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Upper bound of the accessible information and lower bound of the Bayes cost in quantum detection pro-
cesses for Gaussian state signals under the influence of thermal noise are derived by means of the superoperator
representation of quantum states. It is shown that the upper and lower bounds are obtained by replacing the
parameters of the signal quantum state with the renormalized parameters including the thermal noise effects in
the accessible information and the minimum value of the Bayes cost in quantum detection processes in the
absence of thermal noise. Analytic expressions of the upper and lower bounds are given for several quantum
state signalg.S1050-29476)02810-7

PACS numbd(s): 03.65.Bz, 89.70:c

[. INTRODUCTION portant for quantum computation and quantum cryptography
[9,10] since a signal-detection process is indispensable for
In quantum communication systems, a transmitter of in+eading a result of computation and for obtaining a key dis-
formation sends a receiver one mfpossible messages rep- tribution. The maximum value of the mutual information is
resented by density operatd}@ﬁz’ L !Z)n with prior prob_ called the accessible_ information and the mlnlmum value of
abilites py,p,, ...,p, which are normalized as the Bayes codin particular, the average probability of eryor
ET:1|O1=1. The receiver, on the other hand, performs a genls called the Helstrom bound. In this paper we denote the

eralized quantum measurement on the received signal to il@ccessmle |nform§t|on opi= max{ﬁﬂ}l and the Helstrom

fer which quantum statémessage has been sent by the Pound asCgop=mingi ;Cs-

transmitter. A generalized quantum measurement is de- The upper bound of the accessible informatigp was

scribed by a positive operator-valued meastaigbreviated —obtained by Holevg4] and generalized by Yuen and Ozawa

as POM [1,2] which is a set of non-negative Hermitian op- [5]- The lower bound, on the other hand, was found by Jozsa,

erators, {l:[M|,ueS}, satisfying the relationzﬂesﬁﬂzf, Robb, and Wootter5]. These upper and lower bounds are

wherel stands for an identity operatqk, represents an index expressed in terms of the von Nel_Jmann entrépgnd the

specifying the measurement outcome, &hts a set of the subentrop)Q. Th_e results_ obtameq n Refst-6] ShO.W th_at

indices of all the possible measurement outcomes. the a_ccessmle informatiom,,, satisfies the following in-
One of the most important problems in quantum commu-Sauality:

nication and information theory is to find an optimum quan- n n

tum measurement on .the received signal so that the mutual () — > PQ(Pi) <! op=S(p) — > pSpw. (1.1

information| is maximized[3—7] or so that the Bayes cost k=1 k=1

Cg is minimized[1,8]. The mutual information is the appro- . N . ) o )

priate measure of information successfully sent from thderep==2k_1Pxpy is a density operator of statistical mixture

transmitter to the receivéB]. On the other hand, the Bayes ©Of the quantum states of the signal and the von Neumann

cost is the average cost incurred when we infer which quan€ntropyS(o) and the subentrop@(o) are given by

tum state has been receivgt]. When we perform a quan-

tum measurement on the received signal, a detection error 5((}):_Tr[(}|n(}]:_2 AN, (1.2

occurs with finite probability unless the signal quantum v

states are orthogonal. In a communication system, we suffer

a loss due to the detection error since the error damages a Ay _2

system. The Bayes cost represents the average amount of Q(o)= >

damage of a communication system. We minimize the cost

by means of the Bayes strategy. The Bayes cost includes thvehere \, is an eigenvalue of the statistical operater

average probability of erroP, in the signal-detection pro- (o=p or o=py). The upper bound of the accessible infor-

cess as a special case. mation is called the Holevo bound. When we consider a
The mutual information and the Bayes cost are importantietection process for a pure quantum state signal, the Holevo

quantities to evaluate the performance of a signal-detectiobound becomes the von Neumann entr@gy). This result

process. Thus our task is to obtain a POM which satisfies thimdicates that the amount of information that we can extract

requirement that the mutual informatidnshould be maxi- from the received signal does not exceed the amount of in-

mized or that the Bayes co&tz should be minimized in a formation that the signal carries. The meaning of the inequal-

signal-detection process. Obtaining such a POM is also imity (1.1) is discussed in Ref$3,6]. Since the entropic upper

AN, 1.3
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54 UPPER BOUND OF THE ACCESSIBLE INFORMATION ... 2719
and lower bounds do not depend on any quantum measurepper bound of the accessible information in Sec. Il and the
ment carried out on the received signal, these bounds alewer bound of the Bayes cost in Sec. IV. There we obtain
general but may be fairly loose. Fuchs and Caves have rdheir analytic expressions for the binary quantum state signal
cently found tighter bounds of the accessible informationunder the influence of the thermal noise. In Sec. V we sum-
that strongly depend on the structure of the quantum states ofiarize the results.
the signal[7]. But their bounds are much more complicated
in comparison with the entropic bounds. Il. SUPEROPERATOR REPRESENTATION

