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Stochastic path integrals and open quantum systems
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The general theory of path integral propagators for the solution of linear quantum state difiL@8B)
stochastic Schidinger equations describing open quantum systems is developed. Both Hamiltonian and, where
possible, Lagrangian path integrals are derived and their connection established. The Hamiltonian version turns
out to be more suitable. The results also show how the stochastic terms in the LQSD equation introduce a
weight functional under the path integral, thus restricting the set of contributing paths. The center of this weight
functional is determined by the stochastic processes governing the LQSD equation. In general, this picture
holds in a semiclassical limit only. Some peculiarities of stochastic path integrals are pointed out. We evaluate
the stochastic path integral in closed form for soluble models, gaining further insight into the behavior of the
solutions of the LQSD equatiofS1050-294{6)10009-3

PACS numbd(s): 03.65.Bz, 42.50.Lc

I. INTRODUCTION are path integrals as introduced by Feynran3] (see also

[32]), with its implications for relativistic quantum mechan-
The theoretical description of open quantum systems witlics and field theory. Therefore, it seems desirable to intro-
the help of path integrals goes back to Feynman and Vernoduce these concepts in the now well established field of sto-

[1,2]. They use the path integral propagator of the unitarychastic Schrdinger equations. The aim of this paper is to
time evolution of the system plus environment and trace oveprovide general path integral expressions for their propaga-
the irrelevan{environmentaldegrees of freedom to arrive at tors. Moreover, we evaluate the path integral for soluble
a path integral propagator for the reduced density operatanodels to gain further insight into the behavior of the solu-
alone. This approach was further elaborated by Caldeira antibns of these stochastic Hilbert space differential equations.

Leggett[4] and othergsee Graberét al. [5] for more refer- Path integral expressions for the propagator of linear sto-
ence$. This approach, however, isot the subject of this chastic Schrdinger equations can be found immediately for
paper. simple special cases where straightforward general path in-

Instead, we base the description of open quantum systentegral techniques can be applied. This was investigated by
on stochastic Schidinger equationss they have been intro- Pearle and SoucelR0] for the special case of a purely po-
duced in a variety of circumstances during the past few yearsition dependent diffusion term in the context of a continu-
[6—28, both in linear and nonlinear versions. This approachous spontaneous localization theory.
is very much in the spirit of describing the dissipative motion  In this paper, we develop the general path integral theory.
of classical particles undergoing Brownian motion with theThis is why we devote the next section to an introduction to
help of stochastic differential equations as introduced bygeneral linear stochastic Scklinger equations with com-
Langevin [29]. Such stochastic Schiinger equations plex noise. We will refer to this equatiof¥) as the linear
(mainly in their nonlinear versignvere used in recent years quantum state diffusiofLQSD) equation. We quote some of
to describe the continuous measurement or continuous reduits properties, like the time dependence of the norm of the
tion of quantum systems by Gisj6], Diosi[7—9], Belavkin  state vector and the connection to the time evolution of the
et al. [10—-13, Barchielli et al. [14,15, and Gisin and Per- corresponding density operator.
cival [16—18. They also appear as attempts to find an ex- The main results of this paper appear in Secs. IlI-V,
plicit description of a fundamental wave function reductionwhere we derive general path integral expressions for the
in modified quantum theories as investigated by GhirardLQSD propagator. Our approach starts with the derivation of
et al.[19], Pearleet al.[20,21], or Percival[22,23 with the  a stochastic Hamiltonian path integral. Solving the LQSD
aim to overcome the difficulties with the foundations of equation amounts to introducing a weight functional of phase
guantum theory. In this context we also mention the recentlyspace paths under the path integral.
established connection between stochastic 8thger equa- Since coordinate space path integrals are more common,
tions and the decoherent histories approach to quantum mese evaluate the momentum part of the phase space path in-
chanics by Diosiet al. [24]. As a computational tool for tegral to find the Lagrangian version of the stochastic path
solving master equations stochastic Sclimger equations integral propagator in Sec. IV. This is possible only for the
are used extensively in quantum optics. Here, papers abospecial—but very important—class o¢&ffective Hamilto-
the nonlinear version are numerous, see Gardj@8ét or  nians with at most quadratic dependence on the momenta.
Carmicheal [26] for more references. In Goetscht al.  Here, some peculiarities of the stochastic theory occur, such
[27,28 one can find recent investigations whéireear sto-  as indispensable stochastic prefactors of the propagator. The
chastic Schrdinger equations, relevant for this paper, arerelation between Lagrangian and Hamiltonian description is
used. given by a stochastitto-Legendre transformation

One of the most far-reaching concepts in quantum theory Although the spirit in this paper is to derive the path in-
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tegral propagator from the LQSD equation, it is instructive to dTrp,=0. (4)
repeat Feynman'’s original reversed approd;B] and estab-
lish the LQSD equation from a short-time stochastic propa-This condition puts a restriction on the anti-Hermitian part of
gator. This is accomplished in Sec. V which clarifies thethe drift operatoH ¢ in Eq. (1). From Eq.(4) we find
connection between the different approaches.

