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Schumacher’s quantum data compression as a quantum computation
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An explicit algorithm for performing Schumacher’s noiseless compression of quantum bits is given. This
algorithm is based on a combinatorial expression for a particular bijection among binary strings. The algorithm,
which adheres to the rules of reversible programming, is expressed in a high-level pseudocode language. It is
implemented usin@(n®) two- and three-bit primitive reversible operations, whetis the length of the qubit
strings to be compressed. Also, the algorithm makes use(o) auxiliary qubits. Space-saving techniques
based on those proposed by Bennett are developed which reduce this workspéem tovhile maintaining
a running time ofO(n®) (albeit with a larger constantThis latter algorithm is of interest because it has a
slightly smaller time-space product, which is considered to be the relevant figure of merit for efficiency in
some physical model$§S1050-294{@6)06909-0

PACS numbgs): 03.65.Bz, 07.05.Bx, 89.86h, 02.70.Rw

I. INTRODUCTION compression scheme that compresses...x, to
Y1 ---Yamy, and such thax, . ..x, can be successfully re-
There is considerable interest in the controlled generatiorgovered fromy, ...y, Wwith probability greater than
manipulation, and transportation of individual quantuml—e. Moreover, the above compression is the maximum
states; applications of such resources are envisioned in ne@@ssible in the sense that, for amys>0, for sufficiently
kinds of data transmission, cryptography, and computationfargen, for anyA(n)<n[(Hg(p) — )], for any compression
The quantum extension of conventional bits, caliptbits ~ scheme that maps, .. . X, to y; ...y, the probability
has been subject to considerable exploration lately. A singlghat X; ...x, can be successfully recovered from
qubit is embodied in the state of a single two-state quantunys . . . Yx(n is less thare.
system, such as the spin degree of freedom of an electron or The quantum physical analogue of the above scenario in-
other spin3 particle, where the spin-up state of the particle isvolves the compression of a string of qubits, instead of bits.
denoted by|0) and the spin-down state is denoted [dly.  Note that there are a continuum of possible states for each
The basic laws of quantum physics dictate that a descriptioqubit, rather than two possible values. We shall consider the
of the entire possible state-space of the qubit is given by thédiscrete” case, where a probability distribution is concen-

wave function trated on some finite set of qubit states
S={|¥y), ... |¥ )} Let the respective probabilities be
| W)= a|0)+ B|1), 1  p=(p1s---.Pm)- In the language of quantum physics,

(S,p) defines arensembleof states. Lefa,) .. .|a,) be a
where @ and 8 are any two complex numbers such thatstring of n qubits, each sampled independently fro§1{).
|a|?+|B|?=1. This is called a “qubit” since it can assume Define acompressor Aas a unitary transformation that maps
one of two binary values, but of course it has fundamentallyn-qubit strings to n-qubit strings. Again let A(n)
different properties because of the possibility of it being inae{1,...n}. It is to be understood that, on input
superposition of these two values. The properties with whicha,) . . .|a,), the firstA(n) qubits that are output by the
quantum mechanics endows the qubit make possible a kincompressotf; . .. 8\()) are taken as theompressed ver-
of cryptography which is fundamentally secure againstsion of its input, and the remaining—\(n) qubits are dis-
eavesdropping attacd], and computations which appar- carded. Adecompressor Bs a unitary transformation that
ently violate the complexity-class categorizations for ordi-mapsn-qubit strings tan-qubit strings. It is to be understood
nary Boolean computefg]. that the first\(n) qubits input to the decompressor are

One of the ideas of this sort that has been understoofjs, . . . Br(n))» the compressed version of some sequence of
recently is the possibility of data compression for qubitsn qubits, and the remaining—\(n) qubits are all0). An
[3-5]. In classical information theory, ifn bits, n-to-\(n) quantum compression scheriga compressor-
X1, ...Xn, are each sampled independently according tajecompressor pairy,B). As in the classical case, the goal is
some probability distributiom=(py,p;) (on the sef0,1})  to achieve as high a compression rdte., as small a
then the string x;...x, may be compressed to a \(n)] as possible, while permitting the original message to
nHg(p)-bit string [whereHg(p) = —ELOpi logyp;, the Sh-  be recovered from its compressed version, with high prob-
annon entropy{6] —and no further—in the following as- ability.
ymptotic sense. For any, 5>0, for sufficiently largen, for Assume that the compressor knogs., can be a function
any A(n)=n[Hg(p)+ 6], A(n) e{1, ... n}, there exists a of) the underlying ensembleS(p), but has no explicit
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knowledge about the specific random selections njader-  tainable forn qubits resulting from a source with density
estingly, compressors exist that know even less tp)( matrix p. More precisely, let §,p) be any ensemble of qu-
more about this latgr In the classical case, the compressorbits, andp be the corresponding density matrix. Then, for all
obtains complete information about the bits to be com- 5>0, for sufficiently largen and\(n)=n[Hyy(p) + 8],
pressed, but complete information cannot generally be obere exists am-to-\(n) quantum compression scheme for
tained from a qubit. If the possible qubit statesSrare not (s ) with fidelity greater than *e. Moreover, for all
mutually orthogonal then any observation of such a qubit8,5>0, for sufficiently largen, if N(n)<n[Hyn(p)— 5]

will only yield partial information about its state, and can h : .
. X X : ' en everyn-to-\(n) quantum compression scheme has fi-
irretrievably change this state. Due to this, one might expec&4e|ity Iessythane (n) q P

to be able to achieve less in the quantum scenario than wit .
classical compression schemes—in fact, the opposite is true, It should be noted that the above bounds are robust in the

Let us measure the quality of anto-\(n) compression Sense that they do not change when a number of technical
scheme A,B) with respect to a source distribution in variations are ”."ade in the scenario. For.exgmple,nﬂb&
terms of itsfidelity, defined as follows. Consider the follow- A(n) compression SChemeS t_hat attain f|dellty_ greater than
ing experiment. Let the sequente,) . . .|a,) be sampled 1—& can restricted to being highly “oblivious™ in that they
independently from &,p). Transform|ay) . . . |a,) accord- depend only on knowing a basis for which the density matrix
ing to the compresso,ﬁ and let|B; . . . Bum) ben the com- is diagonal, with nonincreasing values along the diagonal.
pressed version. Next, transfori, . . -,BA((?)HO ...0) ac- Also [4],_ even if the compressor is supplied with complete
cording to the decompress@ and let|a) . ..a’) be the information about the state of the source string . . . ay,)

output. Finally, measurkw, . . . a’) with respect to a basis that it receives,e still bounds the fidelity attainable if

con,tammglj ety .. 'a”>2' The f|QeI|ty Is the probab|||ty' The proof of Schumacher’s theorem is based on the ex-
Kai...alla;...an|® that this measurement results in

istence of a “typical subspaceA of the Hilbert space of
|ay ... ap).

e n qubits, which has the property that, with high probability,
Note that the fidelity is W|th_resp_ect to two sources ofa sample ofa; . .. a,) has almost unit projection ontb. It
randomnessta) the random choices in the original genera-, .o oo showf,4] that the dimension of\ is 2"Hw():
tion of |‘_11 .- ap); and(b) the randomness th"f‘t results from thus, the operation that the compressor should perform in-
performing a measurement of the stig . . . «;,). Roughly

. - S ) . volves “transposing” the subspack into the Hilbert space
speaking, the fidelity can be high if for “most” choices in of a smaller block ofhHyy(p) qubits.

