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Collective tests for quantum nonlocality
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Pairs of spin% particles are prepared in a Werner statamely, a mixture of singlet and random compo-
nents. If the random component is large enough, the statistical results of spin measurements that may be
performed on each pair separately can be reproduced by an algorithm involving local “hidden” variables.
However, if several such pairs are tested simultaneously, a violation of the Clauser-Horne-Shimony-Holt
inequality may occur, and no local hidden variable model is compatible with the results.
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PACS numbes): 03.65.Bz

I. INTRODUCTION hidden variablelLHV) model for the results of these mea-
surements. It is not in general a sufficient condition, except
From the early days of quantum mechanics, the questiom some simple cases, for example when each observer is
has often been raised whether an underlying “subguantum’testing a two-state system, and has only two alternative tests
theory, which would be deterministic or even stochastic, wa$o choose fron{3]. For more general situations, counterex-
viable. Such a theory would presumably involve additionalamples can be found, such that the inequality holds for
“hidden” variables, and the statistical predictions of quan-any two pairs of correlation coefficients, and yet the nonex-
tum theory would be reproduced by performing suitable avistence of a LHV model can be provéd]. The purpose of
erages over these hidden variables. the present paper is to show that, even if a well defined LHV
A fundamental theorem was proved by Béll], who  model exists that reproduces all the statistical properties of
showed that if the constraint ddcality was imposed on the pairs of particles when each pair is tested separately, there
hidden variablegnamely, if the hidden variables of two dis- may be no extension of such a model that is valid when
tant quantum systems would themselves be separable insgveral pairs are tested simultaneously.
two distinct subsejs then there was an upper bound to the Note that the difficulty appears only in the casemuiked
correlations of results of measurements that could be pequantum states. For pure states, it is easily shown that the
formed on the two distant systems. That upper bound, matheHSH inequality is violated by any nonfactorable s{&®)],
ematically expressed by Bell's inequality], is violated by  while on the other hand a factorable state trivially admits a
some states in quantum mechanics, for example the singlétontextual LHV model [7]. For a pair of spin; particles
state of two spirg particles. with a given mixed density matrix, there is an explicit for-
A variant of Bell's inequality, more general and more mula [8] which gives the maximum value of the left-hand
useful for experimental tests, was later derived by Clauserside of Eq.(1), for any measurements that can be chosen by
Horne, Shimony, and HolfCHSH) [2]. It can be written Alice and Bob[see Eq.(12) below]. However, even if that
maximum value is less than 2, so that the CHSH inequality
[(AB)+(AB')+(A’B)y—(A'B’)|=<2. (1)  holds, this does not prove as yet that a LHV model is admis-
sible, as will be shown in this paper.
On the left-hand sided andA’ are two operators that can be ~ For quantum systems whose states lie in higher dimen-
measured by the first observer, conventionally called Alicesional vector spaces, even less is kng@h Some time ago,
These operators do not commig® that Alice has to choose Werner[10] constructed a density matrix, for a pair of
whether to measurA or A’) and each one is normalized to spin§ particles, with paradoxical properties. Werner’s state
unit norm (the norm of an operator is defined as the largespw cannot be written as a sum of direct products of density
absolute value of any of its eigenvalliekikewise, B and ~ matrices,>;C;jpa;® pgj, Wherep,; andpg; refer to the two
B’ are two normalized noncommuting operators, any one oflistant particlesithe indicesA and B stand for Alice and
which can be measured by another, distant obsei®eb). Bob, respectively Therefore, genuinely quantal correlations
Note that each one of trexpectatiorvalues in Eq(1) can be are involved inpy,. Nevertheless, for any pair of ideal local
calculated by means of quantum theory, if the quantum statsieasurements performed on the two particles, the correla-