In ordinary quantum mechanics the semiclassical propa- 1 - -t ha ~i2
gator is exact for at most quadratic Hamiltonians. Likewise, E(Heff_ Her) = — Ezﬂ: S ®
we are able to give the analytical solution for a harmonic
oscillator with linear environment operators in Sec. VI.which implies that
Some further analytical results of this soluble model are dis-
cussed in Sec. VI, where we investigate the time evolution - ~ G~
of generalized coherent states. We close with a discussion of Hefr=H— ?% E.Eu ©®
the results and draw conclusions, pointing out further devel-

opments. with an unspecified Hermitian Hamiltonid.
The general linear stochastic Sctimger equatior{1) to-
Il. LINEAR QUANTUM STATE DIFFUSION (LQSD) gether with the trace conditiof®) determines what we will

. ) i call the linear quantum state diffusidhQSD) equation
Linear stochastic Schdinger equations have been intro- a 4hQSD) eq

duced from many different points of viewl0-15,19- i - 1y ~,~ -

21,27,28 in recent years. The aim of this section is to |d'/f>=—gH|¢/>dt— 52 ELE,lv)dt+ > E, ly)dé, .

present the relevant terms and concepts. K’ ’ %)
The idea of describing open quantum systems with the

help of stochastic Schdinger equations is borrowed from Using the relation§2) among the Wiener increments, it is

the similar description of the Brownian motion of classical strajghtforward to show that the density operd®revolves
particles in a fluid with the help of stochastic differential according to the master equation

equations as introduced by Langevig9]. Instead of a

Hamiltonian time evolution of the state vector, we consider a ] i - 1 - -4 - ~
general Brownian-motion-like linear Hdiffusion process p=—z[H.pl+ EE ([Epp,E J+[E..pE,D. (8
o
i~ ~ . .
dd=——H di+ > E d 1 It has in fact been shown by Lindbld@1] that every sen-
|dv) h el ) % "lw 2 @ sible (Markovian master equation has to be of this form.

R The stochastic decompositidB) of the density operator in

of state vectors in Hilbert space. The operaltty; deter- one-dimensional projectors is referred to asuanavelingof
mines thedrift as in ordinary quantum mechanics, while thethe time evolution of the density operator and starting point
operatorsE,, determine thediffusion of the state vector. As for quantum Monte Carlo methods. o
in the classical Brownian motion, this diffusion is normally ~ The nice feature of Eq(7) being alinear equation is
assigned to the random influence of an unspecified envirorivershadowed by the fact that solutions of the LQSD equa-
ment (noise, which is why we refer to the operato% as tion are not normalized. We find the time dependence of the
the environment operatorghroughout this paper. In this con- norm from Eq.(7) and Itocalculus,
text, a measurement apparatus is just a special environment.

In the fundamental ftestochastic equatioil) the d¢,s dl{(¢¥)1=2> Re[(Y|E,|p)déE,}. 9
are the stochastic increments of independent complex u

Wiener processeg ,(t) (complex white noige[30] with
standard properties It follows that ensemble averages have to be taken over

theunnormalizecbne-dimensional projectotg){ . Alter-
M[dE,]=0, M[dé,dE,]=0, M[dE,déN]=6,,dt. natively, the normalized projectors have to be weighted by
(2) the norm{ | ) to give the correct ensemble meaft).
These issues are discussed[i0,11,14,15,19-21,27and
We use the notatiotM[ X,] for the ensemble averagef a  Will not be further addressed here.
stochastic variablX; over the processes, . We promised to give two good reasons for the use of
It is not necessary to introduce complex incremetgg ~ complex noise in the LQSD equation. The first is purely
in Eq. (1). Versions of linear stochastic Schiinger equa-  Practical. Since second order ternt()* can be neglected,
tions with real noise are also common, but we will give two complex Itocalculus is ordinary calculus as long as no com-

good reasons for the use of complex noise shortly. plex conjugation is involved. This simplifies matters consid-
The density operator is identified with the ensemble aver€rably. The second reason is related to the invariance of the
age over the one-dimensional projectors, master equatio8) under unitary transformations in the lin-
ear space of the environment operathrs. This symmetry
pr=MI| () ((D)]]. €] can be preserved for the LQSD equation for complex noise
only [16].

