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We investigate the resonant interaction of a dipolarj50↔ j51 angular-momentum transition with the
quantized field in a dielectric sphere. New features arise on account of the degeneracy of atomic levels and
field modes with low azimuthal angular momentum, in slightly deformed spheres~oblate spheroids!. For
TE-mode excitation we obtain the dynamics of a degenerateL or V configuration with the usual coherent-state
collapse and revivals. For TM-mode excitation new behavior is found: due to interference betweens- and
p-polarized transitions, which can becontrolledby the atomic position and/or dipole orientation, coherent-
state revivals and the corresponding atom-field energy exchange may be suppressed or delayed.
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I. INTRODUCTION

The realization of the strong-coupling regime of cavity
quantum electrodynamics~QED! is currently pursued for at-
oms or excitons in resonator structures with optical-
wavelength dimensions@1–6#. This regime is described in its
simplest form by the fundamental Jaynes-Cummings~JC!
model@4,5,7#, which pertains to the near-resonant interaction
of a two-level atom with a single field mode in the rotating-
wave approximation~RWA!. The JC model yields several
important nonclassical effects, such as spontaneous collapses
and revivals of Rabi oscillations@7#, near disentanglement of
field and atom states@8#, and generation of Fock states
@9–11#, or superpositions thereof@11,12# following measure-
ments of the atomic excitation. Other strong-coupling situa-
tions are described by the extension of the JC model to the
case of two interfering field modes coupled to three-level
atoms@13#. Currently most of the aforementioned effects are
observable only in extremely high-Q microwave cavities
@1,4,5#.

Among the resonator configurations that may lead to the
realization of strong-coupling QED effects in the optical do-
main,spherical microcavitiesare particularly promising and
important for the following reasons:

~a! The ability of dielectric microspheres to act as high-
quality optical resonators has been proven in a variety
of experiments@14#, which have indicated sufficiently
long mode lifetimes~Q values up to 109! to allow the
observation of strong-coupling QED in the micro-
sphere, with negligible dissipative effects~well within
the mode lifetime!.

~b! The evanescent tail of a high-Q field mode in a dielec-
tric microsphere can be selectively and strongly
coupled to a resonance of an atom located up to few

wavelengths outside the surface@15#. Hence, strong-
coupling QED effects should be observable in an
atomic beam passing near a microsphere. Such effects
can be augmented by binding cold atoms in an orbit
around a dielectric microsphere via an off-resonant
two-photon interaction with its field@16#.

~c! From the conceptual point of view, both classical and
QED nonlinear processes in dielectric microspheres are
intriguing because of their unique features:~i! the
spherical symmetry, which impliesmode degeneracy
and angular-momentum conservation;~ii ! the insepara-
bility of the optical fields inside and outside the sphere
~leaky modes! @17–19#.

The purpose of this paper is to investigate the effects of
polarization and degeneracy of spherical modes and atomic
levels on the dynamics in the fundamental JC model@4,5,7#.
We thereby wish to gain insight into the novel domain of
strong coupling of near-resonant atoms with high-Q field
modes in microspheres. Field leakage~dissipation! effects
will be neglected. Specifically, we study the relatively simple
yet nontrivial interaction ofj50↔ j51 atomic transitions
with a degenerate multiplet of angular-momentum eigen-
modes of the field in a dielectric microsphere, or a spherical
cavity. We address the problem of inevitable weak devia-
tions from a perfect sphere, which partly lift the mode de-
generacy but still allow the study of degeneracy effects under
experimentally realizable conditions.

In Sec. II we discuss the coupling of thej50↔ j51
transition to either a TE- or TM-polarized degenerate mode
multiplet. In Sec. III we diagonalize the interaction Hamil-
tonian in each such multiplet and obtain the corresponding
‘‘dark’’ ~trapping! states of the evolution. In Sec. IV we
analyze the generalized Rabi oscillations for photon-number
states in both multiplets. In Sec. V we consider the collapse
and revivals of these oscillations driven by multimode coher-
ent fields. The main results of our treatment, summarized in
Sec. VI, are as follows:~i! trapping conditions for linear
combinations of degenerate excited states, which amount to
conditions for suppression of the energy exchange with the
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field, for superposed photon-number and coherent states in
the degenerate modes;~ii ! conditions for suppression or de-
lay of the first revival of Rabi oscillations, driven by super-
posed degenerate-mode coherent states. The second effect is
akin to that caused by two-mode interference in Raman-like
intracavity processes@20#. The present results indicate the
possibility of achieving a great deal of control over the
atomic and energy-exchange dynamics in a sphere by choos-
ing the appropriate elliptic polarization of the field or the
atomic state.

