control process for the signal states is described by
UnL(y)D(—a). They are then detected by the photon counter. The
solid lines represent the correct decision channels, while the dotted
lines the error channels.

The new generatorIAD is related to the old one
| 71)(m3l = m3){ 1| in the following way:

P=|n)(n3l— | ms)(ni+R, (32)
with
. © M
R= X X CorknlIn)(n+k|=|n+k)(n|), (33
n=M+1 k=1
where
(n—=1)!

VI(n+K)!1]/(ntk!)d,.
(34

Cnin= (DY T

wheredn=(cr’1/\/1—c(’)2), This is still a power series of non- The generatofD is directly related to the Hamiltonian for a

linear terms up to infinite order.

nonlinear optical medium which can cause multiphoton pro-

One should note that the optimum decision process needssses up to Mth order simultaneously. Then the unitary

not to be confined in the Fwo—dimensional space. For eXoperatorfJS(y) can be replaced bY]NL(V):eyp- So one
ample, adding terms like =n-3%n/=1(Canr|@n)(@n|  possible way realizing the optimum decision process is the
+Cpl@n)(@n|) with {{w;)[i=3,4, .. } being orthogonal ynitary control process by, (7)D(«) for the signal states
to {|w1),|wy)}, to the PVM,II; andII, in Eq. (5) never and the successive photon counting. The corresponding
affects the optimum decision, that is, results in the samehannel model is depicted in Fig. 3. The definition of the
error probability. The new PVM with these additional termslines are the same as in Fig. 2.
represent physically different processes from the original Let us estimate the achievable error probabilities after
ones, although their effects on the signal states are conmeglecting higher-order terms in our detection scheme.
pletely equivalent. Thus, in the case that the dimension of th&igure 4 shows the performance of different truncations
physical Hilbert space of the optical field is larger than theof M as well as the Helstrom bound and the error probability
total number of signals, the PVM describing the optimumin the Kennedy receiver. All of them are normalized by
decision strategy is not unique. Therefore, there are variouthe standard quantum limi{SQL) which is reached
kind of physically different realization of the optimum deci- by the conventional homodyne detection where the quadra-
sion strategy. ture phase amplitudeX=1/2@+a") is measured, and
'_I'his_ fact e_nables us to _simplify the generator in B_p), given by P.(SQL)=1/2erfc(y2Ny) with erfc(x)=(2/

which is derived py the direct tra.nslatlprl of th?T prOJectors( ﬁ)ffdt et it represents the minimum bound in classi-
l/\(/)%EJrI‘el EBSILOSXglcemtgoﬂ:ﬁeelzi(rpsrtefvi(l)oqur\:f’i?azgﬁ:inlri}htg(:lfi h t_cal detection theory. The horizontal axis is the signal power
hand side of Ig (36) transformany state in the whole FOCE Ns=|a|*. As seen, the Kennedy receiver which merely shifts
space into theqvacuum stafte) B}:Jt we are not concerned the signal|a),|— )} t0{|0),| = 2a)} and then counts the

) photon number, improves the performance drastically. For

e e e s oy =1 L ers o the Helstiam bouna by a fcor o two
9 ) ’ y of’o eliminate this differenge, we should install another trans-

enter the receiver, therefore they are not necessarily tran?- i ted b bet the ab di
formed into the vacuum stati). Then the higher-order 'ormation represente Yn(y) between the above dis-
placement operation and the photon counting in the Kennedy

terms in the right-hand side of E(B0) can be neglected, and ; : .

the generator can be replaced by the following operétor receiver. The e_ffect of negl_ectlng hlgher-orde_r terms appears
in the larger side of the signal power. Nonlinearky re-

quired for the accurate transformation becomes small as the

signal power decreases. FNE<0.8, M =4 seems enough.

Figure 5 shows how the error probabilities increasevVas

(31)
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Kennedy receiver 1 !
2 100 i
E 10 iy 2 05 /Vﬂlil
% \\ — : \ DK )
-8 4 = ;5 \\ L] Axenn) M/=Z,
& 1074 = 3 NS | |m=3
5 = S 0.1 N / /
5 SN & =S===
5 10°2 | = 0.05 S PASQL)
_@ £ = g RS S N
g ~ el =
E 103 Helstrom bound ™. 0.01 Pl(opt)
“ o 02 04 06 . 08
0 1 2 3 4 N
Ny s

FIG. 5. The comparison of the error performance in a weak
|signal region. The error probabilities fsf =1, 2, and 3 are shown
by the solid lines. Physical realizations of the generaoffor

FIG. 4. The achievable error probabilities after neglecting
higher-order terms in the unitary transformation. The horizontal
axis is the signal powerNs=|a|? in the BPSK signals : :
{|a),| - a)}. The error probabilities correspondinghb=4, 8, and M=1 and 2 are mentioned in the text. The Helstrom b_ound
12 are shown by the solid lines. The dotted and dashed lines corréPe(0PY], the error probability of the Kennedy receiver
spond to the Helstrom bound and the error probability of thel Pe(kenn]and the SQLP,(SQL)] are represented by the dotted,