To be physically sensible, we require it to be trace pre- For completeness only, we mention thenlinear QSD
serving for all times, equation[16-1§
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|[dg)=— - H|p)dt- 5% (ELE,—2€XE,+|e 2| #)dt

+§ (E,—e,)|#)dé,, (10)

which differs from the LQSD equatiofY) by additional non-
linear terms  involving the  expectation

=(¢|E,|#). This nonlinear stochastic Sclfiager equa-
tion preserves the norm for individual realizations,

d<¢t|¢t>:0,

and is also an unraveling of the general master equ&8pn

Pt:M[|¢t><¢t|]-

Since it is nonlinear, it is difficult to find analytical solutions
and it is primarily used for numerical purposes.

13

12

1. HAMILTONIAN PATH INTEGRAL PROPAGATOR
FOR LQSD

In this section we derive a geneahase spaceath inte-
gral expression for the stochastic propaga@(t,t,) of
LQSD (7), defined by

|y =Ge(t;to) 4 )- (13
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values

O(q,p)=2d(2wﬁ)(d’z>J dq’(q—a’|0lg+q’)}(a’|2p).

(16)
The plane waves (q|p) in Eg. (16) are {(q|p)
=(27h) "~ Pexpliq- p/t}.
We use the general inverse transformation
(alOla’y=(2mh)" "’”J dp O| - p|(a—a'lp)
17

to replace the matrix elements in E45) by expressiori17),
thus introducingN additional momentum integrals, giving

)_(Ndlz)f dp1f d‘hj dp,- -

N
Xf qu_lf dekE[1<Qk_qk—1|pk>

Ja

+SE ( T k)Af,xk) ,

G(0,t;90,0)= lim (27h

N— o0

+0k-1

i Ok
X l—gHeﬁ(—z ' Pk

(18

the operatorsH o and E now being replaced by their

We stress the fluctuation dependence of the propagator hyjigner transforms.

the subscript. In what follows, we sety=0 thus determin-

ing Gg(t;0).

For a given timet and independent stochastic pro- Eaxp{ [--

cessest,(t) we divide the interva[Ot] in N intervals of

length At—t/N and define N random increments
A¢,(K) = ¢, (kKAL) —&,[(k—1)At], wherek runs from 1 to

N. From Eq.(7) with the notation(6) we deduce

G¢(a,t;,Go,0) = lim <O||H

N—oo

i~
[ 7 —HegAt

+§ é,Ag(k)] |do)- (14)

The first step to a path integral expression is the inclusion of

N—1 identities of the form/'dq,|q){q,/ to obtain

i qul"'quN—l
N—ox

G(9,t;90,0) = lim

offAt

N
x 11 (ad1-+H
k=1

+§ E, A&, (K)|a 1), (15)

where we setjy=d.
Now we introduce the Wigner transfor@(q,p) of the
operatorO [33] in 2d-dimensional phase space,

Just as for ordinary path integrals, in the lihit> o, the
-] term may be replaced by an exponential
-]}. Notice that there is no additional term arising
from the fluctuations since for complex noise second order
terms (dgﬂ)2 vanish according to the relation®). If one
chooses real noise, an additional term of ordérwould
appear in the exponent. Our final expression for the propa-
gator is therefore

G(q,t;00,0)= lim (27h) "~ N“f dplf dqlf dp,- -

N—

P N
quN 1f dpy eXP{ %Z [(Qk Ok—1)

+0k-1

(o ]%
Py Heﬁ(Typk) At

—m}‘, E ( Bt ey k)Ag “ (19)

The argument in the exponent is the discrete version of a
generalized Hamiltonian action integral. Here, however, in
addition to the deterministic part, we find an ktochastic
integral[30]. Notice that the use of the Wigner transform of
the relevant operators through E@Q.7) leads to the well-
known midpoint rule §,+qx_1)/2 [2,32] for the evaluation
of the action integral.

As usual, we write thisx expression in path integral form,
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(a.b) [ 2 .(9,.p)?=|E(q,.,p,) >+ O(%). (26)
Gatig0)= J(qO)D[q,p]exp{gsf[q,p]], (20 Bl POl =BG B O

do»
° Notice that theO(%) term is a mere constant for the impor-

with the complex licstochastic phase space action functionaltant cases of linear or Hermitian quadratic environment op-
erators, but can in general only be neglected in the semiclas-
[, sical limit (£ —0).
Sela.p]= fodr[q7~pT—Heﬁ(q7,pT)] The last line in Eq(25) should be regarded as a formal
expression since the integral over the squared derivative of
. t the fluctuations itself does not exist. Still, it shows that the
_'h% J'Odgﬂ(r)EM(qT,pT). @D weight functional(25) is peaked around Brownian-motion-
like phase space paths with
We see that the diffusion pa® ,E ,|¢)dé, of the LQSD
equation is reflected as an’ Igiochastic integral over the E.(q,,p)dt=d§, (7). (27)
environment functions fq,p) as part of the action integral.
The deterministic part, responsible for the drift, includes thewe see that the stochastic procesggét) determine the
Wigner transforms of the operatoEs,E,, as the imaginary ~center of this Gaussian-type weight functiorias). More-
part of Her(q,p), Eq. (6). This implies that the action in Eq. OVver, it is apparent that paths with the same values of the
(20) is complex, assigning different weights to the contribu-environment function€ ,(q.,p,) contribute equally to the