The Bayes cosCg is another quantity used to evaluate
the performance of a quantum signal-detection process. We Quantum states of a signal that we consider in this paper
can calculate, in principle, the minimum value of the Bayesbelong to the class of Gaussian std241,14,15. Let p; be
cost by means of the quantum detection thddrg1-13. To  a density operator which represents flie quantum state of
obtain the minimum value and the optimum POM, we havethe signal in the presence of the thermal noise ang{fétbe
to solve the operator equations for the POM, the corresponding density operator in the absence of the ther-

mal noise. These density operators are expressed as

n
(W, — W Tl,=0, W;—> MW:=0 (1.4 on ot - o
i(Wj = Wi Il i kzl KWWk (1.4 5= Vipthvi ;J(O):VJ|CA))<AO|V]- O ()
. i D TiVipeVh T (oVIvijoy T T
wherer:EE:1Cjkpkpk is the risk operator an@y is the (2.1

cost incurred when we infer that the received quantum state

is given by the density operatpf even though the quantum whereﬁthz[l/(1+n_)]2°k°:0[n_i1 +n) ¥ k)(K| is the density
statep, has been actually received. In this case the set obperator of the thermal stata, is the average value of the
indices become§={1,2,. .. ,n}. The minimum value of the photon number of the thermal noigé) is the vacuum state,
Bayes cost is calculated a€gop=S¢- Tr(IIW,) [1],  and we sefy{”)=V;|0)/\(0|V]V;|0). In Eq.(2.1), we as-
wherelly, Il,, ... II, satisfy Eq.(1.4). Butit is too difficult  sume that the operata#; is given by

to obtain the solutions of Ed1.4) except for simple signals.

In particular, we cannot obtain an analytical expression of \A/,:exp[ y,—éz—y}*éT2+i¢jéTé+M}*é+ ,,jé’r], (2.2
the minimum value of the Bayes cost in the presence of

thermal noise I[f)J ,;)k]7&0. Thus obtaining the lower bound where Vs M, and v; are Comp|ex parameter&i is a real
of the Bayes cost is important for evaluating quantum comparameter, ané anda' are bosonic annihilation and cre-
munication systems. ation operators which satisfy the canonical commutation re-

In this paper we consider the upper bound of the acceSyiion[3,a"1=1. The operatoN/; need not be unitary. It is

sible information and the lower bound of the Bayes cost ineasy to see that the signal quantum state represented by the

guantum detection processes for Gaussian state Sig”at!l%nsity operatop includes a thermal coherent st&#%] and
[2,11,14,13 under the influence of thermal noise. It will be ; iharmal squeejzed stafi26], which seem to be the most
shown that the upper bound bf,; and the lower bound of jnnortant states in quantum communication systems. The
Cpopt are obtained by replacing the parameters characterizinggherent state is widely used in optical communication sys-
the quantum states of the signal with the renormalized pagms. The applicability of the squeezed sti@ to optical
rameters including the thermal noise effects in the accessiblgy mmunication systems was discussed by Yuen and Shapiro
information 1§} and the minimum value of the Bayes cost [2g]. The squeezed state can also be used in a high precision
Clhpt in the signal-detection process without thermal noisemeasurement. The thermal noise effects are inevitable in
In the detection process for coherent state signal, the renothese systems.

malized parameters are obtained by replacing the signal To obtain the superoperator representation of the quantum
power with the signal-to-noise ratio in the original param-states given by Eqg2.1) and(2.2), we introduce three su-
eters(see Secs. II-1Y The thermal noise effects on signal- peroperatorsC.. and K, by the relationg29,30

detection processes are inevitable in practical communica- B

tion systems, and obtainintfy) and CK); is easier than K, A=2a'Aa, K_A=3aAa',

obtainingl o5 and Cg,p,i. Therefore it is important in quan-

tum communication and information theory to obtain such a1 L )

upper and lower bounds. To derive the upper of the acces- KoA= E(éTéA+AéTé+ A), (2.3

sible information and lower bound of the Bayes cost, we use

the superoperator representat{d®—19 of quantum states, N .
or equivalently thermofield dynamid0—23, which en- whereA stands for an arbitrary operator. Here a superopera-

ables us to treat mixed quantum states just like pure quantuffgf Mmeans an operator acting on operafd6-23. It is easy
states. The thermal noise effects on the mutual informatiot0 see that the superoperatdts andX, satisfy the SWL,1)
and the average probability of error were investigated by-ie commutation relationg31],
Hall and O’Rourke[24]. But the optimization of the POM o . A .
was not considered in their approach. [K_ K ]=2Ky, [Ko,Ki]=£K-. (2.9

In Sec. Il we explain the quantum states considered in this
paper and give their superoperator representation, which iShus we obtain the useful decomposition formula for the
used to derive the upper and lower bounds. We derive th&U(1,1) generator$32,33,
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exp[aJC+ + aOI%O+ a_ IAC_]
—exg A, K, Jexd (InAg) Kolexd A_K_] (2.5
:exr[BJAC,]exr[(InBO)IACO]exp:BJAQ], (2.6

where the parameteis.. , Ag, B, andB, are given by

_ (a:/¢)sinhg
= coshp— (ag/2¢)sinhe’

Ap=[coshp— (ap/2¢)sinhp] 2, (2.7
_ (a:+/¢)sinhg
=" coshp+ (ag/2¢)sinhg’
Bo=[coshp+ (ay/2¢)sinh¢]?, (2.8
with
¢=\(ag2)’-a.a_. (2.9

Equations(2.5) and(2.6) are referred to as the normally and

antinormally ordered decomposition formulas.