is known, and is also experimentally observable, by repeations derived frompyy not only satisfy the CHSH inequality,
ing the measurements sufficiently many times, starting eachut, as Werner showefdL0], it is possible to introduce an
time with identically prepared pairs of quantum systems. explicit LHV model that correctly reproduces all the observ-
The validity of the CHSH inequality, foall combinations able correlations for these ideal measurements.
of measurements independently performed on both systems, For a pair of spin particles, Werner’s state is
is a necessary condition for the possible existence of a local
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namely, an equal weight mixture of a singlet statéhich  of a single simultaneous observation of several Werner pairs.
maximally violates the CHSH inequalityand a totally un- Namely, if there aren such pairs, Alice and Bob perform
correlated random state. Note that this mixture is rotationallytheir tests on quantum systems consisting pfrticles(each
invariant. A manifestly nonclassical property @f, was dis-  system is described by a vector space of dimensijn Po
covered by Popescill], who showed that such a particle understand why new results may be obtained by means of
pair could be used for teleportation of a quantum stag, such collective tests, let us recall how the statistical interpre-
albeit with a fidelity less than if a pure singlet were em-tation of the quantum formalism is related to actual statistical
ployed for that purpose. This nonclassical property came asigsts. When we say that a physical system has a density
surprise, and it was the first indication that the existence of anatrix p, this means that we may mentally construciabs
formal LHV model was not a complete description of this ensemblef such systems, namely an infinite set of concep-
system. Indeed, the abstract LHV model that was proposetlial replicas of it, all prepared in the same wa&@]. This
by Werner deals only with pairs of ideal measurements of thenental process is not the same thing as actually preparing a
von Neumann type. It is not a complete theory, because itarge number of such systems, shyof them. The latter
does not predict what happens if other measuring methodsreparation gives &axwell ensembléfor example, a gas
are chosen. In particular, Werner's algorithm becomes ammade ofN identical molecules If we test individually the
biguous for spin>3, when we consider the measurement ofvarious members of a Maxwell ensemble, we may approach,
projection operators of rank 2 or highgk3]. The algorithm  in the limit N— o, the statistical properties computed for the
must then be supplemented by further rules. Gibbs ensemble. | emphasize that the latter is a pure theo-
This ambiguity was exploited by Popesfd#] in the fol-  retical construct, needed for the sole purpose of statistical
lowing way. Instead of measuring complete sets of orthogoreasoning.
nal projection operators of rank 1, as discussed in Werner's Now, once there actually is a Maxwell ensemble, we may
article, Alice and Bob first measure suitably chogamd also test its constituent systems two by two, three by three,
mutually agreegprojection operators of rank 2, s&, and  etc. In that case, we effectively consider a new kind of physi-
Pg. If one of them gets a null result, the experiment is con-cal system, which consists of two, or three, or more, of the
sidered to have failed, and they test another Werner paiformer “physical systems.” If the mathematical representa-
Only if both Alice and Bob find the result 1 fd?, andPg tion of the states of the old systems was a density matrix
do they proceed by independently choosing projection opergp, then the representation of the new systems is given by a
tors of rank 1, in the subspaces spannedFyyand Pg, tensor product, such gs®p, p®p®p, etc. The purpose of
respectively. Popescu then shows that if the initial Hilbertthis paper is to show that even if the density matrigesbey
space(for each particlghas dimension 5 or higher, the cor- the CHSH inequality, it is possible thatz p, p® p®p, etc.,
relation of the final results violates the CHSH inequality. Inviolate that inequality, when we measure suitably chosen op-
other words, Werner’s hidden variable model, which workederators.
for single ideal measurements, is incapable of reproducing
the results of severatonsecutivemeasurementgand of
course no other hidden variable model would be acceptable

