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An explicit algorithm for performing Schumacher’s noiseless compression of quantum bits is given. This
algorithm is based on a combinatorial expression for a particular bijection among binary strings. The algorithm,
which adheres to the rules of reversible programming, is expressed in a high-level pseudocode language. It is
implemented usingO(n3) two- and three-bit primitive reversible operations, wheren is the length of the qubit
strings to be compressed. Also, the algorithm makes use ofO(n) auxiliary qubits. Space-saving techniques
based on those proposed by Bennett are developed which reduce this workspace toO(An) while maintaining
a running time ofO(n3) ~albeit with a larger constant!. This latter algorithm is of interest because it has a
slightly smaller time-space product, which is considered to be the relevant figure of merit for efficiency in
some physical models.@S1050-2947~96!06909-0#

PACS number~s!: 03.65.Bz, 07.05.Bx, 89.80.1h, 02.70.Rw

I. INTRODUCTION

There is considerable interest in the controlled generation,
manipulation, and transportation of individual quantum
states; applications of such resources are envisioned in new
kinds of data transmission, cryptography, and computation.
The quantum extension of conventional bits, calledqubits,
has been subject to considerable exploration lately. A single
qubit is embodied in the state of a single two-state quantum
system, such as the spin degree of freedom of an electron or
other spin-12 particle, where the spin-up state of the particle is
denoted byu0& and the spin-down state is denoted byu1&.
The basic laws of quantum physics dictate that a description
of the entire possible state-space of the qubit is given by the
wave function

uC&5au0&1bu1&, ~1!

where a and b are any two complex numbers such that
uau21ubu251. This is called a ‘‘qubit’’ since it can assume
one of two binary values, but of course it has fundamentally
different properties because of the possibility of it being in a
superposition of these two values. The properties with which
quantum mechanics endows the qubit make possible a kind
of cryptography which is fundamentally secure against
eavesdropping attacks@1#, and computations which appar-
ently violate the complexity-class categorizations for ordi-
nary Boolean computers@2#.

One of the ideas of this sort that has been understood
recently is the possibility of data compression for qubits
@3–5#. In classical information theory, if n bits,
x1 , . . . ,xn , are each sampled independently according to
some probability distributionp5(p0 ,p1) ~on the set$0,1%)
then the string x1 . . . xn may be compressed to a
nHS(p)-bit string @whereHS(p)52S i50

1 pi log2pi , the Sh-
annon entropy@6# #—and no further—in the following as-
ymptotic sense. For any«,d.0, for sufficiently largen, for
any l(n)>n@HS(p)1d#, l(n)P$1, . . . ,n%, there exists a

compression scheme that compressesx1 . . . xn to
y1 . . . yl(n) , and such thatx1 . . . xn can be successfully re-
covered from y1 . . . yl(n) with probability greater than
12«. Moreover, the above compression is the maximum
possible in the sense that, for any«,d.0, for sufficiently
largen, for anyl(n)<n@(HS(p)2d)#, for any compression
scheme that mapsx1 . . . xn to y1 . . . yl(n) , the probability
that x1 . . . xn can be successfully recovered from
y1 . . . yl(n) is less than«.

The quantum physical analogue of the above scenario in-
volves the compression of a string of qubits, instead of bits.
Note that there are a continuum of possible states for each
qubit, rather than two possible values. We shall consider the
‘‘discrete’’ case, where a probability distribution is concen-
trated on some finite set of qubit states
S5$uC1&, . . . ,uCm&%. Let the respective probabilities be
p5(p1 , . . . ,pm). In the language of quantum physics,
(S,p) defines anensembleof states. Letua1& . . . uan& be a
string of n qubits, each sampled independently from (S,p).
Define acompressor Aas a unitary transformation that maps
n-qubit strings to n-qubit strings. Again let l(n)
P$1, . . . ,n%. It is to be understood that, on input
ua1& . . . uan&, the first l(n) qubits that are output by the
compressorub1 . . .bl(n)& are taken as thecompressed ver-
sion of its input, and the remainingn2l(n) qubits are dis-
carded. Adecompressor Bis a unitary transformation that
mapsn-qubit strings ton-qubit strings. It is to be understood
that the firstl(n) qubits input to the decompressor are
ub1 . . .bl(n)&, the compressed version of some sequence of
n qubits, and the remainingn2l(n) qubits are allu0&. An
n-to-l(n) quantum compression schemeis a compressor-
decompressor pair (A,B). As in the classical case, the goal is
to achieve as high a compression rate@i.e., as small a
l(n)] as possible, while permitting the original message to
be recovered from its compressed version, with high prob-
ability.

Assume that the compressor knows~i.e., can be a function
of! the underlying ensemble (S,p), but has no explicit
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knowledge about the specific random selections made@inter-
estingly, compressors exist that know even less than (S,p);
more about this later#. In the classical case, the compressor
obtains complete information about the bits to be com-
pressed, but complete information cannot generally be ob-
tained from a qubit. If the possible qubit states inS are not
mutually orthogonal then any observation of such a qubit
will only yield partial information about its state, and can
irretrievably change this state. Due to this, one might expect
to be able to achieve less in the quantum scenario than with
classical compression schemes—in fact, the opposite is true.

Let us measure the quality of ann-to-l(n) compression
scheme (A,B) with respect to a source distributionp in
terms of itsfidelity, defined as follows. Consider the follow-
ing experiment. Let the sequenceua1& . . . uan& be sampled
independently from (S,p). Transformua1& . . . uan& accord-
ing to the compressorA and let ub1 . . .bl(n)& be the com-
pressed version. Next, transformub1 . . .bl(n)&u0 . . . 0& ac-
cording to the decompressorB and let ua18 . . .an8& be the
output. Finally, measureua18 . . .an8& with respect to a basis
containing ua1 . . .an&. The fidelity is the probability
z^a18 . . .an8ua1 . . .an& z2 that this measurement results in
ua1 . . .an&.

Note that the fidelity is with respect to two sources of
randomness:~a! the random choices in the original genera-
tion of ua1 . . .an&; and~b! the randomness that results from
performing a measurement of the stateua18 . . .an8&. Roughly
speaking, the fidelity can be high if for ‘‘most’’ choices in
~a!, ua18 . . .an8& is ‘‘close to’’ ua1 . . .an&.

The ensemble (S,p) represents amixed state, which has
density matrixr, defined as

r5(
i51

m

pi uC i&^C i u.

Thevon Neumann entropycorresponding to (S,p) is defined
in terms of the density matrix r as HVN(r)
52Tr(r log2r). In general,HVN(r)<HS(p), with equality
occurring if and only if the states inS are mutually orthogo-
nal.

Roughly speaking, Schumacher’s theorem@3# states that
nHVN(r) is asymptotically the maximum compression at-

tainable forn qubits resulting from a source with density
matrix r. More precisely, let (S,p) be any ensemble of qu-
bits, andr be the corresponding density matrix. Then, for all
«,d.0, for sufficiently largen and l(n)>n@HVN(r)1d#,
there exists ann-to-l(n) quantum compression scheme for
(S,p) with fidelity greater than 12«. Moreover, for all
«,d.0, for sufficiently largen, if l(n)<n@HVN(r)2d#
then everyn-to-l(n) quantum compression scheme has fi-
delity less than«.

