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I. INTRODUCTION

In quantum communication systems, a transmitter of in-
formation sends a receiver one ofn possible messages rep-
resented by density operatorsr̂1 ,r̂2 , . . . ,r̂n with prior prob-
abilities p1 ,p2 , . . . ,pn which are normalized as
( j51
n pj51. The receiver, on the other hand, performs a gen-

eralized quantum measurement on the received signal to in-
fer which quantum state~message! has been sent by the
transmitter. A generalized quantum measurement is de-
scribed by a positive operator-valued measure~abbreviated
as POM! @1,2# which is a set of non-negative Hermitian op-
erators, $P̂mumPS%, satisfying the relation(mPSP̂m5 Î ,
whereÎ stands for an identity operator,m represents an index
specifying the measurement outcome, andS is a set of the
indices of all the possible measurement outcomes.

One of the most important problems in quantum commu-
nication and information theory is to find an optimum quan-
tum measurement on the received signal so that the mutual
information I is maximized@3–7# or so that the Bayes cost
CB is minimized@1,8#. The mutual information is the appro-
priate measure of information successfully sent from the
transmitter to the receiver@3#. On the other hand, the Bayes
cost is the average cost incurred when we infer which quan-
tum state has been received@1#. When we perform a quan-
tum measurement on the received signal, a detection error
occurs with finite probability unless the signal quantum
states are orthogonal. In a communication system, we suffer
a loss due to the detection error since the error damages a
system. The Bayes cost represents the average amount of
damage of a communication system. We minimize the cost
by means of the Bayes strategy. The Bayes cost includes the
average probability of errorPe in the signal-detection pro-
cess as a special case.

The mutual information and the Bayes cost are important
quantities to evaluate the performance of a signal-detection
process. Thus our task is to obtain a POM which satisfies the
requirement that the mutual informationI should be maxi-
mized or that the Bayes costCB should be minimized in a
signal-detection process. Obtaining such a POM is also im-

portant for quantum computation and quantum cryptography
@9,10# since a signal-detection process is indispensable for
reading a result of computation and for obtaining a key dis-
tribution. The maximum value of the mutual information is
called the accessible information and the minimum value of
the Bayes cost~in particular, the average probability of error!
is called the Helstrom bound. In this paper we denote the
accessible information asI opt5max$P̂m%I and the Helstrom

bound asCBopt5min$P̂m%CB .

The upper bound of the accessible informationI opt was
obtained by Holevo@4# and generalized by Yuen and Ozawa
@5#. The lower bound, on the other hand, was found by Jozsa,
Robb, and Wootters@6#. These upper and lower bounds are
expressed in terms of the von Neumann entropyS and the
subentropyQ. The results obtained in Refs.@4–6# show that
the accessible informationI opt satisfies the following in-
equality:

Q~ r̂ !2 (
k51

n

pkQ~ r̂k!<I opt<S~ r̂ !2 (
k51

n

pkS~ r̂k!. ~1.1!

Herer̂5(k51
n pkr̂k is a density operator of statistical mixture

of the quantum states of the signal and the von Neumann
entropyS(ŝ) and the subentropyQ(ŝ) are given by

S~ ŝ !52Tr@ŝ lnŝ#52(
n

lnlnln , ~1.2!

Q~ ŝ !52(
n

F )
mÞn

S ln

ln2lm
D Glnlnln , ~1.3!

where ln is an eigenvalue of the statistical operatorŝ
(ŝ5 r̂ or ŝ5 r̂k). The upper bound of the accessible infor-
mation is called the Holevo bound. When we consider a
detection process for a pure quantum state signal, the Holevo
bound becomes the von Neumann entropyS( r̂). This result
indicates that the amount of information that we can extract
from the received signal does not exceed the amount of in-
formation that the signal carries. The meaning of the inequal-
ity ~1.1! is discussed in Refs.@3,6#. Since the entropic upper
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and lower bounds do not depend on any quantum measure-
ment carried out on the received signal, these bounds are
general but may be fairly loose. Fuchs and Caves have re-
cently found tighter bounds of the accessible information
that strongly depend on the structure of the quantum states of
the signal@7#. But their bounds are much more complicated
in comparison with the entropic bounds.

The Bayes costCB is another quantity used to evaluate
the performance of a quantum signal-detection process. We
can calculate, in principle, the minimum value of the Bayes
cost by means of the quantum detection theory@1,11–13#. To
obtain the minimum value and the optimum POM, we have
to solve the operator equations for the POM,

P̂j~Ŵj2Ŵk!P̂k50, Ŵj2 (
k51

n

P̂kŴk>0 ~1.4!

whereŴj5(k51
n Cjkr̂kpk is the risk operator andCjk is the

cost incurred when we infer that the received quantum state
is given by the density operatorr̂ j even though the quantum
state r̂k has been actually received. In this case the set of
indices becomesS5$1,2, . . . ,n%. The minimum value of the
Bayes cost is calculated asCBopt5(k51

n Tr(P̂kŴk) @1#,
whereP̂1 ,P̂2 , . . . ,P̂n satisfy Eq.~1.4!. But it is too difficult
to obtain the solutions of Eq.~1.4! except for simple signals.
In particular, we cannot obtain an analytical expression of
the minimum value of the Bayes cost in the presence of
thermal noise if@ r̂ j ,r̂k#Þ0. Thus obtaining the lower bound
of the Bayes cost is important for evaluating quantum com-
munication systems.

