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Quantum analysis of the susceptibility for identical atoms subjected to an external force
with a tail
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Using the invariant operator method, we have analytically obtained the exact wave function, propagator, and
uncertainty relations for the quantum damped harmonic oscillator governed by a time-dependent external force
with a tail characterizing the influence of the past. From these quantities, the frequency-dependent suscepti-
bility, the index of refraction, and the extinction coefficient fdlidentical atoms in a volum¥ are evaluated.

The susceptibility satisfies the common properties, known as Kramers-Kronig relations, and as a given param-
eter that determines the nature of the tail goes to infinity, the behaviors of these results are exactly reduced to
the ones for a classical cag&1050-294®6)02310-4

PACS numbdss): 03.65.Ge, 02.96:p

I. INTRODUCTION the description of the motion of a charged patrticle in a time-
dependent electromagnetic figlf,11] and the construction

Since the interaction of electromagnetic radiation with at-of coherent and squeezed states for systems with several pos-
oms was discussed by Einstein, it has evoked continuingible physical applicationfl2].
interest from many physicisfd,2]. Einstein’s theory gave a  In our previous papers, we obtained the wave functions,
qualitative understanding of a large variety of radiation pro-energy expectation values, uncertainty relations, transition
cesses, such as the absorption and scattering of light by aamplitudes, and coherent states for time-dependent quantum
oms and the amplification of light beams by lasers. Howeversystemg13—15. In addition, for the bound quadratic Hamil-
the theory gave no satisfactory account of the linewidth oftonian system, we have already obtained the quantum-
atomic transition frequencies and the prescription for comMmechanical quantities by using the invariant operator method
puting the coefficients appropriate to a given atomic transi{16]. The above results were obtained for the system without
tion. For this one must look to the quantum-mechanicainfluence of the past. The purpose of this paper is to obtain
theory[3], and it is necessary to derive expressions for thg¢he quantum-mechanical quantities for the damped harmonic
frequency-dependent susceptibility. oscillator governed by an external driving force with a tail.

A gas of atoms in a cavity can be regarded as a dielectri¥Ve assume that the external forgét) has the form
medium and the interaction of radiation with atoms has tra-
ditionally been treated by the damped harmonic oscillator
with a time-dependent external fordd]. This treatment
gives a good explanation of the anomalous index of refrac-
tion and absorption of light and has been reasonably applieghere f(t) is an instantaneous force at given tirheand
to some linear absor@ng systems. The usual approximation o - «(t-t') gatisfies the properties of thefunction
techniques, such as time-dependent perturbation theory, the

g(t)= ftwdt’ae—a“—")f(t'), (1.

adiabatic approximation, and the sudden approximation, 7 — 4

L | Sa(t—th)  (t=t)
have been used for treating time-dependent quantum sys- lim ae~@t-t)= , (1.2
tems, but it is not easy to deal with such systems. Lewis and ae 0 (t<t’).

Riesenfeld[5,6] developed the theory of invariants to more

exactly treat such quantum systems in order to shed light oAs the timet increases, the contributions at early times may
their exact solutions. The invariants have received primarpe negligible. To obtain the quantum-mechanical quantities
concern because of their use in discussing physical problemsge adopt the invariant operator method. From these quanti-
[7-9] and their possibility in applications of classical and ties we evaluate the susceptibiligfw), the index of refrac-
guantum physic$10]. For example, the exact invariant of tion n(w), and the extinction coefficient(w) for theN iden-

the damped driven harmonic oscillator has been applied ttical atoms in a volumé&/ represented byl damped driven
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harmonic oscillators of magas and charge-e. The depen- Using Eq.(2.4), the classical equation of motion is given by
dence of these quantities on the real parametgrs explic-
itly represented. The imaginary part of the susceptibility is .. . . 9()
related to a fine-grained transition rate{1/). The transition a+ya+ = m - 29
rate is defined as the rate at whidh similar atoms in a .
volume V are excited by absorption of radiation having We may find an invariant operatd(p,q,t) that satisfies
sharply defined frequenay. In addition, we show that they Hamilton’s equation
satisfy important properties, that is, Kramers-Kronig rela- . .
tions. These relations are often useful in experiments where di a1 1 .-
it may be easier to measure one partyGb) than the other. dat EJF in [1,H]=0. (2.6

