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The vacuum-polarization contribution to the two-loop ground-state self-energy of hydrogenic ions is calcu-
lated with an exact Dirac-Coulomb propagator. Agreement at lowZ with previous calculations is found and
predictions for the effect at highZ are presented.@S1050-2947~96!02610-8#

PACS number~s!: 12.20.2m

Theoretical treatments of the two-loop Lamb shift have
been given almost since the introduction of the modern form
of quantum electrodynamics~QED!, starting with the classic
calculation of Karplus and Kroll@1#. While the lowest-order
result, first correctly calculated by Appelquist and Brodsky
@2#, enters in order (Za)4 atomic units~a.u.!, there are two
reasons for interest in corrections of higher order inZa,
known as binding corrections. The first is their relevance to
the Lamb shift in hydrogen. Two recent calculations@3,4#
have found rather large contributions in order (Za)5 a.u. that
significantly affect the interpretation of experiment. Because
the lowest-order effect is 101 kHz, and the next-order result
237.1 kHz for the 2S state of hydrogen, the convergence of
the Za expansion is called into question. The second is re-
cent progress in high-precision spectroscopy of highly
charged ions, where QED effects are being measured with a
precision that is beginning to require inclusion of the two-
loop Lamb shift. However, it is well known from studies of
the one-loop Lamb shift that at highZ, the expansion inZa
breaks down completely. This may be expected to be even
more the case for the two-loop Lamb shift, given the large
coefficient mentioned above. For both these reasons, an ex-
act approach, in which no expansion inZa is made, is
clearly desirable.

As a first step in the exact evaluation of two-loop correc-
tions, we calculate in this paper the vacuum-polarization
contribution to the ground-state Lamb shift, given by Fig.
1~a!, where the double lines indicate Dirac-Coulomb propa-
gators. However, in the calculation reported here, we use free
propagators in the vacuum-polarization loop. We make this
approximation because when free propagators are used, the
diagram becomes an integral over a modified form of the
one-loop electron self-energy. This latter function has been
intensively studied@5#, and accurate numerical methods have
been developed that allow it to be evaluated to all orders in
Za. We will in the next section describe how this two-loop
contribution is evaluated. By studying its behavior at lowZ
we will be able to confirm theZa corrections calculated
independently by Pachucki@6# and Eides and Grotch@7#, and
by studying its behavior at highZ, make predictions for the
size of the effect for highly charged ions. We conclude with
a short discussion of the issues involved in undoing the ap-
proximation of treating the electrons in the vacuum-
polarization loop as free and evaluating the remaining graphs
contributing to the two-loop Lamb shift.

DESCRIPTION OF THE CALCULATION

As noted above, we wish to evaluate the electron self-
energy graph with the photon line modified to include a pho-

ton self-energy subgraph. We use the method of dimensional
regularization to regulate the infinities with the number of
space-time dimensionsn542e. This corresponds to modi-
fying the photon propagator to@8#
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in agreement with Ref.@8#. HeregE is Euler’s constant.
The bound electron propagatorSF is expanded in terms of

the free electron propagatorSF
0 as
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where for this calculationV~x! is taken to be the Coulomb
potential. The three terms in the right-hand side are known as
the zero-potential, one-potential, and many-potential terms,
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referred to in the following as 0P, 1P, and MP, respectively.
We evaluate the MP term by using the above equation to
express it as

SF
MP~r ,r 8;E!5SF~r ,r 8;E!2SF
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2E d3x SF
0~r ,x;E!g0V~x!SF

0~x,r 8;E!.
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As in Ref. @5#, the first two terms are evaluated in momen-
tum space. The 0P term is given by
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and the 1P term is given by
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HereD andN are defined by
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with Q5rxp1r(12x)p8.
The 1/e2 and 1/e divergences in the 1P term are cancelled

by similar ones in the 0P term as required by the Ward iden-
tity @9#. The finite integrals are evaluated using adaptive
Monte Carlo methods@10#. Both terms enter first in order
(Za)2 a.u., but this spurious term cancels in the sum. To
increase accuracy at lowZ, subtraction terms that manifested
the cancellation which could be evaluated analytically were
included in the numerical integrations. The combined result
is tabulated in the first column of Table I.

