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An n-bit string is encoded as a sequence of nonorthogonal quantum states. The parity bindbitrestting
is described by one of two density matrice§? andp{™, both in a Hilbert space of dimensioff.2n order
to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal
mutual information. In this paper we find the measurement which provides the optimal mutual information
about the parity bit and calculate that information. We prove that this information decreases exponentially with
the length of the string in the case where the single bit states are almost fully overlapping. We believe this
result will be useful in proving the ultimate security of quantum cryptography in the presence of noise.
[S1050-294{@6)10809-X
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I. INTRODUCTION string and not the specific value of each bit. The parity bit is
described by one of two density matrigel®) andp{™ which
A major question in quantum information thediy—6] is  lie in a 2"-dimensional Hilbert spac&,n. These parity den-

“how well can two quantum states, or more generally, twosity matricesp()” are the average density matrices, where the
density matricepo andp,, be distinguished?” In terms of a  average is taken over all strings the source might produce,
communication scheme this question is translated to an idefyhich have the same parity. Since the parity bit of the
tification task: A sendefAlice) sends a bib=i (i=0;1) to  source string is encoded by{” , information about which
the receiver(Bob) by sending the quantum state, and the  of the two density matrices was prepared is information
receiver does his best to identify the value of that bit, i.e., theypout the parity ok.

quantum state. The two-dimensional Hilbert spates usu- Let x be any classical string oh such bits, and
aII_y used to implement such_ a l:_)lnary channel, so the trar.lsﬁx:p(lstbit)’ - pnt iy b€ the density matrix made up of the
mitted signals can be polarization states of photons, sping,gor product of the signaling stateg, corresponding to

states of spin-half particles, etc. The transmitted states Mayo ith bit of x. Formally, we distinguish between the two
be pure states or density matrices, and need not be Orthogaénsity matrices: '

nal. Usually, the mutual informatioh is used to describe
distinguishability, such that=0 means indistinguishable, 1 1
an_d_l =1 (for a binary chgnnelmeans perfect_ distinguish- pgﬂzz — > px and p(lm:zn_l
ability. The ensemble of signals is agreed on in advance, and X|p(x)=0
the main aim of Alice and Bob is to optimize the average
mutual information over the different possible measurementsvhere the sum is over all possible strings with the same
at the receiving end. For @imple example, two orthogonal parity [each sent with equal probability (I}d and p(x) is
pure states transmitted through an error-free channel are pahe parity function ofx. We show a simple way to write the
fectly distinguishable; the optimal mutual information parity density matrices. We find that they are optimally dis-
(I=1) is obtained if Bob measures in an appropriate basisinguished by a nonfactorizable joint measurement, per-
Finding the optimal mutual information is still an open ques-formed on the composite"&ddimensional quantum system,
tion for most ensembles. Some cases with known analytiand we calculate the optimal mutual information which can
solutions are the case of two pure states and the case of twe obtained on the parity bit.
density matrices in two dimensions with equal determinants Parity bits are often used in quantum cryptograpfy9),
[5,6]. There are no known analytic solutions for two non- where they play a crucial role in error-correction and privacy
trivial density matrices in dimensions higher than 2. In thisamplification[10—12; for example, the final secret key might
paper we find a solvable case which has very important imbe the parity bit of a long string. The question of security of
plications to quantum cryptography. guantum cryptography is yet open, and our results may have
Suppose that a source produces binary stxirgj length  several implications for attacking this issue. In particular, we
n with equal and independent probabilities for all the digits.concentrate on the special case where the two signaling
Let the string be encoded into a quantum-mechanical charstates have large overlap, which is important in the analysis
nel, in which the digits “0” and “1” are represented by of the security of quantum key distribution against powerful
guantum stategdensity matricelspy and p; of independent multiparticle eavesdropping attacks. We show that the opti-
two-state quantum systems. These can be either pure statesl obtainable information decreases exponentially with the
or density matrices with equal determinants. Suppose Bolengthn of the string. This result provides a clue that clas-
wants to learn the parity bitexclusive-OR of the n-bit  sical privacy amplification is effective against joint measure-
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ments, limiting the ability of an eavesdropper to obtain sig- 1 c2 0

nificant information on the final key. p(”:E(pgl)er(ll)):( 0 ) (5)
The first sections deal only with the case where each bit is S