We shall begin with obtaining the quantum-mechanical
quantities for the damped harmonic oscillator with a time-Assuming that this invariant operator has the quadratic form
dependent external force influenced by the past. In Sec. Il wef p andq and combining Eqs(2.3) and(2.6), the invariant
obtain the dynamical invariant quantity and define differentoperator is given by
lowering and raising operators. By using the invariant opera-
tor, the exact wave functions satisfying the Sdhinger ~ 1 t( 2(

; ; I=-e”im

equation and the exact closed form of the propagator for this 2
system are analytically evaluated and the uncertainty rela-
tions at various states are calculated. In Sec. Il we obtain the
frequency-dependent susceptibility, the index of refraction,
the extinction coefficient, and the fine-grained transition rate.
Finally, we give the results and a discussion with graphs fomwherepy(t) =me”'qy(t) andgq(t) is the solution of the dif-
this system in Sec. IV. ferential equation

2
Y A
05— Z)(q_%)z

+[e-vt<ﬁ—po>+%my<a—q0>]2]. 27

I, : ; : 2 (1= I
QUANTUM-MECHANICAL TREATMENT o(t) + ¥8l0(t) + whGo(t) = == 2.9
We consider a gas of one-electron atoms subjected to the

time-dependent external force influenced by the past. To olFrom Eq.(2.8), qo(t) can be regarded as the particular solu-
tain the quantum-mechanical expression for the susceptibition of Eq. (2.5),

ity, the index of refraction, and the extinction coefficient we
have to evaluate the wave function satisfying the Schro
dinger equation. Since the Schinger equation cannot be
directly solved, we shall utilize the invariant operator
method. By using the wave function that we will derive, the XsiMwg(t—t")]f(t"), 2.9
dipole moment of an atom can be given by

t ’
qo(t):i dt’ t dtue—y(tft’)/ze,a(tritu)
mwd to to

where wy=(w3— y?/14)Y2. Therefore, the influence of the
+oo past is involved in the time-dependent functigg(t).

d(t)= —f dq ¢ (q,t)eqyn(a,t), 2.9 The dynamical invariant operator can be written in terms
o of lowering and raising operators. Let us define these opera-

wherey,(q,t) is an atomic wave function. The quantiyt) tors as

represents the averaged dipole moment per atom at ttime 1/2 y
and the single-atom result is then suitably averaged to pro- é(t)z(—yt [meyt wgti = [d—)\(t)]+iﬁ],
duce the analogous result for a gas of randomly oriented 2hMawge 2
atoms or molecules. The macroscopic polarization of the gas (2.10
is simply 1 12 y
a1~ prta] e ot ZJa-non-1)].
P(t)=Nd(t)/V. 2.2 =] 2hmage” wa~! 2/la=MO]=1p
(2.11
Consequently, we can obtain the susceptibility from the re-
lation between the polarization and external field. where
The Hamiltonian operator of this system has the form y 12 1,2q (t)
. . 0
p 7\(t)2<%(t)+ﬁ%(t) +i _F> o
NS — p Mr1 222 - @ g 0
H(p.ah=e 7 5 —+e’[zmwpg”—g(t)al, (2.3 (2.12

N N . These operators satisfy the commutation relation such as
where p and q are momentum and position operators, re-

spectively, y is a damping coefficient, and, is a simple [3,a=1. (2.13
harmonic-oscillator frequency. From E@.3) we know that
the classical Lagrangian of this system becomes From Egs.(2.10 and(2.11), the dynamical invariant opera-

tor can be represented in terms of lowering and raising op-
L(9,9,t)=e"[imP— tmw3g?+g(t)q]. (2.4 erators as



I=hwg(ata+1).