@, |ag ... ap) is “close to” |a; . .. ap). . Bennett[7] gives a more explicit procedure for accom-
The ensembled,p) represents anixed statewhich has  plishing this “transposition,” which we illustrate with an
density matrixp, defined as example. Suppose tha={|¥,),|¥,)}, where|¥,)=|0)

and [W,)=(1y2)[0)+ (1/y2)|1), and p=(p;,p,), where
il p1=p,=3. The density matrix corresponding ta,p) is
p=2, PV p="30)(0] + 3[(1V2)|0) + (LW2)| DI[(Ly2)(0] + (1/12)
x(1]], or, in 2X 2 matrix form,
Thevon Neumann entropgorresponding to&,p) is defined

in terms of the density matrix p as Hyn(p) 3 1
=—Tr(p log,p). In generalH\n(p) <Hg(p), with equality p= 4 4 in the basis|o> 7
occurring if and only if the states i are mutually orthogo- 11 |1)

nal.
Roughly speaking, Schumacher's theorg3h states that It is always possible to go to a basis in which the density
nHyn(p) is asymptotically the maximum compression at- matrix is diagonal:

3+1tw 0 0')= 7TO+'771
Amax O 473 . |07 =cosg|0)+singl1)
p'= = in the basis 3
0  MNmin 0 1 1 = 1= _gi T 0 T 1
2zt | )——S|n§| >+cos§| ).

Both of the state$¥;) and|¥,) have large overlap on the consisting of [X,_1...Xg)=|Xn_1)...|Xo), where
basis stat¢0’) [|(¥;|0")|=cos/8)], and small overlap on X, 1, ... Xoe{|0"),|1")}. Each suchx,_;...Xo) can be
the orthogonal basis staté’) [|(W;|1')|=sin(#/8)]. This interpreted as an-bit binary number, and, thus, can be de-
observation leads to a way of compressing strings of signatoted as|x), for xe {0, ...,2'—1}. Now, the overlap of
states. Consider aftl-qubit strings possible from the states in |x) with the states i " is [{x|S ")|= cos"(#/8)sin'~"(7/8),

S. These strings can all be expressed with respect to the basigherem is the number of 0’s in the binary representation of
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X. Because this overlap diminishes exponentially with m-1/n

n—m, basis states with large numbers of 1's are relatively ' ( . )> (4)
unimportant for describing any string, . . . ,a,); the Hil- =0 41

bert space can thus be truncated to the typical subspace
consisting of all state$x) in which the binary numbek  and
contains a proportion of 1's less th&h,y(p) <0.601.

Thus the “transposition” which the coder must do con-
sists of mapping thig\ subspace fon qubits into the states mo
spanned by less than 0.60bf those qubits. 2 ( . ) _1> (5)

We must accomplish this by a unitary transformation ap- =0\
plied to the original states of tha qubits. In the basis

|0), ... |2"=1), this transformation must map qubit strings inclusive. The Schumacher function does not require any

with the smallest number of 1's in succession into qubit bi-particular ordering of the states within each of these blocks,

nary strings with the smallest numerical value. This is a clasexcept that the mapping must be 1-t¢-&., a bijection; but,

sical combinatorial calculation, “classical” in the sense thatit turns out to be convenient to preserve lexicographical or-

definite binary-number states are mapped to other definitdering within each block. Defining the index number within

binary-number states; however, it is essential that the comeach block ad[x,n,m], the total Schumacher function for

putation be performed quantum mechanically, since the constringx (with n bits andm 1's) is

putation must preserve the superpositions of these basis

states. This means that the combinatorial computation must

be performed using reversible, quantum-coherent elementary m-1

operations. y= >
The principal object of this paper is to derive the quantum i=0

computation which is needed to do this Schumacher coding.

In Sec. Il we derive the analytical formula for the sorting The index number obeys a recursive relationship which we
calculation required for the coding. Section Il constructs thQ]OW derive. Considering the possib|e binary_number strings
quantum program for performing this calculation: Sec. Il A representing the input state any string whose first 1 occurs
illustrates a first attempt at this coding exercise; Sec. Ill Bin the (p+ 1)st place(i.e., whose firsp bits are Q must have
discusses the way in which the calculation is to be properly higher index number than all strings in which the first
made reversible; and Sec. Ill C, which contains the essentigi+ 1 places are 0. There are exactly £*1) such strings.
result of the paper, gives the final quantum program forThis means that for the particular input string

Schumacher coding. Section IV gives, in the same program-

ming notation developed in the earlier sections, the bit-level pOs n—m—p 0’s  m-11's

routines needed for performing the steps in the high-level z = ml 00 h 0011l .. 11

program. Appendix A discusses how these bit-level routines T e DR

may be made highly space-efficient, with only a modest in-

crease in running timgthese latter routines result in a

smaller time-space product, which may be desirable, due to (7)
the manner in which decoherence ocd@®]). Appendix B

provides other ways of economizing in the bit-level imple-the index numbei[x,n,m]=(""P"1). This result permits
mentation of these codes, by using some of the phase frege index number of the more complex string

dom coming from the quantum-mechanical nature of the

computation. pO's

z=200...001 2’
<~

n—p—1 bits

n
: +1[x,n,m]. (6)

Il. COMBINATORIAL EXPRESSION
FOR SCHUMACHER CODING

As Bennet{ 7] has described, a specific realization of the ®)
unitary transformation performing the Schumacher coding
function on a set of identical qubits consists of a sortingto be expressed recursively:
computation in which the stat¢8), ... ,|2"—1) are given a
lexicographical ordering according to how many 1's are in
their binary expansion. S40) is mapped to itself, all the n—p—1
states containing exactly one 1 anet1 0's are mapped to I[x,n,m]=(
the states betwedn) and|n), all the states with exactly two m
1's andn—2 O’'s are mapped to the states betweerr 1)
and|n+n(n—1)/2), and, in general, all the states with ex- It is probably easiest to understand Eg). by writing out an
actly m 1's andn—m Q’s are mapped to the states betweenexample:

+I1[x",n—=p—1, m=1]. (9
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1[00010011011,10 5= (*"47*)+1[0011011,7,3

