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An n-bit string is encoded as a sequence of nonorthogonal quantum states. The parity bit of thatn-bit string
is described by one of two density matrices,r0

(n) andr1
(n) , both in a Hilbert space of dimension 2n. In order

to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal
mutual information. In this paper we find the measurement which provides the optimal mutual information
about the parity bit and calculate that information. We prove that this information decreases exponentially with
the length of the string in the case where the single bit states are almost fully overlapping. We believe this
result will be useful in proving the ultimate security of quantum cryptography in the presence of noise.
@S1050-2947~96!10809-X#

PACS number~s!: 03.65.Bz, 89.70.1c

I. INTRODUCTION

A major question in quantum information theory@1–6# is
‘‘how well can two quantum states, or more generally, two
density matricesr0 andr1, be distinguished?’’ In terms of a
communication scheme this question is translated to an iden-
tification task: A sender~Alice! sends a bitb5 i ( i50;1) to
the receiver~Bob! by sending the quantum stater i , and the
receiver does his best to identify the value of that bit, i.e., the
quantum state. The two-dimensional Hilbert spaceH2 is usu-
ally used to implement such a binary channel, so the trans-
mitted signals can be polarization states of photons, spin-
states of spin-half particles, etc. The transmitted states may
be pure states or density matrices, and need not be orthogo-
nal. Usually, the mutual informationI is used to describe
distinguishability, such thatI50 means indistinguishable,
and I51 ~for a binary channel! means perfect distinguish-
ability. The ensemble of signals is agreed on in advance, and
the main aim of Alice and Bob is to optimize the average
mutual information over the different possible measurements
at the receiving end. For a~simple! example, two orthogonal
pure states transmitted through an error-free channel are per-
fectly distinguishable; the optimal mutual information
(I51) is obtained if Bob measures in an appropriate basis.
Finding the optimal mutual information is still an open ques-
tion for most ensembles. Some cases with known analytic
solutions are the case of two pure states and the case of two
density matrices in two dimensions with equal determinants
@5,6#. There are no known analytic solutions for two non-
trivial density matrices in dimensions higher than 2. In this
paper we find a solvable case which has very important im-
plications to quantum cryptography.

Suppose that a source produces binary stringx of length
n with equal and independent probabilities for all the digits.
Let the string be encoded into a quantum-mechanical chan-
nel, in which the digits ‘‘0’’ and ‘‘1’’ are represented by
quantum states~density matrices! r0 andr1 of independent
two-state quantum systems. These can be either pure states
or density matrices with equal determinants. Suppose Bob
wants to learn the parity bit~exclusive-OR! of the n-bit

string and not the specific value of each bit. The parity bit is
described by one of two density matricesr0

(n) andr1
(n) which

lie in a 2n-dimensional Hilbert spaceH2n. These parity den-
sity matricesrp

(n) are the average density matrices, where the
average is taken over all strings the source might produce,
which have the same parityp. Since the parity bit of the
source stringx is encoded byrp

(n) , information about which
of the two density matrices was prepared is information
about the parity ofx.

Let x be any classical string ofn such bits, and
rx5r (1st bit)•••r (nth bit) be the density matrix made up of the
tensor product of the signaling statesr ( i ) corresponding to
the i th bit of x. Formally, we distinguish between the two
density matrices:

r0
~n!5

1

2n21 (
xup~x!50

rx and r1
~n!5

1

2n21 (
xup~x!51

rx , ~1!

where the sum is over all possible strings with the same
parity @each sent with equal probability (1/2n)# andp(x) is
the parity function ofx. We show a simple way to write the
parity density matrices. We find that they are optimally dis-
tinguished by a nonfactorizable joint measurement, per-
formed on the composite 2n-dimensional quantum system,
and we calculate the optimal mutual information which can
be obtained on the parity bit.

Parity bits are often used in quantum cryptography@7–9#,
where they play a crucial role in error-correction and privacy
amplification@10–12#; for example, the final secret key might
be the parity bit of a long string. The question of security of
quantum cryptography is yet open, and our results may have
several implications for attacking this issue. In particular, we
concentrate on the special case where the two signaling
states have large overlap, which is important in the analysis
of the security of quantum key distribution against powerful
multiparticle eavesdropping attacks. We show that the opti-
mal obtainable information decreases exponentially with the
lengthn of the string. This result provides a clue that clas-
sical privacy amplification is effective against joint measure-
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ments, limiting the ability of an eavesdropper to obtain sig-
nificant information on the final key.