(2.19
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n(Q,t) = P, t)eMRO, (2.16

Using the eigenstates of the invariant operator, we caWsing Egs.(2.3), (2.15, and (2.1 along with the Schro

obtain the exact wave functions satisfying the Sdimger
equation. From Eqg(2.14), we can easily obtain theth ex-

dinger equation, we can obtain the time-dependent phase fac-
tor R(t) as

cited state of the invariant operator as
e 1 [ mogen| me’wgy )

moge”t| 2

i met
X exX| —% 2
Y05

—20o(q— Qo)+ 5= ] (2.19 my%e” | . w . Oo(t)
205 A="5 {q%(t)—(%— 7°)qo<t>qo<t>— ).
Because the solution of the Schinger equation differs by (2.19
only a time-dependent phase factor from the eigenstate of the
invariant operator{6], we may write the wave function Then the concrete form of the wave function can be obtained
¥a(q,t) as as

t
R(t)=ftdt’[Lo(t’)—(n+%)ﬁwd—A(t’)], (2.17
0

where

XH,

Lo(t)=e"[1maa(t) — smw3q3(t) +g(t)ao(t)]
(2.18

4
5 (4-qo)?
and

1 [moge| Mwge” S , mawge”t) 2
- _ _ —i(N+ 12 wq(t—t") B
ZACRY mzn( o ) e 57 (A= d0)"e T H | (9—0o)

i me” it

An exact closed form of the propagator admits an expansion in a natural manner leading to the time-dependent wave
functions,(q,t) of the Schrdinger equatiof17]. From Eq.(2.20 the propagator of this system is given by

~2
Y . Y%
2 (@700)°~200(a=do) + 5 5

(2.20

K(q,t;q',t'>=n§0 Ua(ADYF (' 1)

mwd(eyteyt')ﬂZ
" 2ifm sin wg(t—t)

1/2 .
m
exp{ i

Y
wdCO'l(t_t’)+ E

e“(amcomm(t—tv-%)(q—qof

e imwy(e”en’ )12 .
+e ex —W(q—%)(q —do)

(a4’ —qp)?

im . ,.
><exp{ 7 [eyth(q_qO)_eyt Q(,)(q’_Q(/))]]
X expl — = {ﬂmﬁ'z—eﬂ" ’2)—Jtdt”[L (t")—A(t”)]} (229
h 4(1)(2) do %o t’ 0 . .

To find the explicit form of the propagator, we make use of Mehler's forrhi&.
With the use of wave functions ER.20), we can obtain the uncertainty relations for the various states as
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%
(Aqu)nJrz,n:E V(n+1)(n+2), (2.22

1/2
do(t) — CoSwgt

2

AQA _h 1 8mwye” 2 4
(Aq p)n+l,n_§ n+§ m +Sifwgt

.

1/2
Po(t) + Sinwgt

2

8 1/4
(m +COSdet] ) (2.23

%
(AgAp)nn=73 (2n+1). (2.249

From Egs.(2.22—(2.24, we may recognize that the off-diagonal elements of the uncertainty relatogd),.,, are
governed by the past in terms @f(t) andpy(t) and the relationsXqAp),.,, and (AgAp), , have the same form as the
simple harmonic oscillator.

IIl. SUSCEPTIBILITY, INDEX OF REFRACTION, we?

EoN
AND EXTINCTION COEFFICIENT P(t)=

2mde

{Cwei (u’[+ C;\‘)efiwt_'_ de67 yR2+iwgt

For a gas of one-electron atoms subjected to the electric
field E(t) =E, coswt, suppose now that we “turn on” an
oscillating electric field at timé=0. From Egs.(2.1) and
(2.20, the electric dipole moment of the atom parallelfo  We assume that the electric field and the polarization can be
axis is determined by the expectation value as Fourier analyzed into frequency componeri$) and

P( ), respectively,

+Che” Y2miogt—C e™ o, (3.2

2

e’E . : .
d(t): z 0 {Cwelw’[_kcz\;eflwt_'_ dee*'}//2+|(udt 1 - -
Mwg E(t)=ﬁf dt E(p)e'™, (3.3
+Ck e M2 ied—C e, (3.1 o
1 it
where P(t):ﬂ B dt P(n)e'™. (3.9
2 2 2 H 2 2
C _od a(wp— o)~ y]—iwge[ay+ (wp— o] The Fourier coefficient&(7) and P(7) are determined by
@ (a?+ wd)[ (05— 0?)°+ y?w?] ’ the inverse transform as
| Yo 2 p(n):aezﬂ C fxdt ei(”+w)t+C*fmdt g(n—ot
wqa—i 5 12mmogV | “Jo “Jo
C j—

wy 2 2 2_ 2 oe)
4 (a“+ o) (wyg— ya+ a) ic f dt & 72+ {7+ agt
20wq—i(20%— ya) 4Jo

2
Y .
(E +w2—wj2—lywd
2awy

J’_

2(a?+ w?)

