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Strong-coupling QED in a sphere: Degeneracy effects
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We investigate the resonant interaction of a dipglarO<— j=1 angular-momentum transition with the
guantized field in a dielectric sphere. New features arise on account of the degeneracy of atomic levels and
field modes with low azimuthal angular momentum, in slightly deformed sph@tgate spheroids For
TE-mode excitation we obtain the dynamics of a degeneYaieV configuration with the usual coherent-state
collapse and revivals. For TM-mode excitation hew behavior is found: due to interference betwerd
m-polarized transitions, which can lw®ntrolled by the atomic position and/or dipole orientation, coherent-
state revivals and the corresponding atom-field energy exchange may be suppressed or delayed.
[S1050-294{6)00210-7

PACS numbe(s): 42.50.Md, 32.80.Qk, 42.50.Dv, 12.20m

I. INTRODUCTION wavelengths outside the surfaE®5]. Hence, strong-
coupling QED effects should be observable in an
The realization of the strong-coupling regime of cavity atomic beam passing near a microsphere. Such effects
guantum electrodynamid®QED) is currently pursued for at- can be augmented by binding cold atoms in an orbit
oms or excitons in resonator structures with optical- around a dielectric microsphere via an off-resonant
wavelength dimensiorfd—6]. This regime is described in its two-photon interaction with its fiel@16].
simplest form by the fundamental Jaynes-Cummifd®) (c) From the conceptual point of view, both classical and
model[4,5,7], which pertains to the near-resonant interaction QED nonlinear processes in dielectric microspheres are
of a two-level atom with a single field mode in the rotating- intriguing because of their unique feature$) the
wave approximatiofRWA). The JC model yields several spherical symmetry, which impliesiode degeneracy
important nonclassical effects, such as spontaneous collapses  and angular-momentum conservatidin) the insepara-
and reViVaIS Of Rab| OSCi”atior[g], near disentanglement Of b|||ty of the Optica| flelds inside and Outside the Sphere
field and atom state$8], and generation of Fock states (leaky modes[17-19.

[9—11], or superpositions therept1,12 following measure-
ments of the atomic excitation. Other strong-coupling situa-
tions are described by the extension of the JC model to the The purpose of this paper is to investigate the effects of
case of two interfering field modes coupled to three-levelpolarization and degeneracy of spherical modes and atomic
atoms[13]. Currently most of the aforementioned effects arelevels on the dynamics in the fundamental JC md¢d¢3,7).
observable only in extremely hig- microwave cavities We thereby wish to gain insight into the novel domain of
[1,4,5. strong coupling of near-resonant atoms with h@hfield
Among the resonator configurations that may lead to thenodes in microspheres. Field leakaghssipation effects
realization of strong-coupling QED effects in the optical do-will be neglected. Specifically, we study the relatively simple
main, spherical microcavitiesre particularly promising and yet nontrivial interaction ofj =0+ j=1 atomic transitions
important for the following reasons: with a degenerate multiplet of angular-momentum eigen-
modes of the field in a dielectric microsphere, or a spherical
cavity. We address the problem of inevitable weak devia-
Yions from a perfect sphere, which partly lift the mode de-
generacy but still allow the study of degeneracy effects under
experimentally realizable conditions.

(@ The ability of dielectric microspheres to act as high-
quality optical resonators has been proven in a variet
of experimentq14], which have indicated sufficiently
long mode lifetime<Q values up to 19 to allow the

observation of strong-coupling QED in the micro- |y sec. Il we discuss the coupling of tHe=0—j=1
sphere, with negligible dissipative effedtsell within  transition to either a TE- or TM-polarized degenerate mode
the mode lifetime multiplet. In Sec. Il we diagonalize the interaction Hamil-

(b) The evanescent tail of a higQ-field mode in a dielec-  tonian in each such multiplet and obtain the corresponding
tric microsphere can be selectively and strongly“dark” (trapping states of the evolution. In Sec. IV we
coupled to a resonance of an atom located up to fevanalyze the generalized Rabi oscillations for photon-number

states in both multiplets. In Sec. V we consider the collapse
and revivals of these oscillations driven by multimode coher-