It should be noted that the above bounds are robust in the
sense that they do not change when a number of technical
variations are made in the scenario. For example, then-to-
l(n) compression schemes that attain fidelity greater than
12« can restricted to being highly ‘‘oblivious’’ in that they
depend only on knowing a basis for which the density matrix
is diagonal, with nonincreasing values along the diagonal.
Also @4#, even if the compressor is supplied with complete
information about the state of the source stringua1 . . .am&
that it receives,« still bounds the fidelity attainable if
l(n)<n@HVN(r)2d#.

The proof of Schumacher’s theorem is based on the ex-
istence of a ‘‘typical subspace’’L of the Hilbert space of
n qubits, which has the property that, with high probability,
a sample ofua1 . . .an& has almost unit projection ontoL. It
has been shown@3,4# that the dimension ofL is 2nHVN(r);
thus, the operation that the compressor should perform in-
volves ‘‘transposing’’ the subspaceL into the Hilbert space
of a smaller block ofnHVN(r) qubits.

Bennett@7# gives a more explicit procedure for accom-
plishing this ‘‘transposition,’’ which we illustrate with an
example. Suppose thatS5$uC1&,uC2&%, where uC1&5u0&
and uC2&5(1/A2)u0&1(1/A2)u1&, and p5(p1 ,p2), where
p15p25

1
2. The density matrix corresponding to (S,p) is

r5 1
2u0&^0u1 1

2@(1/A2)u0&1(1/A2)u1&] @(1/A2)^0u1(1/A2)
3^1u#, or, in 232 matrix form,

r5S 3
4

1
4

1
4

1
4

D in the basis
u0&

u1&
. ~2!

It is always possible to go to a basis in which the density
matrix is diagonal:

r85S lmax 0

0 lmin
D 5S 3

4
1
1

4
tan

p

8
0

0
1

4
2
1

4
tan

p

8

D in the basis

u08&5cos
p

8
u0&1sin

p

8
u1&

u18&52sin
p

8
u0&1cos

p

8
u1&.

~3!

Both of the statesuC1& and uC2& have large overlap on the
basis stateu08& @ z^C i u08& z5cos(p/8)#, and small overlap on
the orthogonal basis stateu18& @ z^C i u18& z5sin(p/8)#. This
observation leads to a way of compressing strings of signal
states. Consider alln-qubit strings possible from the states in
S. These strings can all be expressed with respect to the basis

consisting of uxn21 . . . x0&5uxn21& . . . ux0&, where
xn21 , . . . ,x0P$u08&,u18&%. Each suchuxn21 . . . x0& can be
interpreted as ann-bit binary number, and, thus, can be de-
noted asux&, for xP$0, . . . ,2n21%. Now, the overlap of
ux& with the states inS n is z^xuS n& z5cosm(p/8)sinn2m(p/8),
wherem is the number of 0’s in the binary representation of
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x. Because this overlap diminishes exponentially with
n2m, basis states with large numbers of 1’s are relatively
unimportant for describing any stringua1 , . . . ,an&; the Hil-
bert space can thus be truncated to the typical subspaceL
consisting of all statesux& in which the binary numberx
contains a proportion of 1’s less thanHVN(r),0.601.

Thus the ‘‘transposition’’ which the coder must do con-
sists of mapping thisL subspace forn qubits into the states
spanned by less than 0.601n of those qubits.

We must accomplish this by a unitary transformation ap-
plied to the original states of then qubits. In the basis
u0&, . . . ,u2n21&, this transformation must map qubit strings
with the smallest number of 1’s in succession into qubit bi-
nary strings with the smallest numerical value. This is a clas-
sical combinatorial calculation, ‘‘classical’’ in the sense that
definite binary-number states are mapped to other definite
binary-number states; however, it is essential that the com-
putation be performed quantum mechanically, since the com-
putation must preserve the superpositions of these basis
states. This means that the combinatorial computation must
be performed using reversible, quantum-coherent elementary
operations.

The principal object of this paper is to derive the quantum
computation which is needed to do this Schumacher coding.
In Sec. II we derive the analytical formula for the sorting
calculation required for the coding. Section III constructs the
quantum program for performing this calculation: Sec. III A
illustrates a first attempt at this coding exercise; Sec. III B
discusses the way in which the calculation is to be properly
made reversible; and Sec. III C, which contains the essential
result of the paper, gives the final quantum program for
Schumacher coding. Section IV gives, in the same program-
ming notation developed in the earlier sections, the bit-level
routines needed for performing the steps in the high-level
program. Appendix A discusses how these bit-level routines
may be made highly space-efficient, with only a modest in-
crease in running time~these latter routines result in a
smaller time-space product, which may be desirable, due to
the manner in which decoherence occurs@8,9#!. Appendix B
provides other ways of economizing in the bit-level imple-
mentation of these codes, by using some of the phase free-
dom coming from the quantum-mechanical nature of the
computation.

II. COMBINATORIAL EXPRESSION
FOR SCHUMACHER CODING

As Bennett@7# has described, a specific realization of the
unitary transformation performing the Schumacher coding
function on a set of identical qubits consists of a sorting
computation in which the statesu0&, . . . ,u2n21& are given a
lexicographical ordering according to how many 1’s are in
their binary expansion. So,u0& is mapped to itself, all the
states containing exactly one 1 andn21 0’s are mapped to
the states betweenu1& andun&, all the states with exactly two
1’s andn22 0’s are mapped to the states betweenun11&
and un1n(n21)/2&, and, in general, all the states with ex-
actlym 1’s andn2m 0’s are mapped to the states between

U (
i50

m21 S ni D L ~4!

and

U(
i50

m S ni D 21L ~5!

inclusive. The Schumacher function does not require any
particular ordering of the states within each of these blocks,
except that the mapping must be 1-to-1~i.e., a bijection!; but,
it turns out to be convenient to preserve lexicographical or-
dering within each block. Defining the index number within
each block asI @x,n,m#, the total Schumacher function for
string x ~with n bits andm 1’s! is

y5 (
i50

m21 S ni D 1I @x,n,m#. ~6!

The index numberI obeys a recursive relationship which we
now derive. Considering the possible binary-number strings
representing the input statex, any string whose first 1 occurs
in the (p11)st place~i.e., whose firstp bits are 0! must have
a higher index number than all strings in which the first
p11 places are 0. There are exactly (m

n2p11) such strings.
This means that for the particular input string

~7!

the index numberI @x,n,m#5( m
n2p21). This result permits

the index number of the more complex string

~8!

to be expressed recursively:

I @x,n,m#5S n2p21

m D 1I @x8,n2p21, m21#. ~9!

It is probably easiest to understand Eq.~9! by writing out an
example:

2638 54RICHARD CLEVE AND DAVID P. DiVINCENZO



I @00010011011,10,5#5~ 5
102221!1I @0011011,7,4#

⇓

~ 4
72221!1I @1011,4,3#

⇓

~ 3
42021!1I @011,3,2#

⇓
0.

~10!

As this illustrates, the recursion of Eq.~9! may be iterated to
produce an expression forI for a general input stringx:

I @x,n,m#5 (
i51

n21

xn2 iS n2 i

(
k5 i

n

xn2k
D . ~11!