+Czdfwdt efy/27i(7]+wd)t_cafxdt e(7a+i7])t
0 0

(3.5

* (a?+ wz)(wg— ya+a?)

fwdt glntety det e‘“"‘”“} (3.6
0 0

The dipole moment of a single atom must now be related to

the polarization of a gas and the single-atom result is then 4 the susceptibility(7) is defined by

suitably averaged to produce the analogous result for a gas of

randomly oriented atoms or molecules. The electric field is

assumed to be sufficiently weak that the atomic populations P(n)=eox(nE(7). 3.7
suffer a negligible disturbance from their thermal equilib-

rium. If there areN identical atoms in a volum¥, the mac- From Egs.(3.5—(3.7), the frequency-dependent susceptibil-

roscopic polarization of the gas is simply ity can be given by
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FIG. 1. Variations with frequency and parametey of the real
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n(w)
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w/w,

FIG. 3. Variations with frequency and parametej of the re-

part of the susceptibility. The solid, dashed, and dotted lines correfractive indexn. The solid, dashed, and dotted lines correspond to

spond to the cases @f=1000, 300, and 100, respectively.

e’N
360mv

x(w)=

az(wczj— w?)— w’yatio[a?y+ af(w(zj— 0?)]
(a*+ 0?)[(0g— 0%+ Y20?]

(3.9

A real field must give rise to a real polarization, and Rit)
to be real the susceptibility must satisfy the relation

X(—w)=x*(w). (3.9

the cases ofv=1000, 300, and 100, respectively.

Since a fine-grained transition raterig proportional to
the imaginary part of the susceptibility, using the imaginary
part of the susceptibility, we can show the dependence of a
fine-grained transition rate on the parameteas

1_eNE]  wla’y+a(w;—w’)]
7 Em (aft @d(wf w2 ] Ot

The susceptibility measures the response of the atoms to an
external electric field, that is, it belongs to a class of func-

tions known as response functions. Such functions have
some general properties that are independent of any particu-

Using this expression for the susceptibility, we can also ob!ar theoretical mo_del of the system that they d_escribe;. Some
tain the variations of the experimentally more accessible relMportant properties, known as Kramers-Kronig relations or

fractive indexn and extinction coefficienk (and in turn the
absorption coefficient related toby K=2w«/c):

e’N a?( wg— 0?)— w’ya
n2_K2:1+ 7 y
3egmV (a2+ wz)[(wo— w?)?+ 72w2]
(3.10
5 e’N o[ a?y+ a(wé—wz)]
Nk= .
K 3egmV (a2+ wz)[(wg— w2)2+ 720)2]
(3.11
6
a4l
Imx{w)
24
0
_2 1 \ )
05 1.0 15
wfw,

FIG. 2. Variations with frequency and parameter of the

dispersion relations, can be proved very generally for the
susceptibility. We can easily show that the susceptibility ob-
tained in this paper satisfies the Kramers-Kronig relations

1 o R !
Im)((w)=—;Pf do’ %,

1 % Imy(w’)
Rev(w) =~ [ dot 000

where P denotes the Cauchy principal-value integral.