*Electronic address: lenstra@nat.vu.nl ent fields. The main results of our treatment, summarized in

"Electronic address:cfkurizk@weizmann.weizmann.ac.il Sec. VI, are as follows(i) trapping conditions for linear
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University, Hoza 69, 00-681 Warsaw, Poland. conditions for suppression of the energy exchange with the
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field, for superposed photon-number and coherent states z
the degenerate mode@i) conditions for suppression or de-

lay of the first revival of Rabi oscillations, driven by super-
posed degenerate-mode coherent states. The second effec
akin to that caused by two-mode interference in Raman-like
intracavity processef20]. The present results indicate the

possibility of achieving a great deal of control over the
atomic and energy-exchange dynamics in a sphere by choo
ing the appropriate elliptic polarization of the field or the
atomic state. m=l

|

|

|

I

|
]
Eeo o nn

Il. THE MODES AND FIELD-ATOM INTERACTION

In this section we analyze the coupling of &0—j=1
dipole transition to the electromagnetic modes in closec
spherical cavities with radially varying permittivits(r), as
well as to the “quasimodes” in opefleaky) dielectric mi-
crospheres. We must distinguish between the TE mode: () laser
which have the electric-field vector in the tangential direc-
tion (ELr) and the TM modes, which have the magnetic-
field vector in the tangential directioB.Lr). In general, the
TE and TM modes have no common frequencies. Both type
of modes can be further classified according to the angulai
momentum quantum numbér which corresponds to el
+1)-fold degenerate multiplet. In addition to the polarization
(TE or TM), I andm, the modes are classified according to
their indexn, which measures the numberraidial nodes of
the field. Low} modes couple mainly to atoms closerteO.
We are primarily interested in high-modes in spheres
whose radius is much larger than an optical wavelength
since these modes couple predominantly to atoms close 1 (b)
the sphere surfadd4]. The azimuthal mode numben can
be specified as the projection of the angular momentum on FIG. 1. (a) Atomic coupling tom=0, =1 modes at the spheroi-
thez axis. Hence, the moda is spatially confined to a great dal surface. The modes can be externally excitedThe coupling
circle, which is inclined aﬁzcosfl(mll) relative toz. In an  ©f atomicj=0~j=1 tran_sitions to _the electric field at the micro-
ideal sphere alm modes with giverl, n, and polarization sphere sqrface: the:polanzed transition|@)« |ey)) couples .only
(TM or TE) are degenerate. In reality, however, this degen{C the radially polarized TM modém=0), whereas the~-polarized
eracy is always lifted to some extent due to distortions thaf@sition (9)«|e=;)) couples to both TE and TM tangentially
result in a spheroidal shape, which, for the sake of concretéq‘jl"’mﬂEOI mOde$m=il).'.|nset‘ The levels corresponding to the
ness, is taken here as oblate. This distortion splits(&te above degenerate transitions.
+1)-degenerate modes from the resonance frequenci\ ) _ )
=1,n,3, where3=TM or TE) of an ideal-sphere mode into a the case of an ideal-sphere cay|ty, we shall also restrict our
manifold of m-dependent frequencies,(m). For a small tréatment tom=0,=1, by considering an atommear the
eccentricitye, which is the fractional difference of the polar SPhere center, which is resonant with thel multiplet.
and equatorial radii, anid>1, thesen-dependent frequencies N either case, as them; =0 (7-polarized atomic transi-
are given approximately by [21] w,(m)=w,{1+ tion implies a radially polarizedll z axis) electric f|el_d, it
(e/6)[3m?/1(1+1)—1]}. The fractional splittingw,(m)/w, cannot coupl_e to the TE mode. Hence, only theolarized
is independent of the polarizatiofTE or TM), the radial ~ transitions withAm;==+1 couple to them==*1 TE modes,
ordern, and the radius. defining aA (or V) degenerate configuratidirig. 1(b)]. By