In this paper we consider the upper bound of the acces-
sible information and the lower bound of the Bayes cost in
quantum detection processes for Gaussian state signals
@2,11,14,15# under the influence of thermal noise. It will be
shown that the upper bound ofI opt and the lower bound of
CBopt are obtained by replacing the parameters characterizing
the quantum states of the signal with the renormalized pa-
rameters including the thermal noise effects in the accessible
information I opt

(0) and the minimum value of the Bayes cost
CBopt
(0) in the signal-detection process without thermal noise.

In the detection process for coherent state signal, the renor-
malized parameters are obtained by replacing the signal
power with the signal-to-noise ratio in the original param-
eters~see Secs. II–IV!. The thermal noise effects on signal-
detection processes are inevitable in practical communica-
tion systems, and obtainingI opt

(0) and CBopt
(0) is easier than

obtaining I opt andCBopt. Therefore it is important in quan-
tum communication and information theory to obtain such
upper and lower bounds. To derive the upper of the acces-
sible information and lower bound of the Bayes cost, we use
the superoperator representation@16–19# of quantum states,
or equivalently thermofield dynamics@20–23#, which en-
ables us to treat mixed quantum states just like pure quantum
states. The thermal noise effects on the mutual information
and the average probability of error were investigated by
Hall and O’Rourke@24#. But the optimization of the POM
was not considered in their approach.

In Sec. II we explain the quantum states considered in this
paper and give their superoperator representation, which is
used to derive the upper and lower bounds. We derive the

upper bound of the accessible information in Sec. III and the
lower bound of the Bayes cost in Sec. IV. There we obtain
their analytic expressions for the binary quantum state signal
under the influence of the thermal noise. In Sec. V we sum-
marize the results.

II. SUPEROPERATOR REPRESENTATION

Quantum states of a signal that we consider in this paper
belong to the class of Gaussian states@2,11,14,15#. Let r̂ j be
a density operator which represents thej th quantum state of
the signal in the presence of the thermal noise and letr̂ j

(0) be
the corresponding density operator in the absence of the ther-
mal noise. These density operators are expressed as

r̂ j5
V̂j r̂ thV̂j

†

Tr~V̂j r̂ thV̂j
†!
, r̂ j

~0!5
V̂j u0&^0uV̂j

†

^0uV̂j
†V̂j u0&

5uc j
~0!&^c j

~0!u,

~2.1!

wherer̂ th5@1/(11n̄)#(k50
` @ n̄/(11n̄)#kuk&^ku is the density

operator of the thermal state,n̄ is the average value of the
photon number of the thermal noise,u0& is the vacuum state,
and we setuc j

(0)&5V̂j u0&/A^0uV̂j
†V̂j u0&. In Eq. ~2.1!, we as-

sume that the operatorV̂j is given by

V̂j5exp@g j â
22g j* â

†21 if j â
†â1m j* â1n j â

†#, ~2.2!

whereg j , m j , andn j are complex parameters,f j is a real
parameter, andâ and â† are bosonic annihilation and cre-
ation operators which satisfy the canonical commutation re-
lation @ â,â†#51. The operatorV̂j need not be unitary. It is
easy to see that the signal quantum state represented by the
density operatorr̂ j includes a thermal coherent state@25# and
a thermal squeezed state@26#, which seem to be the most
important states in quantum communication systems. The
coherent state is widely used in optical communication sys-
tems. The applicability of the squeezed state@27# to optical
communication systems was discussed by Yuen and Shapiro
@28#. The squeezed state can also be used in a high precision
measurement. The thermal noise effects are inevitable in
these systems.

To obtain the superoperator representation of the quantum
states given by Eqs.~2.1! and ~2.2!, we introduce three su-
peroperatorsK̂6 andK̂0 by the relations@29,30#

K̂1Â5â†Ââ, K̂2Â5âÂâ†,

K̂0Â5
1

2
~ â†âÂ1Ââ†â1Â!, ~2.3!

whereÂ stands for an arbitrary operator. Here a superopera-
tor means an operator acting on operators@16–23#. It is easy
to see that the superoperatorsK̂6 andK̂0 satisfy the SU~1,1!
Lie commutation relations@31#,

@K̂2 ,K̂1#52K̂0 , @K̂0 ,K̂6#56K̂6 . ~2.4!

Thus we obtain the useful decomposition formula for the
SU~1,1! generators@32,33#,
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exp@a1K̂11a0K̂01a2K̂2#

5exp@A1K̂1#exp@~ lnA0!K̂0#exp@A2K̂2# ~2.5!

5exp@B2K̂2#exp@~ lnB0!K̂0#exp@B1K̂1#, ~2.6!

where the parametersA6 , A0, B6 , andB0 are given by

A65
~a6 /f!sinhf

coshf2~a0/2f!sinhf
,

A05@coshf2~a0/2f!sinhf#22, ~2.7!

B65
~a6 /f!sinhf

coshf1~a0/2f!sinhf
,

B05@coshf1~a0/2f!sinhf#2, ~2.8!

with

f5A~a0/2!22a1a2. ~2.9!

Equations~2.5! and~2.6! are referred to as the normally and
antinormally ordered decomposition formulas.

It is important to note that the density operator of the
thermal state is expressed as

r̂ th5
1

11n̄
(
k50

`
1

k! S n̄

11n̄
D k~ â†!ku0&^0uâk

5
1

11n̄
(
k50

`
1

k! S n̄

11n̄
D kK̂1

k ~ u0&^0u!