tion of paths. path integral. _ _ _
Separating the actioi21) into its real and imaginary Equation(19) and its formal versior(20) with Eq. (21)
parts, the propagator becomes and the more explicit expressid@2) for the LQSD propa-

gator are the main results of this section. They serve as a
_ [ starting point for the application of further methods to solve
G(q,t;00,0) = ( OD[q,p] the LQSD equation, like semiclassical methods or perturba-
00,0 .
tion theory. Next, however, we want to proceed to the La-

i grangian version of the path integral, which, as will be seen
X ex %(SC,[q,p]+ﬁ<D§[q,p]) shortly, shows some unexpected features.
1
xXexp — —Dg[q,p] , (22 IV. LAGRANGIAN PATH INTEGRAL PROPAGATOR
2 FOR LQSD
with the classical action functional In this section we restrict ourselves to a one-degree-of-

freedom system, in order to keep the expressions simple.
Historically, [3] Lagrangian path integrals were introduced
as a direct route to quantization given the classical Lagrang-
ian description of the theory. The Lagrangian version of the
and a stochastic phase functional path integral follows from the Hamiltonian version by inte-
grating out the momentum path integral.
t For Hamiltonians that depend at most quadratically on the
q>§[q,p]=§ﬂl Im{ fodgﬂ(r)EM(qT,pT)}. (24 momenta, the Legendre transformation between coordinate
space and phase space corresponds to a linear relation be-
The main effect of the environmental terms in the LQSDtween the canonical momenta and the velocities. In terms of
equation is the appearance of a weight functionapath_integrals, this Iinear_ Legendr.e _tran.sfo.rmation between
exp{—3D[q,p]} under the path integral. If we denote the HamHtpman and Lagrangian descrlpthn is simply performed
Wigner transform OELE# by IEM(q,p)IZ we find by doing the Gaussu’:}n momentum m_tegrgls of 'Fhe phase
space path integrals in Eq19). Thus, in this section we
assume a standard Hamiltonian of the form

t
SC|[q1p]:deT{qT'pT—H(qT!pT)} (23)

t
Dg[q:p]:Z JdT|E/.L(q‘rva)|2
w JO . ﬁz
H=-—+V(Q). (28

t
-2, Re[ J dmr)E,L(qf,pT)] 2m
I 0

In order to get at most quadratic momentum contributions

* 2 2
=2 Jth E.(9,.p )_dfﬂ(T) _‘ déu(m) from the environment operatoks, , we have to assume their
z Jo pEaTET dr dr linear dependence on the momenta. We want to keep things
simple which is why, in this section, we also assume a linear
+0O(#%). (25

dependence on the coordinates,

For the second expression we used the fact that the Wigner R R
transform ofE]E,, is equal to the squared modulus of the £ _Buat P 29
Wigner transform of, to lowest order i, . Jh
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This restriction is not necessary and will be dropped in thevhere we used the following abbreviations for effective,
next section, where we investigate the more general forncomplex massvl and potentiaV g :
E.=[B.(q)+ yﬂp]/\/% with an arbitrary functiong,,(q).

In Eq. (29), the B8,’s andy,’s are complex constants and M=

L B . - 2

the overall division byy% is introduced for convenience. 1-im|y|
Keep in mind, however, that most investigations on open
guantum systems are covered by such linear environment
operators, as in quantum optidsomodyne and heterodyne
measuremenf27,28)) or in the high temperature and Mar- _ - _ . _
kovian limit of the quantum Brownian motion model of Cal- We are now in the position to derive the Lagrangian version

deira and Leggeft4,35,36. In order to shorten notation, we Of the path integral by doing the multiple Gaussian momen-
set tum integrals in Eq(19). The value of such an integral is

given by the value of the integrarithe discrete action inte-
gral) at its stationary point times the typical square root pref-

m
(32

1 it
Ver(@)=V(@)+ 5 M@? =i BP)a2+ 5 T, (33

2_ 2 * __ T i
E,:‘ |ﬂ#| =18I% EM: Buyy=o—il, actor. The stationarity condition determines the Legendre re-
lation between classical velocity and canonical momentum.
and (30 Applied to Eq.(19) with Eq. (31) we find the complexto
Legendre transformation
2 yulP=1v2 —iM®o
p—iMwq .
P dg= Tdtﬂ\/ﬁ% ¥,dé,, (34

with realw andT".
From Egs(28) and(29) we deduce that the Wigner trans- which replaces the classical Legendre relation between ca-

form of Hyg is nonical momentum and velocity.
(p—iM@a)>2 We now evaluate the Gaussian momentum integrals in
_(p~1Mwq Eg. (19), which leads to the final expression for the propa-
He(d.p) = 2M Verl(a), (3Y) gator in Lagrangian language,