It is possible to selectively populate only a fewmodes ~ contrast, a TM mode couples to bothk and 7-polarized
out of the(21 +1)-fold multiplet by using the spatial confine- transitions, and therefore gives rise to taaupledA (or V)
ment of the differenm modes[Fig. 1(a)] and them? scaling ~ SYStéms. o _ _ o
of their splitting. For nonzero eccentricity, the atom will be ~ The corresponding field-atom interaction Hamiltonian can
chosen to lie near the polar axis of the oblate spheroid. Suche Written in the rotating-wave approximation as
an atom can interact with all modes, but predominantly
with m==*1 for TE modes anth=0,*1 for TM modeqFig.

1(b)]. These three modes will be treated degenerateon Hin=hdX, ayx,- I +H.c. )
the assumption that the splitting |w,(mMm=0) »

—w\(Mm=*1)|=w,€e/2l(1+1) is well below both the

atomic and the mode linewidths. As an example,dstl0*  Here the mode indices are denoted Joy{B;l,m,n} with
and surface modes with-10°, this splitting is<10 %%, . In ~ B=TE or TM, a, is the \-mode annihilation operator satis-
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fying the commutation relatiopa, 'a;f\]:g)\ v+, dis the di- outside the surface. The radial wave function outside the
’ dielectric sphere is given by the outgoing spherical Hankel

ole moment is the appropriate dipolar raising opera-
b o pprop P 9 OPera- ¢ inction h, [14],

tor, and

- R (1) =Ch{" (kinr), (7
RIS(NLYM(6,9), B=TE
X ()= (i(;/w )V X RTM(r)I:Ym(e @), B=TM 2 whereB=TM or TE, C is the normalization constant, akg,
: hn SRR belongs to a discrete set of wave numbgige resonances
are the mode eigenfunctions. Here the functiBfs are real  We reiterate that for very small eccentricitiéﬁ(,l) is nearly
solutions of the radial wave equation identical with the spheroidal eigenfunctidrfl). In an ideal
sphere fol =1,

1d(,0 e I(H—l)R 0 3 eix i
r2or r ar e(r) /2 1(r)=0, € h(ll)(x):_7 1_|_; _ (8)
Y™ are the spherical harmonics, ahdis the angular mo- — . ™ : ,
mentum operator. It should be stressed that for small eccenS-UbSt'tUtIng this form oR," into Egs.(5) yields
tricities (e<10™%), the radial character d®(r) is practically Vi ekr (1 i
the same as in an ideal sphere. xw=c T (k—+ W) &, 9
In particular, the TE modes with=1 can be expressed as cr r r
. V2 ek 1 0.
X5 (1) =FiV2oR[ ()&, 1, xM==C FT(i_W_ W) =y (10
4
X5 (r)=0
0 Ill. DIAGONALIZATION OF THE FIELD-ATOM
and thel =1 TM modes can be expressed as HAMILTONIAN
The RWA Hamiltonian of interactiofEq. (1)] between a
™ (—v2c) 9 ™M n j=0«]=1 dipole transition and a triplet of effectively de-
X=1(1) =+~ [TRy7(r)]e.q, generate angular-momentum eigenmodes0,+1,1=1, in
5) the cases discussed above, can be diagonalized in the four-
dimensional subspace of field-atom product states:
™, o\ _ —2v2c TM/ o\ 2
Xo (r)_ r Rl (r)eo, |e1;N1—1,N0,N_1>,
where the unit-vector components age,=2"Y4x=iy), leg;N1,No— 1N _,),
=2 . . " o (113
In perfectly reflecting spherical cavities, the normalization le_1;N1,Ng,N_;—1),
of the yx, functions is such that
|g;Nl!N01N*l>'
f d3r E(r)X)\'X:,: R Here the relevant atomic eigenstates deg),|ey),|e1),|9)}
corresponding to the three excited stalps1, m;=0,%1)