Here the notationxp denotes the value of thepth bit of the
string x. Combining Eq.~11! with Eq. ~6! yields the final
expression for the Schumacher coding function:

y5 (
i50

(k50
n21 xk21 S ni D 1 (

j51

n21

xjS j

(
k50

j

xk
D . ~12!

In this equation, binary coefficients outside their natural
range@e.g., (n11

n )] are understood to be zero.

III. HIGH-LEVEL QUANTUM PROGRAM
FOR SCHUMACHER CODING

A. First attempts

It is now our object to translate Eq.~12! into a sequence
of elementary quantum-mechanical manipulations. We pro-
ceed to do this by writing out the calculation in a high-level
‘‘pseudocode’’@10# which, when ‘‘compiled,’’ would permit
the operation to be performed by a sequence of elementary
spectroscopic manipulations such as two-bitXOR’s ~or
controlled-NOT’s!, along with one-bit rotations@11#. Rather
than building up the rules of this pseudocode axiomatically,
we will proceed in an intuitive fashion. The principal con-
straint which the coded calculations must obey is that they
must be donereversibly. Instead of going into a discourse
about this, let us present the first try at coding Eq.~12! ~not
a perfectly successful one, in fact!:

Program FIRST-TRY
quantum registers:
X : n-bit register
Y : n-bit arithmetic register~initialized to 0!
S : @log2n#-bit arithmetic register~initialized to 0!

if X051 then S←S11

for j51 to n21 do

if Xj51 then S←S11

for m50 to j11 do

if Xj51 and S5m then Y←Y1(m
j )

for i50 to n21 do

if i11<S then Y←Y1( i
n).

FIRST-TRY is not incorrect, but it is incomplete, in ways
which we will repair by stages below. Here are some rules of
this programming: All the quantum-mechanical registers are
in capital letters. InFIRST-TRY, these areX ~which is initial-
ized with an input statex, or a quantum superposition of
such input states!, Y ~which is initialized to 0, and whose
final value is the output statey or their quantum superposi-
tions!, andS ~a small work register, also initialized to 0!. The
notationXi indicates thei th bit of X. Note thatY andS are
given the data type ‘‘arithmetic,’’ indicating that ordinary
integer addition and subtraction are allowed with them. Only
bitwise manipulations are performed onX. ~In the FINAL-

SCHUMACHERprogram, both bitwise and arithmetic manipu-
lations will be performed on the same registers.!

All other lower-case variables in the program always have
definite values and can~and should! be implemented using
classical bits. Only the quantum registers need to be explic-
itly treated reversibly. So, the binomial coefficients (m

j ) can
be precomputed or evaluated by any means, reversible or
not, in the implementation of the quantum computation.

In a reversible program statement, the input can always be
deduced from the output. So, for example, the statement

if X051 then S←S11

is reversible, because the input could be deduced by the
‘‘time-reverse’’ of this statement,

if X051 then S←S21

An irreversible program statement would be

if X051 then S←1

since the prior value ofS cannot be deduced. As it happens,
this statement would function correctly inFIRST-TRYbecause
S actually is equal to 0 at this first executable statement of
the program. However, we will enforce a rule that the only
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irreversible statements permitted that involve quantum vari-
ables will be the ‘‘initialized’’ designations present in the
declaration statements. In later programs we will introduce a
‘‘finalized’’ designation, which will merely serve as a re-
minder that certain variables will always end the program
with a particular value if the program runs correctly. This
designation will be an important one in constructing revers-
ible code. It is also a reminder that physically, the finaliza-
tion can serve as a useful check that no error has occurred
@12#; a quantum measurement of this register at the end of
the running of the program should always find the register in
the finalized value.

One further comment about the program statement

if X051 then S←S11.

If S were a one-bit variable, this statement would just be a
quantumXOR or controlledNOT, in which the value ofS is
inverted conditional on the value ofX0. In FIRST-TRY, S is a
multibit register, in fact it must have about log2n bits. Imple-
mentation of these multibit functions in terms of primitive
operations involving no more than three bits is straightfor-
ward, and is presented in Sec. IV and in Refs.@13,14#. Using
quantum gates, all the three-bit primitives may be reduced to
sequences of two-bit operations@11#.

A few more points aboutFIRST-TRY are in order. Given
the constraints of reversibility,FIRST-TRY is a relatively
straightforward transcription of Eq.~12!. The first for loop
~indexed byj ) implements the second term of Eq.~12!; this
is efficient because the partial sum in the binomial coefficient
can be accumulated inS one term at a time, and then the
completed sum can be used as the upper limit of the first
term of ~12!, which is implemented in the secondfor loop.
This innerm loop could be replaced by the single statement

if Xj51 then Y←Y1S jSD ,
but this would require a reversible calculation of the bino-
mial function; we have chosen to make this binomial-
coefficient calculation classical by writing out the loop as
shown. One might also be tempted to modify the inner loop
as follows:

if Xj51 then

for m50 to j11 do

if S5m then Y←Y1S jmD .
While moving theif statement from the loop is superficially
more efficient, it turns out that, when these statements are
reexpressed in terms of primitive operations, theif must be
carried down to the lowest level in any case; so, we prefer a
syntax in which such conditionals are explicitly shown at the
lowest level.

B. Reversibility considerations

Now, what is the overall effect ofFIRST-TRY, and why is it
inadequate for performing the Schumacher function? Letf :

$0,1%n→$0,1%n denote the Schumacher function forn-bit bi-
nary strings. If the total input state is expressed as the ket

uX,Y,S&5ux,0,0&, ~13!

then the complete final state is

uX,Y,S&5ux, f ~x!,s& ~14!

~wheres is the number of 1’s inx). But, the correct Schu-
macher function must have a final state of the form

uX,Y,S&5u0, f ~x!,0&. ~15!

That is, the inputx should be erased and the work register
S should be reset to its initial value of 0. This is possible to
accomplish reversibly because the Schumacher function is
bijective, so that no record of the initial state, or of the state
of the work bits, needs to be retained at the end; they are
completely deducible from the output. In fact, the correct
operation of the Schumacher functionrequiresthat the out-
put be of the form~15!; if it is of the form of ~14!, then the
final state is ‘‘entangled’’ with the initial state, which means
that output states cannot be placed in the desired superposi-
tions of states. Thus, the net result of the Schumacher func-
tion should be confined to the input data register only; this
condition is obtainable from Eq.~15! if the final output state
is swapped so that the state vector becomes

uX,Y,S&5u f ~x!,0,0&. ~16!

Thus the Schumacher function is applied, ‘‘in-place,’’ to the
first n qubits, while the remainingn1 log2n bits return to
their original states, and may all be viewed simply as work
space for the computation. We will see later that the ‘‘out-
put’’ registerY can actually be removed entirely by using
some clever programming. Some other workspace, not dis-
played explicitly in~16!, appears to be necessary to do the
bit-level manipulations in the Schumacher function~see Sec.
IV !; Appendix A shows that the size of this extra workspace
does not have to exceed about 2An bits.

These considerations have arisen previously in the context
of reversible programming@15#, but the rationale for con-
structing a function in the ‘‘fully reversible’’ manner as
specified by the output state~16! is somewhat different than
in the classical context. In traditional reversible program-
ming the object is to avoid the small energy cost involved in
irreversible erasure of any of the working bits in the com-
puter. If such an erasure is performed, theresultof the com-
putation will still be correct, even though the desired goal of
expending no energy is not achieved. But, in this particular
quantum computation, irreversible erasure of the state of reg-
ister X in Eq. ~14! actually causes registerY to be in the
wrongquantum state, in so far that, if the initialX was in a
superposition of computational states, the final state ofY will
be a mixed quantum state, rather than the intended, pure
superposition state. Thus, the consequences of irreversibility
are more serious than in conventional reversible computa-
tion.