It is important to note that the density operator of the

thermal state is expressed as
—\ k
n Atyk 2k
i (ah|o)(ola
1 5 1) n\"
— ok
—ﬁ;}g(ﬁ K% (10)€0])

1 p(ij)oo
= —ex 1+n+|><|-

) 151
pm=—_2

1+nk=oE

(2.10

1+n

Then using the normally ordered decomposition formula an

the reIationst_(|O)(0|) =0 andl%o(|0)<0|) =1/2|0)(0|, we

can express the density operator of the thermal state in t

following form:
pun=L([0)0]), L=exgd6(K,—K_—1)], (2.11
where we have introduced=1/2In(1+2n). Therefore we

find from Eqgs.(2.1)—(2.3) and(2.1)) that the density opera-
tor p; of the signal quantum state can be expressed as

 YEoonY]
ATV, 2(0yo) V]

=Ly w]). (212

Here we Set|1//]->=lAJj|0>/\/<O|U]-TUJ-|O> and the operator
U; is given by
0j=exr[7jéz—y}*éw%—i(ﬁjéTé—l—ﬁré—F?jéT],

(2.13

where the renormalized parametgrsand; which include
the thermal noise effects are given by

MASASHI BAN, MASAO OSAKI, AND OSAMU HIROTA

54
~ (A+nuj+ny;  _  (1+n)y+ng;
M= F——  » VT —/—— - (2.14)
V1+2n v1+2n

The parametery; and ¢; remain unchanged.
In deriving Eqs.(2.12—(2.14) from Egs.(2.1), (2.2), and
(2.1, we have used the relations

e*"(’%fk—)ée"(’%f’c—):écosh9+B*sinh&, (2.15
e‘“’AC*‘;C*)éTea(’%fk*):é*cosh9+Bsinhe, (2.1
e‘(’“%fk*)ﬁe"(’@‘k*):Bcosm+éTsinh0, (2.1
e*(’(’%fkf)fﬁe"(’%fk*):6*cosh9+ésinh0, (2.18

whereb andAkA)’r are defined aﬁA; AéTAand b'A=Aj for
any operatoA [17]. The operator® and b satisfy the com-
mutation relationb,b']=1 and they cgmmuteAwitl'& and

a'. Usingb andb', the superoperatork. and K, can be
expressed as

N P A
K,=a'b’, K_=ab, /c0=§(a*a+b*b+1),
(2.19

which indicate that the superoperator representation is math-
ematically equivalent to the two-mode bosonic representa-
tion. In fact, it is shown that the thermal state becomes
equivalent to the two-mode squeezed-vacuum state in the
two-mode bosonic representatif@d—34.

Ill. UPPER BOUND OF THE ACCESSIBLE INFORMATION
A. General formula for the upper bound

In this section we consider the upper bound of the acces-

éible informationl ,; in @ quantum detection process for a

signal whose quantum state is given by the density operator

H’:)ei in Egs.(2.1) and(2.2). The mutual informatiori is cal-

Culated in terms of the POM,,’s, density operatoisj’s, and
prior probability p;’s [3],

1=> > P(ulj)pjn

j=1 nes

P(ulj)

—_, 3.1
SR

where we set the unit of information as nats and
P(,u|j)=Tr[HMf)j] is the conditional probability that the
measurement outcome is indexed by paramgtevhen the
quantum state of the received signal is given by the density
operator p;. Using Eg. (212 and the relation
TrA(K.B)]=Tr[ (X+-A)B] for any operator\ andB, we

can calculate the conditional probabiliB(u|j) as

P(|j)=TrT0,p;1=TrIL,L(|¢){4;])]
=T LML) | g)(wll, (3.2

where the superoperat&ﬁzexp{—ﬁ(l@—jc,+1)] is the
Hermitian conjugate of the superoperaitr Since the mu-
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tual information is considered a function of the conditionalsignal in the absence of the thermal noise as
probabilities, we formally write it as(Tr[I1,,p;]). 19y, ¢, 1, v). Then we finally obtain the following inequal-
To perform the optimization, let us now introduce a setity from Egs.(3.4) and(3.5):

U of all possible POMs,
Lopd Vs &1, ) <TG ( 7, b, 12, 7), (3.9

U={1=(11, . .. ,ICIM, . -)‘1:1,%0,25 1:[#4]- (3.3 where the renormalized paramet@rsandv; which include
e the thermal noise effects are related to the original param-
etersu; and vJ by Eq (2. 14) It should be noted that the

