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Pairs of spin-12 particles are prepared in a Werner state~namely, a mixture of singlet and random compo-
nents!. If the random component is large enough, the statistical results of spin measurements that may be
performed on each pair separately can be reproduced by an algorithm involving local ‘‘hidden’’ variables.
However, if several such pairs are tested simultaneously, a violation of the Clauser-Horne-Shimony-Holt
inequality may occur, and no local hidden variable model is compatible with the results.
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I. INTRODUCTION

From the early days of quantum mechanics, the question
has often been raised whether an underlying ‘‘subquantum’’
theory, which would be deterministic or even stochastic, was
viable. Such a theory would presumably involve additional
‘‘hidden’’ variables, and the statistical predictions of quan-
tum theory would be reproduced by performing suitable av-
erages over these hidden variables.

A fundamental theorem was proved by Bell@1#, who
showed that if the constraint oflocality was imposed on the
hidden variables~namely, if the hidden variables of two dis-
tant quantum systems would themselves be separable into
two distinct subsets!, then there was an upper bound to the
correlations of results of measurements that could be per-
formed on the two distant systems. That upper bound, math-
ematically expressed by Bell’s inequality@1#, is violated by
some states in quantum mechanics, for example the singlet
state of two spin-12 particles.

A variant of Bell’s inequality, more general and more
useful for experimental tests, was later derived by Clauser,
Horne, Shimony, and Holt~CHSH! @2#. It can be written

u^AB&1^AB8&1^A8B&2^A8B8&u<2. ~1!

On the left-hand side,A andA8 are two operators that can be
measured by the first observer, conventionally called Alice.
These operators do not commute~so that Alice has to choose
whether to measureA or A8) and each one is normalized to
unit norm ~the norm of an operator is defined as the largest
absolute value of any of its eigenvalues!. Likewise,B and
B8 are two normalized noncommuting operators, any one of
which can be measured by another, distant observer~Bob!.
Note that each one of theexpectationvalues in Eq.~1! can be
calculated by means of quantum theory, if the quantum state
is known, and is also experimentally observable, by repeat-
ing the measurements sufficiently many times, starting each
time with identically prepared pairs of quantum systems.

The validity of the CHSH inequality, forall combinations
of measurements independently performed on both systems,
is a necessary condition for the possible existence of a local

hidden variable~LHV ! model for the results of these mea-
surements. It is not in general a sufficient condition, except
in some simple cases, for example when each observer is
testing a two-state system, and has only two alternative tests
to choose from@3#. For more general situations, counterex-
amples can be found, such that the inequality~1! holds for
any two pairs of correlation coefficients, and yet the nonex-
istence of a LHV model can be proved@4#. The purpose of
the present paper is to show that, even if a well defined LHV
model exists that reproduces all the statistical properties of
pairs of particles when each pair is tested separately, there
may be no extension of such a model that is valid when
several pairs are tested simultaneously.

Note that the difficulty appears only in the case ofmixed
quantum states. For pure states, it is easily shown that the
CHSH inequality is violated by any nonfactorable state@5,6#,
while on the other hand a factorable state trivially admits a
~contextual! LHV model @7#. For a pair of spin-12 particles
with a given mixed density matrix, there is an explicit for-
mula @8# which gives the maximum value of the left-hand
side of Eq.~1!, for any measurements that can be chosen by
Alice and Bob@see Eq.~12! below#. However, even if that
maximum value is less than 2, so that the CHSH inequality
holds, this does not prove as yet that a LHV model is admis-
sible, as will be shown in this paper.

For quantum systems whose states lie in higher dimen-
sional vector spaces, even less is known@9#. Some time ago,
Werner @10# constructed a density matrixrW for a pair of
spin-j particles, with paradoxical properties. Werner’s state
rW cannot be written as a sum of direct products of density
matrices,( j cjrA j^ rB j , whererA j andrB j refer to the two
distant particles~the indicesA and B stand for Alice and
Bob, respectively!. Therefore, genuinely quantal correlations
are involved inrW . Nevertheless, for any pair of ideal local
measurements performed on the two particles, the correla-
tions derived fromrW not only satisfy the CHSH inequality,
but, as Werner showed@10#, it is possible to introduce an
explicit LHV model that correctly reproduces all the observ-
able correlations for these ideal measurements.