The first sections deal only with the case where each bit is
encoded by a pure state. In Sec. II we find a simple way to
write the density matrices of the parity bit for anyn when the
signaling states are pure; we show that the parity matrices
can be put in a block diagonal form and explain the impor-
tance of that fact. In Sec. III we investigate the distinguish-
ability of the parity matrices; the optimal measurement
which distinguishes them is found to be a standard~von Neu-
mann! measurement in an entangled basis~which is a gener-
alization of the Bell basis of two particles!; we calculate
exactly the optimal mutual information which is derived on
the parity bit by performing that optimal measurement. In
Sec. IV we obtain our main result: for two almost fully over-
lapping states, the optimal mutual informationI M decreases
exponentially with the length of the string. While exponen-
tially small, this optimal information is nevertheless consid-
erably greater than the information that would have been
obtained by measuring each bit separately and classically
combining the results of these measurements, thus, we prove
the advantage of such ‘‘joint’’ measurements. Going back to
the parity matrices obtained in Sec. II we are also able to
calculate the maximal deterministic~conclusive! informa-
tion; this is done in Sec. V, where we also confirm a result
previously obtained by Huttner and Peres@13# for two bits.
In Sec. VI we repeat the calculation of the optimal mutual
information for the more general case where the bits are
represented by nonpure states~in H2 and with equal deter-
minants!. In Sec. VII we briefly discuss the implications of
our results to the security of quantum cryptography.

II. DENSITY MATRICES FOR PARITY BITS

Let Alice sendn bits. The possible values of a single bit
(0 or 1) are represented by

c05S cosasina D and c15S cosa
2sina D , ~2!

respectively. In terms of density matrices these are

r0
~1!5S c2 sc

sc s2 D and r1
~1!5S c2 2sc

2sc s2 D , ~3!

where we use a shorter notations[sina; c[cosa, for con-
venience, and the superscript@ # (1) is explained in the follow-
ing paragraph.

The parity bit of ann-bit string is the exclusive-OR of all
the bits in the string. In other words, the parity is 1 if there
are an odd number of 1’s and 0 if there are an even number.
The parity density matrices ofn bits will be denoted as
r0
(n) andr1

(n) in case the parity is ‘‘0’’ and ‘‘1,’’ respectively.
Using these density matrices we define also thetotal density
matrix r (n)[ 1

2(r0
(n)1r1

(n)) and thedifferencedensity matrix
D (n)[ 1

2(r0
(n)2r1

(n)), so that

r0
~n!5r~n!1D~n! and r1

~n!5r~n!2D~n!. ~4!

The one-particle density matrices@Eq. ~3!# also describe the
parities of one particle, and therefore we can calculate

r~1!5
1

2
~r0

~1!1r1
~1!!5S c2 0

0 s2D , ~5!

D~1!5
1

2
~r0

~1!2r1
~1!!5S 0 sc

sc 0 D . ~6!

The density matrices of the parity bit of two particles are

r0
~2!5

1

2
~r0

~1!r0
~1!1r1

~1!r1
~1!!,

r1
~2!5

1

2
~r0

~1!r1
~1!1r1

~1!r0
~1!!, ~7!

where the multiplication is a tensor product. The total den-
sity matrix is

r~2!5
1

2
~r0

~2!1r1
~2!!

5
1

4
@r0

~1!~r0
~1!1r1

~1!!1r1
~1!~r1

~1!1r0
~1!!#5r~1!r~1!,

which, by using the basis

ub0&[S 10D
1
S 10D

2
5S 100

0

D , ub1&[S 10D
1
S 01D

2
5S 010

0

D ,
ub2&[S 01D

1
S 10D

2
5S 001

0

D and ub3&[S 01D
1
S 01D

2
5S 000

1

D
~8!

in H4, can be written as

r~2!5r~1!r~1!5S c4 0 0 0

0 c2s2 0 0

0 0 c2s2 0

0 0 0 s4
D . ~9!

The difference density matrix is

D~2!5
1

2
~r0

~2!2r1
~2!!

5
1

4
@r0

~1!~r0
~1!2r1

~1!!1r1
~1!~r1

~1!2r0
~1!!#

5D~1!D~1!5S 0 0 0 c2s2

0 0 c2s2 0

0 c2s2 0 0

c2s2 0 0 0
D . ~10!

The density matrices of the parity bit ofn particles can be
written recursively:
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r0
~n!5

1

2
~r0

~1!r0
~n21!1r1

~1!r1
~n21!!,

r1
~n!5

1

2
~r0

~1!r1
~n21!1r1

~1!r0
~n21!!, ~11!

leading to

r~n!5
1

2
~r0

~n!1r1
~n!!5r~1!r~n21! ~12!

and

D~n!5
1

2
~r0

~n!2r1
~n!!5D~1!D~n21!. ~13!