A method for designing a calculation to arrive at the de-
sired final states~15! or ~16!, as already worked out in the
earlier literature@15#, requires two steps:~1! zero outS and
any other work space used by the program, and~2! explic-
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itly implement theinverseof the Schumacher function Eq.
~12!. This can be accomplished by a program that, on input
state

uX,Y,S&5ux,y,0&, ~17!

produces the final state

uX,Y,S&5ux% f21~y!,y,0&. ~18!

Note that applying such a transformation to the state

uX,Y,S&5ux, f ~x!,0& ~19!

yields the required state

uX,Y,S&5u0, f ~x!,0&. ~20!

Equation ~18! is not implemented simply by running
FIRST-TRY in reverse; indeed, the inverse function can have
very different and much greater complexity than the function
itself @16#. Fortunately, in this case, as we will see in a mo-
ment, the inverse Schumacher function is also relatively easy
to implement.

Step ~1! above, zeroing outS, is readily performed by
adding code to the end ofFIRST-TRY to simply subtract away
the bits which have been added toS:

for j50 to n21 do

if Xj51 then S←S21.

This code, added to the end ofFIRST-TRY, produces the out-
put state~19!.

Step ~2! above, implementing the inverse function Eq.
~18!, requires a new algorithm. We have not found any way
to write the inverse Schumacher coding function as a for-
mula as in Eq.~12!. Nevertheless, a straightforward algo-
rithm can be deduced from the following two inequalities.
The first is obtained by combining the information from Eqs.
~4! and ~5!:

(
i50

m21 S ni D<y,(
i50

m S ni D , ~21!

where

m5 (
k50

n21

xk ~22!

is the number of 1’s in the binary stringx. We will be able to
write simple pseudocode to computem ~a.k.a.S). This result
can then be used to computeI @x,n,m# using Eq. ~6!.
I @x,n,m# satisfies an inequality which is a simple conse-
quence of Eq.~9! and the discussion preceding it:

S n2p21

m D<I @x,n,m#,S n2p

m D . ~23!

By finding thep which satisfies this equation, we determine
that the leadingp bits of x are zeros, and the next bit is a 1
~i.e., xj50, n212p, j<n21, xn2p2151). The index of
the remaining substring can be determined from Eq.~9!, and
thus all the bits ofx may be calculated recursively.

C. Deriving the final program

Now we will transform our procedure into reversible
code. As the previous section makes clear, a necessary step
for doing this will be to code the inverse of the Schumacher
function. In the spirit ofFIRST-TRY, we will not worry at first
about the final state of the work registers as prescribed in Eq.
~18!; we will initially just try to code correctly the inverse
function itself. We will find that reversibility will, in this
case, fall out naturally from a simple modification of our
first-cut program.

Program TRY-INVERSE
quantum registers:
X : n-bit register~initialized to 0!
Y : n-bit signed arithmetic register~finalized to 0!
S : @log2n]-bit register~initialized and finalized to 0!

for m50 to n do

Y←Y2S nmD
if Y>0 then S←S11

for m50 to n do

if S>m then Y←Y1S nmD
for p50 to n21 do

for i50 to n2p do

if S5 i and Y>( i
n2p21)

then Xn2p21
←Xn2p21%1

if S5 i and Xn2p2151

then Y←Y2( i
n2p21)

if Xn2p2151 then S←S21.

In this code, them loop does the job of finding them for
which Eq.~21! is satisfied, and putting the result in the quan-
tum registerS. As a byproduct of this work, it subtracts away
the first term of Eq.~12! from y, leaving inY the value of the
index I @x,n,m#. Actually, them loop continues to subtract
binomial coefficients fromY after it is supposed to; this is
why Y is indicated to be a ‘‘signed’’ register, which can be
handled by doing ordinary arithmetic in a register with one
extra bit~see@13#!. This approach has the benefit that testing
thatY is non-negative only requires the examination of one
bit—see the first part of Sec. IV. We might be tempted to
avoid negative numbers by terminating the loop at the right
moment, viz.,

for m50 to n do

if Y,(m
n ) then exit for-loop

A

But such anexit for-loop statement is not reversible. There
appears to be no alternative to letting the first loop go to its
maximum possible upper limit, which isn, and then repair-
ing the damage done by adding back the correct binomial
coefficients in the second loop. Finally, at the end of the
second loop,Y has the desired value ofI @x,n,m#, andS has
the value ofm.
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Then the third (p) loop of TRY-INVERSEdoes the iterative
decomposition of the indexI @x,n,m#. For every possible
value of the leading number of zerosp @recall Eq.~7!#, TRY-
INVERSEchecks to see if the inequality Eq.~23! is satisfied; if
it is, then the program negates one bit of theX register. Then
the secondif statement decrementsY by the combinatorial
coefficient in Eq.~9!, so that it always contains the index of
the next substring. The process continues until the index is
reduced to zero. Also,S is decremented so that it always
contains the current value of the number of 1’s in the sub-
string of Eq.~8!. Note that, as inFIRST-TRY, an inner loop
~indexed byi ) is introduced to avoid the need for reversible
calculation of binomial coefficients like (S

n2p21).
We now evaluate what stateTRY-INVERSEhas left the reg-

istersY andS in. In fact, a very desirable thing has ‘‘acci-
dentally’’ occurred. We find that, on input state

uX,Y,S&5u0,y,0&, ~24!

TRY-INVERSE produces the final state

uX,Y,S&5u f21~y!,0,0&. ~25!

Thus, with a final transposing of theX andY registers, we
obtain a program that implements theinverseof Eq. ~16!, so
the calculation has been successfully done in-place, with the
registersY and S remaining in their initial state, having
served only as ‘‘catalysts’’ for the calculation.

In fact, we can do even better; by a small modification of
TRY-INVERSE, theY register can be eliminated entirely. This
can be done by noting that, during the course of an execution
of TRY-INVERSE, the decrementing ofY sets each of its high-
order bits to zero in succession, and, at the same time, the
values ofX are built up starting with the high-order bits and
working down. Thus, the high-order bits ofY can be reused
to hold the results of the final calculation. It can be shown
that these high-order bits are always cleared out soon enough
that they can be used for the final answer; this is done by
showing that inTRY INVERSE, the same bits ofX andY are
never simultaneously 1. Thus, with one small modification,
TRY INVERSE can be turned into our final program for the
inverse of the Schumacher coding function:

Program FINAL-SCHUMACHER-INVERSE
quantum registers:
X : n-bit signed arithmetic register
S : @log2n]-bit arithmetic register~initialized and finalized to 0!

for m50 to n do

X←X2SnmD
if X>0 then S←S11

for m50 to n do

if S>m then X←X1S nmD
for p50 to n21 do

for i50 to n2p do

if S5 i and TRUNCn2p21~X!>S n2p21

i D then Xn2p21←Xn2p21%1

if S5 i and Xn2p2151 then X←X2S n2p21

i D
if Xn2p2151 then S←S21

The only substantial item which has been added here is the functionTRUNC j . Invocation ofTRUNC j (X) simply says
that only the j least significant bits of the quantum registerX ~i.e., bit 0 to bit j21) should be taken account of in the
‘‘ > ’ ’ comparison. This is necessary because the high-order bits are being used to store the final answer. In the final pass
through thep loop, the occurrence of the zero index inTRUNC 0(X) indicates that the comparison should not be performed
at all.