®  and one ground statg =0, m;=0). The photon numbers in

5 . w? modes withm==x1,0,1=1, are denoted b)..;, Ny, respec-
f dor (VX x) - (VX xy)= ra OV tively. We restrict here our basis to photon numbers such that
In open(leaky) dielectric spheres, there are distinct Mie 2 N.=N=1 (11b)
resonances labeledB(l,n), with I>1, corresponding to m<=10 '

high-Q “quasimodes” localized near the sphere surface with

evanescent “tails” outsid¢14(a)]. A rigorous quantization N being the total photon number when the atom is in|the
procedure for such “quasimoded14(b)] shows that they state. We thus exclude thig,N=0) state, which is un-
can be effectively treated as nearly discrdtmadened(2! coupled from the other states. In this basis the Hamiltonian
+1)-degenerate mode multiplets, if the atom is on or justcan be expressed as

Nw—A 0 0 X2 Ny
- 0 No—A 0 BN
HP=4 0 0 No— A )‘fo\/_/L ; (12)
@ XZ1VN_g

XD* Ny (xXB)*WNo (X )* VN1 N



54 STRONG-COUPLING QED IN A SPHERE: ... 2693

wherew is the mode frequency ant=w—w, is the detuning  For an atom initially in thee,,,) state, with{N,} photons in
from the atomic resonance frequency. the field,
Diagonalization of the matriX12) yields the eigenfre-
guencies em—9 _ p*0—en
A{Nm—l}_A{Nm} (). (18b
E1Y2=ﬁ(Nw—A), E3'4:h(N(1)_A/2iWN), (13)

where, using the fact théw5?=|x?,|% we express the field- The correspondingg)—|e,) transition probabilities are
induced energy shift as

pd-em=N 252 (Wit)/ W2 19
Wy= (A7 + N [EPF N xE?, (149 Ny~ el XmlSITOWDW (199
with and the probability to remain in the ground state is
N+EN1+ N—l' (14b)
Consistent with(11b), if x,=0 (as in the TE cage then P?ﬁmgfl—( % . le)(m|2)sin2(WNt)/Wﬁ. (19b)
m=0,%£

N, =1, and, if bothyy,x;#0 thenN=N, +Ny=1. The cor-
responding eigenvectors are given by
Hence, Rabi oscillations occur with a frequengyy
C1 = J(A72)?+x|?N that depends on the total number of pho-
lug = Co (15 tons (when the atom is in|g)). In the TE -case,
L cC_1/" N,=N;+N_; is the relevant photon number. The system
0 then behaves as a two-level atom oscillating between the
ground state|g) and the superposition of excited states
with coefficients that satisfy the equation le;y=(1/YN,)(YN1|e))+VN_i|le_,)), interacting effec-
tively with a single mode havinlyl, photons. The reason for
E CmXE\/N_mZO (16) this_ behavior is_that by taking the appropriate linear combi-
1 nations of them==*=1 modes we can construct two orthogo-
nal elliptically polarized modes, such that one mode is in a
and N -photon state and the other is in its vacuum state. Clearly,
the atom, initially in the ground state, can only exchange one
Xl\/N—l

elliptically polarizedphoton with the field.
_ 1 XO\/N_O Generally, for both TE and TM polarizations, the evolu-
U39 = V2WZ =AW, | x-1WNCg [ A7 tion of any initial superposition ofe,,) and|N,,) states can
N N A2+ Wy be described as the beating of oscillations with frequency
W)y, and population trapping at the “dark” statggs.(15)—
Equations(15) and (16) show that there are two “dark” (17)]. The results of such beating are discussed below.
(trapping stategu; » in which the atom is excited and stable
against emission of the photon, because the two emission
processeswith left- and right-circular photon polarizations
in these states exhibit destructive interference. The corre- \e wish to explore the mode interference effects in both

sponding eigenvalues; , [Eq. (13)] are not affected by the the TE and TM cases on the collapse and revival patterns of

field-atom interaction; i.e., the atom is essentially decoupleghe Rabi oscillations, obtainable for a multimode field ini-

from the field. As is well known, in @ configuration there tially in a coherent stat¢7]. We assume that the modes

is only one darktrapping state. (I,m=0) and(I,m==1) of an oblate spheroid are populated
Note that the TE caséx; =0) is equivalent to the TM  py 5 classical bearfFig. 1(a)].