encoded by a pure state. In Sec. Il we find a simple way to 0 sc

write the density matrices of the parity bit for anywhen the :_(p<1>_ p)= ( ) (6)

signaling states are pure; we show that the parity matrices sc 0

can be put in a block diagonal form and explain the impor- : : S :
tance of that fact. In Sec. Ill we investigate the distinguish-The density matrices of the parity bit of two particles are
ability of the parity matrices; the optimal measurement 5 1
which distinguishes them is found to be a standamh Neu- P( ) 5(p
mann measurement in an entangled basgikich is a gener-

alization of the Bell basis of two particleswe calculate 1
exactly the optimal mutual information which is derived on /o(2 z(p(l)p(l”rp(l) (l)), (7)

the parity bit by performing that optimal measurement. In

Sec. IV we obtain our main result: for two almost fully over- where the multiplication is a tensor product. The total den-
lapping states, the optimal mutual informatibp decreases  sjty matrix is

exponentially with the length of the string. While exponen-

tially small, this optimal information is nevertheless consid- (2)__(
erably greater than the information that would have been
obtained by measuring each bit separately and classically
combining the results of these measurements, thus, we prove
the advantage of such “joint” measurements. Going back to
the parity matrices obtained in Sec. Il we are also able to
calculate the maximal deterministiconclusive informa-  Which, by using the basis
tion; this is done in Sec. V, where we also confirm a result 1

(D)) 4 D Dy

o6+ o)

= 7006 (p6"+ p1) + iV (P +p5) 1= pPp,

0
previously obtained by Huttner and Peféds$] for two bits.
In Sec. VI we repeat the calculation of the optimal mutual Ibo)= 1) (1) | O Iby)= 1) (o) |1
information for the more general case where the bits are 0= 0/,10 2_ ol’ )= o/ \1). o’
represented by nonpure stat@s 7, and with equal deter- 0 0
minantg. In Sec. VII we briefly discuss the implications of
our results to the security of quantum cryptography. 0 0
Il. DENSITY MATRICES FOR PARITY BITS |b2>5(0) (1> |0 and |b3>5(0> (0) _| 0
1/.10 1 1/.\1 0
Let Alice sendn bits. The possible values of a single bit 12
(0 or 1) are represented by 0 1 ®
cosy : -
_ _ in H,4, can be written as
0=\ sing| a4 ¥1=( _ging - ) N
c 0 0 0
respectively. In terms of density matrices these are 0 22 0 0
(1_ c? sc (1) c? —sc pP=pPpP=l 9 o 2 o0 9
PO "lse @ andpl_—sc g | @ 0 O 0 s*
whgre we use a shorter notatieFF sing; C=cos, for con-  The difference density matrix is
venience, and the superscrigt® is explained in the follow-
ing paragraph. o . A<2>—E( 2)_ (2))
The parity bit of am-bit string is the exclusive-OR of all 2P0 TP
the bits in the string. In other words, the parity is 1 if there
are an odd number of 1's and O if there are an even number. _ } D (D4 D D @
The parity density matrices afi bits will be denoted as - [po ((po" =P+ 01 (1" = p5 )]
pi" andp{" in case the parity is “0” and “1,” respectively. -
Using these density matrices we define alsottital density 0 0 0 cs
matrix p™=(p{"+ p{M) and thedifferencedensity matrix 0 0 c%*> 0
AM=3pM—p{M), so that =AWAD=| 5 22 o o |. Q0
2o2
pgn):p(n)+A(n) and p(ln):p(n)_A(n)_ (4) c’s 0 0 0

The one-particle density matricE&q. (3)] also describe the The density matrices of the parity bit nfparticles can be
parities of one particle, and therefore we can calculate written recursively:
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1 _ _
po"=5(p6"ps VPt ),
m_L @ -1, @ @01
pr =5(po p1 P po ), (11
leading to
(n) . (N ,(n) (1) ,(n=1)
p=5(po +pr)=pp (12
and
(n) 1 (n) _ (n) (D) A(n=1)
A =§(p0 —p1)=A"A . (13
Using these expressions recursively we get
p'=(p"", (14)
which is diagonal, and
A“‘):(A(l))”, (15)