&(w)

05 1.0 15
w/w,

imaginary part of the susceptibility. The solid, dashed, and dotted FIG. 4. Variations with frequency and parametey of the ex-
lines correspond to the cases #1000, 300, and 100, respec- tinction coefficientx. The solid, dashed, and dotted lines corre-

tively.

spond to the cases af=1000, 300, and 100, respectively.
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IV. RESULTS AND DISCUSSION 2 2_ 2
fim 22— 14 o (@D 4.2
In this section we discuss the results of the previous sec- e K 3egMV (05— 0?)?+ y2w?’ '
tions. We have considered the damped harmonic oscillator
with a time-dependent external force governed by the past. 5
In Sec. Il we have analyzed this system from a quantum- . e’N @
Y Y g lim 2nx= 4 4.3

mechanical point of view and then obtained the dynamical
invariant operator. To obtain the eigenstates of invariant op-
erator, we defined different lowering and raising operators.
By using these operators, the invariant operator of this sysFigures 3 and 4 display the variations with frequency of the
tem can be represented in Fock space. The wave functiofractive index and the extinction coefficient for the param-
satisfying the Schringer equation differs by only a time- etersS andy. The solid, dashed, and dotted lines correspond
dependent phase factor from the eigenstate of the invariamb the cases ofv=1000, 300, and 100, respectively. As
operator and the exact closed form of the propagator admitgoes to infinity, the behaviors have the same form as the
an expansion in a natural manner leading to the timeclassical result. The quantity of experimental interest is often
dependent wave functions. Thus, from the eigenstates of thgae absorption coefficienk =2w«/c. These quantities are
invariant operator, we obtained the exact wave functions anflinctions of the frequencw in the vicinity of an atomic
the exact closed form of the propagator. By using these wavgansition frequency.
functions, the uncertainty relations at various states were |n addition, we represented the dependence of the fine-
evaluated. Only the off-diagonal elements of the uncertaintyyrained transition rate on the parametern the same man-
relations AqAp),.,, are influenced by the external driving ner, asa goes to infinity, the fine-grained transition rate is
force g(t). In Sec. lll we obtained the susceptibility, the given by
index of refraction, the extinction coefficient, and the fine-
grained transition rate fal identical atoms in a volumy¥'. 1 e?NE2

The susceptibilityx(w) belongs to a class of functions lim == 0 wy _
known overall as the response functions, which measure the wsw T 6AM (w(z)—wz)2+ Y?w?
response of the atoms to a stimulus in the form of an applied
electric field. Our result is the case of the time-dependent
external force governed by the past. The influence of the past Some important properties, known as Kramers-Kronig re-
depends on the parameter If « increases towards infinity, lations, can be derived for the susceptibility. We can easily
the influence of the past can be negligible. Therefore, in théhow that our results satisfy these relations. The Kramers-

limit of « going to infinity, the susceptibility is given by ~ Kronig relations show that the real and imaginary parts of
the susceptibility are very intimately connected. Indeed, a

knowledge of one part at all positive frequencies provides a
2 2_ 2\ ) .
i e‘N  (wg—w)+iwy complete knowledge of the other part at all frequencies. This
im x(0)=3 < o722 2.2 (4.1 s often useful in experiments where it may be easier to mea-
a0 0 (wo ) Ty w
sure one part ok(w) than the other.

The results obtained in this paper will be useful in other
gtudies such as quantum optics and atomic and molecular
physics. In future works we shall more directly evaluate the
exact solutions(invariant quantity, exact wave functions,
propagator, minimum-uncertainty states, susceptibility, re-
fractive index, and extinction coefficionfor the damped
Enarmonic oscillator in the presence of an electric and a mag-
tic field.

3egmV (wg—wz)z-i- Y2 w?

a—®

(4.9

This means that the susceptibility is exactly reduced to th
classical cas¢4]. Figures 1 and 2 illustrate the variations
with frequency of the real and imaginary parts of the suscep
tibility for the parameter valueS=e?N/3e;,mVw 3=3 and
vy=wy/20. The paramete® characterizes the strength of the
interaction between the oscillator and the electromagneti
wave. The solid, dashed, and dotted lines correspond to tHeE
cases okx=1000, 300, and 100, respectively. Asncreases,
the behaviors have the same form as the classical reHult

The transmission of an electromagnetic wave through an This work was supported by the Basic Science Research
atomic gas is governed by the refractive indeand extinc-  Institute Program, Ministry of Education, Republic of Korea,
tion coefficientx. As « goes to infinity, the refractive index and by KOSEF through the Center for Theoretical Physics,
n and the extinction coefficient are given by Seoul National University.
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