case with eitheN,=0 or with the atom located at g™

node. In the following, the indice8 andj will be suppressed
unless required. A. The atom initially in the ground state

m=0,*+

V. COLLAPSES AND REVIVALS

Assume that initially the atom is in the ground state, and
IV. GENERALIZED RABI OSCILLATIONS the field is in the multimode coherent state

. . . . Kamt=ay,ap,@_1). In the photon-number basis, the initial
The eigenenergies and eigenvectors derived above allo\éfate has the form

us to calculate the time-dependent atomic transition ampli-

tudes for a given photon number. When the atom is initially o o

in the ground state, and the state &=0 is gf{ap)= 11 e laml’/2 T 1g,{N,}).
|g:{N={N;,Ng,N_;}), the |g)—|e,) transition ampli- 0. {arml) m=0,+1 Nm=0 VNp! 19:{Nm})
tude has the form (20

AdCm(t) = I XmVNm e I(Nm=AR)ginW, . (189 The probability of the atom remaining in the ground state
{Nm} Wy can be expressdaising Egs(18) and(19)] as
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tures, we use the followingrudeapproximation for the case
of resonance,A=0, and large average photon numbers
|, |%|a’>1. We expand the square root Wy up to the
linear term

VIXBIPNo+ [x% |2N+~— VIxol? aol®+ [xF1 a2

| x8]2No+ | xF1°N.
2V X513 o+ X512 s |2
(23

This expansion is justified since the Poisson distributions are
centered aroundly|? or |a, |* over a width of the order of
|ag| or |a|, respectively. This approximation allows one to
perform both sums in Eq21) analytically, yielding

|X %t
?Z?(t) 1+expg —2|a,|? sir? —2|ag|?
B|2 B2
.5 1X X
sm2| o Wt+|a0|23|n| o
2W
X217
+|a,|? sin Wl (24)
where W= [ x1 a2+ | xoaol*- The terms

FIG. 2. The probability to remain in the initial ground state as aexp(—2|a. | Slr12|X1|2t/2W and exm—2|ao|zsin2|)(0|2t/2W)

function of time (scaled to the inverse coupling consdafdr an
initial coherent-state  TM-polarized field(a) |a.|*=|ag*=20,
Ixol>=|x1/?=1. (b) Samew. ,ap; |xo|>=0.8|x1/*=1.2. Note the dras-
tic change in the revival patterns.

| oMo v [N+

9-9(1) = @l a2 lagl? ot mEl
Plam(V =8 No!N !

{am} N+,N0
Ix2®N + | xol?No
7
Wy

1— sifPWyt |, (21)

where|a, [*=|a;*+|a_,%, andW, is defined in Eq(14).
In the case of coherent TE-mode excitati¢®]) can be
simplified (substitutingx,=0 andWy=Wy ) as follows:

2Ny
g9—g |2 |a+|
PI.S (H=e"l 2
|X1|2 .
1- —Wr SIPWy |- (22

can be regarded as envelopes for the Rabi oscillations with
the average frequency/. Revivals occur whemoth enve-
lopes differ noticeably from zero, i.e., around the times given
by

|X1| tvl |XO|2tVO
=V, —

2W 2w

(25

=Vom.

Thus the condition for the first revival takes the fotm
=t,, for the smallest integer numberg and », such that

v vi=|xox2/%- In general the required integers can be
much larger than 1, in which case the first revival is effec-
tively delayed or suppressed.

