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The general theory of path integral propagators for the solution of linear quantum state diffusion~LQSD!
stochastic Schro¨dinger equations describing open quantum systems is developed. Both Hamiltonian and, where
possible, Lagrangian path integrals are derived and their connection established. The Hamiltonian version turns
out to be more suitable. The results also show how the stochastic terms in the LQSD equation introduce a
weight functional under the path integral, thus restricting the set of contributing paths. The center of this weight
functional is determined by the stochastic processes governing the LQSD equation. In general, this picture
holds in a semiclassical limit only. Some peculiarities of stochastic path integrals are pointed out. We evaluate
the stochastic path integral in closed form for soluble models, gaining further insight into the behavior of the
solutions of the LQSD equation.@S1050-2947~96!10009-3#

PACS number~s!: 03.65.Bz, 42.50.Lc

I. INTRODUCTION

The theoretical description of open quantum systems with
the help of path integrals goes back to Feynman and Vernon
@1,2#. They use the path integral propagator of the unitary
time evolution of the system plus environment and trace over
the irrelevant~environmental! degrees of freedom to arrive at
a path integral propagator for the reduced density operator
alone. This approach was further elaborated by Caldeira and
Leggett@4# and others~see Grabertet al. @5# for more refer-
ences!. This approach, however, isnot the subject of this
paper.

Instead, we base the description of open quantum systems
on stochastic Schro¨dinger equationsas they have been intro-
duced in a variety of circumstances during the past few years
@6–28#, both in linear and nonlinear versions. This approach
is very much in the spirit of describing the dissipative motion
of classical particles undergoing Brownian motion with the
help of stochastic differential equations as introduced by
Langevin @29#. Such stochastic Schro¨dinger equations
~mainly in their nonlinear version! were used in recent years
to describe the continuous measurement or continuous reduc-
tion of quantum systems by Gisin@6#, Diosi @7–9#, Belavkin
et al. @10–13#, Barchielli et al. @14,15#, and Gisin and Per-
cival @16–18#. They also appear as attempts to find an ex-
plicit description of a fundamental wave function reduction
in modified quantum theories as investigated by Ghirardi
et al. @19#, Pearleet al. @20,21#, or Percival@22,23# with the
aim to overcome the difficulties with the foundations of
quantum theory. In this context we also mention the recently
established connection between stochastic Schro¨dinger equa-
tions and the decoherent histories approach to quantum me-
chanics by Diosiet al. @24#. As a computational tool for
solving master equations stochastic Schro¨dinger equations
are used extensively in quantum optics. Here, papers about
the nonlinear version are numerous, see Gardiner@25# or
Carmicheal @26# for more references. In Goetschet al.
@27,28# one can find recent investigations wherelinear sto-
chastic Schro¨dinger equations, relevant for this paper, are
used.

One of the most far-reaching concepts in quantum theory

are path integrals as introduced by Feynman@1–3# ~see also
@32#!, with its implications for relativistic quantum mechan-
ics and field theory. Therefore, it seems desirable to intro-
duce these concepts in the now well established field of sto-
chastic Schro¨dinger equations. The aim of this paper is to
provide general path integral expressions for their propaga-
tors. Moreover, we evaluate the path integral for soluble
models to gain further insight into the behavior of the solu-
tions of these stochastic Hilbert space differential equations.

Path integral expressions for the propagator of linear sto-
chastic Schro¨dinger equations can be found immediately for
simple special cases where straightforward general path in-
tegral techniques can be applied. This was investigated by
Pearle and Soucek@20# for the special case of a purely po-
sition dependent diffusion term in the context of a continu-
ous spontaneous localization theory.

In this paper, we develop the general path integral theory.
This is why we devote the next section to an introduction to
general linear stochastic Schro¨dinger equations with com-
plex noise. We will refer to this equation~7! as the linear
quantum state diffusion~LQSD! equation. We quote some of
its properties, like the time dependence of the norm of the
state vector and the connection to the time evolution of the
corresponding density operator.

The main results of this paper appear in Secs. III–V,
where we derive general path integral expressions for the
LQSD propagator. Our approach starts with the derivation of
a stochastic Hamiltonian path integral. Solving the LQSD
equation amounts to introducing a weight functional of phase
space paths under the path integral.

Since coordinate space path integrals are more common,
we evaluate the momentum part of the phase space path in-
tegral to find the Lagrangian version of the stochastic path
integral propagator in Sec. IV. This is possible only for the
special—but very important—class of~effective! Hamilto-
nians with at most quadratic dependence on the momenta.
Here, some peculiarities of the stochastic theory occur, such
as indispensable stochastic prefactors of the propagator. The
relation between Lagrangian and Hamiltonian description is
given by a stochasticItô-Legendre transformation.

Although the spirit in this paper is to derive the path in-
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tegral propagator from the LQSD equation, it is instructive to
repeat Feynman’s original reversed approach@2,3# and estab-
lish the LQSD equation from a short-time stochastic propa-
gator. This is accomplished in Sec. V which clarifies the
connection between the different approaches.

In ordinary quantum mechanics the semiclassical propa-
gator is exact for at most quadratic Hamiltonians. Likewise,
we are able to give the analytical solution for a harmonic
oscillator with linear environment operators in Sec. VI.
Some further analytical results of this soluble model are dis-
cussed in Sec. VII, where we investigate the time evolution
of generalized coherent states. We close with a discussion of
the results and draw conclusions, pointing out further devel-
opments.

II. LINEAR QUANTUM STATE DIFFUSION „LQSD…

Linear stochastic Schro¨dinger equations have been intro-
duced from many different points of view@10–15,19–
21,27,28# in recent years. The aim of this section is to
present the relevant terms and concepts.