2677
|b/)y=|b;;) for eveni
and
[b{)=[bn_(i+1)2) for odd i. (18
The parity density matrices are now, in the new bdgis

omit the ’ from now on as we will never write the matrices
in the original basig

B)™ o0 ... 0
[i=2]
p;Jn): 0 By . 0 . (19
0 0 BE}ZZ("*”]

where the subscrigt stands for the parity (0 or 1). Each of
the 2X 2 matrices has the form

c2(n—k g2k

+c"g"

c2kg2(n—k) |

S

Bl1= (20

+c"g"

with the plus sign fop=0 and the minus sign fqg=1, and
0=<k=n, and all these density matrices satisfyBlet=0.

which has nonzero terms only in the secondary diagonal. Thghe first block §=1) hask=0; there arg(]) blocks which

density matricesbg‘) and p(l”) are now immediately derived

for any n using Eq.(4):

Py =(pM)M+(AM)"
and

Py =(p! )= (A" (16

As an illustrative example we writg, and p, for two par-
ticles:

c* 0 0 c¢%s?
0 ¢%? ¢%? 0
p=| 0 22 22 0 |
c’s® 0 o ¢
c* 0 0 —c?s?
0 c?s?  —c%s? 0
pi?'= 0 c?s?  ¢?%s? 0
-c?s> 0 0 st

17

havek=1 ork=n—1; there are¥) j’s which havek=2 or
k=n-—2, etc. This continues untk=(n—1)/2 for oddn.

For evenn the process continues up ke=n/2 with the mi-

nor adjustment that there are orjlf;,,) j’s of k=n/2. This
enumeration groups blocks which are identical or identical
after interchange ok and n—k and accounts for all 22
blocks. We will see later that blocks identical under inter-
change ok andn—k will contribute the same mutual infor-
mation about the parity bit, thus we have grouped them to-
gether.

With the density matrices written in such a block-diagonal
form of 2X 2 blocks the problem of finding the optimal mu-
tual information can be analytically solved. It separates into
two parts:(i) Determining in which of 2/2 orthogonal 2
subspacegeach corresponding to one of th& 2 blockg the
system lies{ii) Performing the optimal measurement within
that subspace. The subspaces may be thought df/agpar-
allel channels, one of which is probabilistically chosen and
used to encode the parity by means of a choice between two
equiprobable pure states within that subspéitese two
states are pure because tBg and B; matrices each have
zero determinant We shall present in the next section the
optimal measurement that yields the optimal mutual informa-
tion transmissible through such a two-pure-state quantum
channel. The channel then corresponds to a classical binary
symmetric channglBSO), i.e., a classical one-bit-in one-bit-

The only nonzero terms in the parity density matrices are th@ut channel whose output differs from its input with some
terms in the diagonals for any, thus the parity density ma- €rror probabilityp; independent of whether the input was 0

trices have an X shape in that basis.

or 1. The optimal mutual information in each subchannel is

The basis vectors can be permuted to yield block-diagondhe optimal mutual information of a BSC with error probabil-
matrices built of 2<2 blocks. The original basis vectors ity p; and is I(p;)=1—-H(p;), with H(x)=—xlog,x

[see, for example, E@8)], |b;), are simply 2 vectors where

—(1-x)log,(1—-X), the Shannon entropy function. The op-

the ith element of theith basis vector is 1 and all other timal mutual informationly, for distinguishingp{” from
elements are Oi(ranges from 0 to 2—1). The new basis p(ln) can thus be expressed as an average over the optimal

vectors are related to the old as follows:

mutual information of the subchannels:
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2"/2
IM=J§1 q;l2(p;), (21)

whereq;=TrBY!=TrBl/! is the probability of choosing the

jth subchannel. The BSC error probabilipy for the jth

subchannel depends on the subchannek® 2enormalized
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with a; real positive numbers such thatpf=a;+az=1.