For completeness, we now record the final code for the Schumacher coding function itself. SinceFINAL-SCHUMACHER-

INVERSE is done ‘‘in-place,’’ the direct function is literally just the time-reverse:
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Program FINAL-SCHUMACHER

quantum registers:
X : n-bit signed arithmetic register
S : @log2n]-bit arithmetic register~initialized and finalized by 0!

for p5n21 down to 0 do

if Xn2p2151 then S←S11

for i5n2p down to 0 do

if S5 i and Xn2p2151 then X←X1S n2p21

i D
if S5 i and TRUNCn2p21~X!>S n2p21

i D then Xn2p21←Xn2p21%1

for m5n down to 0 do

if S>m then X←X2S nmD
for m5n down to 0 do

if X>0 then S←S21

X←X1S nmD .

IV. BIT-LEVEL QUANTUM PROGRAM
FOR SCHUMACHER CODING

In this section, we explain how the statements in pro-
grams FINAL-SCHUMACHER and FINAL-SCHUMACHER-

INVERSEcan be implemented by a gate array with fundamen-
tal bit-level operations. These fundamental operations are
essentially Toffoli gates@17#. The Toffoli gate that negates
bit B iff bits C andD are both 1~and does not change the
values ofC andD) is denoted as

B←B% ~C`D !.

In @11# it is shown that such an operation can be simulated in
terms of eight one-bit operations and sixXOR operations
~which are of the formB←B%C). For convenience, we ex-
pand our repertoire of allowable basic operations to include

B←B%1,

B←B%C,

B←B% C̄,

B←B% ~C̄`D !,

B←B% ~C̄`D̄ !,

B←B% ~C~D !.

As with Toffoli gates, each of these gates can be simulated
by at most eight one-bit operations and sixXOR operations.

In many cases a quantum phase freedom can be used to
simulate these in fewer one- and two-bit gates~see Appendix
B!.

The first step to converting the programs into gate-arrays
is to ‘‘unravel’’ the for loops. Since the ranges of these loops
are all fixed prior to any computation, this is straightforward.
Next, we note that~once thefor loops have been unraveled!
there are essentially five types of program statements:

1. X←X1k

2. if B then X←X1k

3. if Y. l then X←X1k

4. if Y5 l and B then X←X1k

5. if Y5 l and Z.k then B←B%1

~whereB is a bit,X,Y,Z are signed arithmetic registers, and
k,l are signed integers!.

Also, there area priori upper bounds on the ranges of the
arithmetic registers~and thus on the number of bits required
to specify them!. An arithmetic register whose range of val-
ues is known to be an integer within@0,2n) can be naturally
represented byn bits and arithmetic operations on it can be
simulated by reversibly performing them modulo 2n. Also, a
signedarithmetic register whose range of values is known to
lie within @22n,12n) can be naturally represented in
‘‘two’s complement’’ form by n11 bits, and it is well
known that arithmetic operations on such a two’s comple-
ment integer can be simulated by interpreting it as an integer
in the range@0,2n11) and performing arithmetic modulo
2n11 ~see, for example,@18#!.

54 2643SCHUMACHER’S QUANTUM DATA COMPRESSION AS A . . .



A. Addition and conditional addition

In view of the above discussion, to simulate

if B then X←X1k,

it suffices to perform

X←~X1B•k!mod2n

~in other words, to addk to X modulo 2n iff B51). In the
case whereX is ann-bit signed register, it suffices to substi-
tuten11 for n above. The following program performs this
usingn auxiliary bitsC0 ,C1 , . . . ,Cn21 ~which are assumed
to have initial value 0, and are reset to 0 by the end of the
computation!.

A note about this program: the code introduces two modi-
fied assignment symbols ‘‘←,’’ and ‘‘←,R.’’ For the present
purposes these can be thought of as identical to the ordinary
‘‘ ← ’ ’ assignment; however, they signal a freedom in how
the quantum phase may be handled in these assignments, as
discussed in Appendix B.

Program CONDITIONAL-ADD -k
quantum registers:
X : n-bit signed arithmetic register
B : bit register
C0 ,C1 , . . . ,Cn21: bit registers~initialized and finalized
to 0!
for i51 to n21 do

Ci←,Ci %MAJ~ki21 ,Xi21 ,Ci21!

for i5n21 down to 1 do

Xi←Xi % ~ki`B!

Xi←Xi % ~Ci`B!

Ci←,RCi %MAJ~ki21 ,Xi21 ,Ci21!

X0←X0%k0

where

MAJ~ l ,S,T!5H S`T if l50

S~T if l51.

The number of basic operations performed by the above pro-
gram is bounded above by 4n1O(1). In particular, if the
for loops of this program are unraveled then the program
corresponds to a gate array consisting of 2n11 bits and
4n1O(1) gates.„A more space-efficient@n1O(An)#-bit
program is described in Appendix A.…

The unconditional addition statement

X←X1k

can be easily simulated by replacing (ki`B) and (Ci`B) in
the above program withki andCi ~respectively!.

One final note aboutCONDITIONAL-ADD: it involves only
the addition of a quantum register with an ordinary, classical
number. It is possible to write a similar program which adds
two quantum registers, as has been illustrated in@13#; how-

ever, this more complex routine is never needed for the
implementation of the Schumacher function. Actually, it is
generally possible to implement a full quantum adder as a
sequence of calls toCONDITIONAL-ADD.

B. Equality and inequality testing

In order to simulate the remaining types of statements, it
suffices to simulateequality teststatements of the form

B←B% ~X5k!

~which negateB iff X5k), and inequality teststatement of
the form

B←B% ~X.k!

~which negateB iff X.k).
With implementations of the above tests, the statement

if Y. l then X←X1k

is then easily simulated by the sequence

B←,B% ~Y. l !

if B then X←X1k

B←,RB% ~Y. l !

whereB is a bit register distinct from the bits ofX andY,
and whose initial value is 0~note thatB must be reset to 0
after the addition is performed!. Also, the compound condi-
tional

if Y5 l and B then X←X1k

is simulated by the sequence

C←,C% ~Y5 l !

D←,D% ~C`B!

if D then X←X1k

D←,RD% ~C`B!

C←,RC% ~Y5 l !

whereC andD are bit registers distinct from the bits ofX,
Y, andB, and whose initial~and final! values are 0. Again,
the meaning and usefulness of the phase-modified assign-
ments is discussed in Appendix B.

The following program simulates an equality test. It uses
n auxiliary bit registersC0 ,C1 , . . . ,Cn21. The auxiliary
registers are initialized to 0, and have final value 0.