N/2
G¢(,t;00,0)= lim ) e{‘“’2)MEL%WVAfu“““v“‘)’“}f dq1-~-quN-1

Nooo | 27 AL
i [1 (G 0k1)? Qi+ g
k k-1 . k k=1
Xexp(%E FM—— ¢ TiMolO— k1) (At Qe-1)/2— Vet T)M
k=1
+i§ S My, It g My, R p e (35)
NA=tn Yu At B WYy 2 u :
In more formal terms the propagator is given by the stochastic Lagrangian path integral
s 01— il\/l2 ftd dé,(7) f(q’t)p [ Srq.é 36
§(qvt1q01 ) = ex _T,uv Yu?¥v 0 g,u.(T) dr (0.0 [q]eX % f[q!q] : ( )
|
The stochastic Lagrangian action functional is E,(q,)=My,q+(B,+iMwy,)q. (39

. t . . t . We will now address the prefactor of the Lagrangian path
Sda.al= fodTﬁe“(qf’qT)_'ﬁ% fodgﬂ(T)g#(qT’qf) integral in Egs. (35) and (36). The singular prefactor
(37 VM/27ih At is hidden in the notatiof D[q] of the path
integral. It is unimportant when working with the formal
with the complexeffective Lagrangian path integral because in applications like Feynman’ s pertur-
bation theory this term drops out. However, in our case there

R U, is the additional path-independent ibchasticprefactor
Le(0,9)=5Mq"+iM 0qq—Ver(a) (38)

iM t dé(7)
exp[—7§ YTy fodg(r) i } (40

and theLagrangian environment functions
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whenever the environment operators are momentum depemhere

dent. Since the ensemble average relies on the unnormalized t 1 1

single realizations, it is essential to keep this prefactor. This S ») —5 2

complication is a hint that the Lagrangian version of the SC'[q’q]_J’odT[ ERe{M}qT—(V(qT)+§Re{M}w qf)]'

stochastic path integral theory complicates matters unneces- (45)

sarily compared to the Hamiltonian version. More about the

meaning of this prefactor becomes apparent in the followingVotice that the Lagrangian classical action requires renor-

section. malized mass and potential when compared to the original
As we can see from Eqg38) and (39), the functions Hamiltoni_an(28). The stochastic phase functional, similar to

Lei(9,G) and€,(q,q) are equal to their corresponding phaseEd- (24), is

space expressions with the deterministic replacement

p—M(a+iwg). b a.a]=3 lm[ f;dfﬂmsﬂ(qﬂq»]. (46

Lo(0,0)=Mq(g+iwgd) —Hew(q,M(g+iwo 41
er(.9) ag+ieq) (@M@ +ion)) (41 In contrast to the Hamiltonian case we find additional and

and more complicatedsince position dependénprefactors in
front of the path integral. Again the paths are weighted by a
5ﬂ(q,q): \/%Eﬂ(q,M(i:H— i@)q). (42) weight functional expt D4q,ql/2), where
-2
Again, we see how the Lagrangian environment functions DJfa.q]=> fth £,(9,.,9,)
&, play the role of the environment operators in the LQSD e = Jo \/ﬁ
equation in determining the diffusion, while the complex La-
grangian includes both the dynamics of the isolated system 2 t .
in its real part, and contributions to the drift arising from the - ERQ[ fodgﬂ(r)EM(qT,qT)]
trace condition(4) in its imaginary part.
As in the Hamiltonian case it is worth separating the sto- 20l'Re[M} [t 5
chastic action functiond36) into its real and imaginary part + TfoquT

in order to clarify the meaning of expressi86). From Egs.

(38) and (39) we find s fth £,d,,0,)  déL(n) | |dE, () |2

(L@ =53 1,00+ 5| Im{M} () o v

m Q== Q|+ =1 Im{M}=

. (47)
+2w_Re{M}q2—h]. (43
We find an unexpected additional term

We see that in the Lagrangian case the imaginary part of the 20T Re(M} [t
LagrangianL is the sum of the squared modulus of the Tfodqu (48

corresponding Lagrangian environment functidf)s up to

additional, path-dependent terms including a total time degonributing to the weight functional. Notice that this term

rivative. This is in contrast to the Hamiltonian case, where, gnishes form=0. This is fulfilled when the environment

the imaginary part oHe; is actually equal to the squared ,nerators are creation or annihilation operators or when they

modulus of the Hamiltonian environment functidg upto 5.6 purely position or purely momentum dependeee Eq.