Using these expressions recursively we get

r~n!5~r~1!!n, ~14!

which is diagonal, and

D~n!5~D~1!!n, ~15!

which has nonzero terms only in the secondary diagonal. The
density matricesr0

(n) andr1
(n) are now immediately derived

for anyn using Eq.~4!:

r0
~n!5~r~1!!n1~D~1!!n

and

r1
~n!5~r~1!!n2~D~1!!n. ~16!

As an illustrative example we writer0 andr1 for two par-
ticles:

r0
~2!5S c4 0 0 c2s2

0 c2s2 c2s2 0

0 c2s2 c2s2 0

c2s2 0 0 s4
D ,

r1
~2!5S c4 0 0 2c2s2

0 c2s2 2c2s2 0

0 2c2s2 c2s2 0

2c2s2 0 0 s4
D .

~17!

The only nonzero terms in the parity density matrices are the
terms in the diagonals for anyn, thus the parity density ma-
trices have an X shape in that basis.

The basis vectors can be permuted to yield block-diagonal
matrices built of 232 blocks. The original basis vectors
@see, for example, Eq.~8!#, ubi&, are simply 2n vectors where
the i th element of thei th basis vector is 1 and all other
elements are 0 (i ranges from 0 to 2n21). The new basis
vectors are related to the old as follows:

ubi8&5ubi /2& for even i

and

ubi8&5ub2n2~ i11!/2& for odd i . ~18!

The parity density matrices are now, in the new basis~we
omit the 8 from now on as we will never write the matrices
in the original basis!,

rp
~n!5S Bp

@ j51# 0 . . . 0

0 Bp
@ j52# . . . 0

0 0 . . . Bp
@ j52~n21!#

D , ~19!

where the subscriptp stands for the parity (0 or 1). Each of
the 232 matrices has the form

Bp
@ j #5S c2~n2k!s2k 6cnsn

6cnsn c2ks2~n2k!D , ~20!

with the plus sign forp50 and the minus sign forp51, and
0<k<n, and all these density matrices satisfy detBp

@ j #50.
The first block (j51) hask50; there are(1

n) blocks which
havek51 or k5n21; there are (2

n) j ’s which havek52 or
k5n22, etc. This continues untilk5(n21)/2 for oddn.
For evenn the process continues up tok5n/2 with the mi-
nor adjustment that there are only12(n/2

n ) j ’s of k5n/2. This
enumeration groups blocks which are identical or identical
after interchange ofk and n2k and accounts for all 2n/2
blocks. We will see later that blocks identical under inter-
change ofk andn2k will contribute the same mutual infor-
mation about the parity bit, thus we have grouped them to-
gether.

With the density matrices written in such a block-diagonal
form of 232 blocks the problem of finding the optimal mu-
tual information can be analytically solved. It separates into
two parts:~i! Determining in which of 2n/2 orthogonal 2d
subspaces~each corresponding to one of the 232 blocks! the
system lies;~ii ! Performing the optimal measurement within
that subspace. The subspaces may be thought of as 2n/2 par-
allel channels, one of which is probabilistically chosen and
used to encode the parity by means of a choice between two
equiprobable pure states within that subspace~these two
states are pure because theB0 and B1 matrices each have
zero determinant!. We shall present in the next section the
optimal measurement that yields the optimal mutual informa-
tion transmissible through such a two-pure-state quantum
channel. The channel then corresponds to a classical binary
symmetric channel~BSC!, i.e., a classical one-bit-in one-bit-
out channel whose output differs from its input with some
error probabilitypj independent of whether the input was 0
or 1. The optimal mutual information in each subchannel is
the optimal mutual information of a BSC with error probabil-
ity pj and is I 2(pj )512H(pj ), with H(x)52xlog2x
2(12x)log2(12x), the Shannon entropy function. The op-
timal mutual informationI M for distinguishingr1

(n) from
r1
(n) can thus be expressed as an average over the optimal
mutual information of the subchannels:
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I M5(
j51

2n/2

qj I 2~pj !, ~21!

whereqj5TrB0
@ j #5TrB1

@ j # is the probability of choosing the
j th subchannel. The BSC error probabilitypj for the j th
subchannel depends on the subchannel’s 232 renormalized
density matricesB̂p

@ j #5Bp
@ j #/qj , and is easily calculated once

the optimal measurement is found. For each subchannel the
qj and renormalized 232 matrices look like

qj5c2~n2k!s2k1c2ks2~n2k! ~22!

and

B̂p
@ j #5

S c2~n2k!s2k

c2~n2k!s2k1c2ks2~n2k!

6cnsn

c2~n2k!s2k1c2ks2~n2k!)

