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Using the invariant operator method, we have analytically obtained the exact wave function, propagator, and
uncertainty relations for the quantum damped harmonic oscillator governed by a time-dependent external force
with a tail characterizing the influence of the past. From these quantities, the frequency-dependent suscepti-
bility, the index of refraction, and the extinction coefficient forN identical atoms in a volumeV are evaluated.
The susceptibility satisfies the common properties, known as Kramers-Kronig relations, and as a given param-
eter that determines the nature of the tail goes to infinity, the behaviors of these results are exactly reduced to
the ones for a classical case.@S1050-2947~96!02310-4#

PACS number~s!: 03.65.Ge, 02.90.1p

I. INTRODUCTION

Since the interaction of electromagnetic radiation with at-
oms was discussed by Einstein, it has evoked continuing
interest from many physicists@1,2#. Einstein’s theory gave a
qualitative understanding of a large variety of radiation pro-
cesses, such as the absorption and scattering of light by at-
oms and the amplification of light beams by lasers. However,
the theory gave no satisfactory account of the linewidth of
atomic transition frequencies and the prescription for com-
puting the coefficients appropriate to a given atomic transi-
tion. For this one must look to the quantum-mechanical
theory @3#, and it is necessary to derive expressions for the
frequency-dependent susceptibility.

A gas of atoms in a cavity can be regarded as a dielectric
medium and the interaction of radiation with atoms has tra-
ditionally been treated by the damped harmonic oscillator
with a time-dependent external force@4#. This treatment
gives a good explanation of the anomalous index of refrac-
tion and absorption of light and has been reasonably applied
to some linear absorbing systems. The usual approximation
techniques, such as time-dependent perturbation theory, the
adiabatic approximation, and the sudden approximation,
have been used for treating time-dependent quantum sys-
tems, but it is not easy to deal with such systems. Lewis and
Riesenfeld@5,6# developed the theory of invariants to more
exactly treat such quantum systems in order to shed light on
their exact solutions. The invariants have received primary
concern because of their use in discussing physical problems
@7–9# and their possibility in applications of classical and
quantum physics@10#. For example, the exact invariant of
the damped driven harmonic oscillator has been applied to

the description of the motion of a charged particle in a time-
dependent electromagnetic field@5,11# and the construction
of coherent and squeezed states for systems with several pos-
sible physical applications@12#.

In our previous papers, we obtained the wave functions,
energy expectation values, uncertainty relations, transition
amplitudes, and coherent states for time-dependent quantum
systems@13–15#. In addition, for the bound quadratic Hamil-
tonian system, we have already obtained the quantum-
mechanical quantities by using the invariant operator method
@16#. The above results were obtained for the system without
influence of the past. The purpose of this paper is to obtain
the quantum-mechanical quantities for the damped harmonic
oscillator governed by an external driving force with a tail.
We assume that the external forceg(t) has the form

g~ t !5E
2`

t

dt8ae2a~ t2t8! f ~ t8!, ~1.1!

where f (t) is an instantaneous force at given timet and
ae2a(t2t8) satisfies the properties of thed function

lim
a→`

ae2a~ t2t8!5H da~ t2t8! ~ t>t8!

0 ~ t,t8!.
~1.2!

As the timet increases, the contributions at early times may
be negligible. To obtain the quantum-mechanical quantities
we adopt the invariant operator method. From these quanti-
ties we evaluate the susceptibilityx~v!, the index of refrac-
tion n(v), and the extinction coefficientk~v! for theN iden-
tical atoms in a volumeV represented byN damped driven
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harmonic oscillators of massm and charge2e. The depen-
dence of these quantities on the real parameter~a! is explic-
itly represented. The imaginary part of the susceptibility is
related to a fine-grained transition rate 1/t~v!. The transition
rate is defined as the rate at whichN similar atoms in a
volume V are excited by absorption of radiation having
sharply defined frequencyv. In addition, we show that they
satisfy important properties, that is, Kramers-Kronig rela-
tions. These relations are often useful in experiments where
it may be easier to measure one part ofx~v! than the other.

We shall begin with obtaining the quantum-mechanical
quantities for the damped harmonic oscillator with a time-
dependent external force influenced by the past. In Sec. II we
obtain the dynamical invariant quantity and define different
lowering and raising operators. By using the invariant opera-
tor, the exact wave functions satisfying the Schro¨dinger
equation and the exact closed form of the propagator for this
system are analytically evaluated and the uncertainty rela-
tions at various states are calculated. In Sec. III we obtain the
frequency-dependent susceptibility, the index of refraction,
the extinction coefficient, and the fine-grained transition rate.
Finally, we give the results and a discussion with graphs for
this system in Sec. IV.