For a pair of spin-12 particles, Werner’s state is

rW5
1

2 S rsinglet1
1

4
1D , ~2!
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namely, an equal weight mixture of a singlet state~which
maximally violates the CHSH inequality! and a totally un-
correlated random state. Note that this mixture is rotationally
invariant. A manifestly nonclassical property ofrW was dis-
covered by Popescu@11#, who showed that such a particle
pair could be used for teleportation of a quantum state@12#,
albeit with a fidelity less than if a pure singlet were em-
ployed for that purpose. This nonclassical property came as a
surprise, and it was the first indication that the existence of a
formal LHV model was not a complete description of this
system. Indeed, the abstract LHV model that was proposed
by Werner deals only with pairs of ideal measurements of the
von Neumann type. It is not a complete theory, because it
does not predict what happens if other measuring methods
are chosen. In particular, Werner’s algorithm becomes am-
biguous for spin. 1

2, when we consider the measurement of
projection operators of rank 2 or higher@13#. The algorithm
must then be supplemented by further rules.

This ambiguity was exploited by Popescu@14# in the fol-
lowing way. Instead of measuring complete sets of orthogo-
nal projection operators of rank 1, as discussed in Werner’s
article, Alice and Bob first measure suitably chosen~and
mutually agreed! projection operators of rank 2, sayPA and
PB . If one of them gets a null result, the experiment is con-
sidered to have failed, and they test another Werner pair.
Only if both Alice and Bob find the result 1 forPA andPB
do they proceed by independently choosing projection opera-
tors of rank 1, in the subspaces spanned byPA and PB ,
respectively. Popescu then shows that if the initial Hilbert
space~for each particle! has dimension 5 or higher, the cor-
relation of the final results violates the CHSH inequality. In
other words, Werner’s hidden variable model, which worked
for single ideal measurements, is incapable of reproducing
the results of severalconsecutivemeasurements~and of
course no other hidden variable model would be acceptable!.

Popescu’s measuring method@14# does not lead to a vio-
lation of the CHSH inequality in spaces having fewer than
535 dimensions. Nonetheless, such a violation can be pro-
duced with the simplest Werner pairs, made of two-state sys-
tems, by combining several pairs together. In order to
achieve this result, Alice and Bob must first ‘‘purify’’ the
Werner state, and distill, from a large set of Werner pairs, a
subset of almost pure singlets@15–18#. In the discussion of
that purification procedure, the notion of ‘‘Werner state’’ has
to be generalized from its original definition~2! to

rW5xrsinglet1
1

4
~12x!1. ~3!

This state consists of a singlet fractionx and a random~to-
tally uncorrelated! fraction (12x). States of this type were
first considered by Blank and Exner@19#. Note that the ran-
dom fraction (12x) also includes singlets, mixed in equal
proportions with the three triplet components. Another com-
monly used measure of entanglement is the ‘‘fidelity’’

F5~3x11!/4, ~4!

which is thetotal fraction of singlets@15–18#.
In the present work, I shall not consider the fractional

distillation of singlets—a multistage process—but the result

of a single simultaneous observation of several Werner pairs.
Namely, if there aren such pairs, Alice and Bob perform
their tests on quantum systems consisting ofn particles~each
system is described by a vector space of dimension 2n). To
understand why new results may be obtained by means of
such collective tests, let us recall how the statistical interpre-
tation of the quantum formalism is related to actual statistical
tests. When we say that a physical system has a density
matrix r, this means that we may mentally construct aGibbs
ensembleof such systems, namely an infinite set of concep-
tual replicas of it, all prepared in the same way@20#. This
mental process is not the same thing as actually preparing a
large number of such systems, sayN of them. The latter
preparation gives aMaxwell ensemble~for example, a gas
made ofN identical molecules!. If we test individually the
various members of a Maxwell ensemble, we may approach,
in the limit N→`, the statistical properties computed for the
Gibbs ensemble. I emphasize that the latter is a pure theo-
retical construct, needed for the sole purpose of statistical
reasoning.

Now, once there actually is a Maxwell ensemble, we may
also test its constituent systems two by two, three by three,
etc. In that case, we effectively consider a new kind of physi-
cal system, which consists of two, or three, or more, of the
former ‘‘physical systems.’’ If the mathematical representa-
tion of the states of the old systems was a density matrix
r, then the representation of the new systems is given by a
tensor product, such asr ^ r, r ^ r ^ r, etc. The purpose of
this paper is to show that even if the density matricesr obey
the CHSH inequality, it is possible thatr ^ r, r ^ r ^ r, etc.,
violate that inequality, when we measure suitably chosen op-
erators.