Popescu’s measuring methfté] does not lead to a vio- | the case of Werner pairs that are considered here, each
lation of the CHSH inequality in spaces having fewer thangne of the two observers hasparticles(one particle from
5% 5 dimensions. Nonetheless, such a violation can be Praeach Werner pa)r The two observers then proceed as fol-
duced with the simplest Werner pairs, made of two-state sySows. First, they subject thein-particle systems to suitably
tems, by combining several pairs together. In order tochosen local unitary transformatioris, for Alice andV for
achieve this result, Alice and Bob must first “purify” the Bop. (This is always possible, in principle, by using a mul-
Werner state, and distill, from a large set of Werner pairs, aiport [21] or a similar device.Then, they test whether each

II. PROTOCOL FOR COLLECTIVE TESTS

subset of almost pure singlefts5-18. In the discussion of  gne of the particles labeled 2, 3, .. .n,has spin up(for
that purification procedure, the notion of “Werner state” hassijmplicity, it is assumed that all the particles are distinguish-
to be generalized from its original definitid@) to able, and can be labeled unambiguousiote that any other

test that they can perform is unitarily equivalent to the one
for spins up, as this involves only a redefinition of the ma-
tricesU andV. If any one of the 21— 1) particles tested by
Alice and Bob shows spin down, the experiment is consid-
This state consists of a singlet fractisrand a randontto- ered to have failed, and the two observers must start again
tally uncorrelateg fraction (1—x). States of this type were with n new Werner pairs. A similar elimination of “bad”
first considered by Blank and Exngt9]. Note that the ran- samples is also inherent to Popescu’s protdtd], or to any
dom fraction (1-x) also includes singlets, mixed in equal experimental procedure where a failure of one of the detec-
proportions with the three triplet components. Another com-+ors to fire is handled by discarding the results registered by

1
Pw= XPsinglet™ Z(l_x)l- 3

monly used measure of entanglement is the “fidelity” all the other detectors: only wheall the detectors fire are
their results included in the statistics. This obviously requires
F=(3x+1)/4, 4) an exchange oflassicalinformation between the observers.
Note that, instead of the unitary transformatiddsand
which is thetotal fraction of singlet§15-1§. V, Alice and Bob could use more generanunitarytrans-

In the present work, | shall not consider the fractionalformations, involving selective absorptidi22]. The latter
distillation of singlets—a multistage process—but the resulcan sometimes be used to enhance nonlocality, but they
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would not help in the present case, because Werner states areros, and then renormalizing the resulting matrix to unit
rotationally symmetric. Still another possibility would be for trace. This means that only two of thé 2ows of theU
Alice and Bob to use a positive operator valued measurenatrix, namely those with indices 00.. and 100... ,
(POVM) [23], by including in their apparatuses auxiliary are relevantand likewise for they matrix). The elimination
guantum systems, independently prepared by each one of all the other rows greatly simplifies the problem of opti-
them, and then performing local unitary transformations andnizing these matrices. We shall thus write, for brevity,
tests on thecombinedsystems. In the present work, such a

strategy was examined, as a possible alternative to the sim- U oomm m— U . mmy ms 9
pler one discussed above, and it was found that no advantage _

resulted from the use of a POVM. This is likely due to the Wheré x=0,1. Then, on the left-hand side of E(), we
rotational symmetry of Werner states. | shall therefore re_ef_fectngely have two unknown vectors, andU,, eac,h one
strict the following discussion to what happens afieitary ~ With 2" components(labeled by Latin indicesnm’'m").

transformations) andV have been performed on tinepar- These vectors have unit norm and are mutually orthogonal.
ticles held by each observer. Likewise, Bob has two vector¥,; andV,. The problem is to

The calculations shown below will refer to the case©Ptimize these four vectors so as to make the expectation

n=3, for definiteness. The generalization to any other valud/@lue of the Bell operatdi24],

of n is straightforward. Spinor indices, for a single sgin- C:=AB+AB' +A'B—A'B’ (10)
particle, will take the values (for the “up” component of ' '

spin and 1(for the “down” component. The 16 compo- gs |arge as possible.

nents of the density matrix of a Werner pair, consisting of & The optimization proceeds as follows. The new density
singlet fractionx and a random fraction (1x), are, in the  matrix, for the pairs of spir- particles not yet tested by

standard direct product basis; Alice and Bob(that is, for the first pair in each set of
airg, is
Pmnst= XSmn,stT (1=X) SmsOnil4, 5 P
v 0.7_: NU / //VV rnt rn’ 1t U U~
where the indices ands refer to Alice’s particlen andt to (Prew . /¥y, nn’n”Pmn,stom’n’ 57t P, 't
Bob’s particle, and where the density matrix for a pure sin- xU* V* (11

o,ss's” ¥ttt

glet is given by
L whereN is a normalization constant, needed to obtain unit
So1,00= S10,16~ ~ So1,16= ~ S10,00= 2 » ®)  trace (NN~ is the probability that all the “spin up” tests
were successful We then havd8], for fixed p,ey and all

and all the other components Sfvanish. np_)ossible choices o,

When there are three Werner pairs, their combined de

. T : R .

sity matrix is a direct producp®p’®p”, or explicitly, ma>{Tr(CpneW)]=2\/M, (12)

PmnstPm’n’.s't’ Pmnr, srer- The result of the unitary transfor-

mationsU andV is whereM is the sum of the two largest eigenvalues of the real
symmetric matrixT'T, defined by

p®p' ®p"—(UaV)(pap' @p")(UTaVh.  (7)