a constanfEqgs. (6) and(26), for linearE,,]. (30)]. Apart from this term, the interpretation of the weight
Taking all these results together, we can express thgunctional (47) of paths is similar to the Hamiltonian case.

propagator for the LQSD equation with standard Hamil-we see how the stochastic procesggér) determine the

tonian(28) and linear environment operato(9) as center of a Gaussian-type weight functional of paths.
G(q,t;00,0) = ex _Mz Yoy ftdf (T)df,,(ﬂ') V. LQSD DERIVED FROM THE LAGRANGIAN PATH
grbm o 290 H oM dr INTEGRAL PROPAGATOR

't I'tio by 2 Conceptually, Lagrangian path integrals appear to be
Xexp = — 7"’”{'\/‘}@ —0p) more desirable, particularly for relativity. One might choose
to found a generalized LQSD theory on a stochastic La-
(a,t) i . grangian path integral. In order to get some experience of
XJ D[q]exq’ 7(Scl4,4] how this program might work, it is instructive to see the last

(0 two sections reversed and find out how we carive the

. 1 ) LQSD equation(7) starting from a stochastic Lagrangian
+\/%<I>§[q,q])]ex%—EDS[q,q]}, path integral.
Following Feynman'’s original approa¢8,2], we find the
(44) propagator for finite times by the composition



2670 WALTER T. STRUNZ 54

N . 2
i1 X—
G(1;0)= lim 11 Gy(kAt;(k—1)At), (49 (x|1//(t+At)>=Pf dyexpy —|z m Y
N_ook=1 h|2 At
X+y\ x—y X+y
of short time propagators. It seems natural to base a stochas- +A 2 At M 2 At
tic linear quantum theory on a short time propagator of the
form 1 X+
+—=> |8, s
|2
(X|Gt+At)|y)y=P iﬁ Xy X_yt At X—y
X 1 = ex 7 A v At 0 B
¢ Y AU T2 A +CM(T> A@(U](vlt/f(t)) (54)
1 Xty X—-y
* ﬁ% g"( 2 7 At ’t)Ag”(t)] and evaluate thg integral to first order inAt. The lowest

order determines the prefact@ [condition (51)] and the
next order the linear Tt&chralinger equation for the wave
function. We find

(50

with some generalized Lagrangiafi(q,q,t) responsible

for the drift and Lagrangian environment functions m i A€, (DAE(T)
£,(q,9,t) responsible for the diffusion. The Lagrangian path ~ P= \/ 5—5—exp — 5>, C,C,———""—
M : ; . 2mihAt 2Mm At
integral expression for the propagator then follows immedi-

ately from the composition rul¢49) and the inclusion of

N—1 identitiesfdq|q){q|. Notice again the use of the mid-
point rule for the position in the exponent of the short timein agreement with the preceding sectipg. (35)]. This

(55

propagator Eq(50). shows that the complicated stochastic prefactor in the La-
The prefactorP in (50) is determined by the lowest order grangian version of stochastic path integrals has its origin in
in At, for which we require preserving the correct short time behavibt).

It is more elegant to express the resulting linear stochastic
Ito-Schralinger equation in operator language by replacing
(X|Gt+At,D)]y)—8(x—y) for At—0. (51) gspatial derivatives by the momentum operator
p=—i%dldq. The stochastic Schdinger equation corre-

sponding to the short time propagat®0) with the choices
Given the short time propagat@0) we can now derive the (EE)Z) andg(53) then reads propagalso)

corresponding stochastic linear Scttirger equation for the

state vector). As with Feynman’s original derivation of

the Schrdinger equation from the path integral, we assume i [(p—A@)? .

at most quadratic dependence of the Lagrangian on the ve- )=~ %( 2m +V(q>]|‘/’>dt
locities,

Ls 5 s Srpoac
) 2 | Bu@ B A@I [0dE.
Ler(0,0)=5m +A@)G— Q). (52 (56

In order to be a sensible equation, we require the resulting

We restrict ourselves to Lagrangian environment functionsdensi,[y operator to be trace preservidy

linear in the velocities,

' - MLl )] =O. &7
gﬂ(qu):BM(q)-FC#q, (53) ( t t>

This condition leads to the following restrictions on the

allowing the constants,C,, and the functions4(q), (q), imaginary part of the Lagrangiai®2):
andB,(q) to be complex. Keep in mind that the trace con-
dition for the density operator determined the non-Hermitian
part of the drift term according to Eq&4) and (5). We ex- Im{m}=2 |CM|2, (58)
pect, therefore, that given the Lagrangian environment func- ©
tions (53), the trace condition determines the imaginary part
of the Lagrangian52).