For the two pure states of EQR), say, for the polarization
states of a photon, it is easy to s@nd can be formally
proven[5,6]) that a standard measurement in an orthogonal
basis symmetric to the two states optimizes the mutual infor-
mation (and also minimizes the average error probability
The angle between one basis vector and the polarization state

density matriceég]zBQ]/qj , and is easily calculated once is /4= «. The measurement results in an error with prob-
the optimal measurement is found. For each subchannel tHPility

g; and renormalized 2 2 matrices look like

qj — CZ(nfk)SZk_i_ CZkSZ(nfk) (22)
and
Rlil—
Bp
C2(n—k)52k +¢chg"
C2(n—k)52k+ CZkSZ(n_ k) CZ(nf k)52k+ CZKSZ(nf k))
+ Cnsn C2k52(n—k)

Cz(n—k)szk+czksz(n—k)) c2(n—Kg2k ;- 2kg2(n—K)

23

In our previous example afi=2 the matrices are put in a

block diagonal form:

¢t ¢%? 0 0
s> s 0 0
p’=| 0 0 2 22|,
0 0 %% c?%s?
¢t —c%? 0 0
—c%s? ¢t 0 0
pi?= 0 0 c?s?  —c?%s? |
0 0 —c?%? ¢%?
(29
so thatg;_;=c*+s*, g;_,=2c?s?, and
c* c?s?
. crst i sl
B%J:l]: c2s? 4 '
s IS
qua_ | V2 =12 -
P +1/2 12

IIl. OPTIMAL INFORMATION IN A PARITY BIT

Two pure states or two density matricesHi; with equal

determinants can always be writtén an appropriate basis

in the simple form

a;
Po=

a, as, P1=

a; —a
2
—a; ag ) 9

T
l—CO{——Za) .
N 2 1-sin2a)
Pe=SIn2(Z—a)= 2 = 2 s

(27)

and with the same error probability for both inputs, thus
leading to a binary symmetric chann@SC). The optimal
information of such a channel is well known and is

| =2(Po). (28)

Note that the overlap of the two-states is ceg(2hus, for

two pure states in any dimension, the optimal information
I,[1-sin(22)/2] is a simple function of the overlap. The
density matrices of such pure staf&s. (3)] can be written
aspij=(1+o-r;)/2 with the o being the Pauli matrices and
r=(%xsin2,0,cos2) being a three-dimensional vector
which describes a spin direction. Using this notation any
density matrix is described by a point in a three-dimensional
unit ball, called the Bloch sphere. The pure states are points
on the surface of that spher@lso called the Poincare
sphere. With the density matrix notation the optimal basis
for distinguishing the states is thkebasis(note that the angle
between the basis vector and the state is doubled in this
notatior). The measurement of the two projectors

1 1 1
AH:1/2<1 1 and AH=1/2<_ ) (29

1 1
yields

Pe=Trp1AH:% —ay, (30
which recovers the result of E(R7) in case of pure states of
Eq. (3). However, the treatment of density matrices is more
general and this is the optimal measurement also in the case
of nonpure states with equal determinai8s], whenp; of
Eq. (3) are replaced byoidm of Egs.(69) and(70) of Sec. VI,
and this case is also described by a BSC. The only difference
between the matrices is that dgt=0 for pure states and
O<defp,=; for density matrices.

Instead of measuring the density matrices in xhéirec-
tion we perform the following unitary transformation on the
density matrices:

1 1
U=1/\/§(l _1> (31)

to obtainp’ =UpU" which is then measured in ttebasis.
Note that the transformation transforms the originddasis
to x-basis(the motivation for this approach will be under-
stood when we discuss thex2 blocks of the parity matri-
ces. The new density matrices are



54 PARITY BIT IN QUANTUM CRYPTOGRAPHY 2679
1 a;—ag 1 a;—ag mutual information on the parity bit is not a single-particle
§+a2 2 E_az 2 measurement, but is instead a measurement on the full
r_ r— 2"-dimensional Hilbert space of the system. In general, op-
Po _ 1 P _ 1 . . . -
a;—as - _a a;—as Z.ia timizing over all possible measurement is a very difficult
2 2 “2 2 2 2 task unless the two density matrices?ifyn are pure states.

(32

and their measurement yields the probabifitya, to derive
the correct(plus) and the wrong(minug answers(as we
obtained beforg leading to optimal mutual information of

1

58], (33

2

which depends only oa,. Note that the same information is

obtained in casa; andas are interchanged.

The naive way to derive information on a parity bit is to

However, in the preceding section we have shown how to
reduce the problem to that of distinguishing the 2 blocks

of our block-diagonal parity matrices. We now have only to
apply the optimal single-particle measurement to the22
BU)s of Eq. (23) and use the result in Eq21).

_ The error probability[Eq. (30)] for distinguishing the
Blil's is seen to be

1 c"s"
Pj T2 T 2 Kgk o2kg2(n—K) !