[
("747Y)+1[1011,43

U (10
(4—3—1) +1[011,3,3
[}
0.
|
As this illustrates, the recursion of E@®) may be iterated to for m=0 to j+1 do

produce an expression forfor a general input string: ] _
if X;=1 and S=m then Y—Y+(J)

n—i
)t N for i=0 to n—1 do
I[x,n,m]= E Xn—i . (11
=1 2 Xnok if i+1=S then Y—Y+ ().
Here the notatiorx, denotes the value of theth bit of the FIRST-TRY is not incorrect, but it is incomplete, in ways
string x. Combining Eq.(11) with Eq. (6) yields the final  hich we will repair by stages below. Here are some rules of
expression for the Schumacher coding function: t[hIS programming: All the quantum-mechampal .regllsters are
in capital letters. IrFFIRST-TRY, these areX (which is initial-
S no1 ] ized with an input state, or a quantum superposition of
_ ‘E n +E w| J (12) such input statgsY (which is initialized to 0, and whose
y = i = 2 X | final value is the output state or their quantum superposi-
k=0 tions), andS (a small work register, also initialized t9.0rhe

notationX; indicates theth bit of X. Note thatY andS are
given the data type “arithmetic,” indicating that ordinary
integer addition and subtraction are allowed with them. Only
bitwise manipulations are performed ofi (In the FINAL-
SCHUMACHER program, both bitwise and arithmetic manipu-
lations will be performed on the same registers.

A. First attempts All other lower-case variables in the program always have
definite values and catand should be implemented using

It is now our object to translate E¢l2) into a sequence classical bits. Only the quantum registers need to be explic-
of elementary quantum-mechanical manipulations. We pro: ' y q 9 P

ceed to do this by writing out the calculation in a high-level itly treated reversibly. So, the binomial coefficienty (ca_n
“pseudocode’[10] which, when “compiled,” would permit be p.recom.puted or evgluated by any means, reve_rS|bIe or
the operation to be performed by a sequence of elementaﬂpt’ in the |mplementat|on of the quantum computation.
spectroscopic manipulations such as two-BibR's (or In a reversible program statement, the input can always be
controllednoT's), along with one-bit rotation§11]. Rather ~ deduced from the output. So, for example, the statement
than building up the rules of this pseudocode axiomatically,
we will proceed in an intuitive fashion. The principal con-
straint which the coded calculations must obey is that they ) _
must be doneeversibly Instead of going into a discourse S reversible, because the input could be deduced by the
about this, let us present the first try at coding B®) (not ' time-reverse” of this statement,
a perfectly successful one, in fact .

periecty % if Xo=1 then S—S—1

In this equation, binary coefficients outside their natural
range[e.g., (,7,)] are understood to be zero.

Ill. HIGH-LEVEL QUANTUM PROGRAM
FOR SCHUMACHER CODING

if Xo=1 then S—S+1

Program FIRST-TRY

quantum registers An irreversible program statement would be
X : n-bit register
Y : n-bit arithmetic registefinitialized to 0 if Xg=1 then S—1

S : [log,n]-bit arithmetic registefinitialized to 0

if Xo=1 then S—S+1 since the prior value 06 cannot be deduced. As it happens,

this statement would function correctly RIRST-TRY because

S actually is equal to 0 at this first executable statement of
if Xj=1 then S—S+1 the program. However, we will enforce a rule that the only

for j=1 to n—1 do
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irreversible statements permitted that involve quantum vari{0,1}"—{0,1}" denote the Schumacher function foubit bi-
ables will be the “initialized” designations present in the nary strings. If the total input state is expressed as the ket
declaration statements. In later programs we will introduce a

“finalized” designation, which will merely serve as a re- IX,Y,S)=1x,0,0, (13)
minder that certain variables will always end the programy e complete final state is
with a particular value if the program runs correctly. This P

designation will be an important one in constructing revers- 1X,Y,S)=1x,f(x),s) (14)
ible code. It is also a reminder that physically, the finaliza-

tion can serve as a useful check that no error has occurrg@vheres is the number of 1's irx). But, the correct Schu-
[12]; a quantum measurement of this register at the end aihacher function must have a final state of the form

the running of the program should always find the register in

the finalized value. IX,Y,8)=10, f(x),0). (15

One further comment about the program statement . . .
prog That is, the inpuix should be erased and the work register

if Xo=1 then S—S+1. S should be reset to its initial value of 0. This is possible to
accomplish reversibly because the Schumacher function is
A)ijective, so that no record of the initial state, or of the state
of the work bits, needs to be retained at the end; they are
inverted conditional on the value &f,. In FIRST-TRY, Sis a compltt'ately fdtehdugbrze frorr; th? outt_put. !n f?ﬁt’t 'E[?le co:rect
Iy ; - ; - ~operation of the Schumacher functioequiresthat the out-
multibit register, in fact it must have about lgg bits. Imple . put be of the form(15); if it is of the form of (14), then the

mentation of these multibit functions in terms of primitiv final state is “entanaled” with the initial stat hich
operations involving no more than three bits is straightfor- Inal state Is ‘entangled wi € iniia] state, which means

ward, and is presented in Sec. IV and in RgtS,14). Using that output states cannot be placed in the desired superposi-

guantum gates, all the three-bit primitives may be reduced t ons of states. Thu;, the net re.sult of the Schumacher' func-
sequences of two-bit operatiofsL]. lon should be confined to the input data register only; this

A few more points aboUEIRST-TRY are in order. Given condition is obtainable from Ed15) if the final output state

the constraints of reversibilityFIRST-TRY is a relatively is swapped so that the state vector becomes
straightforward transcription of Eq12). The firstfor loop IX,Y,S)=f(x),0,0. (16)
(indexed byj) implements the second term of E42); this n ”

is efficient because the partial sum in the binomial coefficientrhus the Schumacher function is applied, “in-place,” to the
can be accumulated i8 one term at a time, and then the first n qubits, while the remaining-+log,n bits return to
completed sum can be used as the upper limit of the firstheir original states, and may all be viewed simply as work
term of (12), which is implemented in the secoffiar loop.  space for the computation. We will see later that the “out-
This innerm loop could be replaced by the single statementput” register Y can actually be removed entirely by using
some clever programming. Some other workspace, not dis-
played explicitly in(16), appears to be necessary to do the
bit-level manipulations in the Schumacher functisee Sec.
IV); Appendix A shows that the size of this extra workspace
but this would require a reversible calculation of the bino-does not have to exceed aboufr2bits.

mial function; we have chosen to make this binomial- These considerations have arisen previously in the context
coefficient calculation classical by writing out the loop asof reversible programmingl15], but the rationale for con-
shown. One might also be tempted to modify the inner loopstructing a function in the “fully reversible” manner as

If S were a one-bit variable, this statement would just be
guantumxor or controlledNOT, in which the value ofS is

if X;=1 then Y—Y+

S

as follows: specified by the output staté6) is somewhat different than
) in the classical context. In traditional reversible program-
if X;=1 then ming the object is to avoid the small energy cost involved in

irreversible erasure of any of the working bits in the com-
puter. If such an erasure is performed, tesultof the com-
putation will still be correct, even though the desired goal of
expending no energy is not achieved. But, in this particular
guantum computation, irreversible erasure of the state of reg-

While moving theif statement from the loop is superficially ister X in Eq. (14) aCtL.’a”y (;ausr?s rig'hStéfr .t(.) lbe |n.the
more efficient, it turns out that, when these statements ard7ongduantum state, in so far that, if the initiZl was in a
reexpressed in terms of primitive operations, thenust be superposition of computational states, the final staté will

carried down to the lowest level in any case; so, we prefer Q¢ @ Mixed quantum state, rather than the intended, pure
syntax in which such conditionals are explicitly shown at theSuperposition state. Thu;, the consequences o_f irreversibility
lowest level. are more serious than in conventional reversible computa-

tion.