6cnsn

c2~n2k!s2k1c2ks2~n2k!)

c2ks2~n2k!

c2~n2k!s2k1c2ks2~n2k!

D .

23

In our previous example ofn52 the matrices are put in a
block diagonal form:

r0
~2!5S c4 c2s2 0 0

c2s2 s4 0 0

0 0 c2s2 c2s2

0 0 c2s2 c2s2
D ,

r1
~2!5S c4 2c2s2 0 0

2c2s2 s4 0 0

0 0 c2s2 2c2s2

0 0 2c2s2 c2s2
D ,

~24!

so thatqj515c41s4, qj5252c2s2, and

B̂p
@ j51#5S c4

c41s4
6

c2s2

c41s4

6
c2s2

c41s4
s4

c41s4
D ,

B̂p
@ j52#5S 1/2 61/2

61/2 1/2 D . ~25!

III. OPTIMAL INFORMATION IN A PARITY BIT

Two pure states or two density matrices inH2 with equal
determinants can always be written~in an appropriate basis!
in the simple form

r05S a1 a2

a2 a3
D , r15S a1 2a2

2a2 a3
D ~26!

with ai real positive numbers such that Trrp5a11a351.
For the two pure states of Eq.~2!, say, for the polarization
states of a photon, it is easy to see~and can be formally
proven@5,6#! that a standard measurement in an orthogonal
basis symmetric to the two states optimizes the mutual infor-
mation ~and also minimizes the average error probability!.
The angle between one basis vector and the polarization state
is p/46a. The measurement results in an error with prob-
ability

Pe5sin2S p

4
2a D5

12cosS p

2
22a D

2
5
12sin~2a!

2
,

~27!

and with the same error probability for both inputs, thus
leading to a binary symmetric channel~BSC!. The optimal
information of such a channel is well known and is

I
BSC

5I 2~Pe!. ~28!

Note that the overlap of the two-states is cos(2a), thus, for
two pure states in any dimension, the optimal information
I 2@12sin(2a)/2# is a simple function of the overlap. The
density matrices of such pure states@Eq. ~3!# can be written
asr i5( 11s•r i)/2 with thes being the Pauli matrices and
r5(6sin2a,0,cos2a) being a three-dimensional vector
which describes a spin direction. Using this notation any
density matrix is described by a point in a three-dimensional
unit ball, called the Bloch sphere. The pure states are points
on the surface of that sphere~also called the Poincare´
sphere!. With the density matrix notation the optimal basis
for distinguishing the states is thex basis~note that the angle
between the basis vector and the state is doubled in this
notation!. The measurement of the two projectors

A→51/2S 1 1

1 1D and A←51/2S 1 21

21 1 D ~29!

yields

Pe5Trr1A→5
1

2
2a2, ~30!

which recovers the result of Eq.~27! in case of pure states of
Eq. ~3!. However, the treatment of density matrices is more
general and this is the optimal measurement also in the case
of nonpure states with equal determinants@5,6#, whenr i of
Eq. ~3! are replaced byr i

dm of Eqs.~69! and~70! of Sec. VI,
and this case is also described by a BSC. The only difference
between the matrices is that detrp50 for pure states and
0<detrp<

1
4 for density matrices.

Instead of measuring the density matrices in thex direc-
tion we perform the following unitary transformation on the
density matrices:

U51/A2S 1 1

1 21D ~31!

to obtainr85UrU† which is then measured in thez basis.
Note that the transformation transforms the originalz-basis
to x-basis~the motivation for this approach will be under-
stood when we discuss the 232 blocks of the parity matri-
ces!. The new density matrices are
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r085S 1

2
1a2

a12a3
2

a12a3
2

1

2
2a2

D , r185S 1

2
2a2

a12a3
2

a12a3
2

1

2
1a2

D
~32!

and their measurement yields the probability1
26a2 to derive

the correct~plus! and the wrong~minus! answers~as we
obtained before!, leading to optimal mutual information of

I 2S 122a2D , ~33!

which depends only ona2. Note that the same information is
obtained in casea1 anda3 are interchanged.

The naive way to derive information on a parity bit is to
derive the optimal information on each particle separately
and calculate the information on the parity bit. We call this
individual or single-particlemeasurement. It is the best Bob
can do in case he has no quantum memory in which to keep
the particles~which usually arrive one at a time! or he has no
ability to perform more advanced joint measurements. The
optimal error-probability for each particle is
r[Pe

(1)5(12sin2a)/2. The probability of deriving the
wrong parity bit is equal to the probability of having an odd
number of errors on the individual particles

Pe
~n!5 (

j5odd

n S nj D r j~12r !n2 j .