The idea of describing open quantum systems with the
help of stochastic Schro¨dinger equations is borrowed from
the similar description of the Brownian motion of classical
particles in a fluid with the help of stochastic differential
equations as introduced by Langevin@29#. Instead of a
Hamiltonian time evolution of the state vector, we consider a
general Brownian-motion-like linear Itoˆ-diffusion process

udc&52
i

\
Ĥeffuc&dt1(

m
Êmuc&djm ~1!

of state vectors in Hilbert space. The operatorĤeff deter-
mines thedrift as in ordinary quantum mechanics, while the
operatorsÊm determine thediffusionof the state vector. As
in the classical Brownian motion, this diffusion is normally
assigned to the random influence of an unspecified environ-
ment ~noise!, which is why we refer to the operatorsÊm as
theenvironment operatorsthroughout this paper. In this con-
text, a measurement apparatus is just a special environment.

In the fundamental Itoˆ stochastic equation~1! the djms
are the stochastic increments of independent complex
Wiener processesjm(t) ~complex white noise! @30# with
standard properties

M@djm#50, M@djmdjn#50, M@djmdjn* #5dmndt.
~2!

We use the notationM@Xj# for the ensemble averageof a
stochastic variableXj over the processesjm .

It is not necessary to introduce complex incrementsdjm
in Eq. ~1!. Versions of linear stochastic Schro¨dinger equa-
tions with real noise are also common, but we will give two
good reasons for the use of complex noise shortly.

The density operator is identified with the ensemble aver-
age over the one-dimensional projectors,

r t5M@ ucj~ t !&^cj~ t !u#. ~3!

To be physically sensible, we require it to be trace pre-
serving for all times,

dTrr t50. ~4!

This condition puts a restriction on the anti-Hermitian part of
the drift operatorĤeff in Eq. ~1!. From Eq.~4! we find

1

2i
~Ĥeff2Ĥeff

† !52
\

2(m Êm
† Êm ~5!

which implies that

Ĥeff5Ĥ2
i\

2 (
m

Êm
† Êm ~6!

with an unspecified Hermitian HamiltonianĤ.
The general linear stochastic Schro¨dinger equation~1! to-

gether with the trace condition~4! determines what we will
call the linear quantum state diffusion~LQSD! equation

udc&52
i

\
Ĥuc&dt2

1

2(m Êm
† Êmuc&dt1(

m
Êmuc&djm .

~7!

Using the relations~2! among the Wiener increments, it is
straightforward to show that the density operator~3! evolves
according to the master equation

ṙ52
i

\
@Ĥ,r#1

1

2(m ~@Êmr,Êm
† #1@Êm ,rÊm

† # !. ~8!

It has in fact been shown by Lindblad@31# that every sen-
sible ~Markovian! master equation has to be of this form.
The stochastic decomposition~3! of the density operator in
one-dimensional projectors is referred to as anunravelingof
the time evolution of the density operator and starting point
for quantum Monte Carlo methods.

The nice feature of Eq.~7! being a linear equation is
overshadowed by the fact that solutions of the LQSD equa-
tion are not normalized. We find the time dependence of the
norm from Eq.~7! and Itôcalculus,

d@^cuc&#52(
m

Re$^cuÊmuc&djm%. ~9!

It follows that ensemble averages have to be taken over
theunnormalizedone-dimensional projectorsuc t&^c tu. Alter-
natively, the normalized projectors have to be weighted by
the norm^c tuc t& to give the correct ensemble meanr(t).
These issues are discussed in@10,11,14,15,19–21,27# and
will not be further addressed here.

We promised to give two good reasons for the use of
complex noise in the LQSD equation. The first is purely
practical. Since second order terms (djm)

2 can be neglected,
complex Itôcalculus is ordinary calculus as long as no com-
plex conjugation is involved. This simplifies matters consid-
erably. The second reason is related to the invariance of the
master equation~8! under unitary transformations in the lin-
ear space of the environment operatorsÊm . This symmetry
can be preserved for the LQSD equation for complex noise
only @16#.

For completeness only, we mention thenonlinearQSD
equation@16–18#
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udf&52
i

\
Ĥuf&dt2

1

2(m ~Êm
† Êm22em* Êm1uemu2!uf&dt

1(
m

~Êm2em!uf&djm , ~10!

which differs from the LQSD equation~7! by additional non-
linear terms involving the expectation values
em5^fuÊmuf&. This nonlinear stochastic Schro¨dinger equa-
tion preserves the norm for individual realizations,

d^f tuf t&50, ~11!

and is also an unraveling of the general master equation~8!,

r t5M@ uf t&^f tu#. ~12!

Since it is nonlinear, it is difficult to find analytical solutions
and it is primarily used for numerical purposes.

III. HAMILTONIAN PATH INTEGRAL PROPAGATOR
FOR LQSD

In this section we derive a generalphase spacepath inte-
gral expression for the stochastic propagatorGj(t,t0) of
LQSD ~7!, defined by

uc t&5Gj~ t;t0!uc t0
&. ~13!

We stress the fluctuation dependence of the propagator by
the subscriptj. In what follows, we sett050 thus determin-
ing Gj(t;0).

For a given time t and independent stochastic pro-
cessesjm(t) we divide the interval@0,t# in N intervals of
length Dt5t/N and define N random increments
Djm(k)5jm(kDt)2jm@(k21)Dt#, wherek runs from 1 to
N. From Eq.~7! with the notation~6! we deduce

Gj~q,t;q0,0!5 lim
N→`

^qu)
k51

N H 12
i

\
ĤeffDt

1(
m

ÊmDjm~k!J uq0&. ~14!