II. THE MODES AND FIELD-ATOM INTERACTION

In this section we analyze the coupling of aj50↔ j51
dipole transition to the electromagnetic modes in closed
spherical cavities with radially varying permittivitye(r ), as
well as to the ‘‘quasimodes’’ in open~leaky! dielectric mi-
crospheres. We must distinguish between the TE modes,
which have the electric-field vector in the tangential direc-
tion ~E'r ! and the TM modes, which have the magnetic-
field vector in the tangential direction~B'r !. In general, the
TE and TM modes have no common frequencies. Both types
of modes can be further classified according to the angular-
momentum quantum numberl , which corresponds to a~2l
11!-fold degenerate multiplet. In addition to the polarization
~TE or TM!, l andm, the modes are classified according to
their indexn, which measures the number ofradial nodes of
the field. Low-l modes couple mainly to atoms close tor50.
We are primarily interested in high-l modes in spheres
whose radius is much larger than an optical wavelength,
since these modes couple predominantly to atoms close to
the sphere surface@14#. The azimuthal mode numberm can
be specified as the projection of the angular momentum on
thez axis. Hence, the modem is spatially confined to a great
circle, which is inclined atu5cos21(m/ l ) relative toz. In an
ideal sphere allm modes with givenl , n, and polarization
~TM or TE! are degenerate. In reality, however, this degen-
eracy is always lifted to some extent due to distortions that
result in a spheroidal shape, which, for the sake of concrete-
ness, is taken here as oblate. This distortion splits the~2l
11!-degenerate modes from the resonance frequencyvl ~l
5l ,n,b, whereb5TM or TE! of an ideal-sphere mode into a
manifold of m-dependent frequenciesvl(m). For a small
eccentricitye, which is the fractional difference of the polar
and equatorial radii, andl@1, thesem-dependent frequencies
are given approximately by @21# vl(m)5vl$11
(e/6)[3m2/ l ( l11)21]%. The fractional splittingvl(m)/vl

is independent of the polarization~TE or TM!, the radial
ordern, and the radius.

It is possible to selectively populate only a fewm modes
out of the~2l11!-fold multiplet by using the spatial confine-
ment of the differentm modes@Fig. 1~a!# and them2 scaling
of their splitting. For nonzero eccentricity, the atom will be
chosen to lie near the polar axis of the oblate spheroid. Such
an atom can interact with alll modes, but predominantly
withm561 for TE modes andm50,61 for TM modes@Fig.
1~b!#. These three modes will be treated asdegenerate, on
the assumption that the splitting uvl(m50)
2vl(m561)u.vle/2l ( l11) is well below both the
atomic and the mode linewidths. As an example, fore&1024

and surface modes withl;103, this splitting is&10210vl . In

the case of an ideal-sphere cavity, we shall also restrict our
treatment tom50,61, by considering an atomnear the
sphere center, which is resonant with thel51 multiplet.

In either case, as theDmj50 ~p-polarized! atomic transi-
tion implies a radially polarized~i z axis! electric field, it
cannot couple to the TE mode. Hence, only thes-polarized
transitions withDmj561 couple to them561 TE modes,
defining aL ~or V! degenerate configuration@Fig. 1~b!#. By
contrast, a TM mode couples to boths- and p-polarized
transitions, and therefore gives rise to twocoupledL ~or V!
systems.

The corresponding field-atom interaction Hamiltonian can
be written in the rotating-wave approximation as

Hint5\d(
l

alxl•P1l1H.c. ~1!

Here the mode indices are denoted byl5$b;l ,m,n% with
b5TE or TM, al is thel-mode annihilation operator satis-

FIG. 1. ~a! Atomic coupling tom50, 61 modes at the spheroi-
dal surface. The modes can be externally excited.~b! The coupling
of atomic j50↔ j51 transitions to the electric field at the micro-
sphere surface: thep-polarized transition (ug&↔ue0&) couples only
to the radially polarized TM mode~m50!, whereas thes-polarized
transition (ug&↔ue61&) couples to both TE and TM tangentially
polarized modes~m561!. Inset: The levels corresponding to the
above degenerate transitions.
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fying the commutation relation@al ,al
†#5dl,l8 , d is the di-

pole moment,P1l is the appropriate dipolar raising opera-
tor, and

xl~r !5HRl ,n
TE~r !L̂Yl

m~u,w!,

~ ic/vl!“3Rl ,n
TM~r !L̂Yl

m~u,w!,

b5TE
b5TM ~2!

are the mode eigenfunctions. Here the functionsRln
b are real

solutions of the radial wave equation

F 1r 2 ]

]r S r 2 ]

]r D1k2e~r !2
l ~ l11!

r 2 GRl~r !50, ~3!