A method for designing a calculation to arrive at the de-
sired final stateg15) or (16), as already worked out in the
Now, what is the overall effect ¢fiRST-TRY, and why is it earlier literaturd 15], requires two stepgl) zero outS and

inadequate for performing the Schumacher function?fLet any other work space used by the program, &)dexplic-

for m=0 to j+1 do

if S=m then Y<Y+

B. Reversibility considerations



54

itly implement theinverseof the Schumacher function Eg.

SCHUMACHER'’S QUANTUM DATA COMPRESSION AS A ...

2641

C. Deriving the final program

(12). This can be accomplished by a program that, on input Now we will transform our procedure into reversible

State

1X,Y,S)=[x.y,0), 17
produces the final state
IX,Y,S)=|xaf 1(y),y,0). (18)

Note that applying such a transformation to the state

IX,Y,S)=|x,f(x),0) (19
yields the required state
IX,Y,S)=10, f(x),0). (20

Equation (18) is not implemented simply by running

FIRST-TRY in reverse; indeed, the inverse function can have
very different and much greater complexity than the function

itself [16]. Fortunately, in this case, as we will see in a mo-

ment, the inverse Schumacher function is also relatively easy

to implement.

Step (1) above, zeroing ous, is readily performed by
adding code to the end 6fRST-TRY to simply subtract away
the bits which have been added$o

for j=0 to n—1 do

if Xj=1 then S—S-1.
This code, added to the end BRST-TRY, produces the out-

put state(19).
Step (2) above, implementing the inverse function Eqg.

(18), requires a new algorithm. We have not found any way
to write the inverse Schumacher coding function as a for-

mula as in Eq.(12). Nevertheless, a straightforward algo-
rithm can be deduced from the following two inequalities.
The first is obtained by combining the information from Eqgs.
(4) and(5):

m—1 n m n
okl
i=0 \ I i=0 \ I
where
n—-1
m= >, X (22
k=0

is the number of 1's in the binary string We will be able to
write simple pseudocode to compuie(a.k.a.S). This result
can then be used to comput¢x,n,m] using Eq. (6).
I[x,n,m] satisfies an inequality which is a simple conse-
guence of Eq(9) and the discussion preceding it:

n—-p—1 n—p
( m )sl[x,n,m]<( m )

By finding thep which satisfies this equation, we determine
that the leading bits of x are zeros, and the next bitis a 1
(i.e.,x;=0,n—1-p<jsn—-1, X,_,-1=1). The index of
the remaining substring can be determined from [@y.and
thus all the bits ok may be calculated recursively.

(23

code. As the previous section makes clear, a necessary step
for doing this will be to code the inverse of the Schumacher
function. In the spirit ofFIRST-TRY, we will not worry at first
about the final state of the work registers as prescribed in Eq.
(18); we will initially just try to code correctly the inverse
function itself. We will find that reversibility will, in this
case, fall out naturally from a simple modification of our
first-cut program.

Program TRY-INVERSE
quantum registers
X : n-bit register(initialized to 0
Y : n-bit signed arithmetic registdfinalized to Q
S : [logyn]-bit register(initialized and finalized to D

for m=0 to n do

(n
YeY—
m

if Y=0 then S—S+1
for m=0 to n do

n
if S=m then Y<Y+

for p=0 to n—1 do
for i=0 to n—p do

if S=i and Y=(""P1)

then X, ;1
(—Xn,pfl@ 1

if S=i and X,_,-1=1
then Y—Y—(";Ph
if Xn-p-1=1 then S—S—1.

In this code, them loop does the job of finding the for
which Eq.(21) is satisfied, and putting the result in the quan-
tum registelS. As a byproduct of this work, it subtracts away
the first term of Eq(12) fromy, leaving inY the value of the
index I[x,n,m]. Actually, them loop continues to subtract
binomial coefficients fromy after it is supposed to; this is
why Y is indicated to be a “signed” register, which can be
handled by doing ordinary arithmetic in a register with one
extra bit(see[13]). This approach has the benefit that testing
thatY is non-negative only requires the examination of one
bit—see the first part of Sec. IV. We might be tempted to
avoid negative numbers by terminating the loop at the right
moment, viz.,

for m=0 to n do

if Y<(j) then exit for-loop

But such arexit for-loop statement is not reversible. There
appears to be no alternative to letting the first loop go to its
maximum possible upper limit, which is, and then repair-
ing the damage done by adding back the correct binomial
coefficients in the second loop. Finally, at the end of the
second loopY has the desired value ¢fx,n,m], andS has

the value ofm.
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Then the third p) loop of TRY-INVERSE does the iterative IX,Y,S)=]f"1(y),0,0. (25)
decomposition of the index[x,n,m]. For every possible . i ] )
value of the leading number of zerpgrecall Eq.(7)], TRy-  Thus, with a final transposing of the and Y registers, we
INVERSE checks to see if the inequality E@3) is satisfied; if ~Obtain a program that implements tinwerseof Eq. (16), so
it is, then the program negates one bit of ¥ieegister. Then  the calculation has been successfully done in-place, with the
the secondf statement decrements by the combinatorial ~registersY and S remaining in their initial state, having
coefficient in Eq.(9), so that it always contains the index of Served only as “catalysts” for the calculation.
the next substring. The process continues until the index is !N fact, we can do even better; by a small modification of
reduced to zero. AlsoS is decremented so that it always TRY-INVERSE, theY register can be eliminated entirely. This
contains the current value of the number of 1's in the subcan be done by noting that, during the course of an execution
string of Eq.(8). Note that, as irFIRST-TRY, an inner loop ~ Of TRY-INVERSE, the decrementing Of sets each of its high-
(indexed byi) is introduced to avoid the need for reversible Order bits to zero in succession, and, at the same time, the
calculation of binomial coefficients Iike”(s’”l). valugs ofX are built up star.tlng with th.e high-order bits and

We now evaluate what stat®Y-INVERSE has left the reg- working down. Thus, the h!gh-order blt_s ¥fcan be reused
istersY and S in. In fact, a very desirable thing has “acci- to hold the _results of the final calculation. It can be shown
dentally” occurred. We find that, on input state that these high-order bits are always cleared out soon enough
that they can be used for the final answer; this is done by
showing that inTRY INVERSE, the same bits oK andY are