(37)

derive the optimal information on each particle separately

and calculate the information on the parity bit. We call thisfrom which the informationl;(p;) in each channel is ob-
individual or single-particlemeasurement. It is the best Bob tained.

can do in case he has no quantum memory in which to keep Plugging the error probabilitp; [Eq. (37)] and the prob-
the particlegwhich usually arrive one at a timer he has no  ability of choosing thgth subchannedj; [Eq. (22)] into Eq.
ability to perform more advanced joint measurements. Thé21), the optimal information on the parity bit is now

optimal  error-probability for each  particle

r=P{=(1-sin2a)/2. The probability of deriving the
wrong parity bit is equal to the probability of having an odd

number of errors on the individual particles

n
n
-3,

j=odd

ri(1—r)" i,

To perform the sum over only oddwe use the formulas

(p+q)"=2>, (r-])p”jqi,
J=0 J

(p—q)"=>, (r-])p“‘j(—q)j,

i=o \J

to derive
n
n o +)"—(p—q)"
> _)pnjqu(p Q"= (p=a)" (34
jZodd \ J 2
Assigningg=r andp=1-r we get
n
n\ . 1" (1-2r)"
PV = (.)rJ 1-nN"l=—+-—_—-
© j:zodd J ( ) 2
1 (1-2r)"
272 39

The mutual informationl g in this single-particle measure-

ment is

1 (sin2a)”> 39

|s=|2<P<e”>>=lz(§— 5

usingr =[1—sin(2a)]/2.
A lot of useless side-information is also obtainedy., on

22
= 2 (c2n—Kg2k 4. c2kg2(n-k))
=1

1 c"g"
2 c2n-WgZky (2kg2(n—K) |-

X1, (38)

In the simple case of orthogonal states=(/4) all these
density matrices are the same and we get(3)" ',
p;j=0, andl, =1 as expected.

A brief remark is in order at this stage. The transforma-
tion to thex basis for each 2 2 matrix, B(™¥ | is actually a
transformation from a product basis to a fully entangled basis
of the n particles. That basis is a generalization of the Bell
basis of[15],

ol fol, (ol ol =[] (2], +-(2),_[5]

n
(39
ol fol,++lal,_,[2] =213, (3],_lo
0102 ; On—lln_lllzlu 1n—10n,
(40)
etc. The Bell basis for two patrticles is frequently used and its
basis contains the EPR singlet state and three other orthogo-
nal fully entangled states.

For largen, the number of blocks is exponentially large
and performing the summation required in Eg§8) is im-
practical, since all the 2 ! matrices must be taken into ac-
count. However, that problem can be simplified by realizing

that all blocks with a givelk, as well as all blocks witk and
n—k interchanged, contribute the same information to the

the individual bitg. This fact indicates that Bob might be total. This is easily seen in E¢38), where both the weight
able to do much better by concentrating on deriving onlyand the argument of, are symmetric irk and n—k. The
useful information. The optimal measurement for findingoptimal mutual information for even is then
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n2-1 1 n In 1 +
o= > ( )q|<p>+— N Gzl 2(Pri2), (A1) 1 277 2 2
= k k! 2\ Mk 2| = n/2'2\¥Mn/2)» g S S A B
k=0 2 log| 5= 7 In2 1527 g (49
and for oddn from which the mutual information
(n—1)/2 n 1 1
1= Z k)Qk'z(pk)- (42) Iz(f_ﬂ>:1_H(§_n)
1 1 1 1
As an example we calculaty, for n=2 (of course, the =1+ §+7;)Iog STt E_”)Iog(f_n>
counting argument is not needed in that gagéis particular
result complements the result[ih3] where the deterministic 2
information of such a system is considefsde also Sec. V ~i2 7? (47)
In the new basi$32) the density matrices dfEg. (25)] be-
come is obtained. Using this result and assigning (2a)"/2, the
2 9 1 cho gt information (to first ordej obtained by the optimal single-
172+ °s e particle measurement is
1 (n=2k=0) ct+s*  2ct+st . .
0 | 1cet-st c%s? | |s:i @)™ _ ﬂ. (48)
- 4 4 We use the same approximations and E83) and (22) to
1o— C°S lc'—s calculate the leading terms in the optimal mutual information
- (e 2ke0) c*+s* 2ct+st (41) and(42). Fork=n/2 (n even we getp,=0 (regardless
B, U= 1 cho gt 22 | of the small angleand
2crs Ve 1(Pr2)=1. (49)
and For k<n/2 we getp,~i—s"/s?*~1—a""2k which yields
[using Eq.(47) with 7= a"~ 2]
- 10 -
B/(n:2,k:1): ’ B/(n:2,k:1): ) 43 2
0 0 0 ! 0 1 “3 (p)~ == a4, (50)