The first step to a path integral expression is the inclusion of
N21 identities of the form*dqkuqk&^qku to obtain

Gj~q,t;q0,0!5 lim
N→`

E dq1•••E dqN21

3)
k51

N

^qku12
i

\
ĤeffDt

1(
m

ÊmDjm~k!uqk21&, ~15!

where we setqN5q.
Now we introduce the Wigner transformO(q,p) of the

operatorÔ @33# in 2d-dimensional phase space,

O~q,p!52d~2p\!~d/2!E dq8^q2q8uÔuq1q8&^q8u2p&.

~16!

The plane waves ^qup& in Eq. ~16! are ^qup&
5(2p\)2(d/2)exp$iq•p/\%.

We use the general inverse transformation

^quÔuq8&5~2p\!2~d/2!E dp OS q1q8

2
,pD ^q2q8up&

~17!

to replace the matrix elements in Eq.~15! by expression~17!,
thus introducingN additional momentum integrals, giving

Gj~q,t;q0,0!5 lim
N→`

~2p\!2~Nd/2!E dp1E dq1E dp2•••

3E dqN21E dpN)
k51

N

^qk2qk21upk&

3F12
i

\
HeffS qk1qk21

2
,pkDDt

1(
m

EmS qk1qk21

2
,pkDDjm~k!G , ~18!

the operatorsĤeff and Êm now being replaced by their
Wigner transforms.

Just as for ordinary path integrals, in the limitN→`, the
@12•••# term may be replaced by an exponential
exp$2@•••#%. Notice that there is no additional term arising
from the fluctuations since for complex noise second order
terms (djm)

2 vanish according to the relations~2!. If one
chooses real noise, an additional term of orderdt would
appear in the exponent. Our final expression for the propa-
gator is therefore

Gj~q,t;q0,0!5 lim
N→`

~2p\!2NdE dp1E dq1E dp2•••

3E dqN21E dpN expH i

\(
k51

N F ~qk2qk21!

•pk2HeffS qk1qk21

2
,pkDDt

2 i\(
m

EmS qk1qk21

2
,pkDDjm~k!G J . ~19!

The argument in the exponent is the discrete version of a
generalized Hamiltonian action integral. Here, however, in
addition to the deterministic part, we find an Itoˆ stochastic
integral@30#. Notice that the use of the Wigner transform of
the relevant operators through Eq.~17! leads to the well-
known midpoint rule (qk1qk21)/2 @2,32# for the evaluation
of the action integral.

As usual, we write thisx expression in path integral form,
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Gj~q,t;q0,0!5E
~q0,0!

~q,t !
D@q,p#expH i

\
Sj@q,p#J , ~20!

with the complex Itoˆ stochastic phase space action functional

Sj@q,p#5E
0

t

dt@ q̇t•pt2Heff~qt ,pt!#

2 i\(
m

E
0

t

djm~t!Em~qt ,pt!. ~21!

We see that the diffusion part(mÊmuc&djm of the LQSD
equation is reflected as an Itoˆ stochastic integral over the
environment functions Em(q,p) as part of the action integral.
The deterministic part, responsible for the drift, includes the
Wigner transforms of the operatorsÊm

† Êm as the imaginary
part ofHeff(q,p), Eq. ~6!. This implies that the action in Eq.
~20! is complex, assigning different weights to the contribu-
tion of paths.

Separating the action~21! into its real and imaginary
parts, the propagator becomes

Gj~q,t;q0,0!5E
~q0,0!

~q,t !
D@q,p#

3expH i

\
~Scl@q,p#1\Fj@q,p# !J

3expH 2
1

2
Dj@q,p#J , ~22!

with the classical action functional

Scl@q,p#5E
0

t

dt$q̇t•pt2H~qt ,pt!% ~23!

and a stochastic phase functional

Fj@q,p#5(
m

ImH E
0

t

djm~t!Em~qt ,pt!J . ~24!

The main effect of the environmental terms in the LQSD
equation is the appearance of a weight functional
exp$21

2Dj@q,p#% under the path integral. If we denote the
Wigner transform ofÊm

† Êm by uJm(q,p)u2 we find

Dj@q,p#5(
m

E
0

t

dtuJm~qt ,pt!u2

22(
m

ReH E
0

t

djm~t!Em~qt ,pt!J
5(

m
E
0

t

dtUEm~qt ,pt!2
djm* ~t!

dt
U22U djm~t!

dt U2
1O~\!. ~25!

For the second expression we used the fact that the Wigner
transform ofÊm

† Êm is equal to the squared modulus of the
Wigner transform ofÊm to lowest order in\,

uJm~qt ,pt!u25uEm~qt ,pt!u21O~\!. ~26!

Notice that theO(\) term is a mere constant for the impor-
tant cases of linear or Hermitian quadratic environment op-
erators, but can in general only be neglected in the semiclas-
sical limit (\→0).

The last line in Eq.~25! should be regarded as a formal
expression since the integral over the squared derivative of
the fluctuations itself does not exist. Still, it shows that the
weight functional~25! is peaked around Brownian-motion-
like phase space paths with

Em~qt ,pt!dt'djm~t!. ~27!

We see that the stochastic processesjm(t) determine the
center of this Gaussian-type weight functional~25!. More-
over, it is apparent that paths with the same values of the
environment functionsEm(qt ,pt) contribute equally to the
path integral.