Of course, the above analysis is oversimplifigglpartial
overlap of the nonzero parts of the envelopes is sufficient to
produce some remnant of a revivéi;) expansiong23) and
(24) are known to be inadequate for the subsequent revivals
[22]. Nevertheless, it yields the correct prediction that an
appropriate choice of the ratig,/*/|x,|* allows oneto sup-
press the first revival noticeahlyas shown in Fig. @),

This expression exhibits the usual collapse and revival bewhich presents the ground-state probability calculated nu-
havior in the linear combination of the right- and left-handedmerically from Eq.(21). In both cases, Figs.(® and 2b),
circular-polarized coherent states. In this case, the atom bdhe average numbers of photons, as well as the Rabi frequen-
sically interacts with one elliptically polarized coherent state.cies W are the same. The only difference is the ratio
The dark state for this case corresponds to atomic excitatiofxo|%/|xa/%. which is equal to 1 for the upper plot and 2/3 for

by photons with the orthogonal elliptic polarization.

the lower plot. Suppression of the first revival is clearly vis-

New phenomena are predicted in the case of cohererible.

TM-mode excitation. The numerical plots of EG1) for this

We next consider the probability of the initial std&9) to

case(Fig. 2 reveal unusual features, i.e., suppression and/oyield |g)—|e,,) transitions. It is convenient to consider the
delay of the revivals. In order to gain insight into these fea-combined population ofe;) and|e_,):
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|a0|2NO|a+|2N+ 1 T T T T
Pg"el +Pg*’e—l = 7\a+|27|a0\2 _
o (DT Py (=6 e NN
0.8 -
|)(1|2 .
X~ N sif(Wyt), (26) 2 06 | -
Wy z
&
whereas the population of the excitigg) sublevel is E 04 F T
2No| , [2N. ' «WMW
PI—eo(t) =g las/*~laol? 3 lexol x| 0.2 ”WW
{am) NT,  No!N!
O 11 1 i 1
|X0|2N0 0 20 40 60 80 100
X SIP(Wib). 27 @ Time
N 1 T T T T
Equations(26) and (27) differ only by one factor in the
summation, | x1|*N, /W§,  as compared tdxo"No/W5;. 08 r 1
Let us rewrite these factors as 2 06
= 0
|Xm|2Nm: |Xm|2Nm )(|X1|2N++|X0|2NO -cés 04
Wy | x1/°N +xo0l*No Wy ~
(28)
0.2 ’
and take the values of the first fraction that make the domi-
nant contribution to the sum, &t~ |a,,|%. Then we obtain 0 : . : !
0 20 40 60 80 100
(9] Time

Pgﬂel(t)_kpgﬂe_l(t)% |X1|26Y+|2 [l_Pgﬂg
{am} {am} | x1e+]*+ | xoaol® {am}

1,

29 FIG. 3. Population of the excited stdtg) as a function of time

(same units for the same initial conditions as in Fig. Za)
Ixol?=Ix12=1, (b) |x0/?=0.8, |x1/*=1.2. The revival patterns are
qualitatively similar to Fig. 2.

Wi o g X

N 1
Thus, under this approximation, the occupations of the upper > Cm a—m A{Nm} =W > (-1)™c, a— N
levels are equal to 4P} {(t), reduced by the fractional m m NEm m

weight of the squared coupling constant times the average

photon number in the pertinent mode. As before, we estimate the sum(B2) by settingN ,~| a2
_ThiS simplified_analysis is confir_med by numeric_:al calcu-In this approximation, the trapping conditid?[?am}wo for

lations _of the excited-level populations shown in F|g_s. 3 andye initial excited-state superposition amounts to

4 for different average photon numbers and coupling con-

stants. It is easily seen that thiene of the first revival de-

pends only on the ratiof |x,/%/|x,/% The products$y,a,|® and > (= 1)Mepxkak~0. (33)

|x1a.|* determine which atomic sublevel is more populated m

by the interaction with the field.