The MP term is evaluated in coordinate space. This term
is ultraviolet finite, and we setn54 at the beginning of the
calculation. While doing the integration over the photon
4-momentum, we perform a Wick rotationk0→ iv. In carry-
ing out this rotation full or half poles are picked up in the
first quadrant corresponding to bound states with energy
en<ev . These pole terms are then given by
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The remaining part of the MP term after the Wick rotation

is
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The integration overx andy was done over an exponen-

tial grid for the radial coordinates while the integral overz
was done using Gaussian integration. It was found necessary
to use a rather fine grid, with several thousand points, to be
able to control the numerics of the calculation. The MP term

FIG. 1. Two-loop self-energy Feynman diagrams.
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turns into a sum over partial waves. As with the 0P and 1P
terms, spurious terms of order (Za)2 appear in the pole and
Wick rotated parts of the MP term. In the latter they are
associated with the first partial wave (l50). For this reason
that wave was separated out and evaluated with high accu-
racy, and combined with the pole term. The sum is then
added to the remaining partial waves, which contribute in the
correct order, and the result presented in the second column
of Table I. The numerical difficulties of the problem as com-
pared to the self-energy calculation have to do with the
higher-energy scales characteristic of the vacuum-
polarization loop. Particularly at lowZ, the asymptotic re-
gion in the one-loop self-energy calculation is reached well
below an electron mass, but because the energy scale of the
vacuum-polarization loop is two electron masses, much
higher values ofv are needed to reach the asymptotic limit.
This requires significant modification of the routines to solve
for the Green’s functions, and also leads to slower conver-
gence of the partial wave expansion. The observed fall off at
high partial waves~the calculation went tol516! is only 1/l 2

as opposed to the 1/l 3 behavior of the one-loop self-energy.
While a fit to a power seriesa/ l 21b/ l 31c/ l 4 allows the sum
to be continued to infinity, the uncertainties in the fit lead to
the numerical errors quoted for the MP term, which are the
largest errors in the problem.

While the present calculation is valid to all orders in
(Za), it is of interest to compare it with the known expan-
sion,

E5@0.014 39220.023 208~Za!#~Za!4 a.u., ~12!

where the first number is known analytically@11# to be
5/21627/~81p2!. This result is tabulated in the fourth column
of Table I. As expected, at lowZ the difference between the
calculations is relatively small. However, even byZ530, a

30% difference is seen, and beyond that point the expansion
in Za breaks down dramatically, as happens also with the
one-loop self-energy. Of particular note is the 20-fold en-
hancement atZ592, which arises from the almost exact can-
cellation of the first two terms of the power series.

As a check on the calculation, this procedure was reversed
at lowZ in the following way. Rather than assume the above
behavior, we instead made a fit to

E5@A1B~Za!1C~Za!2ln~Za!#~Za!4 a.u. ~13!

We found A50.0143(2), B520.022(3), and C5
20.04(1), consistent within the errors with the lower-order
results, and incidentally indicating the presence of the
higher-order logarithmic term, which is expected on power
counting grounds. We also attempted to include a constant
term in order (Za)6, but the numerical errors in our calcu-
lation prohibited a meaningful determination of this coeffi-
cient.

The next step in this calculation is the exact calculation of
Fig. 1~a!. What we have calculated is the analog of the
Uehling potential term@12#, and there remains the calcula-
tion of the analog of the Wichmann-Kroll terms@13#. The
first corrections to the result presented here are the four-
photon graphs, which enter in order (Za)5 a.u., and have
already been evaluated in Refs.@6, 7#. We intend to follow
the approach of Soff and Mohr@14# in this calculation, which
will pick up all higher-order terms inZa in addition to the
four-photon contribution.

The heart of the calculation is the evaluation of the re-
maining diagrams of Fig. 1. There are two difficulties that
we wish to note in connection with them. The first arises
from our using Green’s functions to represent the propaga-
tors, as opposed to using a spectral representation. After
separating out angular dependence, these functions break

TABLE I. Breakdown of the fourth-order vacuum-polarization result. [2x] denotes multiplication by
102x, and the units are a.u.