Program TEST-EQUALITY-TO -k
quantum registers:
X : n-bit signed arithmetic register
B : bit register
C0 ,C1 , . . . ,Cn21: bit registers~initialized and finalized
to 0!
Cn21←,Cn21%~Xn215kn21!
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for i5n22 down to 0 do

Ci←,Ci % „Ci11`~Xi5ki !…

B←B%C0

for i50 to n22 do

Ci←,RCi % „Ci11`~Xi5ki !…

Cn21←,RCn21% ~Xn215kn21!

where

~S5 l !5H S̄ if l50

S if l51.

The number of basic operations performed by the above pro-
gram is bounded above by 2n1O(1). ~The above program
is very similar to the so-called̀ n-gate construction in@11#!.

Finally, the following program simulates an inequality
test. It usesn auxiliary bit registersC0 ,C1 , . . . ,Cn21. The
auxiliary registers are initialized to 0, and have final value 0.

Program TEST-GREATER-THAN -k
quantum registers:
X : n-bit signed arithmetic register
B : bit register
C0 ,C1 , . . . ,Cn21: bit registers~initialized and finalized
to 0!

Cn21←,Cn21%~Xn215kn21!

B←B%~Xn21,kn21!

for i5n22 down to 0 do

Ci←, i % „Ci11`~Xi5ki !…

B←,B%Ci11`~Xi.ki !

for i50 down to n22 do

Ci←,RCi % „Ci11`~Xi5ki !…

Cn21←,RCn21% ~Xn215kn21!

where (S5 l ) is as in the previous subsection,

~S. l !5H S if l50

0 if l51,

and

~S, l !5H 0 if l50

S̄ if l51.

The number of basic operations performed by the above pro-
gram is bounded above by 3n1O(1). Once again, we em-
ploy phase-modified assignments←,, ←,R , and←,, which
are explained in Appendix B.

V. DISCUSSION AND CONCLUSIONS

We can finally put all the above results together to evalu-
ate the total cost, in time and space, to perform Schumacher
coding. It is easy to see that the twoif statements inside the
i loop of FINAL-SCHUMACHER are the most expensive part of

the procedure. The firstif statement requires one call to
CONDITIONAL-ADD. AlthoughX is ann-bit register, the ad-
dition only affects then2p21 low-order bits ofX. Thus,
the addition can be performed on TRUNCn2p21(X) rather
thanX, which amounts to a total running time of

(
p50

n21

(
i50

n2p

4~n2p21!1O~1!5 2
3n

31O~n2!. ~26!

The expensive part of the secondif statement is its two calls
to TEST-GREATER-THAN, performed on an (n2p21)-bit
quantum register~because of the action of TRUNC!. The
time involved for this is

(
p50

n21

(
i50

n2p

233~n2p21!1O~1!5n31O~n2!. ~27!

Thus, the total time required~i.e., number of bit-level primi-
tive steps! is 5

3n
31O(n2). The total number of qubits used is

n, to hold the input-output stringX; plus d log2ne, to holdS;
plus n1O(1) to implement the conditional additions and
inequality tests~the same work registers that store carries
and so forth may be reused throughout the execution of the
program!. Thus, the total number of qubits is 2n
1 d logne1O(1).

If the space-efficient routinesCONDITIONAL-ADD 8 and
TEST-GREATER-THAN8 introduced in Appendix A are used
instead, the execution time is increased to8

3n
31O(n2.5), but

the total number of qubits is reduced to
n12An1O(log2n). If the relevant figure of merit for the
tractability of the quantum computation is the product of
time and space, as it is in certain physical models@8,9#, then
the space-efficient procedures we have introduced would be
preferred.

A final note about these operation counts: they are all in
terms of the primitive operations listed at the beginning of
Sec. IV, which includes both two- and three-bit primitives. It
is known @11,19# that all three-bit operations can be simu-
lated in quantum logic by a sequence of two-bit primitives.
Most of the three-bit operations can be simulated using seven
operations~three quantumXOR’s and four one-bit gates!; see
Appendix B. So, in terms of these primitive operations the
total time to do the Schumacher function would be roughly
73 8

3n
3,19n3. Computing the exact prefactor would require

a considerable amount of detailed calculation, and would
have to take into account that fact that many one-bit gates in
the network could be merged together and executed in one
step~see@11#!. All of this work could easily be done if an
actual physical implementation of Schumacher compression
were ever undertaken.

To conclude, we believe that the pseudocode in which our
results are presented is the most concise and economical
form in which to present a quantum computation like Schu-
macher coding. The bit level primitives for addition and
comparison which we have presented are similar to ones
which have been presented elsewhere@13#, but have a few
features which may make them superior in the development
of other quantum programs. The Schumacher coding can be
done inO(n3) steps, withO(An) auxiliary workspace. We
cannot exclude the possibility that a lower polynomial-order
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algorithm may be found, but we are not presently aware of
what form this would take. The techniques in@15# enable
further shrinkage of the auxiliary work space, but with a
larger penalty in the running time. We think that further use-
ful shrinkage of the auxiliary work space is unlikely; in the
present scheme, only a vanishingly small fraction of quan-
tum bits are used as workspace for large block sizen.
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APPENDIX A: IMPROVEMENTS
IN THE WORKSPACE EFFICIENCY

OF THE BIT-LEVEL IMPLEMENTATIONS

The bit-level implementations proposed in Secs. IV A and
IV B requiren auxiliary bit registers. By applying techniques
that were introduced in@15#, we derive the following alter-
nate programs that employ onlyO(An) auxiliary bit registers
while maintaining the same asymptotic operation complex-
ity. ~The space-reduction techniques in@15# can also be used

to reduce the auxiliary space further, but this causes an in-
crease in the running time, as well as in the space-time prod-
uct.!

Assume thatn5m2. The programCONDITIONAL-ADD 8-k
that follows employs 2m21 auxiliary bit registers rather
than then auxiliary bit registers thatCONDITIONAL-ADD-k
employs. In CONDITIONAL-ADD-k, registersC0 , . . . ,Cn21

are used to store information about carry propagation. In
CONDITIONAL-ADD 8-k, this is accomplished by registers
C1 , . . . ,Cm21 and D1 , . . . ,Dm21 instead. The idea is to
reset some of the registers to 0 at various checkpoints during
the course of the computation. This is illustrated by the di-
gram below, where the horizontal direction represents time,
and the placement of the lines indicate the time intervals
during which the registers are active, containing the various
carry bits. RegistersD1 , . . . ,Dm21 ,C1 are first set to the
first m carry bits. ThenD1 , . . . ,Dm21 are reset to 0. Regis-
ters D1 , . . . ,Dm21 ,C2 can then be used to store the
(m11)st to (2m)th carry bits and thenD1 , . . . ,Dm21 are
reset to 0 again—sinceC1 stores themth carry bit, this can
be accomplished without recomputing the firstm carry bits.
The process is repeated with the remaining carry bits, and
then applied in reverse to reset the carry bits to 0, as illus-
trated here:

The detailed program follows.D0 is used for convenience to
store the value ofCi at the beginning of each iteration of the
for-loop with respect toi .

Program CONDITIONAL-ADD 8-k
quantum registers:
X: n-bit arithmetic register
B: bit register
C1 ,C2 , . . . ,Cm21: bit registers~initialized and
finalized to 0!

D0 ,D1 , . . . ,Dm21: bit registers~initialized and
finalized to 0!

for i50 to m22 do

if i.0 then D0←D0%Ci

for j51 to m21 do

Dj←,Dj %MAJ~kim1 j21 ,Xim1 j21 ,Dj21!