To perform the sum over only oddj we use the formulas

~p1q!n5(
j50

n S nj D pn2 jqj ,

~p2q!n5(
j50

n S nj D pn2 j~2q! j ,

to derive

(
j5odd

n S nj D pn2 jqj5
~p1q!n2~p2q!n

2
. ~34!

Assigningq5r andp512r we get

Pe
~n!5 (

j5odd

n S nj D r j~12r !n2 j5
1n2~122r !n

2

5
1

2
2

~122r !n

2
. ~35!

The mutual informationI S in this single-particle measure-
ment is

I S5I 2~Pe
~n!!5I 2S 122

~sin2a!n

2 D ~36!

using r5@12sin(2a)#/2.
A lot of useless side-information is also obtained~e.g., on

the individual bits!. This fact indicates that Bob might be
able to do much better by concentrating on deriving only
useful information. The optimal measurement for finding

mutual information on the parity bit is not a single-particle
measurement, but is instead a measurement on the full
2n-dimensional Hilbert space of the system. In general, op-
timizing over all possible measurement is a very difficult
task unless the two density matrices inH2n are pure states.
However, in the preceding section we have shown how to
reduce the problem to that of distinguishing the 232 blocks
of our block-diagonal parity matrices. We now have only to
apply the optimal single-particle measurement to the 232
B̂@ j #’s of Eq. ~23! and use the result in Eq.~21!.

The error probability@Eq. ~30!# for distinguishing the
B̂@ j #’s is seen to be

pj5
1

2
2

cnsn

c2~n2k!s2k1c2ks2~n2k! , ~37!

from which the informationI 2(pj ) in each channel is ob-
tained.

Plugging the error probabilitypj @Eq. ~37!# and the prob-
ability of choosing thej th subchannelqj @Eq. ~22!# into Eq.
~21!, the optimal information on the parity bit is now

I M5(
j51

2n/2

~c2~n2k!s2k1c2ks2~n2k!!

3I 2S 122
cnsn

c2~n2k!s2k1c2ks2~n2k!D . ~38!

In the simple case of orthogonal states (a5p/4) all these
density matrices are the same and we getqj5( 12)

n21,
pj50, andI M51 as expected.

A brief remark is in order at this stage. The transforma-
tion to thex basis for each 232 matrix, B̂p

(n,k) , is actually a
transformation from a product basis to a fully entangled basis
of the n particles. That basis is a generalization of the Bell
basis of@15#,

S 10D
1
S 10D

2
. . . S 10D

n21
S 10D

n

6S 01D
1
S 01D

2
. . . S 01D

n21
S 01D

n

,

~39!

S 10D
1
S 10D

2
. . . S 10D

n21
S 01D

n

6S 01D
1
S 01D

2
. . . S 01D

n21
S 10D

n

,

~40!

etc. The Bell basis for two particles is frequently used and its
basis contains the EPR singlet state and three other orthogo-
nal fully entangled states.

For largen, the number of blocks is exponentially large
and performing the summation required in Eq.~38! is im-
practical, since all the 2n21 matrices must be taken into ac-
count. However, that problem can be simplified by realizing
that all blocks with a givenk, as well as all blocks withk and
n2k interchanged, contribute the same information to the
total. This is easily seen in Eq.~38!, where both the weight
and the argument ofI 2 are symmetric ink and n2k. The
optimal mutual information for evenn is then
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I M
even5 (

k50

n/2 21 S nkDqkI 2~pk!1
1

2 S nn
2
D qn/2I 2~pn/2!, ~41!

and for oddn

IM
odd5 (

k50

~n21!/2 S nkDqkI 2~pk!. ~42!

As an example we calculateI M for n52 ~of course, the
counting argument is not needed in that case!. This particular
result complements the result in@13# where the deterministic
information of such a system is considered~see also Sec. V!.
In the new basis~32! the density matrices of@Eq. ~25!# be-
come

B̂08
~n52,k50!5S 1/21

c2s2

c41s4
1

2

c42s4

c41s4

1

2

c42s4

c41s4
1/22

c2s2

c41s4
D ,

B̂18
~n52,k50!5S 1/22

c2s2

c41s4
1

2

c42s4

c41s4

1

2

c42s4

c41s4
1/21

c2s2

c41s4
D ,

and

B̂08
~n52,k51!5S 1 0

0 0D , B̂18
~n52,k51!5S 0 0

0 1D . ~43!

We use the notationS52sc5sin2a; C5c22s25cos2a
@hence, c42s45C and c41s45(11C2)/2] to obtain
q152c2s25S/2, p150, q05

1
2(11C2), and p05C2/

(11C2) ~the qj ’s were obtained in the preceding section!.
The mutual information of the parity of two bits is obtained
using Eq.~21!,

I M5q0I 2~p0!1q1I 2~p1!