Y l
m are the spherical harmonics, andL̂ is the angular mo-

mentum operator. It should be stressed that for small eccen-
tricities ~e&1024!, the radial character ofRl(r ) is practically
the same as in an ideal sphere.

In particular, the TE modes withl51 can be expressed as

x61
TE ~r !57 i&vR1

TE~r !ê61 ,
~4!

x0
TE~r !50

and thel51 TM modes can be expressed as

x61
TM~r !56

~2&c!

r

]

]r
@rR1

TM~r !#ê61 ,

~5!

x0
TM~r !5

22&c

r
R1
TM~r !ê0 ,

where the unit-vector components areê615221/2~x̂6i ŷ!,
ê05ẑ.

In perfectly reflecting spherical cavities, the normalization
of thexl functions is such that

E d3r e~r !xl•xl8
* 5dll8 ,

~6!

E d3r ~“3xl!•~“3xl8
* !5

vl
2

c2
dll8 .

In open~leaky! dielectric spheres, there are distinct Mie
resonances labeled (b,l ,n), with l@1, corresponding to
high-Q ‘‘quasimodes’’ localized near the sphere surface with
evanescent ‘‘tails’’ outside@14~a!#. A rigorous quantization
procedure for such ‘‘quasimodes’’@14~b!# shows that they
can be effectively treated as nearly discrete,broadened~2l
11!-degenerate mode multiplets, if the atom is on or just

outside the surface. The radial wave function outside the
dielectric sphere is given by the outgoing spherical Hankel
functionhl @14#,

Rkl
b ~r !5Chl

~1!~klnr !, ~7!

whereb5TM or TE,C is the normalization constant, andkln
belongs to a discrete set of wave numbers~Mie resonances!.
We reiterate that for very small eccentricities,h l

(1) is nearly
identical with the spheroidal eigenfunctionh le

(1). In an ideal
sphere forl51,

h1
~1!~x!52

eix

x S 11
i

xD . ~8!

Substituting this form ofRkl
TM into Eqs.~5! yields

x0
TM5C

&

2c

eikr

r S 1kr 1
i

k2r 2D ê0 , ~9!

x61
TM56C

&

c

eikr

r S i2 1

kr
2

i

k2r 2D ê61 . ~10!

III. DIAGONALIZATION OF THE FIELD-ATOM
HAMILTONIAN

The RWA Hamiltonian of interaction@Eq. ~1!# between a
j50↔ j51 dipole transition and a triplet of effectively de-
generate angular-momentum eigenmodes,m50,61, l>1, in
the cases discussed above, can be diagonalized in the four-
dimensional subspace of field-atom product states:

ue1 ;N121,N0 ,N21&,

ue0 ;N1 ,N021,N21&,
~11a!

ue21 ;N1 ,N0 ,N2121&,

ug;N1 ,N0 ,N21 &.

Here the relevant atomic eigenstates are$ue1&,ue0&,ue1&,ug&%
corresponding to the three excited states~j51, mj50,61!
and one ground state~j50, mj50!. The photon numbers in
modes withm561,0, l>1, are denoted byN61, N0, respec-
tively. We restrict here our basis to photon numbers such that

(
m561,0

Nm[N>1, ~11b!

N being the total photon number when the atom is in theug&
state. We thus exclude theug,N50& state, which is un-
coupled from the other states. In this basis the Hamiltonian
can be expressed as

Ĥb5\S Nv2D
0
0

~x1
b!*AN1

0
Nv2D

0

~x0
b!*AN0

0
0

Nv2D

~x21
b !*AN21

x1
bAN1

x0
bAN0

x21
b AN21

Nv

D , ~12!
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wherev is the mode frequency andD5v2v0 is the detuning
from the atomic resonance frequency.