5
1

11n̄
expS n̄

11n̄
K̂1D u0&^0u. ~2.10!

Then using the normally ordered decomposition formula and
the relationsK̂2(u0&^0u)50 andK̂0(u0&^0u)51/2u0&^0u, we
can express the density operator of the thermal state in the
following form:

r̂ th5L̂~ u0&^0u!, L̂5exp@u~K̂12K̂221!#, ~2.11!

where we have introducedu51/2ln(112n̄). Therefore we
find from Eqs.~2.1!–~2.3! and~2.11! that the density opera-
tor r̂ j of the signal quantum state can be expressed as

r̂ j5
V̂jL̂~ u0&^0u!V̂j

†

Tr@V̂jL̂~ u0&^0u!V̂j
†#

5L̂~ uc j&^c j u!. ~2.12!

Here we setuc j&5Û j u0&/A^0uÛ j
†Û j u0& and the operator

Û j is given by

Û j5exp@g j â
22g j* â

†21 if j â
†â1m̃ j* â1 ñ j â

†#,
~2.13!

where the renormalized parametersm̃ j and ñ j which include
the thermal noise effects are given by

m̃ j5
~11n̄!m j1n̄n j

A112n̄
, ñ j5

~11n̄!n j1n̄m j

A112n̄
. ~2.14!

The parametersg j andf j remain unchanged.
In deriving Eqs.~2.12!–~2.14! from Eqs.~2.1!, ~2.2!, and

~2.11!, we have used the relations

e2u~K̂12K̂2!âeu~K̂12K̂2!5âcoshu1b̂†sinhu, ~2.15!

e2u~K̂12K̂2!â†eu~K̂12K̂2!5â†coshu1b̂sinhu, ~2.16!

e2u~K̂12K̂2!b̂eu~K̂12K̂2!5b̂coshu1â†sinhu, ~2.17!

e2u~K̂12K̂2!b̂†eu~K̂12K̂2!5b̂†coshu1âsinhu, ~2.18!

where b̂ and b̂† are defined asb̂Â5Ââ† and b̂†Â5Ââ for
any operatorÂ @17#. The operatorsb̂ andb̂† satisfy the com-
mutation relation@ b̂,b̂†#51 and they commute withâ and
â†. Using b̂ and b̂†, the superoperatorsK̂6 and K̂0 can be
expressed as

K̂15â†b̂†, K̂25âb̂, K̂05
1

2
~ â†â1b̂†b̂11!,

~2.19!

which indicate that the superoperator representation is math-
ematically equivalent to the two-mode bosonic representa-
tion. In fact, it is shown that the thermal state becomes
equivalent to the two-mode squeezed-vacuum state in the
two-mode bosonic representation@34–36#.

III. UPPER BOUND OF THE ACCESSIBLE INFORMATION

A. General formula for the upper bound

In this section we consider the upper bound of the acces-
sible informationI opt in a quantum detection process for a
signal whose quantum state is given by the density operator
r̂ j in Eqs. ~2.1! and ~2.2!. The mutual informationI is cal-
culated in terms of the POMP̂m’s, density operatorr̂ j ’s, and
prior probabilitypj ’s @3#,

I5(
j51

n

(
mPS

P~mu j !pj lnF P~mu j !
(k51
n P~muk!pk

G , ~3.1!

where we set the unit of information as nats and
P(mu j )5Tr@P̂mr̂ j # is the conditional probability that the
measurement outcome is indexed by parameterm when the
quantum state of the received signal is given by the density
operator r̂ j . Using Eq. ~2.12! and the relation
Tr@A(K̂6B)#5Tr@(K̂7A)B# for any operatorsÂ and B̂, we
can calculate the conditional probabilityP(mu j ) as

P~mu j !5Tr@P̂mr̂ j #5Tr@P̂mL̂~ uc j&^c j u!#

5Tr@L̂†~P̂m!uc j&^c j u#, ~3.2!

where the superoperatorL̂†5exp@2u(K̂12K̂211)# is the
Hermitian conjugate of the superoperatorL̂. Since the mu-
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tual information is considered a function of the conditional
probabilities, we formally write it asI (Tr@P̂mr̂ j #).

To perform the optimization, let us now introduce a set
U of all possible POMs,

U5H P̂5~P̂1 , . . . ,P̂m , . . . !UP̂m>0,(
mPS

P̂m5 Î J . ~3.3!

Thus our task is to find an elementP̂ of the setU such that
the mutual information should be maximized. The optimum
POM P̂ is determined by the requirement that
maxP̂PUI (Tr@P̂mr̂ j #). When the POMP̂ maximizes the mu-
tual information,P̂ has to satisfy certain conditions@11,37#.
However, the necessary and sufficient condition for the POM
to maximize the mutual informationI has never been found.
Using Eq.~3.2!, we can calculate the accessible information
I opt as follows:

I opt5max
P̂PU

I ~Tr@P̂mr̂ j # !

5max
P̂PU

I $Tr@P̂mL̂~ uc j&^c j u!#%

5max
P̂PU

I $Tr@L̂†~P̂m!uc j&^c j u#%

5max
P̂8PŨ

I ~Tr@P̂m8 uc j&^c j u# !, ~3.4!

where we have introduced the setŨ5$P̂85L̂†(P̂)uP̂PU%
which is the range of the superoperatorL̂† when the domain
is restricted to the setU.