II. PROTOCOL FOR COLLECTIVE TESTS

In the case of Werner pairs that are considered here, each
one of the two observers hasn particles~one particle from
each Werner pair!. The two observers then proceed as fol-
lows. First, they subject theirn-particle systems to suitably
chosen local unitary transformations,U for Alice andV for
Bob. ~This is always possible, in principle, by using a mul-
tiport @21# or a similar device.! Then, they test whether each
one of the particles labeled 2, 3, . . . ,n has spin up~for
simplicity, it is assumed that all the particles are distinguish-
able, and can be labeled unambiguously!. Note that any other
test that they can perform is unitarily equivalent to the one
for spins up, as this involves only a redefinition of the ma-
tricesU andV. If any one of the 2(n21) particles tested by
Alice and Bob shows spin down, the experiment is consid-
ered to have failed, and the two observers must start again
with n new Werner pairs. A similar elimination of ‘‘bad’’
samples is also inherent to Popescu’s protocol@14#, or to any
experimental procedure where a failure of one of the detec-
tors to fire is handled by discarding the results registered by
all the other detectors: only whenall the detectors fire are
their results included in the statistics. This obviously requires
an exchange ofclassicalinformation between the observers.

Note that, instead of the unitary transformationsU and
V, Alice and Bob could use more generalnonunitarytrans-
formations, involving selective absorption@22#. The latter
can sometimes be used to enhance nonlocality, but they
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would not help in the present case, because Werner states are
rotationally symmetric. Still another possibility would be for
Alice and Bob to use a positive operator valued measure
~POVM! @23#, by including in their apparatuses auxiliary
quantum systems, independently prepared by each one of
them, and then performing local unitary transformations and
tests on thecombinedsystems. In the present work, such a
strategy was examined, as a possible alternative to the sim-
pler one discussed above, and it was found that no advantage
resulted from the use of a POVM. This is likely due to the
rotational symmetry of Werner states. I shall therefore re-
strict the following discussion to what happens afterunitary
transformationsU andV have been performed on then par-
ticles held by each observer.

The calculations shown below will refer to the case
n53, for definiteness. The generalization to any other value
of n is straightforward. Spinor indices, for a single spin-1

2

particle, will take the values 0~for the ‘‘up’’ component of
spin! and 1 ~for the ‘‘down’’ component!. The 16 compo-
nents of the density matrix of a Werner pair, consisting of a
singlet fractionx and a random fraction (12x), are, in the
standard direct product basis;

rmn,st5xSmn,st1~12x!dmsdnt/4, ~5!

where the indicesm ands refer to Alice’s particle,n andt to
Bob’s particle, and where the density matrix for a pure sin-
glet is given by

S01,015S10,1052S01,1052S10,015
1
2 , ~6!

and all the other components ofS vanish.
When there are three Werner pairs, their combined den-

sity matrix is a direct productr ^ r8^ r9, or explicitly,
rmn,strm8n8,s8t8rm9n9,s9t9. The result of the unitary transfor-
mationsU andV is

r ^ r8^ r9→~U^V!~r ^ r8^ r9!~U†
^V†!. ~7!

Explicitly, with all its indices, theU matrix satisfies the uni-
tarity relation

(
mm8m9

Umm8m9,mm8m9Ull8l9,mm8m9
* 5dmldm8l8dm9l9. ~8!

In order to avoid any possible ambiguity, Greek indices
~whose values are also 0 and 1! are used to label spinor
componentsafter the unitary transformations. Note that the
indices without primes refer to the two particles of the first
Werner pair~the only ones that are not tested for spin up!
and the primed indices refer to all the other particles~that are
tested for spin up!. The Vnn8n9,nn8n9 matrix elements of
Bob’s unitary transformation satisfy a relationship similar to
Eq. ~8!. The generalization to a larger number of Werner
pairs is obvious.