We propagate the wave functigix|(t)) a short time
stepAt to get

2 Re{B,(q)C;,m}
Re{m} ’

Im{A(q)}=
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1 A(Q)? Similarly, in our stochastic theory, we can determine the
Im{V(q)}=— =Im q propagator for the harmonic oscillat2) with linear envi-
2 m ronment operators like E¢29),
2 - Bua+ VP
1 C, A(q) ’ E,=————, (63)
- 5% { —— | 1B N2

in closed form by calculating the action integkall) along
C.B;(9).A(Qq) C.B,(q) the stationary path analytically.
R +hIm The equations of motion are obtained by variation of the
action (21) with respect toq and p. We find the complex
Langevin-lfoequations

C
—#|£| Im{A'(q) 9H
m | ImiA’ (@)} dge el APy s ,L(q P, "
ap ©
With these restrictions, the stochastic Schinger equa- 4.
tion (56) is indeed an LQSD equation of the for(d) with M) JE.(qp)
operators dp= —eg a.p dt—if Y, —ﬂﬁq,p dé,, (65
~_Relm} [ RemA@)*}|? . a v
which in our special case reduce to the linear equations for a
[Im{A(§)}]2 (complex classical phase space path
(dp B M (p)dt
and mwz—i|ﬂ|2)
g, {B @)+ 27 A(“)]} (59 Y
== Q)+ [P~ AQ)]. i M
N RO +|Jﬁ§ﬂ‘,(_ﬁﬂ)dgﬂ. (66)
We recover the results of the preceding section with theeyaluating the stochastic actig@1) along the solution of
choices Eq. (66) with boundary conditiong)(0)=q, andq(t)=q is
m=M, A(Q)=iM®@0, Ver(qQ)=Vex(q) (60 quitg cumbersome, Wh@ch is why we simply state the result.
We introduce an effective, complex frequer@ythrough

and

o MQ2=mw?-i| 8|2+ Mw?, (67)
B ()=(B,tiMwy,q, C,=My,. (61)
where again we used the abbreviatidB86) for w and Eq.

This completes the relations between the LQSD equationz?) for the effective mas#1. Moreover, we introduce the
(7), the Hamiltonian(20), Lagrangian(36) path integral functions

propagator, and the short time Lagrangian propagégor.
Further insight into the solutions of the LQSD equation is g,(0)=(B,+IMwy,)sinQt)+MQy,cogQt) (68)
gained by investigating soluble models as in the next two

sections. and find that the stochastic actid@1) for the harmonic
Hamiltonian (62) and linear environment operatoi$3)
VI. PROPAGATOR FOR THE HARMONIC OSCILLATOR along the classical patf66) is

WITH LINEAR ENVIRONMENT OPERATORS

if M
P _ 2_ 42
Soluble models give us further insight into the meaning of ~ S¢(@:t:00,0) =~ —-T'+ 5 Mw(q*~dg) + 2sinQt)
the general results of the last three sections. In ordinary

quantum mechanics the path integral for the harmonic oscil- ><[(q2+ qg)COS(Qt)—ZQQO]
lator with Hamiltonian

- [’52 1 pnp sm(Qt) J’dgﬂ(s

H= ﬁ + Emw q (62)

X[ge,(s)—doe(s—1)]
can be evaluated in closed form, due to the Gaussian nature

of the momentum and position path integrals. Gaussian inte- - : f dé, (s)e ,(s—1)
grals are given by the value of their integrand at the station- MQsin(Qt) i Jo 777

ary point times a constant factor. For path integrals this im- <

plle_s that or_1|y theclassical path (th_e stationary path of the XJ dé (s )e,(s). (69)
action functiongl has to be taken into accouf,32. 0
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The stochastic LQSD propagator is therefore IN|2Re[N*c} film{\c}
<C|q| > \/— Re{}\Z} and <C|p|C> \/— Re{)\Z}
L0 [ 8282 p{ i (gt O)] (74
L ; 1 = A~ 7 eX 7 1 ; 1
AL 2mh 90099 e o We call

/ MQ [ _ )
= mexp{ ?lsgl(q,t,qO,O)] |yt>_G§(t!o)|C0> (75)

(70 the unnormalized solution of the LQSD equation with initial
state|c,). From the explicit expressio(r0) for the propaga-
tor and Eq(72) for the statdc,) we find after some manipu-

The prefactor is determined according to the general theo%m ons

of semiclassical propagatdr32]. Clearly, this result can also
be checked. directly with the help of the corresponding |y =exp{F(t)}|cy), (76)
LQSD equation(7).