5
1

2
~11C2!I 2S C2

11C2D1
S2

2
. ~44!

IV. INFORMATION ON THE PARITY BIT
OF ALMOST FULLY OVERLAPPING STATES

The case of almost fully overlapping states is extremely
important to the analysis of eavesdropping attacks on any
quantum key distribution scheme, as will be discussed in
Sec. VII. In this case the anglea is small sos[sina.a and
c[cos.12a2/2. To observe the advantage of the joint mea-
surement, let us first calculate the optimal information ob-
tained by individual measurements. In that case, Eqs.~35!
and ~27! yield

Pe
~n!5

1

2
2

~2a!n

2
. ~45!

For smallh the logarithmic function is approximated by

logS 126h D5

lnS 126h D
ln2

'216
2

ln2
h2

2

ln2
h2, ~46!

from which the mutual information

I 2S 122h D512HS 122h D
511S 121h D logS 121h D1S 122h D logS 122h D
'

2

ln2
h2 ~47!

is obtained. Using this result and assigningh5(2a)n/2, the
information ~to first order! obtained by the optimal single-
particle measurement is

I S5
2

ln2

~2a!2n

4
5

~2a!2n

2ln2
. ~48!

We use the same approximations and Eqs.~37! and ~22! to
calculate the leading terms in the optimal mutual information
~41! and~42!. For k5n/2 (n even! we getpk50 ~regardless
of the small angle! and

I 2~pn/2!51. ~49!

For k,n/2 we getpk'
1
22sn/s2k' 1

22an22k, which yields
@using Eq.~47! with h5an22k#

I 2~pk!'
2

ln2
a2n24k. ~50!

The coefficient qk5a2k for k,n/2 and qk52a2k for
k5n/2, so that

qkI 2~pk!'
2

ln2
a2~n2k! ~51!

for k,n/2, and

qkI 2~pk!'2an ~52!

for k5n/2. The dominant terms are those with the largest
k, that is,k closest ton/2. The next terms are smaller by two
orders ina. The number of density matrices with thesek’s
are also the largest~up to a factor of 2 in case of evenn).
Therefore, the termsk5n/2 for evenn andk5(n21)/2 for
odd n are the dominant terms in the final expression. Thus,
for almost fully overlapping states, the mutual information is

I M
even'

1

2 S nn
2
D 2an5S nn

2
D an

for evenn, and

I M
odd'S n

n21

2
D 2

ln2
an11 ~53!

for oddn.
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These expressions can be further simplified. The number
of density matrices of any type is bounded~for large n)
using the Stirling formula~see@15# in the chapter on Reed-
Solomon codes!,

S nkD,
2nH~k/n!

A2p~k/n!~12k/n!n
. ~54!

For k near n/2, h[ 1
22k/n is small, and the standard ap-

proximation ~47!: H'12O(h2)512O@( 122k/n)2],1 is
used to derive (k

n),2n/A2p(k/n)(12k/n)n. Using also
k/n(12k/n)' 1

42h2, we derive

S nkD,
2n

Ap

2
n

@11O~h2!#. ~55!

Thus the leading term inI M is

I M,
2n

Ap

2
n

an5~2a!nYAp

2
n ~56!

for evenn and

I M,
2n

Ap

2
n

2

ln2
an115

2

ln2
a~2a!nYAp

2
n

,~2a!nYAp

2
n ~57!

for odd n ~using a, ln2/2). We see that we could keep a
better bound for oddn but for simplicity we consider the
same bound for both even and oddn’s.

We can now compare the optimal informationI M from a
joint measurement on alln particles to the optimal informa-
tion I S from separate measurements@cf. Eq. ~48!#:

I M5O„~2a!n/An…,
~58!

I S5O„~2a!2n….

Sincea is a small number~corresponding to highly overlap-
ping signal states!, the joint measurement is superior to the
individual measurement by a factor ofO„(2a)n…. However,
it is only superior by a polynomial factor, since

I M'~ I S!
2. ~59!

V. DETERMINISTIC INFORMATION
ON THE PARITY BIT

For a single particle Bob can perform a different kind of
individual measurement which is not optimal in terms of
average mutual information but is sometimes very useful
@9,4#. It yields either a conclusive result about the value of
that bit or an inconclusive one, and Bob will know which of
the types of information he has succeeded in obtaining. Such

a measurement corresponds to a binary erasure channel
@4,13,16#. With probability p? of an inconclusive result, the
mutual information isI p?512p? . The minimal probability

for an inconclusive result is cos2a leading to
I p?512cos2a @4#. This result is obtained by performing a
generalized measurement~positive operator value measure
@4,3,17#! on the system or a standard measurement per-
formed on a larger system which contains the system and an
auxiliary particle@4,18#. Note that this results in less mutual
information than the optimal measurement for one-particle
mutual information. If Bob uses this type of measurement on
each particle separately his deterministic single-particle in-
formation about the parity bit is (12cos2a)n.