Thus our task is to find an elemehit of the set/ such that inequality |opt(7 b7 V)<| pt(Y b.u,v) is satisfied. Of

the mutual information should be maximized. The optimum th litv ~1(©
POM TII is determined by the requirement that course, the inequalityl op(y, b, p,v) <lop( ¥, b,pt,v) i

trivial. The inequality(3.6) indicates that the upper bound of
ma)ﬁeul(Tr[HMpL]) When the POMI maximizes the mu the accessible information for the signal in the presence of

tual information,IT has to satisfy certain conditions1, 3ﬂ the thermal noise is obtained by replacing the signal param-
However, the necessary and sufficient condition for the POMgters with the renormalized parameters including the thermal

to maximize the mutual informatiohhas never been found. pojse effects in the accessible information obtained for the
Using Eq.(3.2), we can calculate the accessible informationggme signal in the absence of the thermal noise.

l opt @s follows:

~ L B. Binary signal-detection process
I op=max (Tr[I1,p;])

fieu We now consider a binary signal detection to obtain an
A A analytic expression of the upper bound of the accessible in-
=max {Tr{IL, L(|y)}{v;) T} formation,| ) y,#,%,7), under the influence of the thermal
el noise. To this end, we have to obtain the accessible informa-
= mad {Tr[ 21 (11.) |y ) (s | 1} tion I(pt(y é,u,v) in the absence of the thermal noise. We
flcu first investigate a detection process for quantum states whose
R density operators are given k4 and p,. To simplify the
=maxi (Tr[IL, | ) (1), (3.4  discussion, we confine ourselves to the caseSef{1,2.
' cu Thus the binary detection process we consider is described

) ~ A Al A by POMsII; andIl, which satisfy
where we have introduced the sieein’:,c’f(nﬂneu}

which is the range of the superoperatirwhen the domain f[1+f[2=f, f[jzo (1=1,2. (3.7
is restricted to the séi. _ - N _
Let H’—(Hl, . H’ ...) be anarbitrary element of In this case, the quantity(j|k)=Tr(Iljp\) is the condi-

tional probability that the measurement outcome indicates
the quantum stat¢ when the quantum state has actually
been received. Suppose that the signal-detection process de-
' T ~ A
H =L (I1,,) for all weS. Using the relat|0n§Me5H scribed byIl; and II, maximizes the mutual information.

()=
raZ) Fﬂ,rt“h”ee&%?es“u‘;ﬁt“?ﬁé“deeli'%“%i’:ﬁ&f[m'niia fogen the POMIL and , satisty the two equivalent con-
9 P Uitions derived by Holevd11],

the SU1,1) generators, we can also show from the inequality

tpe _set U Then there is some element
O=(IIy, ... I,,...) of the set U such that

H =0 that the operatof[’ is non-negative definite; that is, 11,(F,—F,)11,=0, (3.9
H’ =0 forall ueS. ThusII’ becomes a POM and belongs
to the seti/. Therefore we have proved thﬁt’ cU—TT' A Al . - ~ ~ o~
e U. This means thal is a subset of/: namely,/{C . This (Fi=DI=0(j=12), F_J-;m HiFi_szl,z Fill;
result provides the following inequality: (3.9

max (Tr[fl;|¢j>(¢j|])s maxl (Tr[f[l’L|z,bj)<zpj|]). where[ is called the Lagrange operator aﬁg is given by

I:I'EFZ/I l:[,EM

(3.5 - . P(jlk)
Fi= Ingc———+—7—1|. 3.1
RN S

Here the equality holds if and only if the optimum POM

115, chosen among the elementsiéfelongs to the subset Tpgn using Eqs(3.7) and (3.9, if the operatoir,— F, does

U; that is, [T,e UCU. It is important to note that the quan- not have zero eigenvalue, we can derive the relations
tity on the right-hand side in the inequalifg.5) is equal to

the accessible information calculated in the quantum detec- ﬁlﬁzzf[zf[lzo, ﬁf:ﬁj(j =1,2), (3.1
tion process, where the quantum states of the received signal
are given by the pure statég,),| ), . .. ,|¥,). where the derivation is given in the Appendix. This result

We denote the accessible information for the signal giverindicates that the accessible information in the binary signal
by Egs.(2.1) and(2.2) in the presence of the thermal noise asdetection is obtained by a quantum measurement described
lop ¥, #,14,v) and the accessible information for the sameby projection operators. It should be noted that 811 is
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valid for any density operatorp; and p, as long as the number of the quantum states of the signal, so we can set
operatorF, — F, does not have zero eigenvalue. S_={1,2, ...,n}. The Bayes cosCg to be minimized is
Suppose that the signal quantum states are pure and ligiven by
early independent. Lei/{”)) and|y5”) be the signal quan- -
(0) . . . A
tum states, th.er{azﬁJ ) is given in qu.(z.l) ar)d (2.2. In CBZZ 2 PCi T py ], (4.1)
this case, we find from Eq3.11) thatIl; andI1, become j=1k=1
one-dimensional projection operators. Thus after some cal-
culation (see the Appendix we obtain the accessible infor- where the quantityCjy is the cost incurred when we infer

mation[7,38,39, that the received quantum state is described by the density
operatorf)j even though the quantum staig has actually
1 been receivedl]. Since the cost is reduced by the correct
(0) - .l J1— 2
Lopt( v: &) =lo+ 5 (14 V1=4p1pon”) detection, the inequalit€;; < C is satisfied. In the follow-
ing, we denote the Bayes cost @g(Tr[II;p,]). The neces-
M —2p.0.2 i

XIn(1+V1=4p1po«”) sary and sufficient condition for the PONI to minimize the
1 Bayes cost is given by Ed@1.4). But it is difficult to obtain

+ 5(1— V1—4p;p,«?) the optimum POM from Eq(1.4).