II. QUANTUM-MECHANICAL TREATMENT

We consider a gas of one-electron atoms subjected to the
time-dependent external force influenced by the past. To ob-
tain the quantum-mechanical expression for the susceptibil-
ity, the index of refraction, and the extinction coefficient we
have to evaluate the wave function satisfying the Schro¨-
dinger equation. Since the Schro¨dinger equation cannot be
directly solved, we shall utilize the invariant operator
method. By using the wave function that we will derive, the
dipole moment of an atom can be given by

d~ t !52E
2`

1`

dq cn* ~q,t !eqcn~q,t !, ~2.1!

wherecn(q,t) is an atomic wave function. The quantityd(t)
represents the averaged dipole moment per atom at timet
and the single-atom result is then suitably averaged to pro-
duce the analogous result for a gas of randomly oriented
atoms or molecules. The macroscopic polarization of the gas
is simply

P~ t !5Nd~ t !/V. ~2.2!

Consequently, we can obtain the susceptibility from the re-
lation between the polarization and external field.

The Hamiltonian operator of this system has the form

Ĥ~ p̂,q̂,t !5e2gt
p̂2

2m
1egt@ 1

2mv0
2q̂22g~ t !q̂#, ~2.3!

where p̂ and q̂ are momentum and position operators, re-
spectively,g is a damping coefficient, andv0 is a simple
harmonic-oscillator frequency. From Eq.~2.3! we know that
the classical Lagrangian of this system becomes

L~ q̇,q,t !5egt@ 1
2mq̇22 1

2mv0
2q21g~ t !q#. ~2.4!

Using Eq.~2.4!, the classical equation of motion is given by

q̈1gq̇1v0
2q5

g~ t !

m
. ~2.5!

We may find an invariant operatorÎ ( p̂,q̂,t) that satisfies
Hamilton’s equation

dÎ

dt
5

] Î

]t
1

1

i\
@ Î ,Ĥ#50. ~2.6!

Assuming that this invariant operator has the quadratic form
of p̂ andq̂ and combining Eqs.~2.3! and~2.6!, the invariant
operator is given by

Î5
1

2
egtHm2S v0

22
g2

4 D ~ q̂2q0!
2

1@e2gt~ p̂2p0!1 1
2mg~ q̂2q0!#

2J , ~2.7!

wherep0(t)5megtq̇0(t) andq0(t) is the solution of the dif-
ferential equation

q̈0~ t !1gq̇0~ t !1v0
2q0~ t !5

g~ t !

m
. ~2.8!

From Eq.~2.8!, q0(t) can be regarded as the particular solu-
tion of Eq. ~2.5!,

q0~ t !5
a

mvd
E
t0

t

dt8E
t0

t8
dt9e2g~ t2t8!/2e2a~ t82t9!

3sin@vd~ t2t8!# f ~ t9!, ~2.9!

where vd5(v 0
22g2/4)1/2. Therefore, the influence of the

past is involved in the time-dependent functionq0(t).
The dynamical invariant operator can be written in terms

of lowering and raising operators. Let us define these opera-
tors as

â~ t !5S 1

2\mvde
gtD 1/2HmegtS vd1 i

g

2D @ q̂2l~ t !#1 i p̂J ,
~2.10!

â~ t !†5S 1

2\mvde
gtD 1/2HmegtS vd2 i

g

2D @ q̂2l~ t !#2 i p̂J ,
~2.11!

where

l~ t !5S q0~ t !1
g

2v0
2 q̇0~ t ! D 1 i S 12

g2

4v0
2D 1/2 q̇0~ t !v0

.

~2.12!

These operators satisfy the commutation relation such as

@ â,â†#51. ~2.13!

From Eqs.~2.10! and ~2.11!, the dynamical invariant opera-
tor can be represented in terms of lowering and raising op-
erators as
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Î5\vd~ â
†â1 1

2 !. ~2.14!

Using the eigenstates of the invariant operator, we can
obtain the exact wave functions satisfying the Schro¨dinger
equation. From Eq.~2.14!, we can easily obtain thenth ex-
cited state of the invariant operator as

fn~q,t !5
1

An!2n Smvde
gt

\p D 1/4 expF2
megtvd

2\
~q2q0!