In2

We use the notatiorS=2sc=sin2y; C=c?—s?’=cos2
[hence, c*—s*=C and c*+s*=(1+C?/2] to obtain
q,=2¢%s>=5/2, p;=0, Qo=3(1+C?), and py=C?
(1+C?) (the gj's were obtained in the preceding section 2, k)

The mutual information of the parity of two bits is obtained Al 2(P)~ 5 @ : (51)
using Eq.(22),

The coefficient q,=a?¢ for k<n/2 and q,=2a%¢ for
k=n/2, so that

for k<n/2, and
I'm=0ol 2(Po) +d1l2(p1)

il 2(pr) ~2a" (52
1 2 2
=§(1+C2)|2 172t (44)  for k=n/2. The dominant terms are those with the largest
k, that is,k closest tan/2. The next terms are smaller by two
orders ina. The number of density matrices with thees
IV. INFORMATION ON THE PARITY BIT are also the largegup to a factor of 2 in case of evan).
OF ALMOST FULLY OVERLAPPING STATES Therefore, the termk=n/2 for evenn andk=(n—1)/2 for

The case of almost fully overlapping states is extremeI)PddT are tfhﬁ dom|r|1ant.terms In thﬁ final eX||o.refSS|on. .Thqs,
important to the analysis of eavesdropping attacks on an{P" @lmost fully overlapping states, the mutual information is

guantum key distribution scheme, as will be discussed in

Sec. VII. In this case the angteis small sos=sina=«a and even_ 1 2 N : N
c=cos=1—a?2. To observe the advantage of the joint mea- I 2| = 2=\ Do
surement, let us first calculate the optimal information ob- 2 2
tained by individual measurements. In that case, E85. {5 evenn. and
and(27) yield '
1 (2a)" ") 2
o odd__, — . n+1
PY=3— "5 (45) W= 2 e 53

For small » the logarithmic function is approximated by for odd n.
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These expressions can be further simplified. The numbest measurement corresponds to a binary erasure channel

of density matrices of any type is boundéfr large n)
using the Stirling formulgsee[15] in the chapter on Reed-
Solomon codes

n

k
For k nearn/2, n=3—k/n is small, and the standard ap-
proximation (47): H~1—0(7%?)=1-0[(3—k/n)3]<1 is

used to derive J)<2"/y2m(k/n)(1—k/n)n. Using also
k/n(1—k/n)~3i— 7%, we derive

2nH(k/n)

(54

< .
V2a(k/n)(1—k/n)n

n 2"
(k)<—[1+0(7/2)]-
a

En

(59

Thus the leading term ihy, is

2n
In<——— "= (2a)" / /%
M<\/7T—a —(2a)/ 2n
=N

2

(56)

for evenn and

<

2” 2 n+1_ 2 2 n &
2?2t/ N gn
En

<(2a)n/ \/gn

(57)

for odd n (using @<In2/2). We see that we could keep a

better bound for oddh but for simplicity we consider the
same bound for both even and od.

We can now compare the optimal informatiby from a
joint measurement on afl particles to the optimal informa-
tion | 5 from separate measuremefts$. Eq. (48)]:

Iw=0((2a)"/\n),
(58)

ls=0((2a)?").

Sincea is a small numbefcorresponding to highly overlap-

ping signal states the joint measurement is superior to the

individual measurement by a factor 6f((2«)"). However,
it is only superior by a polynomial factor, since

Im=~(lg)? (59

V. DETERMINISTIC INFORMATION
ON THE PARITY BIT

[4,13,14. With probability p, of an inconclusive result, the
mutual information isl ,,=1—p,. The minimal probability

for an inconclusive result is co&2 leading to
I, =1—cos2x [4]. This result is obtained by performing a

generalized measuremef(positive operator value measure
[4,3,17) on the system or a standard measurement per-
formed on a larger system which contains the system and an
auxiliary particle[4,18]. Note that this results in less mutual
information than the optimal measurement for one-particle
mutual information. If Bob uses this type of measurement on
each particle separately his deterministic single-particle in-
formation about the parity bit is (2 cos2w)".