Equation~19! and its formal version~20! with Eq. ~21!
and the more explicit expression~22! for the LQSD propa-
gator are the main results of this section. They serve as a
starting point for the application of further methods to solve
the LQSD equation, like semiclassical methods or perturba-
tion theory. Next, however, we want to proceed to the La-
grangian version of the path integral, which, as will be seen
shortly, shows some unexpected features.

IV. LAGRANGIAN PATH INTEGRAL PROPAGATOR
FOR LQSD

In this section we restrict ourselves to a one-degree-of-
freedom system, in order to keep the expressions simple.
Historically, @3# Lagrangian path integrals were introduced
as a direct route to quantization given the classical Lagrang-
ian description of the theory. The Lagrangian version of the
path integral follows from the Hamiltonian version by inte-
grating out the momentum path integral.

For Hamiltonians that depend at most quadratically on the
momenta, the Legendre transformation between coordinate
space and phase space corresponds to a linear relation be-
tween the canonical momenta and the velocities. In terms of
path integrals, this linear Legendre transformation between
Hamiltonian and Lagrangian description is simply performed
by doing the Gaussian momentum integrals of the phase
space path integrals in Eq.~19!. Thus, in this section we
assume a standard Hamiltonian of the form

Ĥ5
p̂2

2m
1V~ q̂!. ~28!

In order to get at most quadratic momentum contributions
from the environment operatorsÊm , we have to assume their
linear dependence on the momenta. We want to keep things
simple which is why, in this section, we also assume a linear
dependence on the coordinates,

Êm5
bmq̂1gmp̂

A\
. ~29!
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This restriction is not necessary and will be dropped in the
next section, where we investigate the more general form
Êm5@bm(q̂)1gmp̂#/A\ with an arbitrary functionbm(q).

In Eq. ~29!, thebm’s andgm’s are complex constants and
the overall division byA\ is introduced for convenience.
Keep in mind, however, that most investigations on open
quantum systems are covered by such linear environment
operators, as in quantum optics~homodyne and heterodyne
measurement@27,28#! or in the high temperature and Mar-
kovian limit of the quantum Brownian motion model of Cal-
deira and Leggett@4,35,36#. In order to shorten notation, we
set

(
m

ubmu25ubu2, (
m

bmgm*5v̄2 iG,

and ~30!

(
m

ugmu25ugu2,

with real v̄ andG.
From Eqs.~28! and~29! we deduce that the Wigner trans-

form of Ĥeff is

Heff~q,p!5
~p2 iM v̄q!2

2M
1Veff~q!, ~31!

where we used the following abbreviations for effective,
complex massM and potentialVeff :

M5
m

12 imugu2
, ~32!

Veff~q!5V~q!1
1

2
$M v̄22 i ubu2%q21

i\

2
G. ~33!

We are now in the position to derive the Lagrangian version
of the path integral by doing the multiple Gaussian momen-
tum integrals in Eq.~19!. The value of such an integral is
given by the value of the integrand~the discrete action inte-
gral! at its stationary point times the typical square root pref-
actor. The stationarity condition determines the Legendre re-
lation between classical velocity and canonical momentum.
Applied to Eq.~19! with Eq. ~31! we find the complexItô
Legendre transformation

dq5
p2 iM v̄q

M
dt1 iA\(

m
gmdjm , ~34!

which replaces the classical Legendre relation between ca-
nonical momentum and velocity.

We now evaluate the Gaussian momentum integrals in
Eq. ~19!, which leads to the final expression for the propa-
gator in Lagrangian language,

Gj~q,t;q0,0!5 lim
N→`

S M

2p i\Dt D N/2e$2 ~ i /2! M(k51
N

(mngmgn Djm~k!Djn~k!/Dt %E dq1•••E dqN21

3expS i\(
k51

N F12M ~qk2qk21!
2

Dt
1 iM v̄~qk2qk21!~qk1qk21!/22VeffS qk1qk21

2 D DtG
1

1

A\
(
k51

N

(
m

F HMgm

qk2qk21

Dt
1~bm1 iM v̄gm!

qk1qk21

2 J Djm~k!G D . ~35!

In more formal terms the propagator is given by the stochastic Lagrangian path integral

Gj~q,t;q0,0!5expH 2
iM

2 (
mn

gmgnE
0

t

djm~t!
djn~t!

dt J E
~q0,0!

~q,t !
D@q#expH i

\
Sj@q,q̇#J . ~36!

The stochastic Lagrangian action functional is

Sj@q,q̇#5E
0

t

dtLeff~qt ,q̇t!2 iA\(
m

E
0

t

djm~t!Em~qt ,q̇t!

~37!

with the complexeffective Lagrangian

Leff~q,q̇!5
1

2
Mq̇21 iM v̄q̇q2Veff~q! ~38!

and theLagrangian environment functions

Em~q,q̇!5Mgmq̇1~bm1 iM v̄gm!q. ~39!

We will now address the prefactor of the Lagrangian path
integral in Eqs. ~35! and ~36!. The singular prefactor
AM /2p i\Dt is hidden in the notation*D@q# of the path
integral. It is unimportant when working with the formal
path integral because in applications like Feynman’ s pertur-
bation theory this term drops out. However, in our case there
is the additional path-independent butstochasticprefactor

expH 2
iM

2 (
mn

gmgnE
0

t

djm~t!
djn~t!

dt J ~40!
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whenever the environment operators are momentum depen-
dent. Since the ensemble average relies on the unnormalized
single realizations, it is essential to keep this prefactor. This
complication is a hint that the Lagrangian version of the
stochastic path integral theory complicates matters unneces-
sarily compared to the Hamiltonian version. More about the
meaning of this prefactor becomes apparent in the following
section.