Kennedy receiver. All of them are normalized by the SQL which isd@shed, and one-dotted lines, respectively.

givgn in the Itext. The effect gf Aneglecti.ng higher-or.der terms tha”through a beam splitter, and is then detected by a photon
M in the unitary transformatiot, (y) is revealed in the larger counter. The LOF is set depending causally on the actual
side of the signal power. output of the photon counter, and is quickly changed every
time after a single photon is registered. Since the probability
goes down from 3 to Isolid lineg in such a weak signal that a single photon is detected during certain interval de-
region. The dotted, dashed, and one-dotted lines represepénds on the intensity of the field coming into the photon
the Helstrom boundP¢(opt)], the error probability by the counter, the probability of a certain cumulative outcome can
Kennedy receivef P.(Kenn] and the SQL[ P,(SQL)], re-  be controlled by adjusting the LOF. It is optimally chosen so
spectively. In the lowest cadd = 1, the deviation from the as to maximize the probability that even number photons are
Helstrom bound is apparent, however, it can still overcomeletected under the signgat). This kind of receiver may be
the Kennedy receiver. The corresponding gener@toan be identified with the set of all possible feedback functions with
realized as a passive medium with certain nonlinear suscep?€ LOF. Let us denote the cumulative outcome gihotons
tibilities up to the third order. Such a kind of Hamiltonian ast,=(t,, ... t;) where a single photon is registered only
has already been proposed by Kilin and Horosfkq in the at each time ofy, . .. t,, during a periodl. The effect of the
context of a one-photon Fock state generation from thdeedback field during the intervity ,ty.,) can be described
vacuum state input. In the case Mf=2, one can get some by the following Hamiltonian:
hints for realizingP in the work by Leé_ski and_T:_ané@ZZ],_ (D) =i A £ ) (—Aa* e+ aTge 1ot (35)
where two-photon Fock state generation by similar nonlinear
optical phenomena is proposed. For larger signal power, thghere £(t;,) represents the beating effect by the feedback
cavity QED scheme with the two-channel Raman interactionfield, andw being the angular frequency of the signal field.

proposed recently by Law and Ebefl§3], seems useful. It The Heisenberg evolution due to the Hamiltonian
allows the vacuum state to evolve to an arbitrarily prescrlbe%wéTéJr I:I,(t) is expressed as follows:

superposition of Fock states. If such a pure-state evolution is
truly attainable in the cavity QED scheme, i.e., spontaneous a(t)=ag(t)+ £(t; te et (36)
decay of atomic level and cavity damping can be ignored as _ _
assumed in Ref:23], this scheme can be applicable for the Where the first term represents the free evolution
unitary control process required in our detection method. ao(t)=2ae™'“* and

- t -
IV. THE OPTIMUM DETECTION OPERATOR (it = af drto &(7ty). (37)
FOR BINARY COHERENT-STATE SIGNALS t

As mentioned in the introduction, Dolinar proposed theBY defining the intensity operator as

practical receiver, for the first time, which can achieve the NP y— At T A .7
Helstrom bound for binary coherent-state sigrf@k Both Alttg=pla’+ittollar fttdl, (38)
the Dolinar receiver and our method are not derived by direcivhere u. is the interaction parameter with the detector, the
use of the quantum detection theory. Actually the resultingorobability of n photons being counted during the interval
detection operators are quite different from the one obtained is given by
by the quantum detection theory. It might be meaningful to -
discuss here the relation among them. (pilT(Mpi), (n is even

At first, the Dolinar method fof|«),| — a)} is briefly re- Pi(n;T)= (pilTo(Mp,  (n is odd (39)
viewed based on Holevo’s formalisf24]. In the receiver, At 2 1o
the signal field is combined by a local oscillating fi¢ldDF)  with
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R T .
Fl(T)=:exp< —J dt A(t;O)}
0
T t t
+> dtzkf detzk—l"'fzdtl
k=1 Jo 0 0
~ - ~ T ~ -
X A(tokitox—1) 'A(tlio)'eXP[ _f dt A(t;ta)
toK

o t2onf\(t;tl)—ftldt [\(t;O)]:, (40)
0

ty

2k

R coorT tok_1 t,
TyT)=:2, f dt2k—1f dt2k—2"'f dty
k=1 Jo 0 0

R . . T

XA(tzk—litzk—z)'"A(tl;o)'eXD{—f dt
tok—1

. t, .

XA(Gtg—1)— - — | dt At;ty)

ty
_ ftldt A(t;O)) : (41)
0

wherei=1 or 2,|p,)=|a) and|p,)=|—a), and : : indicates
the normally ordered expression. These operators satisfy the
resolution of the identity’; +I'>=1, wherel is the unit op-
erator of the whole Hilbert space. One should note that the
above equations become inapplicable for an unbounded time

interval. Here we assume a small valueTofFor the opti-
mum decision£(t;ty) and equivalenthy(t;t,) via Eq.(37)
is set in such a way that the phase is changest jost after

t,, and the absolute intensity decreases monotonically as

increases,
PN 1 k+1 @
{G80= (=D s

f(t)=V1—-4& &exp —4ulal®t).