From the same argument used for deriving the upper
xIn(1—1—4p,p,x?), (3.12  bound of the accessible information, we find the following

relation:

where we set k=[({V|¢S?)| and 1o=—In2—pnp, o
—p2lnp,. Cegopt= MINCg{ I IL; L(| ) ) 1}

Using Eq.(3.12, we can obtain the analytic expression of Meu
the upper bound of the accessible information in the presence o P
of the thermal noise. When the density operators of the sig- = minCg{Tr[ L (1)) [ ¢ vl I}
nal quantum states are g|ven Py =VapuV I Tr(V1peVh fett
and p,= Vzpthvler(VzpmVZ) the upper bound of the ac- = mmCB(Tr[H | )l 1)
cessible information is obtained by substituting ' eu

—|<¢1|¢2>| into  Eq. (3.12, where [¢;)=U;[0)/ — i 2
= min Cg(Tr[II; . 4.2

\/<O|U U;|0) and the operater is given by Eq.(2. 13) In A eu o(TrLIL] | 410Cund D .2

partlcular when we consider the binary detection process for
thermal coherent states, pl—D(a)pthD (a) and

pZ—D(,B)pthDT(,B) whereD(a) erd'-a*ajg the displace-
ment operator, we can obtain the inequality

L \/1 4 la=pl”
2[ 1T VAT APPSR T

In the last inequality we have used the fact tds a subset

of U, and the equality holds if and only if the optimum POM
I, chosen among the elements of the &esuch that the
Bayes cost in the detection process for the quantum states
(I2):|42), . . . |#y)) should be minimized belongs to the
subsetl/, namely,I1ye UCU. Let Cgopl v, ¢, 1, v) be the
minimum value of the Bayes cost in the quantum detection

Iopts|0+

2 A, A N
<Inl 1+ \/1—4p1pzeXF< _ |0‘_ﬁ|_ process for the signal pg.p,,...,p,) and let
1+2n CEOL{(.¢,1,v) be the minimum value of the Bayes cost in
1 PRV the detection process for the signal
a— - . ;
P21 \/ 1—4p1pzeXF’( - (108, . .. [4®)), wherep; and|4{*) are given in
2 1+2n Egs.(2.1) and(2.2). Then from Eq.(4.2), we can obtain the
PRV following inequality:
a—
XIn| 1— \/1—4p1p2exp< ~ il | (3.13

CBopt(7 b, v)= CBopt('y b1, v), (4.3

In optical communication systems wheee— B|?>>n is sat-
isfied, the right-hand side of this inequality becomes a muchwhere the renormalized paramet@rs andv; including the
tighter bound of the accessible information than the Holevdhermal noise effects are given by E(@ 14) It is obvious
bound. that the |nequal|t|e£f300)pt(y ¢, 1,7)=CEN (v, b, v) and
Chopl v: P 14, V)>CBopt('y ¢,u,v) are satisfied. Thus the
IV. LOWER BOUND OF THE BAYES COST lower bound of the Bayes COSlgqy is Obtained fromC{n,
by substituting the renormalized parameters.
The average probability of errd?, which is one of the
In this section we consider the lower bound of the Bayegnost important quantities to evaluate a performance of a
costCg [1,8,11-13in the quantum detection process for the quantum communication system is obtainedPas-1+Cg
Gaussian state signal under the influence of the thermdly substltutlngC,k——b‘k into Eq. (4.1). Let us denote as
noise. In this case the number of the indiges equal to the  Po,(y, é,u,v) [Popt(y ¢, ,v)] the minimum value of the

A. General formula for the lower bound
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average probability of error in the signal-detection process ifnodyne detectior{42], and it is given byP o= 1/2{1

the presencéabsencgof the thermal noise. Then we obtain —erfy2n./(1+2n)]}, where erfé<)=(2/\/F)f3dte*t2

from the inequality(4.3) is the error function. Since the minimum value of the average
(0) ~~ probability of error obtained by the quantum detection theory
Pop((7: .14, 0)=Popi( v, 1, v). 44 s smaller than the average probability of error in any con-