Ci11←,Ci11%MAJ~kim1m21 ,Xim1m21 ,Dm21!
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for j5m21 down to 1 do

Dj←,RD j %MAJ~kim1 j21 ,Xim1 j21 ,Dj21!

if i.0 then D0←D0%Ci

D0←D0%Cm21

for j51 to m21 do

Dj←,Dj %MAJ~k~m21!m1 j21 ,X~m21!m1 j21 ,Dj21!

for j5m21 down to 1 do

X~m21!m1 j←X~m21!m1 j % ~k~m21!m1 j`B!

X~m21!m1 j←X~m21!m1 j % ~Dj`B!

Dj←,RD j

%MAJ~k~m21!m1 j21 ,X~m21!m1 j21 ,Dj21!

D0←D0%Cm21

for i5m22 down to 0 do
if i.0 then D0←D0%Ci

for j51 to m21 do

Dj←,Dj %MAJ~kim1 j21 ,Xim1 j21 ,Dj21!

Xim1m←Xim1m% ~kim1m`B!

Xim1m←Xim1m% ~Ci11`B!

Ci11←,RCi11%MAJ~kim1m21 ,Xim1m21 ,Dm21!

for j5m21 down to 1 do

Xim1 j←Xim1 j % ~kim1 j`B!

Xim1 j←Xim1 j % ~Dj`B!

Dj←,RD j %MAJ~kim1 j21 ,Xim1 j21 ,Dj21!

if i.0 then D0←D0%Ci

X0←X0%k0.

The above program usesn1O(An) registers in total and
runs in 6n1O(An) steps@compared to 2n1O~logn) regis-
ters in total and 4n1O(1) steps forCONDITIONAL-ADD-k#.

There also exist more space-efficient versions ofTEST-

EQUALITY-TO-k and TEST-GREATER-THAN-k. For the former
case, the program is as follows~where againn5m2).

Program TEST-EQUALITY-TO 8-k
quantum registers:
X: n-bit arithmetic register
B: bit register
C0 ,C1 , . . . ,Cm21: bit registers~initialized and
finalized to 0!
D1 ,D2 , . . . ,Dm : bit registers~initialized and
finalized to 0!

for i5m21 down to 0 do

if i5m21 then Dm←Dm%1 else

Dm←Dm%Ci11
for j5m21 down to 1 do

Dj←,Dj % „Dj11`~Xim1 j5kim1 j !…

Ci←,Ci % „D1`~Xim5kim!…

for j51 to m21 do

Dj←,RD j % „Dj11`~Xim1 j5kim1 j !…

if i5m21 then Dm←Dm%1 else

Dm←Dm%Ci11

B←B%C0

for i50 to m21 do

if i5m21 then Dm←Dm%1 else

Dm←Dm%Ci11

for j5m21 down to 1 do

Dj←,Dj % „Dj11`~Xim1 j5kim1 j !…

Ci←,RCi % „D1`~Xim5kim!…

for j51 to m21 do

Dj←,RD j % „Dj11`~Xim1 j5kim1 j !…

if i5m21 then Dm←Dm%1 else

Dm←Dm%Ci11

The above program usesn1O(An) registers in total and
runs in 4n1O(An) steps@compared to 2n1O(1) registers
in total and 2n1O(1) steps forTEST-EQUALITY-TO-k#.

The programTEST-GREATER-THAN8-k is similar to the
above attaining 5n1O(An) time andn1O(An) space@vs.
3n1O(1) time and 2n1O(1) space#.

APPENDIX B: PHASE FREEDOM
IN IMPLEMENTATION OF REVERSIBLE ROUTINES

Here we will explain ways in which the quantum phase
can be treated in the essentially classical reversible routines
which we have been discussing throughout this paper. In the
language of quantum logic gates, the bit-level logic state-
ments used in the programs here are represented by unitary
matrices applied to the quantum wave function of all the
registers. These unitary matrices have a special restriction
which make them ‘‘classical,’’ which is that the matrix ele-
ments are only 0 or 1; this means that every definite compu-
tational stateux& is taken to another definite computational
stateu f (x)&, and not to a superposition of states. To give an
example, the Toffoli gate, the three-bit implementation of the
AND gate in reversible logic, involves the following unitary
matrix:

1
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

2 . ~B1!
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Here we consider the question of whether elementary opera-
tions with modified phases~i.e., in which the matrix ele-
ments are unimodular complex numberseiu, rather than be-
ing 1! could be used in the implementation of the
Schumacher function. We are motivated to investigate this
because we found in our previous study@11# that the imple-
mentation of a modified Toffoli gate with a single non-zero
phase

1
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 21 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

2 , ~B2!

requires fewer resources in the following sense: we showed
that the zero-phase Toffoli gate@Eq. ~B1!# can be imple-
mented with six two-bitXOR gate and eight one-bit gates,

while the Toffoli gate with modified phases@Eq. ~B2!# re-
quires only threeXOR’s and four one-bit gates. We will es-
tablish here that the less-costly gate can in fact be used for
most of the Toffoli gates, and related three-bit operations,
that are used in the implementation of the Schumacher com-
pression function.

Note that it is necessary that the complete Schumacher
calculation be carried out with all the quantum phases equal
to zero, in order that the superposition states discussed in
Sec. I maintain the correct phase relation to one another.
Thus the question becomes: how can the effect of the non-
zero phase in Eq.~B2!, if it is introduced in one Toffoli gate,
be undone at some later step of the calculation? The answer
~which we will establish shortly! is the obvious one: many of
the reversible routines which we have introduced~although
not the high-level Schumacher program itself! have a palin-
dromic character, so that a Toffoli gate on three bits is ex-
actly ‘‘undone’’ at a later stage of the computation, roughly
as far from the end of the subroutine as the original gate is
from the beginning. It turns out that the effect of the21
phase factor can be precisely undone at the second occur-
rence of the gate, too.

We will now establish the desired basic result using the
setup of the figure, that the Boolean functionf can be imple-
mented with any arbitrary phase factors, so long as they also
appear inf21, no matter what the intervening Boolean func-
tion g is, so long asg does not modify the values of the bits
on which f and f21 act. By applying this results repeatedly
to the subroutines which we have introduced, starting at the
innermost level, we deduce all the three-bit primitives which
can be implemented with nonzero phase. Assignments in
which these nonzero phases are permitted have been identi-
fied by the special assignment symbol

←,. ~B3!

These statements are always paired with others, denoted by

←,R ~B4!

in which the reverse phases are implemented.@For the phases
in Eq. ~B2!, the operation is self-inverse.# In one case, the
pairing is between statements in different, palindromically
arranged calls of the same subroutine; for these we have used
a distinct symbol

←,. ~B5!

After establishing the basic result, we will review a few of
the details of this implementation in the Schumacher func-
tion.
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Let us first write down what the set of operations in the
figure is supposed to do. Beginning with the basis state

~B6!

at time t1, it becomes att2, after the operation off ,

.

~B7!

Then at timet3 the state is

~B8!

g(x8) depends on the state of the entirem-bit registerx8, but
only modifies the lastm2n bits, as indicated. Note that we
allow for the possibility thatg itself is a modified Boolean
function with nonzero phases. This is necessary because we
will apply this result in a nested fashion in the Schumacher
subroutines. Finally at timet4 the state is

exp@ iug~x!#ux1x2 . . . xng~x8!&. ~B9!