As we can see from Eqs.~38! and ~39!, the functions
Leff(q,q̇) andEm(q,q̇) are equal to their corresponding phase
space expressions with the deterministic replacement
p→M (q̇1 i v̄q).

Leff~q,q̇!5Mq̇~ q̇1 i v̄q!2Heff„q,M ~ q̇1 i v̄q!… ~41!

and

Em~q,q̇!5A\Em„q,M ~ q̇1 i v̄ !q…. ~42!

Again, we see how the Lagrangian environment functions
Em play the role of the environment operators in the LQSD
equation in determining the diffusion, while the complex La-
grangian includes both the dynamics of the isolated system
in its real part, and contributions to the drift arising from the
trace condition~4! in its imaginary part.

As in the Hamiltonian case it is worth separating the sto-
chastic action functional~36! into its real and imaginary part
in order to clarify the meaning of expression~36!. From Eqs.
~38! and ~39! we find

Im$Leff~q,q̇!%5
1

2(m uEm~q,q̇!u21
G

2 H Im$M %
d

dt
~q2!

12v̄Re$M %q22\J . ~43!

We see that in the Lagrangian case the imaginary part of the
LagrangianLeff is the sum of the squared modulus of the
corresponding Lagrangian environment functionsEm up to
additional, path-dependent terms including a total time de-
rivative. This is in contrast to the Hamiltonian case, where
the imaginary part ofHeff is actually equal to the squared
modulus of the Hamiltonian environment functionsEm up to
a constant@Eqs.~6! and ~26!, for linear Êm#.

Taking all these results together, we can express the
propagator for the LQSD equation with standard Hamil-
tonian ~28! and linear environment operators~29! as

Gj~q,t;q0,0!5expH 2
iM

2 (
mn

gmgnE
0

t

djm~t!
djn~t!

dt J
3expH Gt

2
2

G1 i v̄

2\
Im$M %~q22q0

2!J
3E

~q0,0!

~q,t !
D@q#expH i

\
~Scl@q,q̇#

1A\Fj@q,q̇# !J expH 2
1

2
Dj@q,q̇#J ,

~44!

where

Scl@q,q̇#5E
0

t

dtH 12Re$M %q̇t
22SV~qt!1

1

2
Re$M %v̄2qt

2D J .
~45!

Notice that the Lagrangian classical action requires renor-
malized mass and potential when compared to the original
Hamiltonian~28!. The stochastic phase functional, similar to
Eq. ~24!, is

Fj@q,q̇#5(
m

ImH E
0

t

djm~t!Em~qt ,q̇t!J . ~46!

In contrast to the Hamiltonian case we find additional and
more complicated~since position dependent! prefactors in
front of the path integral. Again the paths are weighted by a
weight functional exp(2Dj@q,q̇#/2), where

Dj@q,q̇#5(
m

E
0

t

dtU Em~qt ,q̇t!

A\
U2

2
2

A\
ReH E

0

t

djm~t!Em~qt ,q̇t!J
1
2v̄GRe$M %

\ E
0

t

dtqt
2

5(
m

E
0

t

dtU Em~qt ,q̇t!

A\
2
djm* ~t!

dt U22U djm~t!

dt U2

1
2v̄GRe$M %

\
qt
2 . ~47!

We find an unexpected additional term

2v̄GRe$M %

\ E
0

t

dtqt
2 ~48!

contributing to the weight functional. Notice that this term
vanishes forv̄50. This is fulfilled when the environment
operators are creation or annihilation operators or when they
are purely position or purely momentum dependent@see Eq.
~30!#. Apart from this term, the interpretation of the weight
functional ~47! of paths is similar to the Hamiltonian case.
We see how the stochastic processesjm(t) determine the
center of a Gaussian-type weight functional of paths.

V. LQSD DERIVED FROM THE LAGRANGIAN PATH
INTEGRAL PROPAGATOR

Conceptually, Lagrangian path integrals appear to be
more desirable, particularly for relativity. One might choose
to found a generalized LQSD theory on a stochastic La-
grangian path integral. In order to get some experience of
how this program might work, it is instructive to see the last
two sections reversed and find out how we canderive the
LQSD equation~7! starting from a stochastic Lagrangian
path integral.

Following Feynman’s original approach@3,2#, we find the
propagator for finite times by the composition
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Gj~ t;0!5 lim
N→`

)
k51

N

Gj„kDt;~k21!Dt…, ~49!

of short time propagators. It seems natural to base a stochas-
tic linear quantum theory on a short time propagator of the
form

^xuGj~ t1Dt,t !uy&5P expH i

\
LeffS x1y

2
,
x2y

Dt
,t D Dt

1
1

A\
(
m
EmS x1y

2
,
x2y

Dt
,t D Djm~ t !J

~50!

with some generalized LagrangianLeff(q,q̇,t) responsible
for the drift and Lagrangian environment functions
Em(q,q̇,t) responsible for the diffusion. The Lagrangian path
integral expression for the propagator then follows immedi-
ately from the composition rule~49! and the inclusion of
N21 identities*dquq&^qu. Notice again the use of the mid-
point rule for the position in the exponent of the short time
propagator Eq.~50!.

The prefactorP in ~50! is determined by the lowest order
in Dt, for which we require

^xuGj~ t1Dt,t !uy&→d~x2y! for Dt→0. ~51!

Given the short time propagator~50! we can now derive the
corresponding stochastic linear Schro¨dinger equation for the
state vectoruc&. As with Feynman’s original derivation of
the Schro¨dinger equation from the path integral, we assume
at most quadratic dependence of the Lagrangian on the ve-
locities,

Leff~q,q̇!5
1

2
mq̇21A~q!q̇2V~q!. ~52!