In the absence of the thermal noise, the quantum states of tﬁ/gntlonal optical measurement, we can obtain the inequality

signal considered here become pure and linearly indepen- . 5 L
dent. Thus we can apply Kennedy's lemfda to obtain the < 1—erf( E) =Py E[l_ W], @7

minimum value of the average probability of error and the 2
optimum POM . The lemma ensures that the minimum value

of the average probability of error for a linearly independenrwr1ere the parameteD=.4n,/(1+2n) represents the
pure quantum state signal is attained by a quantum MeasUrga jivalent signal-to-noise ratiksi]. When the signal has a

ment described by a set of one-dimensional projection OPerd3rge number of photonsD(1), Eq.(4.7) is approximated

tors. This lemma greatly simplifies calculation of the mini- 2 52
mum values of the average probability of error ﬁ]see sDi /;/5 VizswieFr)opth;i/sAfe QD< 1O)n tEe Oize;) h?)r;((j:,c)vr:]t]ain
PON ., u,v). The analytic expressions &)y, b, u,v) 2(1—gD/\/ﬂ)>Py >1/2>(/1_ D) o B S
have been obtained for several coherent state signaps/ = opt— y
For anM-ary coherent state signal, where the quantum

[1,40,41. Thus we can obtain the lower bound at _ by the densit A - ith
PO) . ¢,1,7) under the influence of the thermal noise. states are given by the density operaysps, . . . o Wi

pj=D(aj)f)thDT(aj), the lower bound of the average prob-
ability of error can be obtained by replacing the complex
amplitudea; with Ej = aj/y1+2n in the minimum value of
We now consider a binary signal-detection process whichhe average probability of errdPg%{(al,az, ..oay) for

is very important in practical digital communication systems.the thermal noise-fredl-ary coherent state signal whose
The signal takes quantum staiesand p, with prior prob-  quantum states are given by pure coherent states
abilities p; andp,, where the density operatpf (j=1,2) is  |a,),|ay), ... |ay); that is, the lower bound of the average
given in Egs.(2.1) and(2.2). In the absence of the thermal prohability of error is given bP(Q(ay, @y, - . . ;@y). In the
noise, since the quantum state of the signal becomes purgpsence of the thermal noise, since the analytic expressions
the minimum value of the average probability of error is uf the minimum value of the average probability of error for

B. Lower bounds for binary and coherent state signals

obtained[1,39-4] as the several coherent state signals have been obtained by the
1 present authorp40,41], we can use the results to obtain the
pé%i:z[l_ V1-T 1y, ¢, v)], (4.5 lower bounds of the average probability of error in the pres-

ence of the thermal noise. For the ternary phase-shift keyed
U (O (ON 2 On ¢ coherent state signal, where the quantum states| aye
where T'i(y,¢, )= yi[957)° and [7)=Vi|0)) |,e@3im), and|ae~ (23T, the minimum value of the av-
\/<O|VJTVJ-|O). Then the minimum value of the average prob- erage probability of error becomes
ability of error Py in the binary signal-detection process
under the influence of the thermal noise satisfies the inequal-

2
ity Popi(@) = 5{3= V(1— ko)’ =34}

Popt%[l—Jl—Flz(y,qs,ﬁ,"v‘)], (4.6) —V2(1+ 2k [ 1 et (1 ko) 3r3]},
(4.9

where F12(7!¢17L1’;):|<¢1|L€2>|2 and |¢]>:U]|O>/
V(0]U[U;]0) and the operatod; is given by Eq.(2.13.

Let us consider, for instance, the binary phase-shift keyed 3 NI
coherent state s_ignal under the influence_ of the thermal nqise, Ke= exp( - 5n5> c05(7n5> ,
where the density operators of the two signal states are given
by $1=D(a)pyD (@) and p,=D(~a)pyD'(~a) with 5
D(a)=e* ~"2 For simplicity, we assume the equal prior K= exp( .
probabilities, p;=p,=1/2. Since V;=D(e) and 2
V,=D(—a), we obtain U;=D(a/y1+2n) and

_ Then the lower bound of the average probability of error for
U,=D(—a/+1+2n). Thus the lower bound of the average X . .
probability of eror is obtaned by substituting the ternary phase-shift coherent state signal under the influ-

Ty, b1, 7) = exd —dng(1+2n)] into Eq. (4.6), where ence of the thermal noise is obtained by substituting the fol-
2@ V)= s . .0),

ns=|a|? is the average value of the photon number in eacHOWIng expressions into Ed4.8).
bit of the signal. Among the conventional optical measure- _ .
ments, the lower average probability of error for the binary « =ex;{ _ 3”3_ cog{ \/§ns_
phase-shift keyed coherent state signal is attained by the ho- ¢ 2(1+2n) 2(1+2n)

where the parameters. and x4 are given by

sin 5 (4.9

ﬁn_s).