After the execution of the unitary transformation~7!, Al-
ice and Bob have to test that all the particles, except those
labeled by the first~unprimed! indices, have their spin up.
They discard any set ofn Werner pairs where that test fails,
even once. The density matrix for the remaining ‘‘success-
ful’’ cases is thus obtained by retaining, on the right-hand
side of Eq.~7!, only the terms whose primed components are

zeros, and then renormalizing the resulting matrix to unit
trace. This means that only two of the 2n rows of theU
matrix, namely those with indices 000 . . . and 100 . . . ,
are relevant~and likewise for theV matrix!. The elimination
of all the other rows greatly simplifies the problem of opti-
mizing these matrices. We shall thus write, for brevity,

Um00,mm8m9→Um,mm8m9, ~9!

wherem50,1. Then, on the left-hand side of Eq.~8!, we
effectively have two unknown vectors,U0 andU1, each one
with 2n components~labeled by Latin indicesmm8m9).
These vectors have unit norm and are mutually orthogonal.
Likewise, Bob has two vectors,V0 andV1. The problem is to
optimize these four vectors so as to make the expectation
value of the Bell operator@24#,

C:5AB1AB81A8B2A8B8, ~10!

as large as possible.
The optimization proceeds as follows. The new density

matrix, for the pairs of spin-12 particles not yet tested by
Alice and Bob ~that is, for the first pair in each set ofn
pairs!, is

~rnew!mn,st5NUm,mm8m9Vn,nn8n9rmn,strm8n8,s8t8rm9n9,s9t9

3Us,ss8s9
* Vt,tt8t9

* , ~11!

whereN is a normalization constant, needed to obtain unit
trace (N21 is the probability that all the ‘‘spin up’’ tests
were successful!. We then have@8#, for fixed rnew and all
possible choices ofC,

max@Tr~Crnew!#52AM , ~12!

whereM is the sum of the two largest eigenvalues of the real
symmetric matrixT†T, defined by

Tpq :5Tr@~sp^ sq!rnew#. ~13!

Note that the matrixTpq is real, because the Pauli matrices
sp andsq are Hermitian, but in general it is not symmetric
~explicit formulas are given in the Appendix!. Our problem
is to find the vectorsUm andVn that maximizeM .

At this point, some additional simplifying assumptions are
helpful. Since all matrix elementsrmn,st are real, we shall
restrict our search to vectorsUm andVn that only have real
components.~It is unlikely that higher values ofM can be
attained by using complex vectors, but this possibility cannot
be totally ruled out without a formal proof.!

Furthermore, the situations seen by Alice and Bob are
completely symmetric, except for the presence of opposite
signs in the standard expression for the singlet state:

c5F S 10D S 01D2S 01D S 10D G YA2. ~14!

The opposite signs can be made to become the same by
redefining the basis, for example by representing the
‘‘down’’ state of Bob’s particle by the symbol (21

0 ), without
changing the basis used for Alice’s particle. This partial
change of basis is equivalent to a substitution
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Vn,nn8n9→~21!n1n1n81n9Vn,nn8n9, ~15!

on Bob’s side. The minus signs in Eq.~6! also disappear, and
there is then complete symmetry for the two observers. It is
therefore plausible that, with that new basis, we have
Un5Vn . Therefore, when we return to the original basis and
notations, the optimalUn andVn satisfy

Vn,nn8n95~21!n1n1n81n9Un,nn8n9. ~16!

We shall henceforth restrict our search to pairs of vectors
that satisfy this relation.~Without imposing this restriction, I
checked, for a few values ofx, that the optimal vectorsU
andV indeed had that symmetry property, whenn52 or 3.
However, an exhaustive search forn54 would have ex-
ceeded the capacity of my workstation.!

After all the above simplifications, the problem that has to
be solved is the following: find two mutually orthogonal unit
vectors,U0 and U1, each with 2n real components, that
maximize the value ofM (U) defined by Eqs.~12! and~13!.
This is a standard optimization problem, which can be solved
numerically, for example by using the Powell algorithm@25#.
Some care must, however, be exercised. The orthonormality
constraints must be imposed in a way that does not impede
the convergence of the iterations. Moreover, there is a con-
tinuous infinity of equivalent solutions, because the entire
experimental protocol, and therefore all the physical data, are
invariant under rotations around the quantization axes
~namely, the axes along which the ‘‘spin up’’ tests are per-
formed!. This means that a substitution

U0,mm8m9→U0,mm8m9cosa2U1,mm8m9sina,

~17!

U1,mm8m9→U0,mm8m9sina1U1,mm8m9cosa,

for any reala, does not affect the value ofM (U). Similar
transformations, with arbitrary angles, can also be performed
on each one of then other indices. Therefore the location of
a maximum of M (U) is not a point in the
(2n1123)-dimensional parameter space, but can lie any-
where on an (n11)-dimensionalmanifold.