X,Y,5)=10y.0), (24) never simultaneously 1. Thus, with one small modification,
TRY INVERSE can be turned into our final program for the
TRY-INVERSE produces the final state inverse of the Schumacher coding function:

Program FINAL-SCHUMACHER-INVERSE
guantum registers
X : n-bit signed arithmetic register
S : [log,n]-bit arithmetic registefinitialized and finalized to 0

for m=0 to n do

el

if X=0 then S+—S+1

for m=0 to n do

n
if S=m then XX+

for p=0 to n—1 do

for i=0 to n—p do
) ) n—-p—1
if S=i and TRUNC,_ , ;(X)= i then X, p 1Xp p-1®1

n—-p—1
if S=i and X, , ;=1 then X«X- i

if Xn-p-1=1 then S—S-1

The only substantial item which has been added here is the funERWNC ;. Invocation of TRUNC ;(X) simply says
that only thej least significant bits of the quantum regisber(i.e., bit O to bitj—1) should be taken account of in the
‘* =" comparison. This is necessary because the high-order bits are being used to store the final answer. In the final pass
through thep loop, the occurrence of the zero indexXTRUNC ((X) indicates that the comparison should not be performed
at all.
For completeness, we now record the final code for the Schumacher coding function itselfFIRKIGBCHUMACHER-
INVERSE is done “in-place,” the direct function is literally just the time-reverse:
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Program FINAL-SCHUMACHER

guantum registers
X : n-bit signed arithmetic register
S : [log,n]-bit arithmetic registefinitialized and finalized by 0

for p=n—1 down to O do
if Xn_p-1=1 then S—S+1

for i=n—p down to 0 do

n—-p—1
if S=i and X, , ;=1 then XX+ |
o n—p-1

if S=i and TRUNC,_ , ;(X)= : then X, p_1eXpp-1®1

for m=n down to O do

n
if S=m then XHX_( )
m

for m=n down to O do
if X=0 then S—S—-1

n
Xe—X+
m
|
IV. BIT-LEVEL QUANTUM PROGRAM In many cases a quantum phase freedom can be used to
FOR SCHUMACHER CODING simulate these in fewer one- and two-bit gatese Appendix

. . . . B).
In this section, we explain how the statements in pro- The first step to converting the programs into gate-arrays

grams  FINAL-SCHUMACHER and FINAL-SCHUMACHER- 54, | nravel” the for loops. Since the ranges of these loops
INVERSE can be implemented by a gate array with fundamen-

tal bit-level operations. These fundamental operations ardre all fixed prior to any computation, this is straightforward.

Kiext, we note thatonce thefor loops have been unraveled
essentially Toffoli gate$17]. The Toffoli gate that negates ' . . k
bit B iff bits C andD are both 1(and does not change the there are essentially five types of program statements:
values ofC andD) is denoted as 1. XeX+k

B—B&(CAD). 2. if B then X—X+k

In [11] it is shown that such an operation can be simulated ir8. if Y>I then X«—X+k

terms of eight one-bit operations and siwR operations )

(which are of the fornB« B&C). For convenience, we ex- 4 if Y=I and B then X—X+k
pand our repertoire of allowable basic operations to mcludes_ if Y=I and Z>k then B—B&1

B—Be1l, (whereB is a hit, X,Y,Z are signed arithmetic registers, and
k,I are signed integers
B—BaC, Also, there are priori upper bounds on the ranges of the
- arithmetic registeréand thus on the number of bits required
B—BaC, to specify them An arithmetic register whose range of val-
ues is known to be an integer withi®,2") can be naturally
Yy represented by bits and arithmetic operations on it can be
B—B®(CAD), simulated by reversibly performing them modul®. 2lso, a
— — signedarithmetic register whose range of values is known to
B—Ba&(C/AD), lie within [—2",+2") can be naturally represented in
“two’'s complement” form by n+1 bits, and it is well
B—Ba(C\/D). known that arithmetic operations on such a two’'s comple-

ment integer can be simulated by interpreting it as an integer
As with Toffoli gates, each of these gates can be simulateih the range[0,2'"1) and performing arithmetic modulo
by at most eight one-bit operations and SR operations. 2"*! (see, for exampld,18]).
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A. Addition and conditional addition ever, this more complex routine is never needed for the
implementation of the Schumacher function. Actually, it is

In view of the above discussion, to simulate X ,
generally possible to implement a full quantum adder as a

if B then X«—X+Kk, sequence of calls toONDITIONAL-ADD.
it suffices to perform B. Equality and inequality testing
X«—(X+B-k)mod2' In order to simulate the remaining types of statements, it

suffices to simulatequality teststatements of the form
(in other words, to add to X modulo 2' iff B=1). In the

case wheré& is ann-bit signed register, it suffices to substi- B—B&(X=Kk)

tuten+1 for n above. The following program performs this . ) ) )

usingn auxiliary bitsCy,Cy, . . . ,C,_, (which are assumed (which negateB iff X=k), andinequality teststatement of
to have initial value 0, and are reset to 0 by the end of théhe form

computation. B+—B&(X>k)

A note about this program: the code introduces two modi-
fied assignment symbols<€” and " «€g.” For the present (which negateB iff X>k).

purposes these can be thought of as identical to the ordinary \yji, implementations of the above tests, the statement
‘<" assignment; however, they signal a freedom in how

the quantum phase may be handled in these assignments, as if Y>I then X—X+k

discussed in Appendix B.

is then easily simulated by the sequence
Program CONDITIONAL-ADD -k

guantum registers B«<Ba(Y>I)

X : n-bit signed arithmetic register

B : bit register if B then X—X+k
Co,Cq, ... ,C,_1: bit registers(initialized and finalized

to 0) B« gBa(Y>I)

for i=1 to n—1 do
whereB is a bit register distinct from the bits of and,

Ci«€Ci®MAJ(K;{_1,X{-1,Ci_1) and whose initial value is Onote thatB must be reset to 0
after the addition is performedAlso, the compound condi-
for i=n—1 down to 1 do tional
Xi—Xj@(ki/\B) if Y=1 and B then X—X+k
Xi—X;®(C;/\B) is simulated by the sequence
Ci+€rCi®MAJ(K;_1,Xi_1,Ci_1) c«cCa(Y=1)
Xo—Xo® kg D<D®(C/\B)
where if D then X—X+k
MA( S T)= SAT if 1=0 D+«€gD&(CAB)
sy T if I=1. CecoCa(Y=1)

The number of basic operations performed by the above pro-
gram is bounded abO\I/De byn4- O?l). In parti)éular if the P whereC andD are bit registers distinct from the bits &f,

for loops of this program are unraveled then the program* @1dB, and whose initialand fina) values are 0. Again,

corresponds to a gate array consisting of+2L bits and the meaning and usefulness of the phase-modified assign-

L - ts is discussed in Appendix B.
4n+0(1) gates.(A more space-efficienfn+ O(+/n)]-bit men : i .
program is described in Appendix A. The following program simulates an equality test. It uses

The unconditional addition statement n auxiliary bit registersCo,Cy, ... .Cn_y. The auxiliary
registers are initialized to 0, and have final value 0.