, (4.10
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sir{ \/§n_s

2(1+2n) |

Fi1—F2=A1p1—Azp2, (A2)

(4.10)

_ 3ng
KsZOH T ST
with

In the same way, we can obtain the lower bound of the

average probability of error for thermal coherent state sig- P(11)Pou(2) P(2]2)Pou(1)
nals. Al: pl"{—ou} 0= 2|n{—ou},
P(2|1)Pou(1) P(1|2)Pou(2)
(A3)
V. SUMMARY

In this paper, by means of the superoperator representavhere we setPq,(j)=2,-1,P(jlk)px. Let |w,) and
tion of quantum states, we have obtained the upper bound @, be an eigenstate and eigenvalue of the operator
the accessible information and the lower bound of the Bayeg, —F,. Then using the spectral decomposition
cost in the quantum detection processes for the GaUSSIQﬂl_FZZEMEV| ®,),(w,|, we obtain from Eq(A1)
state signals under the influence of the thermal noise. The
analytic expressions of the upper and lower bounds for the
binary quantum state signals have been given. The method > |wﬂ>wﬂ<wﬂ|ﬁlﬁ2: > |wﬂ>wﬂ<wﬂ|ﬁ2ﬁ1=0,
we applied in this paper can be used for estimating any quan- «<V neV
tity that is a function of the conditional probabilities, (Ad)
P(,u|j)=Tr[HMf)j]. Let A(x) be an analytic function ox.
Then for the Gaussian quantum state given in Egd) and ~ where) stands for a set of indices of the eigenvalues. Since
(2.2), we can obtain the inequalities F,—F, is a Hermitian operator, the s¢fw,)|ueV} be-
. . comes a complete orthonormal system. Thus &qt) is
maxF(Tr{ [,p;])<maxF(TrIL,[4;)(¢;]D, (5.  equivalent to
Meu Meu
minATA L5, 1) = minATHIL ) (), (5.2 {0, Mll;= 0 ([, =0. (A5)
Meu el
If 0,70 for  all pneV, the equality
where the set{ is given by Eq.(3.3. The superoperator (y |II,1I,=(w,|II,II;=0 is obtained. Therefore we find

representation of quantum states that we have used hefﬁ)mz-,lzﬂ:l and the completeness fif )| x € V} that
seems to be very useful for investigating quantum commuyy 1, Jabed o5 a

nication and information systems under the influence of th%al\?ez O;};ﬂéd %anni]?J llj (j=1,2) are satisfied. We
thermal noise. It is show3] that when bounded operators e

. : Next we will derive Eq. (3.12. When the density opera-
are gongldered, the s.uperopera.tor metho*d or thermofield d¥0rs;31 and p, represent linearly independent pure quantum
namics is mathematically equivalent ©* algebra[44]. ~ ~

Therefore when we usg* algebra, the inequalitie®.1) and states]I; andIl, become one-dimensional projection opera-

(5.2) will be proved more rigorously. tors. Here we sef;=|¢;)(¢;| andIlj=|¢;){#;| (j=1,2). It
should be noted thdt ¢+),| #,)} is a complete orthonormal
ACKNOWLEDGMENTS system in the two-dimensional Hilbert spagg. Since the

signal quantum statelsp,) and |¢,) are linearly indepen-
One of the author¢M.B.) would like to thank Dr. M.  dent, a set of two states given by
Hirokawa of Tokyo Gakugei University for his useful com-
ments on operator algebra. He is also grateful to the mem-

—i¢ —_el®
bers of the quantum communication group of Tamagawa |¢1>:M, |¢é>:M
University for their hospitality. 2(1+k) V2(1—«k)

(A6)
APPENDIX: OPTIMIZATION OF THE BINARY

QUANTUM DETECTION PROCESS becomes a complete orthonormal system in the Hilbert space

. . . . H,. In Eq. (AB), we set( | p,)=«e'? («>0). Thus there
In this appendix we first derive E@3.11 from Eqs.(3.7) st he a x 2 unitary matrix which represents a unitary

and(3.9). Itis easy to see from the relatid?]:l,zﬂj:I that transformation betweer| :(>1>,|<;52>) and (&), 45)). Such
the operatorsIl; and Il commute with each other, 3 transformation can be expresdad] as

I, I, =TI,I1;. Furthermore the rglatiAon§j:1‘21:[j=IA and
I'=2;_1F11; give Fy—I'=(F,;—F,)Il,. Multiplying this <|;51>)
relation by the operatofl;, from the right and using Eq. -

(3.9), we obtain |#2)

e“2cogpl2) e “sin(pr2) | (|b1)
( —€'“sin(g/2)  e”'*2cog ,8/2)) ( |g,§>) ’
o o (A7)
(F1—F)ILIL=(F1—F2)1LI1;=0. (AL)