We now use the block-diagonal density matrices derived
in Sec. II to derive also the optimaldeterministicinformation
on the parity bit. We note that each of the 232 blocks in the
block-diagonal density matrices is the density matrix of a
pure state, so we may replace the optimal measurement in
each subchannel with the optimal deterministic measurement
and proceed as before. The total optimal deterministic infor-
mation is easily calculated by replacingI 2(pk) in Eqs. ~41!
and ~42! by I (p?k)512p?k, wherep?k is the probability of

an inclusive result in blockk. To find the minimalp?k we

write each of the normalized density matricesB̂p
(n,k) as pure

states with some angleg:

S cosgsing D and S cosg
2sing D . ~60!

Comparing with Eq.~23!

p?5cos~2g!5cos2g2sin2g5
c2~n2k!s2k2c2ks2~n2k!

c2~n2k!s2k1c2ks2~n2k! ,

~61!

hence

I ~p?k!512
c2~n2k!s2k2c2ks2~n2k!

c2~n2k!s2k1c2ks2~n2k! . ~62!

The total information is

I D
even5 (

k50

n/2 21 S nkDqkI ~p?k!1
1

2 S nn
2
D qn/2I ~p?n/2! ~63!

for evenn, and

I D
odd5 (

k50

n21/2 S nkDqkI ~p?k! ~64!

for oddn.
Forn52 we recover a result previously obtained by Hutt-

ner and Peres@14# by performing the optimal POVM on
the first pair of density matrices of Eq.~25!, and a measure-
ment in the entangled basis~as before! on the second.
The probability of an inconclusive result is
cos2g2sin2g5(c42s4)/(c41s4)52C/(11C2), hence the opti-
mal deterministic information is 122C/(11C2), leading to
the total deterministic information
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I D5q1I D~p?!1q2I 2~p2!

5
1

2
~11C2!S 122

C

11C2D1
S2

2
512C, ~65!

which is exactly the result obtained by Huttner and Peres
~note, however, that they used an angle which isp/42a
hence derived 12S for the deterministic information!.

For almost overlapping states~small a) the dominant
terms are still the same as in the case of optimal information.
The termqk is as before and the information in each port is

I ~p?k!51 ~66!

for k5n/2 and

I ~p?k!512
c2n24k2s2n24k

c2n24k1s2n24k 512~12a2n24k!252a2n24k

~67!

for k,n/2. Taking into consideration only the dominant term
we get

I D
even'S nn

2
D an

for evenn, which is the same as the optimal information, and

I D
odd'S n

n21

2
D 2an11 ~68!

for oddn, which is smaller than the optimal mutual informa-
tion by a factor of 1/ln2.

VI. PARITY BIT FOR DENSITY MATRICES

The previous discussion assumed thatrp
(1) are pure states.

The generalization to the case of density matrices with equal
determinants is straightforward. Let the bit ‘‘0’’ and the bit
‘‘1’’ be represented by

r0
dm5S c2 sc2r

sc2r s2 D ~69!

and

r1
dm5S c2 2~sc2r !

2~sc2r ! s2 D ~70!

~with s5sina, etc., andr,sc), which contains the most
general density matrices of the desired type. On the Poincare´
sphere these density matrices have the samez components as
the previously written pure states but smallerx components
~hence smaller anglea8). We could choose other ways of
representing these density matrices, e.g., with similarx com-
ponents and smallerz components. Such representations
were more appropriate for comparison with pure states~since
they yield the same mutual information for a single particle!
but less convenient for showing that the previous result is
easily generalized.

Clearly

r~1!dm5
1

2
~r0

~1!1r1
~1!!5S c2 0

0 s2D , ~71!

D~1!dm5
1

2
~r0

~1!2r1
~1!!5S 0 sc2r

sc2r 0 D . ~72!

The total density matrix does not change and the difference
density matrix has terms (sc2r )n instead of (sc)n. Reorga-
nizing the basis vectors we again get the block-diagonal ma-
trices where each of the 232 matrices has the form

Bp
~n,k!5S c2~n2k!s2k 6~cs2r !n

6~cs2r !n c2ks2~n2k! D . ~73!