Diagonalization of the matrix~12! yields the eigenfre-
quencies

E1,25\~Nv2D!, E3,45\~Nv2D/26WN!, ~13!

where, using the fact thatux1
bu25ux21

b u2, we express the field-
induced energy shift as

WN[A~D/2!21N1ux1
bu21N0ux0

bu2, ~14a!

with

N1[N11N21 . ~14b!

Consistent with~11b!, if x050 ~as in the TE case!, then
N1>1, and, if bothx0,x1Þ0 thenN5N11N0>1. The cor-
responding eigenvectors are given by

uu1,2&5S c1
c0
c21

0
D , ~15!

with coefficients that satisfy the equation

(
m50,61

cmxm*ANm50 ~16!

and

uu3,4&5
1

A2WN
26DWN

S x1AN1

x0AN0

x21AN21

D/26WN

D . ~17!

Equations~15! and ~16! show that there are two ‘‘dark’’
~trapping! statesuu1,2& in which the atom is excited and stable
against emission of the photon, because the two emission
processes~with left- and right-circular photon polarizations!
in these states exhibit destructive interference. The corre-
sponding eigenvaluesE1,2 @Eq. ~13!# are not affected by the
field-atom interaction; i.e., the atom is essentially decoupled
from the field. As is well known, in aL configuration there
is only one dark~trapping! state.

Note that the TE case~x0
TE50! is equivalent to the TM

case with eitherN050 or with the atom located at ax0
TM

node. In the following, the indicesb and j will be suppressed
unless required.

IV. GENERALIZED RABI OSCILLATIONS

The eigenenergies and eigenvectors derived above allow
us to calculate the time-dependent atomic transition ampli-
tudes for a given photon number. When the atom is initially
in the ground state, and the state att50 is
ug;$Nm%5$N1 ,N0 ,N21%&, the ug&→uem& transition ampli-
tude has the form

A
$Nm%
g→em~ t !5

ixmANm

WN
e2 i ~Nm2D/2!tsinWNt. ~18a!

For an atom initially in theuem& state, with$Nm% photons in
the field,

A
$Nm21%
em→g

5A
$Nm%
* g→em~ t !. ~18b!

The correspondingug&→uem& transition probabilities are

P
$Nm%
g→em5Nmuxmu2sin2~WNt !/WN

2 ~19a!

and the probability to remain in the ground state is

P$Nm%
g→g512S (

m50,61
Nmuxmu2D sin2~WNt !/WN

2 . ~19b!

Hence, Rabi oscillations occur with a frequencyWN

5A(D/2)21uxu2N that depends on the total number of pho-
tons ~when the atom is in ug&!. In the TE case,
N15N11N21 is the relevant photon number. The system
then behaves as a two-level atom oscillating between the
ground stateug& and the superposition of excited states
ue1&[(1/AN1)(AN1ue1&1AN21ue21&), interacting effec-
tively with a single mode havingN1 photons. The reason for
this behavior is that by taking the appropriate linear combi-
nations of them561 modes we can construct two orthogo-
nal elliptically polarized modes, such that one mode is in a
N1-photon state and the other is in its vacuum state. Clearly,
the atom, initially in the ground state, can only exchange one
elliptically polarizedphoton with the field.

Generally, for both TE and TM polarizations, the evolu-
tion of any initial superposition ofuem& and uNm& states can
be described as the beating of oscillations with frequency
WN and population trapping at the ‘‘dark’’ states@Eqs.~15!–
~17!#. The results of such beating are discussed below.

V. COLLAPSES AND REVIVALS

We wish to explore the mode interference effects in both
the TE and TM cases on the collapse and revival patterns of
the Rabi oscillations, obtainable for a multimode field ini-
tially in a coherent state@7#. We assume that the modes
~l ,m50! and~l ,m561! of an oblate spheroid are populated
by a classical beam@Fig. 1~a!#.

A. The atom initially in the ground state

Assume that initially the atom is in the ground state, and
the field is in the multimode coherent state
u$am%5a1,a0,a21&. In the photon-number basis, the initial
state has the form

ug,$am%&5 )
m50,61

e2uamu2/2 (
Nm50

` am
Nm

ANm!
ug,$Nm%&.

~20!

The probability of the atom remaining in the ground state
can be expressed@using Eqs.~18! and ~19!# as
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P$am%
g→g~ t !5e2ua1u22ua0u2 (

N1 ,N0

ua0u2N0ua1u2N1

N0!N1!