Let P̂85(P̂18 , . . . ,P̂m8 , . . . ) be anarbitrary element of
the set Ũ. Then there is some element
P̂5(P̂1 , . . . ,P̂m , . . . ) of the set U such that
P̂m8 5L̂†(P̂m) for all mPS. Using the relations(mPSP̂m5 Î
and L̂†( Î )5 Î , we can show that the relation(mPSP̂m8 5 Î is
satisfied. Furthermore, using the decomposition formula for
the SU~1,1! generators, we can also show from the inequality
P̂m>0 that the operatorP̂m8 is non-negative definite; that is,
P̂m8 >0 for all mPS. ThusP̂8 becomes a POM and belongs
to the setU. Therefore we have proved thatP̂8PŨ→P̂8
PU. This means thatŨ is a subset ofU; namely,Ũ#U. This
result provides the following inequality:

max
P̂8PŨ

I ~Tr@P̂m8 uc j&^c j u# !< max
P̂8PU

I ~Tr@P̂m8 uc j&^c j u# !.

~3.5!

Here the equality holds if and only if the optimum POM
P̂opt8 chosen among the elements ofU belongs to the subset
Ũ; that is,P̂optPŨ#U. It is important to note that the quan-
tity on the right-hand side in the inequality~3.5! is equal to
the accessible information calculated in the quantum detec-
tion process, where the quantum states of the received signal
are given by the pure statesuc1&,uc2&, . . . ,ucn&.

We denote the accessible information for the signal given
by Eqs.~2.1! and~2.2! in the presence of the thermal noise as
I opt(g,f,m,n) and the accessible information for the same

signal in the absence of the thermal noise as
I opt
(0)(g,f,m,n). Then we finally obtain the following inequal-
ity from Eqs.~3.4! and ~3.5!:

I opt~g,f,m,n!<I opt
~0!~g,f,m̃,ñ !, ~3.6!

where the renormalized parametersm̃ j and ñ j which include
the thermal noise effects are related to the original param-
etersm j and n j by Eq. ~2.14!. It should be noted that the
inequality I opt

(0)(g,f,m̃,ñ)<I opt
(0)(g,f,m,n) is satisfied. Of

course, the inequalityI opt(g,f,m,n)<I opt
(0)(g,f,m,n) is

trivial. The inequality~3.6! indicates that the upper bound of
the accessible information for the signal in the presence of
the thermal noise is obtained by replacing the signal param-
eters with the renormalized parameters including the thermal
noise effects in the accessible information obtained for the
same signal in the absence of the thermal noise.

B. Binary signal-detection process

We now consider a binary signal detection to obtain an
analytic expression of the upper bound of the accessible in-
formation,I opt

(0)(g,f,m̃,ñ), under the influence of the thermal
noise. To this end, we have to obtain the accessible informa-
tion I opt

(0)(g,f,m,n) in the absence of the thermal noise. We
first investigate a detection process for quantum states whose
density operators are given byr̂1 and r̂2. To simplify the
discussion, we confine ourselves to the case ofS5$1,2%.
Thus the binary detection process we consider is described
by POMsP̂1 andP̂2 which satisfy

P̂11P̂25 Î , P̂j>0 ~ j51,2!. ~3.7!

In this case, the quantityP( j uk)5Tr(P̂j r̂k) is the condi-
tional probability that the measurement outcome indicates
the quantum statej when the quantum statek has actually
been received. Suppose that the signal-detection process de-
scribed byP̂1 and P̂2 maximizes the mutual information.
Then the POMsP̂1 and P̂2 satisfy the two equivalent con-
ditions derived by Holevo@11#,

P̂1~ F̂12F̂2!P̂250, ~3.8!

~ F̂ j2Ĝ!P̂j50 ~ j51,2!, Ĝ5 (
j51,2

P̂j F̂ j5 (
j51,2

F̂ jP̂j

~3.9!

whereĜ is called the Lagrange operator andF̂ j is given by

F̂ j5 (
k51,2

r̂kpklnF P~ j uk!

(m51,2P~ j um!pm
G . ~3.10!

Then using Eqs.~3.7! and~3.9!, if the operatorF̂12F̂2 does
not have zero eigenvalue, we can derive the relations

P̂1P̂25P̂2P̂150, P̂j
25P̂j~ j51,2!, ~3.11!

where the derivation is given in the Appendix. This result
indicates that the accessible information in the binary signal
detection is obtained by a quantum measurement described
by projection operators. It should be noted that Eq.~3.11! is
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valid for any density operatorsr̂1 and r̂2 as long as the
operatorF̂12F̂2 does not have zero eigenvalue.

Suppose that the signal quantum states are pure and lin-
early independent. Letuc1

(0)& and uc2
(0)& be the signal quan-

tum states, whereuc j
(0)& is given in Eqs.~2.1! and ~2.2!. In

this case, we find from Eq.~3.11! that P̂1 and P̂2 become
one-dimensional projection operators. Thus after some cal-
culation ~see the Appendix!, we obtain the accessible infor-
mation @7,38,39#,

I opt
~0!~g,f,m,n!5I 01

1

2
~11A124p1p2k

2!

3 ln~11A124p1p2k
2!

1
1

2
~12A124p1p2k

2!