When normalized, these density matrices have the form of
Eq. ~26! and are optimally distinguished by measuring them
in the x direction. Transforming to thex basis as before we
get the same

qk5c2~n2k!s2k1c2ks2~n2k! ~74!

as before, and

pk5
1

2
2

~cs2r !n

c2~n2k!s2k1c2ks2~n2k! . ~75!

The total information can now be calculated as before by
assigning thesepk andqk into Eqs.~42! and ~41!. Thus, the
case of mixed states is also analytically solved for any num-
ber of bits, and the influence of mixing on the optimal mu-
tual information is through thepk’s @19#.

Calculating the optimal information for smalla and any
r is possible but complicated. Another alternative which is
much simpler is to find a bound on the optimal information
using pure states with the same angle,a8, on the Poincare´
sphere, using

tan2a85
sin2a22r

cos2a
, ~76!

or using an alternative form for the mixed states Eqs.~69!
and ~70!.

VII. IMPLICATIONS

Quantum oblivious transfer@20# and quantum key distri-
bution @10# protocols use parities of publicly announced sub-
sets of the transmitted bits for both error-correction and pri-
vacy amplification~PA!. When used for error-correction,
subset parities are publicly announced in order to identify
errors and correct them, and this is a crucial step in real
channels since it could leak information to an eavesdropper.
When used for PA@11,12# ~say, to derive one final bit! a
subset parity is agreed to be the final secret bit, and this
technique is used to limit the adversary’s information to an
exponentially small fraction of a bit. PA is effective when
particles are not measured together~see discussions in@12#
and in @21#!, and presumably also if all measurements are
completed before the specification of the subsets used in PA
is publicly announced. But it is still an open question
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whether it is effective also when the adversary can use this
specification tochooseher attack. Our result provides the
optimal measurement which can be done to find a parity bit
and therefore is crucial for such analysis. In particular cases,
when almost fully overlapping states are used, we proved
two complementary results regarding that optimal measure-
ment: ~i! The optimal information is much larger than the
one obtained by measuring each bit separately;~ii ! The op-
timal measurement still yields exponentially small informa-
tion. Thus we proved aneffectiveness result: classical PA
techniques are effective againstany quantum measurement.
The discussion so far treats an imaginary scenario which is
very general but is not good as a cryptographic protocol.

Realistic protocols are very complicated~e.g., due to the
use of error correction!, hence, are more difficult to analyze.
However, to emphasize the importance of the ‘‘effectiveness
result’’ just mentioned let us consider a different scenario
which is common in quantum key distribution schemes: Al-
ice and Bob are the legitimate users who try to establish a
secret key. They use any binary scheme and Alice sendsn
particles through a noisy channel to Bob. An adversary, Eve,
is trying to learn information on their key. She gets the par-
ticles one at a time, interacts with each one of them weakly,
and sends it forward to Bob. She must interact weakly with
all particles if she wants to induce only small error rate~al-
ternatively, she could attack strongly only a few of the par-
ticles but PA is already proven effective against that type of
attack@12#!. Classical PA is also effective if Eve cannot use
the specification of the hash function~i.e., which subset pari-
ties Alice and Bob use as their final string! to attack all bits
together. However, there is no physical way to prevent her
from doing this if she has a quantum memory. Although the
specification is announced after the transmission is over, Eve
can keep information in the quantum state of a system which
has interacted with all the transmitted particles, and use it
after all the specification is announced. Security against such
joint attacks in error-free channels is shown in@22,23# but
the case of real~noisy! channels and devices has never been

completely analyzed. Another route to attack the security
problem is to attempt a quantum privacy amplification
scheme, relying on the recent results on purifying entangle-
ment @24,25#. However, such a scheme would require Alice
and Bob to have future technologies such as large quantum
memories and sophisticated quantum gates. Traditional
quantum cryptography requires only simple one-particle spin
or polarization measurements and is therefore far more prac-
tical. One typically would like to consider the case where
Alice and Bob use existing technologies, while Eve is re-
stricted only by the laws of physics. It is therefore crucial to
obtain the security of quantum cryptography based on clas-
sical PA techniques.

Our ‘‘effectiveness result’’ allows the derivation of strong
security results against ‘‘collective’’ attacks@26# in which
Eve attaches aseparateprobe to each particle via a translu-
cent attack~defined in@16#!, keeps the probes in a quantum
memory, and usesall classical data to choose the optimal
measurement of the probes. Eve must attack each transmitted
particle weakly since she does not want to induce large error
rate. Therefore, for each particle she obtains a probe with
two almost overlapping pure states~or density matrices!.
Hence the ‘‘effectiveness result’’ can be used to imply that
her information on the final string is exponentially small in
the length of the initial string, and security against collective
attacks suggests security against the ‘‘joint’’ attack@26#, the
most general attack allowed by quantum mechanics.
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