Z 0P11P MP Total Lowest plus first order Inferred higher order

5 2.039@28# 0.353~18!@28# 2.392~18!@28# 2.401@28# 20.009~18!@28#

7 7.762@28# 1.401~23!@28# 9.163~23!@28# 8.992@28# 0.171~23!@28#

10 3.200@27# 0.566~17!@27# 3.766~17!@27# 3.601@27# 0.165~17!@27#

12 6.599@27# 1.162~22!@27# 7.761~22!@27# 7.268@27# 0.493~22!@27#

15 1.602@26# 0.263~03!@26# 1.865~03!@26# 1.701@26# 0.164~03!@26#

17 2.637@26# 0.414~05!@26# 3.051~05!@26# 2.727@26# 0.324~05!@26#

20 5.047@26# 0.740~28!@26# 5.787~28!@26# 4.993@26# 0.794~28!@26#

22 7.392@26# 1.032~46!@26# 8.424~46!@26# 7.085@26# 1.339~46!@26#

25 1.236@25# 0.161~06!@25# 1.397~06!@25# 1.125@25# 0.272~06!@25#

27 1.687@25# 0.210~08!@25# 1.897~09!@25# 1.480@25# 0.417~09!@25#

30 2.589@25# 0.302~12!@25# 2.891~12!@25# 2.139@25# 0.752~12!@25#

40 8.501@25# 0.802~36!@25# 9.303~36!@25# 5.530@25# 3.773~36!@25#

50 2.210@24# 0.173~06!@24# 2.383~06!@24# 1.050@24# 1.333~06!@24#

60 5.006@24# 0.349~17!@24# 5.355~17!@24# 1.555@24# 3.800~17!@24#

70 1.042@23# 0.069~04!@23# 1.111~04!@23# 0.173@23# 0.938~04!@23#

80 2.065@23# 0.146~04!@23# 2.211~04!@23# 0.098@23# 2.113~04!@23#

90 4.005@23# 0.330~05!@23# 4.335~05!@23# 20.158@23# 4.493~05!@23#

92 4.572@23# 0.367~05!@23# 4.939~05!@23# 20.242@23# 5.181~05!@23#

100 7.830@23# 0.809~06!@23# 8.639~06!@23# 20.721@23# 9.360~06!@23#
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into two parts, as they depend on the magnitude of two radial
coordinates in different ways depending on which is larger.
Because there are two photon propagators and three fermion
propagators, there are 32 different regions to be considered.
While symmetries reduce the actual number to be coded, this
makes the problem significantly more complex than the one-
loop self-energy. The second difficulty has to do with renor-
malization. In the one-loop Lamb shift, breaking the propa-
gator into three parts, 0P, 1P, and MP, allows isolation of all
ultraviolet divergences in the first two parts. If the same pro-
cedure is followed in the two-loop case, breaking the three
electron propagators up in this way leads again to a large
number of terms, as was found in the recent treatment of Ref.
@15#. We are presently attempting to devise a more compact
treatment of the ultraviolet divergences that will allow the
numerical evaluation of these remaining diagrams. We are
particularly interested in the higher-order terms inZa that
are automatically contained in calculations that use exact

Dirac-Coulomb propagators: the large size of the first-order
corrections found in Refs.@3, 4# makes it possible that these
terms could play a role in the interpretation of the Lamb shift
in hydrogen. At highZ, we would also expect to see the
behavior already demonstrated in this paper for the vacuum-
polarization part of the calculation, a complete departure of
the exact result from the calculation carried out to first order
in Za.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grant No.
PHY95-13179. The calculation relied on extensions of one-
loop self-energy codes developed by J.S. in collaboration
with K. T. Cheng and Walter Johnson. We would like to
thank G. Adkins for discussions of two-loop renormalization
and S. Blundell for help on numerical issues.

@1# R. Karplus and N. M. Kroll, Phys. Rev.77, 536 ~1950!.
@2# T. Appelquist and S. J. Brodsky, Phys. Rev. A2, 2293~1970!.
@3# K. Pachucki, Phys. Rev. Lett.72, 3154~1994!.
@4# M. I. Eides and V. Shelyuto, Phys. Rev. A52, 954 ~1995!.
@5# The most accurate Coulomb potential self-energy calculations

for the ground state are given by P. J. Mohr, Phys. Rev. A46,
4421 ~1992!. Less precise techniques that can, however, be
applied to the non-Coulomb case were introduced by S. A.
Blundell and N. J. Snyderman, Phys. Rev. A44, 1427~1991!.
The calculations in this paper are an extension of a similar
method described by K. T. Cheng, W. R. Johnson, and J. Sa-
pirstein, Phys. Rev. A47, 1817 ~1993!. See also I. Lindgren,
H. Persson, S. Salomonson, and A. Ynnerman, Phys. Rev. A
47, R4555~1993!.

@6# K. Pachucki, Phys. Rev. A48, 2609~1993!.
@7# M. I. Eides and H. Grotch, Phys. Lett. B308, 389 ~1993!.
@8# G. S. Adkins and Y. Zhang~unpublished!.
@9# J. C. Ward, Phys. Rev.73, 1824~1950!.

@10# G. P. Lepage, J. Comput. Phys.27, 192 ~1978!.
@11# B. E. Lautrup, A. Peterman, and E. deRafael, Phys. Lett.B31,

577 ~1970!; R. Barbieri, J. A. Mignaco, and E. Remeddi,
Nuovo Cimento Lett.3, 588 ~1970!; 6A, 21 ~1971!.

@12# E. A. Uehling, Phys. Rev.48, 55 ~1935!.
@13# E. H. Wichmann and N. M. Kroll, Phys. Rev.101, 843~1956!.
@14# G. Soff and P. J. Mohr, Phys. Rev. A38, 5066~1988!.
@15# L. Labzowsky and A. O. Mitrushenkov, Phys. Rev. A53, 3029

~1996!.

54 2717FOURTH-ORDER VACUUM-POLARIZATION . . .