3 ln~12A124p1p2k
2!, ~3.12!

where we set k5 z^c1
(0)uc2

(0)& z and I 052 ln22p1lnp1
2p2lnp2.

Using Eq.~3.12!, we can obtain the analytic expression of
the upper bound of the accessible information in the presence
of the thermal noise. When the density operators of the sig-
nal quantum states are given byr̂15V̂1r̂ thV̂1

†/Tr(V̂1r̂ thV̂1
†)

and r̂25V̂2r̂ thV̂2
†/Tr(V̂2r̂ thV̂2

†), the upper bound of the ac-
cessible information is obtained by substituting
k5 z^c1uc2& z into Eq. ~3.12!, where uc j&5Û j u0&/
A^0uÛ j

†Û j u0& and the operatorÛ j is given by Eq.~2.13!. In
particular, when we consider the binary detection process for
thermal coherent states, r̂15D̂(a) r̂ thD̂

†(a) and
r̂25D̂(b) r̂ thD̂

†(b), whereD̂(a)5eaâ†2a* â is the displace-
ment operator, we can obtain the inequality

I opt<I 01
1

2 F11A124p1p2expS 2
ua2bu2

112n̄ D G
3 lnF11A124p1p2expS 2

ua2bu2

112n̄ D G
1
1

2 F12A124p1p2expS 2
ua2bu2

112n̄ D G
3 lnF12A124p1p2expS 2

ua2bu2

112n̄ D G . ~3.13!

In optical communication systems whereua2bu2@n̄ is sat-
isfied, the right-hand side of this inequality becomes a much
tighter bound of the accessible information than the Holevo
bound.

IV. LOWER BOUND OF THE BAYES COST

A. General formula for the lower bound

In this section we consider the lower bound of the Bayes
costCB @1,8,11–13# in the quantum detection process for the
Gaussian state signal under the influence of the thermal
noise. In this case the number of the indicesm is equal to the

number of the quantum states of the signal, so we can set
S5$1,2, . . . ,n%. The Bayes costCB to be minimized is
given by

CB5(
j51

n

(
k51

n

pkCjkTr@P̂j r̂k#, ~4.1!

where the quantityCjk is the cost incurred when we infer
that the received quantum state is described by the density
operatorr̂ j even though the quantum stater̂k has actually
been received@1#. Since the cost is reduced by the correct
detection, the inequalityCj j,Cjk is satisfied. In the follow-
ing, we denote the Bayes cost asCB(Tr@P̂j r̂k#). The neces-
sary and sufficient condition for the POMP̂ to minimize the
Bayes cost is given by Eq.~1.4!. But it is difficult to obtain
the optimum POM from Eq.~1.4!.

From the same argument used for deriving the upper
bound of the accessible information, we find the following
relation:

CBopt5min
P̂PU

CB$Tr@P̂jL̂~ uck&^cku!#%

5min
P̂PU

CB$Tr@L̂†~P̂j !uck&^cku#%

5 min
P̂8PŨ

CB~Tr@P̂j8uck&^cku# !

> min
P̂8PU

CB~Tr@P̂j8uck&^cku# !. ~4.2!

In the last inequality we have used the fact thatŨ is a subset
of U, and the equality holds if and only if the optimum POM
P̂opt chosen among the elements of the setU such that the
Bayes cost in the detection process for the quantum states
(uc1&,uc2&, . . . ,ucn&) should be minimized belongs to the
subsetŨ; namely,P̂optPŨ#U. Let CBopt(g,f,m,n) be the
minimum value of the Bayes cost in the quantum detection
process for the signal (r̂1 ,r̂2 , . . . ,r̂n) and let
CBopt
(0) (g,f,m,n) be the minimum value of the Bayes cost in

the detection process for the signal
(uc1

(0)&,uc2
(0)&, . . . ,ucn

(0)&), wherer̂ j and uc j
(0)& are given in

Eqs.~2.1! and~2.2!. Then from Eq.~4.2!, we can obtain the
following inequality:

CBopt~g,f,m,n!>CBopt
~0! ~g,f,m̃,ñ !, ~4.3!

where the renormalized parametersm̃ j and ñ j including the
thermal noise effects are given by Eq.~2.14!. It is obvious
that the inequalitiesCBopt

(0) (g,f,m̃,ñ)>CBopt
(0) (g,f,m,n) and

CBopt(g,f,m,n)>CBopt
(0) (g,f,m,n) are satisfied. Thus the

lower bound of the Bayes costCBopt is obtained fromCBopt
(0)

by substituting the renormalized parameters.
The average probability of errorPe which is one of the

most important quantities to evaluate a performance of a
quantum communication system is obtained asPe511CB
by substitutingCjk52d jk into Eq. ~4.1!. Let us denote as
Popt(g,f,m,n) @Popt

(0)(g,f,m,n)# the minimum value of the
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average probability of error in the signal-detection process in
the presence~absence! of the thermal noise. Then we obtain
from the inequality~4.3!

Popt~g,f,m,n!>Popt
~0!~g,f,m̃,ñ !. ~4.4!

In the absence of the thermal noise, the quantum states of the
signal considered here become pure and linearly indepen-
dent. Thus we can apply Kennedy’s lemma@1# to obtain the
minimum value of the average probability of error and the
optimum POM . The lemma ensures that the minimum value
of the average probability of error for a linearly independent
pure quantum state signal is attained by a quantum measure-
ment described by a set of one-dimensional projection opera-
tors. This lemma greatly simplifies calculation of the mini-
mum values of the average probability of error
Popt
(0)(g,f,m,n). The analytic expressions ofPopt

(0)(g,f,m,n)
have been obtained for several coherent state signals
@1,40,41#. Thus we can obtain the lower bound
Popt
(0)(g,f,m̃,ñ) under the influence of the thermal noise.