2G
3HnF Smvde

gt

\ D 1/2~q2q0!G
3expH 2

i

\

megt

2 Fg

2
~q2q0!

2

22q̇0~q2q0!1
gq̇0

2

2v0
2G J . ~2.15!

Because the solution of the Schro¨dinger equation differs by
only a time-dependent phase factor from the eigenstate of the
invariant operator@6#, we may write the wave function
cn(q,t) as

cn~q,t !5fn~q,t !e
~ i /\!R~ t !. ~2.16!

Using Eqs.~2.3!, ~2.15!, and ~2.16! along with the Schro¨-
dinger equation, we can obtain the time-dependent phase fac-
tor R(t) as

R~ t !5E
t0

t

dt8@L0~ t8!2~n1 1
2 !\vd2L~ t8!#, ~2.17!

where

L0~ t !5egt@ 1
2mq̇0

2~ t !2 1
2mv0

2q0
2~ t !1g~ t !q0~ t !#

~2.18!

and

L~ t !5
mg2egt

2v0
2 F q̇02~ t !2S g

2
2

v0
2

g Dq0~ t !q̇0~ t !2
q̇0~ t !

mg
g~ t !G .
~2.19!

Then the concrete form of the wave function can be obtained
as

cn~q,t !5
1

An!2n Smvde
gt

\p D 1/4 expH 2
mvde

gt

2\
~q2q0!

2J e2 i ~n11/2!vd~ t2t8!HnF Smvde
gt

\ D 1/2~q2q0!G
3expH 2

i

\

megt

2 Fg

2
~q2q0!

222q̇0~q2q0!1
gq̇0

2

2v0
2G J expH i

\ E
t0

t

dt8@L0~ t8!2L~ t8!#J . ~2.20!

An exact closed form of the propagator admits an expansion in a natural manner leading to the time-dependent wave
functionscn(q,t) of the Schro¨dinger equation@17#. From Eq.~2.20! the propagator of this system is given by

K~q,t;q8,t8!5 (
n50

`

cn~q,t !cn* ~q8,t8!

5F mvd~e
gtegt8!1/2

2i\p sin vd~ t2t8!
G1/2 expH im2\

FegtS vdcotvd~ t2t8!2
g

2
D ~q2q0!

2

1egt8S vdcot~ t2t8!1
g

2
D ~q82q08!2G J expH 2

imvd~e
gtegt8!1/2

\ sinvd~ t2t8!
~q2q0!~q82q08!J

3expH im
\

@egtq̇0~q2q0!2egt8q̇08~q82q08!#J
3expH 2

i

\
F mg

4v0
2 ~egtq̇0

22egt8q̇08
2!2E

t8

t

dt9@L0~ t9!2L~ t9!#G J . ~2.21!

To find the explicit form of the propagator, we make use of Mehler’s formula@18#.
With the use of wave functions Eq.~2.20!, we can obtain the uncertainty relations for the various states as
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~DqDp!n12,n5
\

2
A~n11!~n12!, ~2.22!

~DqDp!n11,n5
\

2 S n1
1

2D H F S 8mvde
gt

\~n11! D
1/2

q0~ t !2cosvdt G21sin2vdtJ 1/4
3H F S 8

mvde
gt\~n11! D

1/2

p0~ t !1sinvdt G21cos2vdtJ 1/4, ~2.23!

~DqDp!n,n5
\

2
~2n11!. ~2.24!

From Eqs.~2.22!–~2.24!, we may recognize that the off-diagonal elements of the uncertainty relations (DqDp)n61,n are
governed by the past in terms ofq0(t) andp0(t) and the relations (DqDp)n62,n and (DqDp)n,n have the same form as the
simple harmonic oscillator.

III. SUSCEPTIBILITY, INDEX OF REFRACTION,
AND EXTINCTION COEFFICIENT

For a gas of one-electron atoms subjected to the electric
field E(t)5E0 cosvt, suppose now that we ‘‘turn on’’ an
oscillating electric field at timet50. From Eqs.~2.1! and
~2.20!, the electric dipole moment of the atom parallel toq
axis is determined by the expectation value as

d~ t !5
ae2E0

2mvd
$Cve

ivt1Cv* e
2 ivt1Cvd

e2g/21 ivdt

1Cvd
* e2g/22 ivdt2Cae

2at%, ~3.1!

where

Cv5
vd@a~v0

22v2!2v2g#2 ivdv@ag1~v0
22v2!#

~a21v2!@~v0
22v2!21g2v2#

,

Cvd
5

vda2 i S ga

2
2a2D

~a21v2!~v0
22ga1a2!