We now use the block-diagonal density matrices derived
in Sec. |l to derive also the optimdeterministidnformation
on the parity bit. We note that each of th& 2 blocks in the
block-diagonal density matrices is the density matrix of a
pure state, so we may replace the optimal measurement in
each subchannel with the optimal deterministic measurement
and proceed as before. The total optimal deterministic infor-
mation is easily calculated by replacihg(p,) in Egs.(41)
and (42) by I(p?k)zl— P2, wherep?k is the probability of
an inclusive result in block. To find the minimalp?k we

write each of the normalized density matrid@$™ as pure
states with some angte:

cosy cosy
(siny) and —siny/" (60
Comparing with Eq(23)
. c2(n—K) g2k _ 2kg2(n—k)
p-»=cog2y)=cosy—sinfy= 2K g2k | K2k »
(61)
hence
c2(n—k g2k _ 2kg2(n—k)
| (p?k) =1- 2K g2k 2k2(M—K) ° (62)
The total information is
n/2 -1 n 1 n
15e"= kZO (k)CM (Po)+ 5| 0 Anal(ps,) (63
- 2
for evenn, and
n-1/2 n
I3 2 (k)qkl (P5) (64)

for odd n.
Forn=2 we recover a result previously obtained by Hutt-
ner and Pere$l4] by performing the optimal POVM on

For a single particle Bob can perform a different kind of the first pair of density matrices of ER5), and a measure-
individual measurement which is not optimal in terms of ment in the entangled basi@s befor¢ on the second.
average mutual information but is sometimes very usefullThe probability of an inconclusive result is
[9,4]. It yields either a conclusive result about the value ofcogy—sirfy=(c*—s%/(c*+s*)=2C/(1+ C?), hence the opti-
that bit or an inconclusive one, and Bob will know which of mal deterministic information is 4 2C/(1+ C?), leading to
the types of information he has succeeded in obtaining. Sucthe total deterministic information
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Ip=0d1lp(P7) +dzl2(p2)
SZ
S

1 2
=5(1+C?) (65)

1_21+C2)

which is exactly the result obtained by Huttner and Peres

(note, however, that they used an angle whichmid— «
hence derived % S for the deterministic information
For almost overlapping stategsmall «) the dominant

terms are still the same as in the case of optimal informationdensity matrix has termss¢—r)"
The termqy is as before and the information in each port is

1(pp)=1 (66)
for k=n/2 and
C2n—4k_82n—4k
| (p?k): 1— W — 1_(1_ a,2n74k)2: 2a2n74k
(67)
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Clearly
1 c2 0
pDem= §(p81)+p(11))=( 0 s ) (71)
1 0 sc—r
Dam= Z( @) _ ,(1)y =
aTan=2po —p1’) (sc—r 0 ) (72

The total density matrix does not change and the difference
instead of éc)". Reorga-
nizing the basis vectors we again get the block-diagonal ma-
trices where each of theX2 matrices has the form

t(cs—r)”)

c2kg2(n—k)

c2(n—k g2k

| ”

+(cs—r)"

When normalized, these density matrices have the form of
Eq. (26) and are optimally distinguished by measuring them
in the x direction. Transforming to th& basis as before we

for k<n/2. Taking into consideration only the dominant term get the same

we get

>

I E)Ve% n an

N

Q= 2Kk 4 c2kg2(n-K) (74)
as before, and
1 (cs—n)"
Pk=7% ~ 2 Rgk | o2kg2nK) - (75

for evenn, which is the same as the optimal information, and

n
I%dd% n—-1 2an+1
2

(68)

for oddn, which is smaller than the optimal mutual informa-
tion by a factor of 1/In2.

VI. PARITY BIT FOR DENSITY MATRICES

The previous discussion assumed tbgi are pure states.

The generalization to the case of density matrices with equal

determinants is straightforward. Let the bit “0” and the bit
“1" be represented by

dm_( c? sc—r)
PO "lge—r 2 (69
and
c? —(sc—r)
dm__
P1 _<—(sc—r) s? ) 70

The total information can now be calculated as before by
assigning these, andq, into Egs.(42) and(41). Thus, the
case of mixed states is also analytically solved for any num-
ber of bits, and the influence of mixing on the optimal mu-
tual information is through the,’s [19].