B. Lower bounds for binary and coherent state signals

We now consider a binary signal-detection process which
is very important in practical digital communication systems.
The signal takes quantum statesr̂1 and r̂2 with prior prob-
abilitiesp1 andp2, where the density operatorr̂ j ( j51,2) is
given in Eqs.~2.1! and ~2.2!. In the absence of the thermal
noise, since the quantum state of the signal becomes pure,
the minimum value of the average probability of error is
obtained@1,39–41# as

Popt
~0!5

1

2
@12A12G12~g,f,m,n!#, ~4.5!

where G12(g,f,m,n)5 z^c1
(0)uc2

(0)& z2 and uc j
(0)&5V̂j u0&/

A^0uV̂j
†V̂j u0&. Then the minimum value of the average prob-

ability of error Popt in the binary signal-detection process
under the influence of the thermal noise satisfies the inequal-
ity

Popt>
1

2
@12A12G12~g,f,m̃,ñ !#, ~4.6!

where G12(g,f,m̃,ñ)5 z^c1uc2& z2 and uc j&5Û j u0&/

A^0uÛ j
†Û j u0& and the operatorÛ j is given by Eq.~2.13!.

Let us consider, for instance, the binary phase-shift keyed
coherent state signal under the influence of the thermal noise,
where the density operators of the two signal states are given
by r̂15D̂(a) r̂ thD̂

†(a) and r̂25D̂(2a) r̂ thD̂
†(2a) with

D̂(a)5eaâ†2a* â. For simplicity, we assume the equal prior
probabilities, p15p251/2. Since V̂15D̂(a) and
V̂25D̂(2a), we obtain Û15D̂(a/A112n̄) and
Û25D̂(2a/A112n̄). Thus the lower bound of the average
probability of error is obtained by substituting
G12(g,f,m̃,ñ)5exp@24n̄s/(112n̄)# into Eq. ~4.6!, where
ns5uau2 is the average value of the photon number in each
bit of the signal. Among the conventional optical measure-
ments, the lower average probability of error for the binary
phase-shift keyed coherent state signal is attained by the ho-

modyne detection@42#, and it is given byPhom51/2$1
2erf@A2ns /(112n̄)#%, where erf(x)5(2/Ap)*0

xdte2t2

is the error function. Since the minimum value of the average
probability of error obtained by the quantum detection theory
is smaller than the average probability of error in any con-
ventional optical measurement, we can obtain the inequality

1

2 F12erfS D

A2D G>Popt>
1

2
@12A12exp~2D2!#, ~4.7!

where the parameterD5A4ns /(112n̄) represents the
equivalent signal-to-noise ratio@1#. When the signal has a
large number of photons (D@1), Eq. ~4.7! is approximated
ase2D2/2/DA2p>Popt>1/4e2D2

. On the other hand, when
the signal is very noisy (D!1), Eq. ~4.7! becomes
1/2(12D/A2p)>Popt>1/2(12D).

For anM -ary coherent state signal, where the quantum
states are given by the density operatorsr̂1 ,r̂2 , . . . ,r̂M with
r̂ j5D̂(a j ) r̂ thD̂

†(a j ), the lower bound of the average prob-
ability of error can be obtained by replacing the complex
amplitudea j with ã j5a j /A112n̄ in the minimum value of
the average probability of errorPopt

(0)(a1 ,a2 , . . . ,aM) for
the thermal noise-freeM -ary coherent state signal whose
quantum states are given by pure coherent states
ua1&,ua2&, . . . ,uaM&; that is, the lower bound of the average
probability of error is given byPopt

(0)(ã1 ,ã2 , . . . ,ãM). In the
absence of the thermal noise, since the analytic expressions
of the minimum value of the average probability of error for
the several coherent state signals have been obtained by the
present authors@40,41#, we can use the results to obtain the
lower bounds of the average probability of error in the pres-
ence of the thermal noise. For the ternary phase-shift keyed
coherent state signal, where the quantum states areua&,
uae(2/3)ip&, and uae2(2/3)ip&, the minimum value of the av-
erage probability of error becomes

Popt
~0!~a!5

2

9
$32A~12kc!

223ks
2

2A2~112kc!@12kc1A~12kc!
223ks

2#%,

~4.8!

where the parameterskc andks are given by

kc5expS 2
3

2
n̄sD cosSA32 n̄sD ,

ks5expS 2
3

2
n̄sD sinSA32 n̄sD . ~4.9!

Then the lower bound of the average probability of error for
the ternary phase-shift coherent state signal under the influ-
ence of the thermal noise is obtained by substituting the fol-
lowing expressions into Eq.~4.8!:

kc5expF2
3n̄s

2~112n̄!
GcosF A3n̄s

2~112n̄!
G , ~4.10!
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ks5expF2
3n̄s

2~112n̄!
GsinF A3n̄s

2~112n̄!
G . ~4.11!

In the same way, we can obtain the lower bound of the
average probability of error for thermal coherent state sig-
nals.