We restrict ourselves to Lagrangian environment functions
linear in the velocities,

Em~q,q̇!5Bm~q!1Cmq̇, ~53!

allowing the constantsm,Cm and the functionsA(q), V(q),
andBm(q) to be complex. Keep in mind that the trace con-
dition for the density operator determined the non-Hermitian
part of the drift term according to Eqs.~4! and ~5!. We ex-
pect, therefore, that given the Lagrangian environment func-
tions ~53!, the trace condition determines the imaginary part
of the Lagrangian~52!.

We propagate the wave function̂xuc(t)& a short time
stepDt to get

^xuc~ t1Dt !&5PE dyexpH i

\ F12 mS x2y

Dt D 2
1AS x1y

2 D x2y

Dt
2VS x1y

2 D GDt

1
1

A\
(
m

FBmS x1y

2 D
1CmS x2y

Dt D GDjm~ t !J ^yuc~ t !& ~54!

and evaluate they integral to first order inDt. The lowest
order determines the prefactorP @condition ~51!# and the
next order the linear Itoˆ-Schrödinger equation for the wave
function. We find

P5A m

2p i\Dt
expH 2

i

2M(
mn
CmCn

Djm~ t !Djn~ t !

Dt J
~55!

in agreement with the preceding section@Eq. ~35!#. This
shows that the complicated stochastic prefactor in the La-
grangian version of stochastic path integrals has its origin in
preserving the correct short time behavior~51!.

It is more elegant to express the resulting linear stochastic
Itô-Schrödinger equation in operator language by replacing
spatial derivatives by the momentum operator
p̂52 i\]/]q. The stochastic Schro¨dinger equation corre-
sponding to the short time propagator~50! with the choices
~52! and ~53! then reads

udc&52
i

\ H ~ p̂2A~ q̂!!2

2m
1V~ q̂!J uc&dt

1
1

A\
(
m

HBm~ q̂!1
Cm

m
@ p̂2A~ q̂!#J uc&djm~ t !.

~56!

In order to be a sensible equation, we require the resulting
density operator to be trace preserving~4!,

dM@^c tuc t&#50. ~57!

This condition leads to the following restrictions on the
imaginary part of the Lagrangian~52!:

Im$m%5(
m

uCmu2, ~58!

Im$A~q!%5
(mRe$Bm~q!Cm*m%

Re$m%
,
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Im$V~q!%52
1

2
ImH A~q!2

m J
2
1

2(m H U CmA~q!

m U21uB~q!u2

22ReH CmBm* ~q!A~q!

m J 1\ImH Cm*Bm8 ~q!

m* J
2\U Cm

m U2 Im$A8~q!%J .
With these restrictions, the stochastic Schro¨dinger equa-

tion ~56! is indeed an LQSD equation of the form~7! with
operators

Ĥ5
Re$m%

2umu2 H p̂2
Re$mA~ q̂!* %

Re$m% J 21Re$V~ q̂!%

2
@ Im$A~ q̂!%#2

2Re$m%

and

Êm5
1

A\
HBm~ q̂!1

Cm

m
@ p̂2A~ q̂!#J . ~59!

We recover the results of the preceding section with the
choices

m5M , A~q!5 iM v̄q, Veff~q!5Veff~q! ~60!

and

Bm~q!5~bm1 iM v̄gm!q, Cm5Mgm . ~61!

This completes the relations between the LQSD equation
~7!, the Hamiltonian ~20!, Lagrangian~36! path integral
propagator, and the short time Lagrangian propagator~50!.
Further insight into the solutions of the LQSD equation is
gained by investigating soluble models as in the next two
sections.

VI. PROPAGATOR FOR THE HARMONIC OSCILLATOR
WITH LINEAR ENVIRONMENT OPERATORS

Soluble models give us further insight into the meaning of
the general results of the last three sections. In ordinary
quantum mechanics the path integral for the harmonic oscil-
lator with Hamiltonian

Ĥ5
p̂2

2m
1
1

2
mv2q̂2 ~62!

can be evaluated in closed form, due to the Gaussian nature
of the momentum and position path integrals. Gaussian inte-
grals are given by the value of their integrand at the station-
ary point times a constant factor. For path integrals this im-
plies that only theclassicalpath ~the stationary path of the
action functional! has to be taken into account@2,32#.

Similarly, in our stochastic theory, we can determine the
propagator for the harmonic oscillator~62! with linear envi-
ronment operators like Eq.~29!,

Êm5
bmq̂1gmp̂

A\
, ~63!

in closed form by calculating the action integral~21! along
the stationary path analytically.

The equations of motion are obtained by variation of the
action ~21! with respect toq and p. We find the complex
Langevin-Itôequations

dq5
]Heff~q,p!

]p
dt1 i\(

m

]Em~q,p!

]p
djm ~64!

and

dp52
]Heff~q,p!

]q
dt2 i\(

m

]Em~q,p!

]q
djm , ~65!

which in our special case reduce to the linear equations for a
~complex! classical phase space path

S dqdpD5S 2 i v̄
1

M

2~mv22 i ubu2! i v̄
D S qpDdt

1 iA\(
m

S gm

2bm
Ddjm . ~66!