That is, the firstn bits are restored to their original state, and
bits n11 throughm remain in the stateg(x).

Now, the question is, will the state Eq.~B9! still result if
the function f is modified to introduce nonzero phases
u f(x1 . . . xn)? If we establish that this is true for all Boolean
inputsux&, this will suffice to prove that these networks have
the same action on any arbitrary quantum states~this follows
directly from the linear superposition principle of quantum
mechanics!. We follow the time evolution as before with the
modified f . At time t2 the state is

exp@ iu f~x1 . . . xn!#u f ~x1x2 . . . xn!xn11 . . . xm&.
~B10!

Then at timet3:

exp$ i @ug~x8!1u f~x1 . . . xn!#%u f ~x1x2 . . . xn!g~x8!&
~B11!

and finally att4:

exp$ i @u f~x1 . . . xn!1ug~x8!

1u f21„f ~x1 . . . xn!…#%ux1x2 . . . xng~x8!&. ~B12!

The final term in the phase factor can be simplified. Recall
that the unitary transformation corresponding tof21 is the
transpose of the complex conjugate of the unitary transfor-
mation corresponding tof . ~This follows directly from the
definition of unitarity.! Therefore, to getu f21 from u f , we
flip the sign~this is the complex conjugation!, and we make
the argument of theu function theoutputvalues of the bits

rather than theinput values~this is the transpose!. Here we
use the fact thatg does not modify the firstn bits—their
output values are the same as the original inputs
x1x2 . . . xn . Rendering this in mathematical language:

u f21„f ~x1 . . . xn!…52u f ~x1 . . . xn!. ~B13!

Thus, the twou f terms in the phase in Eq.~B12! cancel out,
and Eq.~B12! becomes identical to Eq.~B9!, which is the
desired result QED.

Finally, we briefly review the application of this result to
the programs introduced in the text. The first appearance is in
CONDITIONAL-ADD-k, where the role off is played in the
innermost part of the program by the assignment statement

Cn21←,Cn21%MAJ~kn22 ,Xn22 ,Cn22!.

This is a three-bit operation of the Toffoli type~or a trivial
modification of it! involving the bits Cn21, Cn22, and
Xn22. f

21 occurs a short distance down,

Cn21←,RCn21%MAJ~kn22 ,Xn22 ,Cn22!.

The role ofg is played by the two statements

Xn21←Xn21% ~kn21`B!,

Xn21←Xn21% ~Cn21`B!.

Obviously, onlyXn21 is modified byg, so the condition that
g modify only bits not touched byf is satisfied; so, we are
allowed to introduce a phase-modifiedf as indicated by the
←, and←,R assignments. Moving away from the innermost
part of the program, we see that all the above is nested inside
a largerg in which Cn21, Xn22, and Xn21 are modified,
surrounded by af2 f21 pair involving the bitsCn22,
Xn23, andCn23; working outward in succession this way,
we conclude that all theCi assignments may be replaced
with phase-modified←, and←,R assignments.

In Sec. IV B we exhibit a pair of statements,

B←,B% ~Y. l !,

B←,RB% ~Y. l !,

playing the role off and f21. These are not primitive three-
bit operations as in the earlier examples, but they are them-
selves implemented with bit-level programs~ TEST-GREATER-
THAN-k). For this f21, the←,R assignment requires that the
bit-level routine be run in the time-reversed order. This can
be done since classically, this Boolean function is its own
inverse. In the time-invertedTEST-GREATER-THAN-k, the
←,’s and←,R’s should be interchanged. TheB assignment
involving the symbol←, in this routine is special, in that it is
paired with the same statement in the time-reversed call to
TEST-GREATER-THAN-k. This special symbol is a reminder
that this statement should be implemented with the phases
corresponding to the←, assignment in the first call to the
program, and with those corresponding to the←,R assign-
ment in the second call.

We have not indicated phase-modifying assignments for
any of the two-bit gate level operations in these programs.
We take as given that these two-bit gates could be imple-
mented with zero phases. But if this were not the case, then
many of these paired assignments may be phase-modified in
exactly the way we have shown for the three-bit primitives.

54 2649SCHUMACHER’S QUANTUM DATA COMPRESSION AS A . . .



@1# C. H. Bennett, G. Brassard, and A. K. Ekert, Sci. Am.267 ~4!,
50 ~1992!.

@2# A. Ekert and R. Jozsa, Rev. Mod. Phys.68, 733 ~1996!.
@3# B. Schumacher, Phys. Rev. A51, 2738~1995!.
@4# R. Jozsa and B. Schumacher, J. Mod. Opt.41, 2343~1994!.
@5# There has been further recent work on qubit string compres-

sion, which we do not touch upon in the present paper. See
Howard Barnum, Christopher A. Fuchs, Richard Jozsa, and
Benjamin Schumacher, Report No. quant-ph/9603014~1996!.

@6# C. E. Shannon, Bell Syst. Tech. J.27, 379 ~1948!; 27, 623
~1948!.

@7# C. H. Bennett, Phys. Today48 ~10!, 24 ~1995!.
@8# W. G. Unruh, Phys. Rev. A51, 992 ~1995!.
@9# G. M. Palma, K.-A. Suominen, and A. Ekert, Proc. R. Soc.

London Ser. A452, 567 ~1996!.
@10# We adopt a notation which is common in textbooks on algo-

rithm theory; see A. Aho, J. E. Hopcroft, and J. D. Ullman,
The Design and Analysis of Computer Algorithms~Addison-
Wesley, New York, 1974!; G. Brassard and P. Bratley,Algo-
rithmics: Theory and Practice~Prentice-Hall, Englewood
Cliffs, NJ, 1988!; T. H. Cormen, C. E. Leiserson, and R. L.
Rivest, Introduction to Algorithms~McGraw-Hill, New York,
1990!.

@11# A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter,
Phys. Rev. A52, 3457~1995!.

@12# I. Chuang and Y. Yamamoto, Phys. Rev. A52, 3489~1995!.
@13# V. Vedral, A. Barenco, and A. Ekert, Report No. quant-ph/

9511018~1995!.
@14# See also D. Beckman, A. N. Chari, S. Devabhaktuni, and J.

Preskill, Report No. quant-ph/9602016~1996!.
@15# C. H. Bennett, SIAM J. Comput.18, 766 ~1989!; IBM J. Res.

Dev. 17, 525 ~1973!.
@16# See, e.g., H. F. Chau and H.-K. Lo, Report No. quant-ph/

9506012~1995!.
@17# T. Toffoli, in Automata, Languages and Programming, edited

by J. W. de Bakker and J. van Leeuwen~Springer, New York,
1980!, p. 632; Technical Memo No. MIT/LCS/TM-151~un-
published!.

@18# I. Koren, Computer Arithmetic Algorithms~Prentice Hall,
Englewood Cliffs, NJ, 1993!.

@19# D. P. DiVincenzo, Phys. Rev. A51, 1015~1995!; D. Deutsch,
A. Barenco, and A. Ekert, Proc. R. Soc. London Ser. A449,
669 ~1995!; S. Lloyd, Phys. Rev. Lett.75, 346 ~1995!.

2650 54RICHARD CLEVE AND DAVID P. DiVINCENZO