V. SUMMARY

In this paper, by means of the superoperator representa-
tion of quantum states, we have obtained the upper bound of
the accessible information and the lower bound of the Bayes
cost in the quantum detection processes for the Gaussian
state signals under the influence of the thermal noise. The
analytic expressions of the upper and lower bounds for the
binary quantum state signals have been given. The method
we applied in this paper can be used for estimating any quan-
tity that is a function of the conditional probabilities,
P(mu j )5Tr@P̂mr̂ j #. Let F(x) be an analytic function ofx.
Then for the Gaussian quantum state given in Eqs.~2.1! and
~2.2!, we can obtain the inequalities

max
P̂PU
F~Tr@P̂mr̂ j # !<max

P̂PU
F~Tr@P̂muc j&^c j u# !, ~5.1!

min
P̂PU
F~Tr@P̂mr̂ j # !>min

P̂PU
F~Tr@P̂muc j&^c j u# !, ~5.2!

where the setU is given by Eq.~3.3!. The superoperator
representation of quantum states that we have used here
seems to be very useful for investigating quantum commu-
nication and information systems under the influence of the
thermal noise. It is shown@43# that when bounded operators
are considered, the superoperator method or thermofield dy-
namics is mathematically equivalent toC* algebra @44#.
Therefore when we useC* algebra, the inequalities~5.1! and
~5.2! will be proved more rigorously.
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APPENDIX: OPTIMIZATION OF THE BINARY
QUANTUM DETECTION PROCESS

In this appendix we first derive Eq.~3.11! from Eqs.~3.7!
and~3.9!. It is easy to see from the relation( j51,2P̂j5 Î that
the operatorsP̂1 and P̂2 commute with each other,
P̂1P̂25P̂2P̂1. Furthermore the relations( j51,2P̂j5 Î and
Ĝ5( j51,2F̂ jP̂j give F̂12Ĝ5(F̂12F̂2)P̂2. Multiplying this
relation by the operatorP̂1 from the right and using Eq.
~3.9!, we obtain

~ F̂12F̂2!P̂1P̂25~ F̂12F̂2!P̂2P̂150. ~A1!

On the other hand, the operatorF̂12F̂2 is calculated from
Eq. ~3.10! as

F̂12F̂25A1r̂12A2r̂2 , ~A2!

with

A15p1lnFP~1u1!Pout~2!

P~2u1!Pout~1!G , A25p2lnFP~2u2!Pout~1!

P~1u2!Pout~2!G ,
~A3!

where we setPout( j )5(k51,2P( j uk)pk . Let uvm& and
vm be an eigenstate and eigenvalue of the operator
F̂12F̂2. Then using the spectral decomposition
F̂12F̂25(mPVuvm&vm^vmu, we obtain from Eq.~A1!

(
mPV

uvm&vm^vmuP̂1P̂25 (
mPV

uvm&vm^vmuP̂2P̂150,

~A4!

whereV stands for a set of indices of the eigenvalues. Since
F̂12F̂2 is a Hermitian operator, the set$uvm&umPV% be-
comes a complete orthonormal system. Thus Eq.~A4! is
equivalent to

vm^vmuP̂1P̂25vm^vmuP̂2P̂150. ~A5!

If vmÞ0 for all mPV, the equality
^vmuP̂1P̂25^vmuP̂2P̂150 is obtained. Therefore we find
from ( j51,2P̂j5 Î and the completeness of$uvm&umPV% that
P̂1P̂25P̂2P̂150 and P̂j

25P̂j ( j51,2) are satisfied. We
have obtained Eq.~3.11!.

Next we will derive Eq. ~3.12!. When the density opera-
tors r̂1 and r̂2 represent linearly independent pure quantum
states,P̂1 andP̂2 become one-dimensional projection opera-
tors. Here we setr̂ j5uf j&^f j u andP̂j5uf̂ j&^f̂ j u ( j51,2). It
should be noted that$uf̂1&,uf̂2&% is a complete orthonormal
system in the two-dimensional Hilbert spaceH2. Since the
signal quantum statesuf1& and uf2& are linearly indepen-
dent, a set of two states given by

uf18&5
uf1&1e2 ifuf2&

A2~11k!
, uf28&5

uf2&2eifuf1&

A2~12k!
~A6!

becomes a complete orthonormal system in the Hilbert space
H2. In Eq. ~A6!, we set^f1uf2&5keif (k.0). Thus there
must be a 232 unitary matrix which represents a unitary
transformation between (uf̂1&,uf̂2&) and (uf18&,uf28&). Such
a transformation can be expressed@39# as

S uf̂1&

uf̂2&
D 5S eia/2cos~b/2! e2 ia/2sin~b/2!

2eia/2sin~b/2! e2 ia/2cos~b/2!D S uf̂18&

uf̂28&
D ,
~A7!

wherea andb are real parameters to be determined by the
optimization of the signal-detection process. Using Eqs.~A6!
and ~A7!, the mutual information is calculated as
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I ~a,b!5@12p~a,b!#p1lnF 12p~a,b!

@12p~a,b!#p11q~a,b!p2
G

1p~a,b!p1lnF p~a,b!

p~a,b!p11@12q~a,b!#p2
G1@1

2q~a,b!#p2lnF 12q~a,b!

p~a,b!p11@12q~a,b!#p2
G

1q~a,b!p2lnF q~a,b!