Xe—X+k Program TEST-EQUALITY-TO -k

quantum registers
X : n-bit signed arithmetic register
B : bit register

can be easily simulated by replacingA\B) and (C;/\B) in
the above program witk; andC; (respectively.

One final note aboutONDITIONAL-ADD: it involves only ) i o o
the addition of a quantum register with an ordinary, classical C0:C1, - - - Cn-1: bit registers(initialized and finalized
number. It is possible to write a similar program which adds to 0)
two quantum registers, as has been illustratefL8}; how- Cr19€Ch10(Xh-1=kKq-1)
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for i=n—2 down to O do
Ci<€Ci@(Ci1 1\ (Xi=k)))

B« BEB CO

for i=0 to n—2 do
Ci<€rCi® (Ci 1/ \(Xi=ki))
Ch-19€RCh-1®(Xn-1=Kn-1)
where
S if 1=0

S=D=lg i 1-1.

The number of basic operations performed by the above pro-
gram is bounded above byn2-O(1). (The above program
is very similar to the so-called\ ,-gate construction ifil1]).

the procedure. The firsf statement requires one call to
CONDITIONAL-ADD. Although X is ann-bit register, the ad-
dition only affects then—p—1 low-order bits ofX. Thus,
the addition can be performed on TRUNG, (X) rather
than X, which amounts to a total running time of

n—1n-p
20 20 4(n—p—1)+0O(1)=2n3+0(n?). (26)
p=0i=

The expensive part of the secoificstatement is its two calls
to TEST-GREATER-THAN performed on an r(—p—1)-bit
guantum registefbecause of the action of TRUNCThe
time involved for this is

n—-1n-p
ZO EO 2x3(n—p—1)+0(1)=n3+0(n?). (27
p=0 i=

Thus, the total time require@d.e., number of bit-level primi-

Finally, the following program simulates an inequality tive step$is 3n+ O(n?). The total number of qubits used is

test. It uses auxiliary bit registersC,,C4, . ..

n, to hold the input-output strin; plus[log,n], to holdS;

auxiliary registers are initialized to 0, and have final value O.plus n+0O(1) to implement the conditional additions and

Program TEST-GREATER-THAN -K
guantum registers
X : n-bit signed arithmetic register
B : bit register

Co,C4, ... ,C,_1: bit registers(initialized and finalized

to 0)
Cr-14€C_18(Xn—1=Kq-1)
B—B&(Xy-1<ks-1)
for i=n—2 down to O do
Ci<€®(Ci+1/\(Xi=k)))
B~<Ba®C; 1/\(Xi>k;)
for i=0 down to n—2 do
Ci<€RrCi® (Ci+1/\(Xj=ki))
Cnho19€RCH_10(Xp_1=Kkp_1)

where §=1) is as in the previous subsection,

I S if I=0
(S=D=10 i 1=1,
and
0 if I=0
(S<h=y— .
S if I=1.

inequality tests(the same work registers that store carries
and so forth may be reused throughout the execution of the
program. Thus, the total number of qubits is n2
+[logn]+0O(1).

If the space-efficient routineSONDITIONAL-ADD ' and
TEST-GREATER-THAN' introduced in Appendix A are used
instead, the execution time is increasednd-+ O(n?9, but
the total number of qubits is reduced to
n+2yn+0(log,n). If the relevant figure of merit for the
tractability of the quantum computation is the product of
time and space, as it is in certain physical mod8|§], then
the space-efficient procedures we have introduced would be
preferred.

A final note about these operation counts: they are all in
terms of the primitive operations listed at the beginning of
Sec. IV, which includes both two- and three-bit primitives. It
is known[11,19 that all three-bit operations can be simu-
lated in quantum logic by a sequence of two-bit primitives.
Most of the three-bit operations can be simulated using seven
operationgthree quantunxor’s and four one-bit gatg@ssee
Appendix B. So, in terms of these primitive operations the
total time to do the Schumacher function would be roughly
7x 4n3<19n3. Computing the exact prefactor would require
a considerable amount of detailed calculation, and would
have to take into account that fact that many one-bit gates in
the network could be merged together and executed in one
step(see[11]). All of this work could easily be done if an
actual physical implementation of Schumacher compression

The number of basic operations performed by the above proVere ever undertaken.

gram is bounded above byn3-O(1). Once again, we em-
ploy phase-modified assignments, <€ r, and<«<, which

are explained in Appendix B.

V. DISCUSSION AND CONCLUSIONS

To conclude, we believe that the pseudocode in which our
results are presented is the most concise and economical
form in which to present a quantum computation like Schu-
macher coding. The bit level primitives for addition and
comparison which we have presented are similar to ones
which have been presented elsewhlr8], but have a few

We can finally put all the above results together to evalufeatures which may make them superior in the development
ate the total cost, in time and space, to perform Schumachef other quantum programs. The Schumacher coding can be
coding. It is easy to see that the tifostatements inside the done inO(n3) steps, withO(y/n) auxiliary workspace. We
i loop of FINAL-SCHUMACHER are the most expensive part of cannot exclude the possibility that a lower polynomial-order
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algorithm may be found, but we are not presently aware ofo reduce the auxiliary space further, but this causes an in-
what form this would take. The techniques [ib5] enable crease in the running time, as well as in the space-time prod-
further shrinkage of the auxiliary work space, but with auct)

larger penalty in the running time. We think that further use-  Assume than=m?. The programcONDITIONAL-ADD ' -k

ful shrinkage of the auxiliary work space is unlikely; in the that follows employs th—1 auxiliary bit registers rather
present scheme, only a vanishingly small fraction of quantnan then auxiliary bit registers thatONDITIONAL-ADD-K

tum bits are used as workspace for large block size employs. In CONDITIONAL-ADD-K, registersCy, ...,Ch_;
are used to store information about carry propagation. In
ACKNOWLEDGMENTS CONDITIONAL-ADD -k, this is accomplished by registers
We are grateful to C. H. Bennett, R. Jozsa, B. SchumaC1, - - - :.Cm-1 @and Dy, ... Dy, instead. The idea is to

cher, and J. Smolin for useful discussions. Thanks to th&eset some of the registers to 0 at various checkpoints during
authors of Ref[13] for a preview of their work prior to the course of the computation. This is illustrated by the di-

publication. R. C. is supported in part by NSERC of Canadagdram below, where the horizontal direction represents time,
and the placement of the lines indicate the time intervals

APPENDIX A: IMPROVEMENTS during which the registers are active, containing the various