Evaluating the stochastic action~21! along the solution of
Eq. ~66! with boundary conditionsq(0)5q0 andq(t)5q is
quite cumbersome, which is why we simply state the result.
We introduce an effective, complex frequencyV through

MV25mv22 i ubu21M v̄2, ~67!

where again we used the abbreviations~30! for v̄ and Eq.
~32! for the effective massM . Moreover, we introduce the
functions

«m~ t !5~bm1 iM v̄gm!sin~Vt !1MVgmcos~Vt ! ~68!

and find that the stochastic action~21! for the harmonic
Hamiltonian ~62! and linear environment operators~63!
along the classical path~66! is

Sj
cl~q,t;q0,0!52

i\t

2
G1

i

2
M v̄~q22q0

2!1
MV

2sin~Vt !

3@~q21q0
2!cos~Vt !22qq0#

2
iA\

sin~Vt !(m E
0

t

djm~s!

3@q«m~s!2q0«m~s2t !#

2
\

MVsin~Vt !(mn
E
0

t

djm~s!«m~s2t !

3E
0

s

djn~s8!«n~s8!. ~69!
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The stochastic LQSD propagator is therefore

Gj~q,t;q0,0!5A i

2p\

]2Sj
cl

]q0]q
expH i

\
Sj
cl~q,t;q0,0!J

5A MV

2p i\sin~Vt !
expH i

\
Sj
cl~q,t;q0,0!J .

~70!

The prefactor is determined according to the general theory
of semiclassical propagators@32#. Clearly, this result can also
be checked directly with the help of the corresponding
LQSD equation~7!.

It is more instructive to look at the time evolution of wave
packets under the propagator~70!. Due to its quadratic de-
pendence of the exponent on the initial and final positions,
Gaussian wave packets remain Gaussian under time evolu-
tion. A special class of them will be further investigated in
the following section. Similar investigations on the time evo-
lution of Gaussian wave packets with LQSD can be found in
@27,28#.

VII. WAVE PACKET SOLUTIONS FOR THE HARMONIC
OSCILLATOR WITH LINEAR
ENVIRONMENT OPERATORS

In the preceding section we found the stochastic propaga-
tor Gj(t;0) for the LQSD equation~7! for the case of a
harmonic oscillator~62! and linear environment operators
~63!. This propagator allows certain Gaussian wave packets
to keep their shape under time evolution, generalizing the
coherent states of the isolated harmonic oscillator. They are
given by the family of statesuc& with arbitrary complexc, in
position representation

^xuc&5SRe$1/l2%

p D 1/4expH 2
Im$lc%2

Re$l2% J
3expH 2

~x2A2lc!2

2l2 J ~71!

with the constantl given by

l5A \

M ~V1v̄ !
. ~72!

The normalization in Eq. ~71! is chosen to ensure
^cuc&51. These states are eigenstates of the operator

Ĉ5
1

A2
S q̂l 1 i

l

\
p̂D ~73!

with eigenvaluec, Ĉuc&5cuc&. Sincel is in general com-
plex these are squeezed states.

From c5^cuĈuc& we find the expectation values for po-
sition and momentum expressed in terms of the parameter
c,

^cuq̂uc&5A2
ulu2Re$l* c%

Re$l2%
and ^cu p̂uc&5A2

\Im$lc%

Re$l2%
.

~74!

We call

ug t&5Gj~ t;0!uc0& ~75!

the unnormalized solution of the LQSD equation with initial
stateuc0&. From the explicit expression~70! for the propaga-
tor and Eq.~71! for the stateuc0& we find after some manipu-
lations

ug t&5exp$F~ t !%uct&, ~76!

which shows that the wave packetug t& after timet is given
by a shifted Gaussianuct& of the same shape but different
amplitude exp$F(t)%. The time evolution of the center of the
wave packetct is determined by the linear Langevin-Itoˆ
equation

dct52 iVctdt1
1

A2\
(
m

S lbm1 i
\

l
gmDdjm , ~77!

with initial condition ct505c0. The amplitude exp$F(t)% of
the wave packet is given by

F~ t !52
i t

2
~V1 iG!1S V2v̄

2V
ct
21

1

Re$l2%
Im$lct%

2D U
0

t

1
1

A2\V
(
m

H S l~V1v̄ !bm2
i\

l
~V2v̄ !gmD

3E
0

t

djm~t!ctJ . ~78!

This shows the complicated stochastic time dependence of
the amplitude of the wave packet. If we consider the time
dependence of the norm

N~ t !5^g tug t&5exp̂ 2Re$F~ t !%‰ ~79!

explicitly, we find after a lengthy calculation involving Eqs.
~74!, ~77!, and~78! that

dN~ t !5
2

A\
(
m

Re$~bm^g tuq̂ug t&1gm^g tu p̂ug t&!djm%,

~80!

which confirms that the time dependence of the norm is gov-
erned by a diffusion process only. The result~80! is of course
a consequence of the general result~9!.

From Eq.~74! we see how Eq.~77! implies that the time
dependence of the normalized expectation values of position
and momentum are governed by a linear Langevin-Itoˆ equa-
tion. To get the correct ensemble average, however, it is
essential to weight these expectation values with the norm
N(t). The relevant weighted expectation values

Qt5^g tuq̂ug t&5N~ t !^ctuq̂uct&,

Pt5^g tu p̂ug t&5N~ t !^ctu p̂uct&, ~81!
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evolve according to

dQ~ t !5S 2GQ~ t !1
P~ t !

m Ddt1 2Q~ t !

N~ t !A\

3(
m

Re$@bmQ~ t !1gmP~ t !#djm%1
N~ t !ulu4

A\Re$l2%

3(
m

ReH S bm1
i\

l2gmDdjmJ ~82!

and

dP~ t !5@2mv2Q~ t !2GP~ t !#dt1
2P~ t !