@12p~a,b!#p11q~a,b!p2
G ,

~A8!

with

p~a,b!5
1

2
@12kcosb1A12k2cos~a2f!sinb#, ~A9!

q~a,b!5
1

2
@11kcosb1A12k2cos~a2f!sinb#.

~A10!

Then the maximization condition of the mutual information
I (a,b) is given by

]

]a
I ~a,b!5

]

]b
I ~a,b!50, ~A11!

S ]2I ~a,b!/]a2 ]2I ~a,b!/]a]b

]2I ~a,b!/]b]a ]2I ~a,b!/]b2 D ,0, ~A12!

where the matrix inequality means that the Hesse matrix cal-
culated fromI (a,b) is negative definite. Substituting Eqs.
~A8!–~A10! into Eqs.~A11! and ~A12!, we obtain the fol-
lowing solutions of Eqs.~A8!–~A12!:

a5f, sinb57A 12k2

124p1p2k
2,

cosb56
~p12p2!k

A124p1p2k
2
. ~A13!

Substituting these solutions into Eqs.~A9! and~A10!, we can
obtain the accessible information from Eq.~A8!,

I opt52 ln22p1lnp12p2lnp21
1

2
~11A124p1p2k

2!

3 ln~11A124p1p2k
2!1

1

2
~12A124p1p2k

2!

3 ln~12A124p1p2k
2!, ~A14!

for any linearly independent quantum statesuf1& and uf2&.
In particular, when we set uf j&5uc j

(0)&5V̂j u0&/

A^0uV̂j
†V̂j u0& we obtain the accessible information given by

Eq. ~3.12!. For reference, we write down the explicit expres-
sions of the optimum POMsP̂1 andP̂2,

P̂15

R6
1

2
~11l!7lk2

2~12k2!R
uf1&^f1u

1

R7
1

2
~11l!6k2

2~12k2!R
uf2&^f2u

2k

R6
1

2
~12l!

2~12k2!R
~eifuf1&^f2u1e2 ifuf2&^f1u!,

~A15!

P̂25

R7
1

2
~11l!6lk2

2~12k2!R
uf1&^f1u

1

R6
1

2
~11l!7k2

2~12k2!R
uf2&^f2u

2k

R7
1

2
~12l!

2~12k2!R
~eifuf1&^f2u1e2 ifuf2&^f1u!,

~A16!

where the parametersl andR are given by

l5p1 /p2 , R5A1

4
~11l!22lk2. ~A17!

Since the Bayes cost in the binary signal-detection pro-
cess is maximized by a quantum measurement described by
projection operators@1#, we can obtain the minimum value
of the Bayes cost in the same way. Using Eqs.~A6! and
~A7!, the Bayes cost in the binary detection process for the
pure quantum state signal is calculated as

CB~a,b!5p1C11@12p~a,b!#1p1C21p~a,b!

1p2C22@12q~a,b!#1p2C12q~a,b!,

~A18!

where p(a,b) and q(a,b) are given by Eqs.~A9! and
~A10!. The minimization condition of the Bayes cost
CB(a,b) is given by

]

]a
CB~a,b!5

]

]b
CB~a,b!50, ~A19!

S ]2CB~a,b!/]a2 ]2CB~a,b!/]a]b

]2CB~a,b!/]b]a ]2CB~a,b!/]b2 D .0. ~A20!

Substituting Eq.~A18! into Eqs.~A19! and~A20!, we obtain
the solutions
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a5f, cosb52
~12x!k

2S
,

sinb52
~11x!A12k2

2S
, ~A21!

where the parametersx andS are given by

x5
p1~C212C11!

p2~C122C22!
, S5A1

4
~11x!22xk2. ~A22!

Thus the minimum value of the Bayes cost and the optimum
POM become

CBopt5C01
1

2
@p1~C212C11!1p2~C122C22!#

3H 12A12
4x

~11x!2
k2J , ~A23!

P̂15

S1
1

2
~11x!2xk2

2~12k2!S
uf1&^f1u

1

S2
1

2
~11x!1k2

2~12k2!S
uf2&^f2u

2k

S1
1

2
~12x!

2~12k2!S
~eifuf1&^f2u1e2 ifuf2&^f1u!,

~A24!

P̂25

S2
1

2
~11x!1xk2

2~12k2!S
uf1&^f1u

1

S1
1

2
~11x!2k2

2~12k2!S
uf2&^f2u

2k

S2
1

2
~12x!

2~12k2!S
~eifuf1&^f2u1e2 ifuf2&^f1u!,

~A25!

where we setC05p1C111p2C22. It is easy to check that the
optimum POMsP̂1 and P̂2 satisfy Eq.~1.4!. When we set
Cjk52d jk and usePe511CB , we obtain the minimum
value of the average probability of error,

Popt5
1

2
~12A124p1p2k

2!, ~A26!

from which Eq. ~4.5! is derived by setting

uf j&5V̂j u0&/A^0uV̂j
†V̂j u0&.

It is important to note that the maximum value of the
mutual information and the minimum value of the average
probability of error are simultaneously attained in the quan-
tum measurement described by Eqs.~A15! and ~A16! with
the upper sign. In this measurement, the following relation is
established:

I opt5HS2Herror, ~A27!

with

HS52p1lnp12p2lnp2 , ~A28!

Herror52PoptlnPopt2~12Popt!ln~12Popt!, ~A29!

whereHS is the Shannon entropy@45# of the signal and
Herror represents the amount of information loss due to the
detection error.
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