It is more instructive to look at the time evolution of wave which shows that the wave pacKet) after timet is given
packets under the propagat@t0). Due to its quadratic de- by a shifted Gaussiaft,) of the same shape but different
pendence of the exponent on the initial and final positionsamplitude exf(t)}. The time evolution of the center of the
Gaussian wave packets remain Gaussian under time evolwave packetc, is determined by the linear Langevin-Ito
tion. A special class of them will be further investigated in equation
the following section. Similar investigations on the time evo-

lution of Gaussian wave packets with LQSD can be found in . 1

[27,28. de=—iQcdt+ @2 NBu+i—y,|dE,, (7D

VII. WAVE PACKET SOLUTIONS FOR THE HARMONIC with initial condition ¢,—o=co. The amplitude ex{(t)} of
OSCILLATOR WITH LINEAR the wave packet is given by

ENVIRONMENT OPERATORS

t

it 1
— P 2 | 2
In the preceding section we found the stochastic propaga- F(1)= =7 (@ +il)+ + Re{)\Z}'m{)‘Cf} )
tor G(t;0) for the LQSD equatior(7) for the case of a 0
harmonic oscillator(62) and linear environment operators i%
(63). This propagator allows certain Gaussian wave packets [()\(QJrajﬁM— T(Q—m'yu)

to keep their shape under time evolution, generalizing the V210 %

coherent states of the isolated harmonic oscillator. They are X

given by the family of statefc) with arbitrary complex, in % f d §M(T)CT] i (79
position representation 0

This shows the complicated stochastic time dependence of
2\ 1/4 2
(x|c)= (M) exp[ - M] the amplitude of the wave packet. If we consider the time
Re{N} dependence of the norm
2
Xexp{ - M} - N()=( 7] 7) = exp2ReF (D]} 79
2\

explicitly, we find after a lengthy calculation involving Egs.

with the constanh given by (74), (77), and(78) that

2 - N
- [ & - AN() = 2 RE(Bu( 1817+ 7 nIPIv)IAE},
- VM@Q+w) (80)

which confirms that the time dependence of the norm is gov-
erned by a diffusion process only. The reg80) is of course
a consequence of the general reggjt

From Eq.(74) we see how Eq(77) implies that the time
dependence of the normalized expectation values of position
and momentum are governed by a linear Langeviretiaa-
tion. To get the correct ensemble average, however, it is
essential to weight these expectation values with the norm
N(t). The relevant weighted expectation values

The normalization in Eq.(71) is chosen to ensure
(c|lc)=1. These states are eigenstates of the operator

—+i—p (73

with eigenvaluec, C|c)=c|c). Since\ is in general com-
plex these are squeezed states.
Fromc={(c|C|c) we find the expectation values for po- Qi={(mlaly)=N(t){c{q|c,),
sition and momentum expressed in terms of the parameter
c, Pi=(7lplyy)=N(t){ci|plcy), (81)
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evolve according to

| P@) 2Q(t)
dQ(t)—( FQ(t)+ ——|dt+ NOTE
N(t)[N]*
X%Rﬂmﬂm+mHM%ﬁ+ﬁaﬁa
ih
xZR%ﬂﬁ%wJ%J (62
o
and
dP(t)=[—me?Q(t)—T'P(t)]dt+ 2Py
e N(t) VA
N(t) VA

X2 Re[B,Q+7, PO} + ooy

X2 Im{(\2B,+ihy,)dE,}. (83
M
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liarities that one encounters when dealing with the linear but
not norm preserving LQSD equation.

VIIl. CONCLUSIONS

In this paper we introduce stochastic path integrals for the
propagator of the general LQSD equatitf). These linear
stochastic Schidinger equations are uniguely connected to
the most general positive trace preserving master equation
(8). In this respect, we have introduced the most general,
stochastic path integral propagators for the description of
(Markovian) open quantum systems.

The Hamiltonian and where possible the Lagrangian ver-
sion of the stochastic path integral have been investigated.
The latter appears to be more complicated compared to the
former, suggesting that a phase space description is the more
natural approach to dissipation in quantum mechanics. The
analytical evaluation of the path integral for soluble standard
models shows the peculiarities of the not norm preserving
LQSD equation.

The developed formalism is a starting point for many fur-
ther investigations. All standard methods that have been de-
veloped for ordinary path integrals like perturbation theory
and semiclassical approximations can also be applied to the
stochastic path integrals. It also allows a simple derivation of
the path integral theory of the corresponding master equation
(8) [34]. Stochastic path integrals might also serve as the
starting point for relativistic generalizations of quantum
Brownian motion models. Abandoning the restriction on

Equations(80), (82), and(83) are a system of three coupled white Gaussian noise, these path integrals might also be use-

nonlinear Langevin-lfoequations. It might appear strange at

ful for the generalization to non-Markovian situations.

first sight that the evolution equations for the relevant

weighted expectation values of the harmonic oscillator with
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