1
2avd2 i ~2v22ga!

2~a21v2!F S g

2D 21v22v j
22 igvdG ,

Ca5
2avd

~a21v2!~v0
22ga1a2!

.

The dipole moment of a single atom must now be related to
the polarization of a gas and the single-atom result is then
suitably averaged to produce the analogous result for a gas of
randomly oriented atoms or molecules. The electric field is
assumed to be sufficiently weak that the atomic populations
suffer a negligible disturbance from their thermal equilib-
rium. If there areN identical atoms in a volumeV, the mac-
roscopic polarization of the gas is simply

P~ t !5
ae2E0N

2mvdV
$Cve

ivt1Cv* e
2 ivt1Cvd

e2g/21 ivdt

1Cvd
* e2g/22 ivdt2Cae

2at%. ~3.2!

We assume that the electric field and the polarization can be
Fourier analyzed into frequency componentsE(h) and
P(h), respectively,

E~ t !5
1

2p E
2`

`

dt E~h!eiht, ~3.3!

P~ t !5
1

2p E
2`

`

dt P~h!eiht. ~3.4!

The Fourier coefficientsE(h) andP(h) are determined by
the inverse transform as

P~h!5
ae2E0N

12pmvdV
FCvE

0

`

dt ei ~h1v!t1Cv* E
0

`

dt ei ~h2v!t

1Cvd
E
0

`

dt e2g/21 i ~h1vd!t

1Cvd
* E

0

`

dt e2g/22 i ~h1vd!t2CaE
0

`

dt e~2a1 ih!tG ,
~3.5!

E~h!5
E0

4p F E
0

`

dt ei ~h1v!t1E
0

`

dt ei ~h2v!tG ~3.6!

and the susceptibilityx~h! is defined by

P~h!5e0x~h!E~h!. ~3.7!

From Eqs.~3.5!–~3.7!, the frequency-dependent susceptibil-
ity can be given by
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x~v!5
e2N

3e0mV

3
a2~vd

22v2!2v2ga1 iv@a2g1a~vd
22v2!#

~a21v2!@~v0
22v2!21g2v2#

.

~3.8!

A real field must give rise to a real polarization, and forP(t)
to be real the susceptibility must satisfy the relation

x~2v!5x* ~v!. ~3.9!

Using this expression for the susceptibility, we can also ob-
tain the variations of the experimentally more accessible re-
fractive indexn and extinction coefficientk ~and in turn the
absorption coefficient related tok by K52vk/c!:

n22k2511
e2N

3e0mV

a2~v0
22v2!2v2ga

~a21v2!@~v0
22v2!21g2v2#

,

~3.10!

2nk5
e2N

3e0mV

v@a2g1a~v0
22v2!#

~a21v2!@~v0
22v2!21g2v2#

.

~3.11!

Since a fine-grained transition rate 1/t is proportional to
the imaginary part of the susceptibility, using the imaginary
part of the susceptibility, we can show the dependence of a
fine-grained transition rate on the parametera as

1

t
5
e2NE0

2

6\m

v@a2g1a~vd
22v2!#

~a21v2!@~v0
22v2!21g2v2#

. ~3.12!

The susceptibility measures the response of the atoms to an
external electric field, that is, it belongs to a class of func-
tions known as response functions. Such functions have
some general properties that are independent of any particu-
lar theoretical model of the system that they describe. Some
important properties, known as Kramers-Kronig relations or
dispersion relations, can be proved very generally for the
susceptibility. We can easily show that the susceptibility ob-
tained in this paper satisfies the Kramers-Kronig relations

Imx~v!52
1

p
PE

2`

`

dv8
Rex~v8!

v82v
,

Rex~v!5
1

p
PE

2`

`

dv8
Imx~v8!

v82v
,

where P denotes the Cauchy principal-value integral.

FIG. 1. Variations with frequency and parameter~a! of the real
part of the susceptibility. The solid, dashed, and dotted lines corre-
spond to the cases ofa51000, 300, and 100, respectively.

FIG. 2. Variations with frequency and parameter~a! of the
imaginary part of the susceptibility. The solid, dashed, and dotted
lines correspond to the cases ofa51000, 300, and 100, respec-
tively.