N~ t !A\

3(
m

Re$@bmQ~ t !1gmP~ t !#djm%1
N~ t !A\

Re$l2%

3(
m

Im$~l2bm1 i\gm!djm%. ~83!

Equations~80!, ~82!, and~83! are a system of three coupled
nonlinearLangevin-Itôequations. It might appear strange at
first sight that the evolution equations for the relevant
weighted expectation values of the harmonic oscillator with
linear environment operators are nonlinear. This nonlinear-
ity, however, appears in the noise terms only so that we find
linear evolution equations for the average expectation values
by taking the ensemble mean in Eqs.~82! and~83!, showing
how the density operator for the harmonic oscillator with
linear environment operators follows a damped spiraling mo-
tion with damping rateG. These results highlight the pecu-

liarities that one encounters when dealing with the linear but
not norm preserving LQSD equation.

VIII. CONCLUSIONS

In this paper we introduce stochastic path integrals for the
propagator of the general LQSD equation~7!. These linear
stochastic Schro¨dinger equations are uniquely connected to
the most general positive trace preserving master equation
~8!. In this respect, we have introduced the most general,
stochastic path integral propagators for the description of
~Markovian! open quantum systems.

The Hamiltonian and where possible the Lagrangian ver-
sion of the stochastic path integral have been investigated.
The latter appears to be more complicated compared to the
former, suggesting that a phase space description is the more
natural approach to dissipation in quantum mechanics. The
analytical evaluation of the path integral for soluble standard
models shows the peculiarities of the not norm preserving
LQSD equation.

The developed formalism is a starting point for many fur-
ther investigations. All standard methods that have been de-
veloped for ordinary path integrals like perturbation theory
and semiclassical approximations can also be applied to the
stochastic path integrals. It also allows a simple derivation of
the path integral theory of the corresponding master equation
~8! @34#. Stochastic path integrals might also serve as the
starting point for relativistic generalizations of quantum
Brownian motion models. Abandoning the restriction on
white Gaussian noise, these path integrals might also be use-
ful for the generalization to non-Markovian situations.

ACKNOWLEDGMENTS

I would like to thank Ian C. Percival for valuable discus-
sions and advice. I am also grateful to Todd A. Brun and
Lajos Diosi for their detailed comments and Gernot Alber
and John S. Briggs for their general support. This work was
made possible by the financial support of the Alexander von
Humboldt Foundation.

@1# R. P. Feynman and F. L. Vernon, Ann. Phys.24, 118 ~1963!.
@2# R. P. Feynman and A. R. Hibbs,Quantum Mechanics and

Path Integrals~McGraw-Hill, New York, 1965!.
@3# R. P. Feynman, Rev. Mod. Phys.20, 367 ~1948!.
@4# A. O. Caldeira and A. J. Leggett, Physica A121, 587 ~1983!.
@5# H. Grabertet al., Phys. Rep.168, 115 ~1988!.
@6# N. Gisin, Phys. Rev. Lett.52, 1657~1984!.
@7# L. Diosi, Phys. Lett. A129, 419 ~1988!.
@8# L. Diosi, Phys. Lett. A132, 233 ~1988!.
@9# L. Diosi, J. Phys. A21, 2885~1988!.

@10# V. P. Belavkin, Phys. Lett. A140, 355 ~1989!.
@11# V. P. Belavkin, J. Phys. A22, L1109 ~1989!.
@12# V. P. Belavkin, J. Math. Phys.31, 2930~1990!.
@13# V. P. Belavkin and P. Staszewski, Phys. Rev. A45, 1347

~1992!.
@14# A. Barchielli and V. P. Belavkin, J. Math. Phys.24, 1495

~1991!.
@15# A. Barchielli Int. J. Theor. Phys.32, 2221~1993!.

@16# N. Gisin and I. C. Percival, J. Phys. A25, 5677~1992!.
@17# N. Gisin and I. C. Percival, J. Phys. A26, 2233~1993!.
@18# N. Gisin and I. C. Percival, J. Phys. A26, 2245~1993!.
@19# G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A42, 78

~1990!.
@20# P. Pearle and J. Soucek, Found. Phys. Lett.2, 287 ~1989!.
@21# P. Pearle, Phys. Rev. A48, 913 ~1993!.
@22# I. C. Percival, Proc. R. Soc. London Ser. A447, 189 ~1994!.
@23# I. C. Percival, Proc. R Soc. London Ser. A451, 503 ~1994!.
@24# L. Diosi et al., Phys. Rev. Lett.74, 203 ~1995!.
@25# C. W. Gardiner,Quantum Noise~Springer, Berlin, 1991!.
@26# H. Carmicheal,An Open System Approach to Quantum Optics

~Springer, Berlin, 1994!.
@27# P. Goetsch and R. Graham, Phys. Rev. A50, 5242~1994!.
@28# P. Goetsch, R. Graham, and F. Haake, Phys. Rev. A51, 136

~1995!.
@29# P. Langevin, C.R.146, 530 ~1908!.
@30# C. W. Gardiner,Handbook of Stochastic Methods~Springer,

54 2673STOCHASTIC PATH INTEGRALS AND OPEN QUANTUM . . .



Berlin, 1985!
@31# G. Linblad, Commun. Math. Phys.48, 119 ~1976!.
@32# L. S. Schulman,Techniques and Applications of Path Integra-

tion ~Wiley, New York, 1981!.

@33# E. Wigner, Phys. Rev.40, 749 ~1932!.
@34# W. T. Strunz~unpublished!.
@35# L. Diosi, Europhys. Lett.22, 1 ~1993!.
@36# L. Diosi, Physica A199, 517 ~1993!.

2674 54WALTER T. STRUNZ