Since the functionM (U) is bounded, it must have at least
one maximum. It may, however, have more than one: there
may be several distinct (n11)-dimensional manifolds on
which M (U) is locally maximal, each one with a different
value of the maximum. A numerical search by the Powell
algorithm @25# ends at one of these maxima, but not neces-
sarily at the largest one. The outcome may depend on the
initial point of the search. It is therefore imperative to start
from numerous randomly chosen points in order to ascertain,
with reasonable confidence, that the largest maximum has
indeed been found.~A curious difficulty arises from the fact
that Alice and Bob can always obtain^C&52, irrespective of
the quantum state, simply by measuring the unit operator, so
that all their results are11. It is important that the computer
program used for optimization be immune to such artifices.!

III. RESULTS AND CONCLUSIONS

In all the cases that were examined, it was found that
M (U) has one of its maxima for the following simple
choice:

U0,00 . . .5U1,11 . . .51, ~18!

and all the other components ofU0 andU1 vanish. Recall
that the ‘‘vectors’’U0 andU1 actually arerows U000 . . . and
U100 . . . of the 2n-dimensional unitary matrixU ~the other
rows are irrelevant because of the elimination of all the ex-
periments in which a particle failed the spin-up test!. In the
casen52, one of the unitary matrices having the property
~18! is a simple permutation matrix that can be implemented
by a ‘‘controlled-NOT’’ quantum gate@26#. The correspond-
ing Boolean operation is known asXOR ~exclusiveOR!. For
larger values ofn, matrices that satisfy Eq.~18! will also be
calledXOR-transformations.

It was found, by numerical calculations, thatXOR-
transformations always are the optimal ones forn52. They
are also optimal forn53 when the singlet fractionx is less
than 0.57, and forn54 whenx,0.52. For larger values of
x, more complicated forms ofU0 andU1 give better results.
The existence of two different sets of maxima may be seen in
Fig. 1: there are discontinuities in the slopes of the graphs for
n53 and 4, which occur at the values ofx where the largest
maximum of ^C& passes from one of the manifolds to the
other one.

For n55, a complete determination ofU0 and U1 re-
quires the optimization of 64 parameters subject to three con-
straints, more than my workstation could handle. I therefore

FIG. 1. Maximal expectation value of the Bell operator, versus
the singlet fraction in the Werner state, for collective tests per-
formed on several Werner pairs~from bottom to top of the figure, 1,
2, 3, and 4 pairs, respectively!. The CHSH inequality is violated
when ^C&.2.
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considered onlyXOR-transformations, which are likely to be
optimal for x&0.5. In particular, forx50.5 ~the value that
was used in Werner’s original work@10#!, the result is
^C&52.0087, and the CHSH inequality is violated. This vio-
lation occurs in spite of the existence of an explicit LHV
model that gives correct results if the pairs are tested one by
one. Forn→`, we expect the CHSH inequality to be vio-
lated for x. 1

3 ~that is, when the fidelity isF. 1
2!, because

such pairs can be ‘‘purified’’ by the methods of Refs.@15–
18#.

In summary, it has been shown that, even if a well defined
LHV model @10# can correctly predict all the statistical prop-
erties of some pairs of particles when the particles are tested
separately by two distant observers, a definite nonlocal be-
havior ~namely, a violation of the CHSH inequality! may
arise if several pairs are tested simultaneously, provided that
the particles held by each observer are allowed tointeract
locally before they are tested. This result is yet another ex-
ample of the fact that more information can sometimes be
extracted by simultaneously testing several identically pre-
pared quantum systems, than by testing each one of them
separately@27#. Note that, for such a phenomenon to occur, it
is always necessary that the distant observers exchangeclas-
sical information @13#.
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APPENDIX

This appendix explicitly lists all the components of the
Tpq matrix ~13!, when the density matrixrmn,st is real and
symmetric:

Txx5r00,111r01,101r10,011r11,00, ~A1!

Tyy52r00,111r01,101r10,012r11,00, ~A2!

Tzz5r00,002r01,012r10,101r11,11, ~A3!

Txz5r00,102r01,111r10,002r11,01, ~A4!

Tzx5r00,011r01,002r10,112r11,10. ~A5!

The other components vanish, because the Hermitian matri-
cessp^ sq that have only oney-index are antisymmetric
~and pure imaginary!.

Recall thatM in Eq. ~12! is the sum of the two largest
eigenvalues ofT†T. One of the eigenvalues of this matrix
obviously isTyy

2 . The two others are obtained by diagonal-
izing the symmetric matrix

S Txx
2 1Tzx

2 TxxTxz1TzxTzz

TxzTxx1TzzTzx Txz
2 1Tzz

2 D . ~A6!
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