Calculating the optimal information for small and any
r is possible but complicated. Another alternative which is
much simpler is to find a bound on the optimal information
using pure states with the same angi¢, on the Poincare
sphere, using

_sin2a—2r

tan2a’
COS2x

: (76)

or using an alternative form for the mixed states HGS)
and(70).

VII. IMPLICATIONS

Quantum oblivious transfdi20] and quantum key distri-
bution[10] protocols use parities of publicly announced sub-
sets of the transmitted bits for both error-correction and pri-
vacy amplification(PA). When used for error-correction,

(with s=sina, etc., andr<sc), which contains the most subset parities are publicly announced in order to identify
general density matrices of the desired type. On the Poincarerrors and correct them, and this is a crucial step in real
sphere these density matrices have the saommponents as channels since it could leak information to an eavesdropper.
the previously written pure states but smalklecomponents When used for PA11,12 (say, to derive one final bita
(hence smaller angle'). We could choose other ways of subset parity is agreed to be the final secret bit, and this
representing these density matrices, e.g., with simileom-  technique is used to limit the adversary’s information to an
ponents and smallez components. Such representationsexponentially small fraction of a bit. PA is effective when
were more appropriate for comparison with pure stéege particles are not measured togetligee discussions ifil2]
they yield the same mutual information for a single parjicle and in[21]), and presumably also if all measurements are
but less convenient for showing that the previous result icompleted before the specification of the subsets used in PA
easily generalized. is publicly announced. But it is still an open question
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whether it is effective also when the adversary can use thisompletely analyzed. Another route to attack the security
specification tochooseher attack. Our result provides the problem is to attempt a quantum privacy amplification
optimal measurement which can be done to find a parity bischeme, relying on the recent results on purifying entangle-
and therefore is crucial for such analysis. In particular casesnent[24,25. However, such a scheme would require Alice
when almost fully overlapping states are used, we proveénd Bob to have future technologies such as large quantum
two complementary results regarding that optimal measurememories and sophisticated quantum gates. Traditional
ment: (i) The optimal information is much larger than the quantum cryptography requires only simple one-particle spin
one obtained by measuring each bit separatgly;The op-  or polarization measurements and is therefore far more prac-
timal measurement still yields exponentially small informa-tical. One typically would like to consider the case where
tion. Thus we proved amffectiveness resultlassical PA  Alice and Bob use existing technologies, while Eve is re-
techniques are effective agairesty quantum measurement. stricted only by the laws of physics. It is therefore crucial to
The discussion so far treats an imaginary scenario which isbtain the security of quantum cryptography based on clas-
very general but is not good as a cryptographic protocol. sical PA techniques.

Realistic protocols are very complicatéelg., due to the Our “effectiveness result” allows the derivation of strong
use of error correction hence, are more difficult to analyze. security results against “collective” attacf€6] in which
However, to emphasize the importance of the “effectivenes&ve attaches aeparateprobe to each particle via a translu-
result” just mentioned let us consider a different scenariocent attackdefined in[16]), keeps the probes in a quantum
which is common in quantum key distribution schemes: Al-memory, and useall classical data to choose the optimal
ice and Bob are the legitimate users who try to establish aneasurement of the probes. Eve must attack each transmitted
secret key. They use any binary scheme and Alice sands particle weakly since she does not want to induce large error
particles through a noisy channel to Bob. An adversary, Everate. Therefore, for each particle she obtains a probe with
is trying to learn information on their key. She gets the partwo almost overlapping pure statéer density matrices
ticles one at a time, interacts with each one of them weaklyHence the “effectiveness result” can be used to imply that
and sends it forward to Bob. She must interact weakly withher information on the final string is exponentially small in
all particles if she wants to induce only small error reae  the length of the initial string, and security against collective
ternatively, she could attack strongly only a few of the par-attacks suggests security against the “joint” att&2g], the
ticles but PA is already proven effective against that type oimost general attack allowed by quantum mechanics.
attack[12]). Classical PA is also effective if Eve cannot use
t_he spgacnﬁcaﬂon of the hash fgnqtlore., which subset pari- ACKNOWLEDGMENTS
ties Alice and Bob use as their final strinip attack all bits
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