IN THE WORKSPACE EFFICIENCY carry bits. Register®4, ...,D,_1,C; are first set to the
OF THE BIT-LEVEL IMPLEMENTATIONS first m carry bits. TherD4, ... ,D,_; are reset to 0. Regis-
ters D4, ..., Dy-1,C, can then be used to store the
The bit-level implementations proposed in Secs. IV A and(m+1)st to (2n)th carry bits and the®,, ... ,D,_; are

IV B requiren auxiliary bit registers. By applying techniques reset to 0 again—sincg, stores themth carry bit, this can
that were introduced if15], we derive the following alter- be accomplished without recomputing the finstcarry bits.
nate programs that employ or(+/n) auxiliary bit registers The process is repeated with the remaining carry bits, and
while maintaining the same asymptotic operation complexthen applied in reverse to reset the carry bits to 0, as illus-
ity. (The space-reduction techniqued i5] can also be used trated here:

carry bits registers used

m2 -1 Dppq —_
(m—1)m+2 D, :
(m—-1)m+1 D,

(m—1)m Cm—1
3m Cs

3m -1 Dy —_ —_
2m + 2 Dy -
2m +1 Dy

2m C>

2m -1 Dm—lf —_
m+2 D, :
m+1 Dy

m=—1 Dy —_—
2 Ds :
1 D

The detailed program follow® is used for convenience to Do,D1, ... ,Dn_1: bit registers(initialized and
store the value o€; at the beginning of each iteration of the  finalized to 0
for-loop with respect ta.

for i=0 to m—2 do

Program CONDITIONAL-ADD -k if i>0 then Dy—Do®C;
quantum registers _
X: n-bit arithmetic register for j=1 to m—1 do

B: bit register
C1,Cs, ... Cm1: bit registers(initialized and D;j«€Dj®MAI(Kim+j-1.Xim+j-1,Dj-1)
finalized to Q Ci+17€Ci1®MAI(Kim+m-1,Xim+m-1,Dm-1)
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for j=m—1 down to 1 do

Dj«€rDj®MAI(Kim+j—1,Xim+j-1,Dj-1)
if i>0 then Dy—Dy®C;

D0<—D0@Cm,1
for j=1 to m—1 do

D;«€Dj®MAI(Km-1ym+j-1:X(m-1ym+j-1,Dj-1)
for j=m—1 down to 1 do

Xim=1m+j—X(m-1)m+j® (Km=-1)m+;/\B)
X(m-1ym+j<X(m-1)m+j® (D;/AB)
D<€ RD;

OMAI(Km-1)m+j—1:X(m-1m+j-1,Dj-1)
D0<— Do@ Cmfl

for i=m—2 down to 0 do
if i>0 then Dy—Dy®C;

for j=1 to m—1 do

Dj<—€DJ-EBMAJ(kim+i_1,Xim+j_1,Dj_1)
Xim+m‘_xim+m@(kim+m/\B)
Xim+m—Xim+m®(Ci+1/\B)
Ci+1°€RCi+1®MAI(Kim+m-1,Xim+m-1,Dm-1)
for j=m—1 down to 1 do

Xim+j< Xim+j® (Kim+;/\B)

Xim+j< Xim+;®(D;/\B)

Dj«€rDj®MAI(Kim+j—1,Xim+j-1,Dj-1)
if i>0 then Dy«+—Dy®C;

XOHXO@ ko.

The above program uses+O(y/n) registers in total and
runs in én+O(+/n) steps[compared to B+ O(logn) regis-
ters in total and A+ O(1) steps forcONDITIONAL-ADD-K].

There also exist more space-efficient versionstesT-
EQUALITY-TO-k and TEST-GREATER-THANK. For the former
case, the program is as followahere agaim=m?).

Program TEST-EQUALITY-TO -k
quantum registers
X: n-bit arithmetic register
B: bit register
Co,C1, ... ,Cy_1: bit registers(initialized and
finalized to 0
D,,D,, ... ,Dy: bit registers(initialized and
finalized to 0

for i=m—1 down to O do
if i=m—1 then D,—D,®1 else

Dn—Dm®Cig
for j=m—1 down to 1 do

Dj<€Di®(Dj+ 1N\ Xim+j=Kim+j))
Ci<€Ci® (D1/\(Xim=kKim))
for j=1 to m—1 do
D;<€rD;j®(Dj+1/\(Xim+j=Kim+j))
if i=m—1 then D,—D,®1 else

Dme—Dm®Ciiy
B—B® Co

for i=0 to m—1 do

if i=m—-1 then D,—D,®1 else
Dme—Dm@Ciig

for j=m—1 down to 1 do

Dj<€Di® (D1 1/\(Xim+j=Kim+j)
Ci<€rCi® (D1/\(Xim=Kim))
for j=1 to m—1 do

Dj<€rDj® (Dj+1/\(Xim+j=Kim+j))
if i=m—1 then D,—D,®1 else

Dme—Dm@Ciiy

The above program uses+O(+/n) registers in total and
runs in 4h+0O(y/n) steps[compared to 8+O(1) registers
in total and 2+ O(1) steps fOITEST-EQUALITY-TO-K].

The programTEST-GREATER-THAN -K is similar to the
above attaining 6+ O(+/n) time andn+O(+/n) spacelvs.
3n+0(1) time and 2+0(1) spacé

APPENDIX B: PHASE FREEDOM
IN IMPLEMENTATION OF REVERSIBLE ROUTINES

Here we will explain ways in which the quantum phase
can be treated in the essentially classical reversible routines
which we have been discussing throughout this paper. In the
language of quantum logic gates, the bit-level logic state-
ments used in the programs here are represented by unitary
matrices applied to the quantum wave function of all the
registers. These unitary matrices have a special restriction
which make them *“classical,” which is that the matrix ele-
ments are only 0 or 1; this means that every definite compu-
tational statdx) is taken to another definite computational
state|f(x)), and not to a superposition of states. To give an
example, the Toffoli gate, the three-bit implementation of the
AND gate in reversible logic, involves the following unitary
matrix:

(B1)

O O O O O O O B
O O O O O o r o
o O O O O O O
o O O O r O O O
o O O »r O O O O
o O »r O O O O O
R O O O O O O O
= O O O O o
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Here we consider the question of whether elementary operavhile the Toffoli gate with modified phasd&q. (B2)] re-
tions with modified phase$.e., in which the matrix ele- quires only threexor’'s and four one-bit gates. We will es-
ments are unimodular complex numbet$, rather than be- tablish here that the less-costly gate can in fact be used for
ing 1) could be used in the implementation of the most of the Toffoli gates, and related three-bit operations,
Schumacher function. We are motivated to investigate thishat are used in the implementation of the Schumacher com-
because we found in our previous stUdyl] that the imple-  pression function.

mentation of a modified Toffoli gate with a single non-zero  Ngte that it is necessary that the complete Schumacher
phase calculation be carried out with all the quantum phases equal
to zero, in order that the superposition states discussed in

1 0 0 0 0O 0O L .