Pgﬂeo(t)% |X0a0|2 [1_Pg_>g(t):| (30)
{am} |x1a:[*+] xoaol® Lo} 227

2

(32

Equation (33) defines the quasiclassical “dark{trapping
- _ states, for which thenergy exchange with the coherent field
B. Initially excited states is suppressedrhis condition is in reasonable agreement with
An initial superposition of excited-state sublevels andthe numerical plots of the energy exchangey. 5.
multimode coherent states.clem.{am}) Yields the fol-

lowing probability of occupying the ground state: VI. DISCUSSION
a2 | | 2Nm We have treated the resonant nondissipative coupling of
P?am}:NzN: (H e “m )2 NI an atom with aj=0<j=1 dipole transition to a near-
0.Ne2 A M " m spherical(spheroidal TE or TM polarized field by taking
cmVNim N 2 account of the degeneracy of atomic levels and fowm
X % an A (3)  =0,*+1) field modes. The following results have been ob-

tained from this treatmenia) A photon with the suitable
o em—0 . . (“active™) elliptic polarization can produce sinusoidal Rabi
On substituting theA, [ |~ amplitudes[Eq. (18D)] we find  gscillations betweeng) and a superposition of degenerate
that excited states. Exchange of the orthogonally polarized



2696 LENSTRA, KURIZKI, BAKALIS, AND BANASZEK 54
1 T T T T i T T T T
0.8 i 0.8 7
Z 06| - £ 06
k= 3
[=]
£ 04 ' W‘W’W’M £ 04
0.2 - 02t
0 1 1 1 ! 0 1 L L L
0 20 40 60 80 100 0 20 40 60 80 100
(a) Time (a) Time
1 T T T T
01 T T T T
0.8 F .
0.08 .
2 06 |-
= £ 006 | -
2 2
6: 04 T g 0.04 + B
E .
0.2
- 0.02 WW .
0 1 i 1 1 O . . . )
" 0 20 40 - 60 80 100 0 20 20 0 20 100
(b) Time

FIG. 4. Excited-state populations as a function of tifsame
units for an atom initially in the ground state and an initial
coherent-state TM polarized field witha,[?=10, |ag/?=30, /
Ixo2=0.8, [x1>=1.2: (@) population ofleg); (b) combined popula- Nerent state, withe; = ap=a 1= V10 and —x;=xo=x-1=1: (3

tions of |e,) and |e_,). The revival pattern is as in Fig&h) and ~ INitial excited sublevel amplitudesc; =co=c_; =13, (b)
(3b). Co;C1=—C_1=1NW2. Note the different scales of revival patterns.

FIG. 5. Ground-state population as a function of tifsame
units) for initially excited atom and TM-polarized field in the co-

(“dark” polarization) photon with this superposition is for-
bidden by the population trapping condition. The active an
“dark” elliptic polarizations arecontrollable by the atomic
distance from the center and thenumber of the modes,

y resonant interaction with surface-adsorbed molecules, or
ith cold atoms orbitting the microsphere under the influ-
ence of another off-resonant field. Finally, we have discussed
the influence of weak oblateness of the sphere, and identified

which .determm.e the coupling  constantg m(.r). (b) the conditions under which mode degeneracy effects would
Population-trapping(energy-exchange suppressioeffects still be observable.

are obtainable for elliptically polarized quasiclassical coher-
ent fields, which are also controllable by the factors men-
tioned above.(c) The timing and strength of the atomic
population revivals is controllable by the ratio of the squared
coupling constants to the orthogonally polarized modes, D.L. and G.K. acknowledge the partial support of the
o1/ [x1(r)|? Israel-Netherlands Researchers Exchange Programme. G.K.

The understanding acquired here of the factors controllingacknowledges the support of the TMR Research Network
the energy exchange with the field and the atomic-stat®lo. ERB 4061 PL 95-1021. K.B. acknowledges support of
population can be used for preparation of nonclassical statdhe TEMPUS program JEP-04329-94 at the Vrije Univer-
of the field in a dielectric microsphere. This can be achievediteit, Amsterdam.
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