Tyg:=Tr] ® . 13
Explicitly, with all its indices, thel) matrix satisfies the uni- pa: = TIL(op® 0q)Prevd 13

tarity relation Note that the matrixT ,, is real, because the Pauli matrices
o, and oy are Hermitian, but in general it is not symmetric
D UMu’u”,mm’m”U:)\m" o= OunSur Surr. (8) _(expllt_:lt formulas are given in the Appqn(jn@ur problem
mm : is to find the vectors) , andV, that maximizeM .
At this point, some additional simplifying assumptions are
In order to avoid any possible ambiguity, Greek indiceshelpful. Since all matrix elementgs,,,,; are real, we shall
(whose values are also 0 and dre used to label spinor restrict our search to vectot$, andV, that only have real
componentsafter the unitary transformations. Note that the components(lt is unlikely that higher values of can be
indices without primes refer to the two particles of the firstattained by using complex vectors, but this possibility cannot
Werner pair(the only ones that are not tested for spin up be totally ruled out without a formal proof.

and the primed indices refer to all the other parti¢tést are Furthermore, the situations seen by Alice and Bob are
tested for spin up The V,, ,» nnor Matrix elements of completely symmetric, except for the presence of opposite
Bob’s unitary transformation satisfy a relationship similar tosigns in the standard expression for the singlet state:
Eqg. (8). The generalization to a larger number of Werner
pairs is obvious. 1\/0 0\/1

After the execution of the unitary transformati¢r), Al- ¢:[ 0)(1 1) o) /\E (14
ice and Bob have to test that all the particles, except those
labeled by the firsunprimed indices, have their spin up. The opposite signs can be made to become the same by
They discard any set af Werner pairs where that test fails, redefining the basis, for example by representing the
even once. The density matrix for the remaining “success“down” state of Bob’s particle by the symbol%,), without
ful” cases is thus obtained by retaining, on the right-handchanging the basis used for Alice’s particle. This partial
side of Eq.(7), only the terms whose primed components arechange of basis is equivalent to a substitution



2688 ASHER PERES 54

Vv,nn’n”_’(_l)v+n+n,+nnvv,nn'n”1 (15) 72

on Bob’s side. The minus signs in E®) also disappear, and
there is then complete symmetry for the two observers. It is
therefore plausible that, with that new basis, we have
U,=V,. Therefore, when we return to the original basis and
notations, the optimal , andV,, satisfy

Vv,nn’n”z(_1)V+n+n’+nﬂuv,nn’n”- (16)

(C) max

We shall henceforth restrict our search to pairs of vectors
that satisfy this relation(Without imposing this restriction, | 1
checked, for a few values of, that the optimal vectort
andV indeed had that symmetry property, whes 2 or 3.
However, an exhaustive search for=4 would have ex-
ceeded the capacity of my workstatipn.

After all the above simplifications, the problem that has to
be solved is the following: find two mutually orthogonal unit
vectors, Uy and Uy, each with 2 real components, that
maximize the value oM (U) defined by Eqs(12) and(13).
This is a standard optimization problem, which can be solved
numerically, for example by using the Powell algorith23].

0.5 1
Singlet fraction

Some care must. however. be exercised. The orthonormali FIG. 1. Maximal expectation value of the Bell operator, versus
’ ’ ) tt¥1e singlet fraction in the Werner state, for collective tests per-

chonstralnts must b? |rr1np.osed'|n a way that doﬁs nqt Irnped1%rmed on several Werner paiffsom bottom to top of the figure, 1,
t_ e conv_er_ge_nce of t _e iterations. Moreover, there is a C_OnZ, 3, and 4 pairs, respectiveélyThe CHSH inequality is violated
tinuous infinity of equivalent solutions, because the entquNhen<C>>2_

experimental protocol, and therefore all the physical data, are

invariant under rotations around the quantization axes IIl. RESULTS AND CONCLUSIONS

(namely, the axes along which the “spin up” tests are per-

formed. This means that a substitution In all the cases that were examined, it was found that
M(U) has one of its maxima for the following simple
choice:

U omm m’ U omm’ mCOSy — U 1mm’ musina,

17 Uooo..=U111.. =1, (19

and all the other components bf, and U, vanish. Recall
that the “vectors”Ug andU; actually arerows Uyy,  and
Uigo.  of the 2'-dimensional unitary matrixJ (the other
for any reala, does not affect the value &fl (U). Similar  rows are irrelevant because of the elimination of all the ex-
transformations, with arbitrary angles, can also be performegeriments in which a particle failed the spin-up et the
on each one of tha other indices. Therefore the location of casen=2, one of the unitary matrices having the property
a maximum of M(U) is not a point in the (18)is a simple permutation matrix that can be implemented
(2"*1—3)-dimensional parameter space, but can lie anyby a “controlled-NOT” quantum gate 26]. The correspond-
where on an i+ 1)-dimensionaimanifold ing Boolean operation is known a®R (exclusiveor). For
Since the functioM (U) is bounded, it must have at least larger values ofi, matrices that satisfy E¢18) will also be
one maximum. It may, however, have more than one: therealled xor-transformations.
may be several distinctn@ 1)-dimensional manifolds on It was found, by numerical calculations, thaior-
which M (U) is locally maximal, each one with a different transformations always are the optimal onesrfer2. They
value of the maximum. A numerical search by the Powellare also optimal fon=3 when the singlet fractior is less
algorithm[25] ends at one of these maxima, but not necesthan 0.57, and fon=4 whenx<0.52. For larger values of
sarily at the largest one. The outcome may depend on the, more complicated forms dfy andU; give better results.
initial point of the search. It is therefore imperative to start The existence of two different sets of maxima may be seen in
from numerous randomly chosen points in order to ascertairfig. 1: there are discontinuities in the slopes of the graphs for
with reasonable confidence, that the largest maximum has=3 and 4, which occur at the valuesxoivhere the largest
indeed been foundA curious difficulty arises from the fact maximum of(C) passes from one of the manifolds to the
that Alice and Bob can always obtai€) =2, irrespective of  other one.
the quantum state, simply by measuring the unit operator, so For n=5, a complete determination &¥, and U, re-
that all their results are- 1. It is important that the computer quires the optimization of 64 parameters subject to three con-
program used for optimization be immune to such artifjces. straints, more than my workstation could handle. | therefore

U imm'm’'— U omm’ m//Sina +U 1mm’ mnCOS‘a,
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considered onlykoRr-transformations, which are likely to be supported by the Gerard Swope Fund and the Fund for En-
optimal for x<0.5. In particular, forx=0.5 (the value that couragement of Research.

was used in Werner's original worklQ]), the result is

(C)=2.0087, and the CHSH inequality is violated. This vio- APPENDIX

lation occurs in spite of the existence of an explicit LHV

model that gives correct results if the pairs are tested one by This appendix explicitly lists all the components of the
one. Forn—o, we expect the CHSH inequality to be vio- Tpq Matrix (13), when the density matripmy s is real and
lated forx>1% (that is, when the fidelity i>3), because ~Symmetric:

such pairs can be “purified” by the methods of Ref$5—

18]. Txx= Poo,111 Po1,10T P10,017 P11,00; (A1)
In summary, it has been shown that, even if a well defined

LHV model[10] can correctly predict all the statistical prop- Tyy=~pooart Por10t P10,01™ L1100 (A2)
erties of some pairs of particles when the particles are tested

separately by two distant observers, a definite nonlocal be- T27= P00,00~ Po1,01~ P10,10T P11,11, (A3)
havior (namely, a violation of the CHSH inequalitynay

arise if several pairs are tested simultaneously, provided that Tyz= P00,10~ Po1,11 P10,00~ P11,01s (A4)
the particles held by each observer are allowednteract

locally before they are testedhis result is yet another ex- T2x= Poo,0o1t Po1,00~ P10,11~ P11,10- (Ab)

ample of the fact that more information can sometimes be

extracted by simultaneously testing several identically preThe other components vanish, because the Hermitian matri-
pared quantum systems, than by testing each one of thepes o,® oy that have only ong/-index are antisymmetric
separately27]. Note that, for such a phenomenon to occur, it(and pure imaginagy

is always necessary that the distant observers exchdage Recall thatM in Eq. (12) is the sum of the two largest
sical information[13]. eigenvalues off'T. One of the eigenvalues of this matrix
obviously isTﬁy. The two others are obtained by diagonal-
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