wherea and 8 are real parameters to be determined by the

On the other hand, the operatéq—ﬁz is calculated from optimization of the signal-detection process. Using E46)
Eqg. (3.10 as and (A7), the mutual information is calculated as
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I(a,8)=[1-p(a,B)]pn 1~ p(ep) } Rii(l—i-)\)I)\Kz
’ P [1-p(a,B)Ipata(a. B)p; o2
1= 2(1- <R | 1) &1l
+p(e,B)p1in Pla.f) } +[1
’ p(a,B)p1+[1—-q(a,B)]p, R:1(1+>\)+ >
5 +
_ 1-9(a.p) + | b2){ b2l
A BllpIn p(a,ﬁ)pﬁ[l—q(a,ﬁ)]pj 21-IR
q(a,pB) } Ril(l—)\)
+ , |
PP b ) Tor o AP kg (@ i) ol e (),
(1-«9)R
(A8)
(A15)
with
1 RES (14 0) £ \K?
p(a,,8)=§[1—:<0038+ V1—k?coga— ¢)sinB], (A9) A +§( RE
= 2(1- R | 1) P4l
1
q(a,p)=5[1+kcos5+ V1-«k*coga— ¢)sinB]. Ri%(lJr)\)iKZ
(AlO) + 2(1_K2)R |¢2><¢2|
Then the maximization condition of the mutual information 1
I(e,B) is given by RIE(l—)\)
5 —Km(ei¢|¢1)(¢2|+e’i‘/’|¢>2)<¢1|),
@'(dﬁ) @'(a ,B)=0, (A11) (AL6)

Pl(a,B)lda? (92I(a,,8)/8a<9,8>
A(a.p)lopoa Aaplop? |~ A2

1
where the matrix inequality means that the Hesse matrix cal- A=p1/pz, R= \lz(lﬂx)z—)\Kz- (A17)

culated froml(a,8) is negative definite. Substituting Egs.
(A8)—(A10) into Egs.(A1l) and (A12), we obtain the fol-
lowing solutions of Eqs(A8)—(A12):

where the parameteis andR are given by

Since the Bayes cost in the binary signal-detection pro-
cess is maximized by a quantum measurement described by
projection operator§l], we can obtain the minimum value

1—«? ; .
a=¢, SiB=F\/———, of the Bayes cost in the same way. Using Es6) and
W 1-4p,pyk (A7), the Bayes cost in the binary detection process for the

pure quantum state signal is calculated as
(P1—P2)k
cog== V1—4p,p,e? Ce(a,B)=p1C1l1-p(e,B)]+p1Cap(e,B)

+p,CoJ1— , +p,C ,B),
Substituting these solutions into E§89) and(A10), we can P2Cad 1= a(@. )]+ pCaf( . B)
obtain the accessible information from E#&8), (A18)

(A13)

where p(a,8) and q(«,B) are given by Eqs(A9) and
lop=—IN2—pyInp;— paInp,+ 5 (1+V1 4p1pok?) (A10). The minimization condition of the Bayes cost

Cg(a,B) is given by

1
XIn(1+\1—4p,pox?) + 5(1— V1—4pip,«?)

(9
Cs(a,B)=—-7Cg(a,B)=0, (A19)
XIn(1—1—4pyp,c2), (A14) /3
for any linearly independent quantum staf¢s) and|,). #*Cg(a,B)da?®  7*Cgla,B)dadp )
In  particular, when we set |¢;)=|y{*)=V,|0)/ PCqla.B)l3Bda  PCqla,B)ldf> >0. (A20)

V O|VTV |0) we obtain the accessible information given by

Eqg. (3. 12) For reference, we write down the explicit expres- Substituting Eq(A18) into Egs.(A19) and(A20), we obtain
sions of the optimum POME[1 and HZ, the solutions
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B (A=)«
a= ¢, COSG__T’
e
sinB= — m)()z% (A21)

where the parameteng andS are given by

/1
S= Z(1+X)2—XK2. (A22)

_ P1(C21—C1a)
X P2(C1,—Cyp)’
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1
. S- §(1+X)+XK2
II,= 2(1-x9)S | p1)( b4l
1
S+ z(l-i-)()—;(z
+ 2(1— KZ)S |¢’2><¢’2|
1
S—5(1-x) |
—x S s (Cfo0( bl te b)),
(A25)

Thus the minimum value of the Bayes cost and the optimunyvhere we se€y=p;Cy;+ p,Cy,. Itis easy to check that the

POM become
1
Cgopr=Co T E[pl(cﬂ_ C11)+p2a(Cr—Cy))]

4x
-\ ]

1 2
S+ E(l+x)—)(K

X

(A23)

le

2(1_K2)S |¢l><¢l|

1
S— 5(1+X)+K2
+

2(1—K2)S I¢2><¢2|

SJrl(l—)()
2 . A
oK 2(1-«%)S (€' 1) pal +e ¢ o) (1)),

(A24)

optimum POMsII; andlIl, satisfy Eq.(1.4). When we set
Cjx=—9djx and useP,=1+Cg, we obtain the minimum
value of the average probability of error,

1
Popt=§(1— V1-4p;pyk?), (A26)
from which Eg. (4.5 is derived by setting

| ¢i)=V;10)/\(0]V]V;]0).

It is important to note that the maximum value of the
mutual information and the minimum value of the average
probability of error are simultaneously attained in the quan-
tum measurement described by E¢&15) and (A16) with
the upper sign. In this measurement, the following relation is
established:

lopt=Hs—Herror: (A27)

with
Hs=—p4lnp;—pzlnp,, (A28)
Herror= = PopiNPopt— (1= Popd IN(1—=Pgp),  (A29)

where Hg is the Shannon entropj45] of the signal and
Heror represents the amount of information loss due to the
detection error.
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