(42

(43

Then the intensity operators are classified in the following

two kinds:
~ ~ . a* || . o
AL (D=At;t)=p a*—f(—t) a—f(—t), (44)
A ()=A(tiTy )=p éT+fCE—t) a+f%. (45)

And it is easy to see that the operat&lsandfz satisfy the
following differential equations:

d . . . . .
grlaM==[A(M+A (MMM +A_(T):, (46)

d -~ - - ~ N
grla(M="[A(M+A-(MIT(T)+ A (T):. (4D

We will assume the initial condition
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I, foré&>é,,

I',(0)

%T, for é,=&,, (48)

0, foré&<é,,

and consider the casg> ¢,, from which it is easy to solve
the problem for other cases. With the initial condition
I',(0)=0, the solution of the equation for,(T) is ex-
pressed as

- T . T . R
1“2(T)=:f0 dt A+(t)ex% —ft dT[A+(T)+A_(T)]) .
(49

It leads to the following results:

,\ 1
F(M=:5

- §1_§2 e,z(éT”aJrlalZ)
2

ETey

ad’+a*a {—Z(éTé+|a|2)}”71_
f(T) =1 n! v
(50

Fy(T)=: ;(i— bk natea

ad’+a*a {—Z(éTé+|a|2)}”7l_
f(T) =1 n! N

(51

In the ideal case o T=1, it can be easily seen thﬁ; and
I', are equivalent on the signal spatg, to the detection
operatorsll; andIl,, respectively, in Eqs(5), (8), and(9)
with [p;) =[a) and|py)=|—a).

On the other hand, the detection operator in our scheme in
Sec. Ill are obtained as

Yi=D(~a)Ul(nIU(yD(~a) (i=12), (52

wherell}=]0)(0| andIL,==_,|n)(n|. It is easy to get

<~ 142867 1 2 pa(at— ¥

— . —2a(a'—a™)
><e‘<‘:"f‘“*)(}"“’)+h.c.}:, (53
9‘221\_9‘1, (54)

wheref=f(1/u) [see Eq(43)]. Here note that; andl are

the unit operators of the signal and the whole Hilbert spaces,
respectively. Generallyy; is different fromI'; in matrix
components on the space outsidg. For example, consider
the other coherent state’)(a’ # = ), and make the ortho-
normal basig 73) as,
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D(—a)la’)~|7){ 7| 73) ~ | 72} mal 73) V. SUMMARY

VI=[(71 7207 = {32l 73} ]2 ’ ~ The decision process with a minimum error for BPSK
(55) signals is discussed. Since they are linearly independent, the
R optimum detection operator becomes the PVM on the two-
Then all of the component§(7;|Y,|7s)} (i=1,2,3) are dimensional Hilbert space spanned by the signal states. How-
zero, while{(#|;| 7s)} have, in general, nonzero value. €ver, its physical realization is not trivial. In this paper, we

Thus{T’;} and{Y;} are two different kinds of extension into demonstrated a physical scheme consisting of the unitary

the whole Hilbert space frorﬁﬁi} on the two-dimensional transf_ormatmns of_the S|gnal states and the §|mple photon
spaceH, . counting. The required unitary control process is supposed to

As long as the error performance for the BPSK signals igenerate the appropriate Sctimger-cat states. The example

concerned, the Kennedy receiver seems enough in practic To;[:ea :'gr??i'rl]tgggn ttiga?e?]iﬁ;:ﬁgz 61135: %%ﬁfoviﬁslgﬁqrg’netd
application as shown in the preceding section. The detectio P b X P

operator representing the Kennedy receiver is expressed IS k-|n.d of nonlmegr effect in th? practical device is the
the following PVM [25]; remaining problem in quantum optics.

Our scheme was also compared to the Dolinar method by
ﬁ§:|a><a|, (56) deriving _the detection operator as th_e PVM defined on the
whole Hilbert space of the signal optical field. Although, as

(57) is expected, both detection operators coincide on the minimal

subspace spanned by the binary signal states, they are not
Compared to this detection operatc{)f,i} and {gi} seems equivalent to each other physically, therefor'e they lead to
much more difficult not only mathematically but in physical d!ffergnt forms on the whole space. The considerations _there
realization. In lowering the error level of the Kennedy re- 9'V€ S€ to a question of Whether '_[he_ PVM for the Dolinar
ceiver to the Helstrom bountthe gap is only a factdr a recAelvAerAcan. be expressed in the similar form to our sc_heme
significant difficulty seems to be there. This difficulty di- asU'I; U with T1;=0)(0], Il;==,-;”|n)(n| and a certain
rectly appears in the process representedJRy(y), which ~ unitary operatotJ.

is the only difference between our scheme and the Kennedy
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