FIG. 3. Variations with frequency and parameter~a! of the re-
fractive indexn. The solid, dashed, and dotted lines correspond to
the cases ofa51000, 300, and 100, respectively.

FIG. 4. Variations with frequency and parameter~a! of the ex-
tinction coefficientk. The solid, dashed, and dotted lines corre-
spond to the cases ofa51000, 300, and 100, respectively.
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IV. RESULTS AND DISCUSSION

In this section we discuss the results of the previous sec-
tions. We have considered the damped harmonic oscillator
with a time-dependent external force governed by the past.
In Sec. II we have analyzed this system from a quantum-
mechanical point of view and then obtained the dynamical
invariant operator. To obtain the eigenstates of invariant op-
erator, we defined different lowering and raising operators.
By using these operators, the invariant operator of this sys-
tem can be represented in Fock space. The wave function
satisfying the Schro¨dinger equation differs by only a time-
dependent phase factor from the eigenstate of the invariant
operator and the exact closed form of the propagator admits
an expansion in a natural manner leading to the time-
dependent wave functions. Thus, from the eigenstates of the
invariant operator, we obtained the exact wave functions and
the exact closed form of the propagator. By using these wave
functions, the uncertainty relations at various states were
evaluated. Only the off-diagonal elements of the uncertainty
relations (DqDp)n61,n are influenced by the external driving
force g(t). In Sec. III we obtained the susceptibility, the
index of refraction, the extinction coefficient, and the fine-
grained transition rate forN identical atoms in a volumeV.

The susceptibilityx~v! belongs to a class of functions
known overall as the response functions, which measure the
response of the atoms to a stimulus in the form of an applied
electric field. Our result is the case of the time-dependent
external force governed by the past. The influence of the past
depends on the parametera. If a increases towards infinity,
the influence of the past can be negligible. Therefore, in the
limit of a going to infinity, the susceptibility is given by

lim
a→`

x~v!5
e2N

3e0mV

~v0
22v2!1 ivg

~v0
22v2!21g2v2 . ~4.1!

This means that the susceptibility is exactly reduced to the
classical case@4#. Figures 1 and 2 illustrate the variations
with frequency of the real and imaginary parts of the suscep-
tibility for the parameter valuesS5e2N/3e0mVv 0

25 1
4 and

g5v0/20. The parameterS characterizes the strength of the
interaction between the oscillator and the electromagnetic
wave. The solid, dashed, and dotted lines correspond to the
cases ofa51000, 300, and 100, respectively. Asa increases,
the behaviors have the same form as the classical result@4#.

The transmission of an electromagnetic wave through an
atomic gas is governed by the refractive indexn and extinc-
tion coefficientk. As a goes to infinity, the refractive index
n and the extinction coefficientk are given by

lim
a→`

n22k2511
e2N

3e0mV

~v0
22v2!

~v0
22v2!21g2v2 , ~4.2!

lim
a→`

2nk5
e2N

3e0mV

vg

~v0
22v2!21g2v2 . ~4.3!

Figures 3 and 4 display the variations with frequency of the
refractive index and the extinction coefficient for the param-
etersS andg. The solid, dashed, and dotted lines correspond
to the cases ofa51000, 300, and 100, respectively. Asa
goes to infinity, the behaviors have the same form as the
classical result. The quantity of experimental interest is often
the absorption coefficientK52vk/c. These quantities are
functions of the frequencyv in the vicinity of an atomic
transition frequency.

In addition, we represented the dependence of the fine-
grained transition rate on the parametera. In the same man-
ner, asa goes to infinity, the fine-grained transition rate is
given by

lim
a→`

1

t
5
e2NE0

2

6\m

vg

~v0
22v2!21g2v2 . ~4.4!

Some important properties, known as Kramers-Kronig re-
lations, can be derived for the susceptibility. We can easily
show that our results satisfy these relations. The Kramers-
Kronig relations show that the real and imaginary parts of
the susceptibility are very intimately connected. Indeed, a
knowledge of one part at all positive frequencies provides a
complete knowledge of the other part at all frequencies. This
is often useful in experiments where it may be easier to mea-
sure one part ofx~v! than the other.

The results obtained in this paper will be useful in other
studies such as quantum optics and atomic and molecular
physics. In future works we shall more directly evaluate the
exact solutions~invariant quantity, exact wave functions,
propagator, minimum-uncertainty states, susceptibility, re-
fractive index, and extinction coefficient! for the damped
harmonic oscillator in the presence of an electric and a mag-
netic field.
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