3S 12
ux1u2N11ux0u2N0

WN
2 sin2WNt D , ~21!

whereua1u25ua1u
21ua21u

2, andWN is defined in Eq.~14!.
In the case of coherent TE-mode excitation,~21! can be

simplified ~substitutingx050 andWN5WN1
! as follows:

Pa1a21

g→g ~ t !5e2ua1u2(
N1

ua1u2N1

N1!

3S 12
ux1u2N1

WN1

2 sin2WN1
t D . ~22!

This expression exhibits the usual collapse and revival be-
havior in the linear combination of the right- and left-handed
circular-polarized coherent states. In this case, the atom ba-
sically interacts with one elliptically polarized coherent state.
The dark state for this case corresponds to atomic excitation
by photons with the orthogonal elliptic polarization.

New phenomena are predicted in the case of coherent
TM-mode excitation. The numerical plots of Eq.~21! for this
case~Fig. 2! reveal unusual features, i.e., suppression and/or
delay of the revivals. In order to gain insight into these fea-

tures, we use the followingcrudeapproximation for the case
of resonance,D50, and large average photon numbers
ua1u2,ua0u

2@1. We expand the square root inWN up to the
linear term

Aux0
bu2N01ux1

bu2N1'
1

2
Aux0

bu2ua0u21ux1
bu2ua1u2

1
ux0

bu2N01ux1
bu2N1

2Aux0
bu2ua0u21ux1

bu2ua1u2
.

~23!

This expansion is justified since the Poisson distributions are
centered aroundua0u

2 or ua1u2 over a width of the order of
ua0u or ua1u, respectively. This approximation allows one to
perform both sums in Eq.~21! analytically, yielding

P$am%
g→g~ t !'

1

2 F11expS 22ua1u2 sin2
ux1

bu2t

2W̄
22ua0u2

3sin2
ux0

bu2t

2W̄
D cosS W̄t1ua0u2 sin

ux0
bu2t

W̄

1ua1u2 sin
ux1

bu2t

W̄
D G , ~24!

where W̄5Aux1a1u21ux0a0u2. The terms
exp~22ua1u2sin2ux1u

2t/2W̄! and exp~22ua0u
2sin2ux0u

2t/2W̄!
can be regarded as envelopes for the Rabi oscillations with
the average frequencyW̄. Revivals occur whenboth enve-
lopes differ noticeably from zero, i.e., around the times given
by

ux1u2tn1
2W̄

5n1p,
ux0u2tn0
2W̄

5n0p. ~25!

Thus the condition for the first revival takes the formtn0
5tn1 for the smallest integer numbersn0 and n1 such that
n0/n15ux0u

2/ux1u
2. In general the required integers can be

much larger than 1, in which case the first revival is effec-
tively delayed or suppressed.

Of course, the above analysis is oversimplified:~i! partial
overlap of the nonzero parts of the envelopes is sufficient to
produce some remnant of a revival;~ii ! expansions~23! and
~24! are known to be inadequate for the subsequent revivals
@22#. Nevertheless, it yields the correct prediction that an
appropriate choice of the ratioux0u

2/ux1u
2 allows oneto sup-

press the first revival noticeably, as shown in Fig. 2~b!,
which presents the ground-state probability calculated nu-
merically from Eq.~21!. In both cases, Figs. 2~a! and 2~b!,
the average numbers of photons, as well as the Rabi frequen-
cies W̄ are the same. The only difference is the ratio
ux0u

2/ux1u
2, which is equal to 1 for the upper plot and 2/3 for

the lower plot. Suppression of the first revival is clearly vis-
ible.

We next consider the probability of the initial state~20! to
yield ug&→uem& transitions. It is convenient to consider the
combined population ofue1& and ue21&:

FIG. 2. The probability to remain in the initial ground state as a
function of time ~scaled to the inverse coupling constant! for an
initial coherent-state TM-polarized field:~a! ua1u25ua0u

2520,
ux0u

25ux1u
251. ~b! Samea1 ,a0; ux0u

250.8 ux1u
251.2. Note the dras-

tic change in the revival patterns.
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P
$am%
g→e1~ t !1P

$am%
g→e21~ t !5e2ua1u22ua0u2 (

N1 ,N0

ua0u2N0ua1u2N1

N0!N1!

3
ux1u2

WN
2 N1 sin2~WNt !, ~26!

whereas the population of the excitedue0& sublevel is

P
$am%
g→e0~ t !5e2ua1u22ua0u2 (

N1N0

ua0u2N0ua1u2N1

N0!N1!