Sec. | maintain the correct phase relation to one another.
0100 0 00O Thus the question becomes: how can the effect of the non-
0 01 0 0 0OTO zero phase in EqB2), if it is introduced in one Toffoli gate,

be undone at some later step of the calculation? The answer
0 001 0 O0O0UDO : : . . X

' (B2) (which we will establish shortlyis the obvious one: many of

0 00O0-1000 the reversible routines which we have introducatthough
0 00O O 1 00 not the high-level Schumacher program itsdélave a palin-

dromic character, so that a Toffoli gate on three bits is ex-
0 00O 0O O0O001 » ; i

actly “undone” at a later stage of the computation, roughly
0 000 0 01

as far from the end of the subroutine as the original gate is
Hom the beginning. It turns out that the effect of thel
phase factor can be precisely undone at the second occur-
rence of the gate, too.

requires fewer resources in the following sense: we showe
that the zero-phase Toffoli gaf&Eq. (B1)] can be imple-
mented with six two-bitxor gate and eight one-bit gates,

f f! | bitslton

bits n+1 tom

tl t‘z t3 tq

We will now establish the desired basic result using the “€pg (B4)
setup of the figure, that the Boolean functibnan be imple-
mented with any arbitrary phase factors, so long as they also )
appear inf ~%, no matter what the intervening Boolean func- in Which the reverse phases are implemenitEdr the phases
tion g is, so long ag does not modify the values of the bits I Ed. (B2), the operation is self-inverdeln one case, the
on whichf andf ! act. By applying this results repeatedly Pairing is between statements in .dlfferent, palindromically
to the subroutines which we have introduced, starting at th@"anged calls of the same subroutine; for these we have used
innermost level, we deduce all the three-bit primitives which& distinct symbol
can be implemented with nonzero phase. Assignments in
which these nonzero phases are permitted have been identi- —. (B5)
fied by the special assignment symbol

€, (B3) After establishing the basic result, we will review a few of
the details of this implementation in the Schumacher func-
These statements are always paired with others, denoted ljon.
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Let us first write down what the set of operations in therather than thenput values(this is the transpogeHere we

figure is supposed to do. Beginning with the basis state

m bits
et et
|z) = |Z122. . Tpee ) (B6)
at timet,, it becomes at,, after the operation of,
n bits
p——— e
") = | f(z1%2...Tn) Trg1-- T
(B7)
Then at timet; the state is
n bits
. ,——_
exp(i8y(z"))| f(z122...7,) g(2")). (B8)
N’
m — n bits

g(x") depends on the state of the entinebit registerx’, but

only modifies the lasin—n bits, as indicated. Note that we
allow for the possibility thag itself is a modified Boolean

use the fact thagy does not modify the firsh bits—their

output values are the same as the original inputs
X1X5 . . . X, . Rendering this in mathematical language:
Oi-1(F(Xq .. . Xp))=—0; (X1 ...%X,). (B13)

Thus, the two#; terms in the phase in EgB12) cancel out,
and Eq.(B12) becomes identical to E4B9), which is the
desired result QED.

Finally, we briefly review the application of this result to
the programs introduced in the text. The first appearance is in
CONDITIONAL-ADD-K, where the role off is played in the
innermost part of the program by the assignment statement

Cn—l<_€Cn—lEB MAJ(kn—Z -Xn—2 rcn—Z)-

This is a three-bit operation of the Toffoli tyder a trivial
modification of i) involving the bitsC,,_;, C,_,, and
X,_o. T~ occurs a short distance down,

Ch-14€RCh_1®MAI(Ky_2,X1—2,Cn_2).
The role ofg is played by the two statements
Xn-1Xn-1®(Kn-1/\B),
Xn-14=Xn-1®(Cy-1/\B).

function with nonzero phases. This is necessary because v@bviously, onlyX,_ is modified byg, so the condition that
will apply this result in a nested fashion in the Schumachery modify only bits not touched by is satisfied; so, we are

subroutines. Finally at timg, the state is

exdifg(x)1[X1Xz . . . X 9(X")). (B9)

That is, the firsn bits are restored to their original state, and

bits n+ 1 throughm remain in the statg(x).
Now, the question is, will the state E(9) still result if

the function f is modified to introduce nonzero phases
0:(Xq . . .X,)? If we establish that this is true for all Boolean
inputs|x), this will suffice to prove that these networks have

the same action on any arbitrary quantum stétas follows

directly from the linear superposition principle of quantum
mechanics We follow the time evolution as before with the

modified f. At time t, the state is

exdifs(Xy .. X)) F(X1Xo + . X)) Xnsq - - - Xm)-
(B10)

Then at timet:

expli[ fg(x")+ 05(Xq . . . X)) I} F(XaXz - . . Xp)Q(X"))

(B12)
and finally att,:
expli[ O:(Xy . . . Xp) + Og(X")
+ 0i-1(F(Xy . . X)) IHX1Xo - - . Xp9(X")).  (B12)

allowed to introduce a phase-modifiédas indicated by the
<€ and+€ g assignments. Moving away from the innermost
part of the program, we see that all the above is nested inside
a largerg in which C,_4, X,_,, and X,_, are modified,
surrounded by af—f~! pair involving the bitsC,_»,
X,_3, and C,,_3; working outward in succession this way,
we conclude that all th&; assignments may be replaced
with phase-modified€ and <& g assignments.

In Sec. IV B we exhibit a pair of statements,

B<cBa(Y>1),
B Ba(Y>1),

playing the role off andf 1. These are not primitive three-
bit operations as in the earlier examples, but they are them-
selves implemented with bit-level prograifisBEST-GREATER-
THAN-K). For thisf 1, the <€ 5 assignment requires that the
bit-level routine be run in the time-reversed order. This can
be done since classically, this Boolean function is its own
inverse. In the time-inverted'EST-GREATER-THANK, the
«€’s and <€ g’s should be interchanged. Ti& assignment
involving the symbok< in this routine is special, in that it is
paired with the same statement in the time-reversed call to
TEST-GREATER-THANK. This special symbol is a reminder
that this statement should be implemented with the phases
corresponding to the€ assignment in the first call to the
program, and with those corresponding to tieg assign-

The final term in the phase factor can be simplified. Recalment in the second call.

that the unitary transformation correspondingfto® is the

We have not indicated phase-modifying assignments for

transpose of the complex conjugate of the unitary transforany of the two-bit gate level operations in these programs.

mation corresponding té. (This follows directly from the
definition of unitarity) Therefore, to ge®;-1 from 6;, we

flip the sign(this is the complex conjugatignand we make
the argument of the function theoutputvalues of the bits

We take as given that these two-bit gates could be imple-
mented with zero phases. But if this were not the case, then
many of these paired assignments may be phase-modified in
exactly the way we have shown for the three-bit primitives.
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