3
ux0u2N0

WN
2 sin2~WNt !. ~27!

Equations~26! and ~27! differ only by one factor in the
summation,ux1u2N1 /WN1N0

2 as compared toux0u
2N0/WN

2 .

Let us rewrite these factors as

uxmu2Nm

WN
2 5S uxmu2Nm

ux1u2N11ux0u2N0
D S ux1u2N11ux0u2N0

WN
2 D

~28!

and take the values of the first fraction that make the domi-
nant contribution to the sum, atNm'uamu2. Then we obtain

P
$am%
g→e1~ t !1P

$am%
g→e21~ t !'

ux1u2a1u2

ux1a1u21ux0a0u2
@12P$am%

g→g~ t !#,

~29!

P
$am%
g→e0~ t !'

ux0a0u2

ux1a1u21ux0a0u2
@12P$am%

g→g~ t !#. ~30!

Thus, under this approximation, the occupations of the upper
levels are equal to 12P$am%

g→g(t), reduced by the fractional

weight of the squared coupling constant times the average
photon number in the pertinent mode.

This simplified analysis is confirmed by numerical calcu-
lations of the excited-level populations shown in Figs. 3 and
4 for different average photon numbers and coupling con-
stants. It is easily seen that thetime of the first revival de-
pends only on the ratioof ux0u

2/ux1u
2. The productsux0a0u

2 and
ux1a1u2 determine which atomic sublevel is more populated
by the interaction with the field.

B. Initially excited states

An initial superposition of excited-state sublevels and
multimode coherent statesSmcmuem ,$am%& yields the fol-
lowing probability of occupying the ground state:

P$am%
g 5 (

N0 ,N61
S)

m
e2uamu2D(

m

uamu2Nm

Nm!

3U(
m

cmANm

am
A

$Nm%
em→gU2. ~31!

On substituting theA
$Nm%

em→g
amplitudes@Eq. ~18b!# we find

that

(
m

cm
ANm

am
A

$Nm%
em→g

5
1

WN
2 U(

m
~21!mcm

xm*

am
NmU2.

~32!

As before, we estimate the sum in~32! by settingNm'uamu2.
In this approximation, the trapping conditionP$am%

g '0 for

the initial excited-state superposition amounts to

(
m

~21!mcmxm*am*'0. ~33!

Equation ~33! defines the quasiclassical ‘‘dark’’~trapping!
states, for which theenergy exchange with the coherent field
is suppressed. This condition is in reasonable agreement with
the numerical plots of the energy exchange~Fig. 5!.

VI. DISCUSSION

We have treated the resonant nondissipative coupling of
an atom with a j50↔ j51 dipole transition to a near-
spherical~spheroidal! TE or TM polarized field by taking
account of the degeneracy of atomic levels and low-m ~m
50,61! field modes. The following results have been ob-
tained from this treatment:~a! A photon with the suitable
~‘‘active’’ ! elliptic polarization can produce sinusoidal Rabi
oscillations betweenug& and a superposition of degenerate
excited states. Exchange of the orthogonally polarized

FIG. 3. Population of the excited stateue0& as a function of time
~same units! for the same initial conditions as in Fig. 2:~a!
ux0u

25ux1u
251, ~b! ux0u

250.8, ux1u
251.2. The revival patterns are

qualitatively similar to Fig. 2.
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~‘‘dark’’ polarization! photon with this superposition is for-
bidden by the population trapping condition. The active and
‘‘dark’’ elliptic polarizations arecontrollableby the atomic
distance from the center and thel number of the modes,
which determine the coupling constantsx m

b (r ). ~b!
Population-trapping~energy-exchange suppression! effects
are obtainable for elliptically polarized quasiclassical coher-
ent fields, which are also controllable by the factors men-
tioned above.~c! The timing and strength of the atomic
population revivals is controllable by the ratio of the squared
coupling constants to the orthogonally polarized modes,
ux0(r )u

2/ux1(r )u
2.

The understanding acquired here of the factors controlling
the energy exchange with the field and the atomic-state
population can be used for preparation of nonclassical states
of the field in a dielectric microsphere. This can be achieved

by resonant interaction with surface-adsorbed molecules, or
with cold atoms orbitting the microsphere under the influ-
ence of another off-resonant field. Finally, we have discussed
the influence of weak oblateness of the sphere, and identified
the conditions under which mode degeneracy effects would
still be observable.
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