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Quantum data processing and error correction

Benjamin Schumaché?* and M. A. Nielsert
Center for Advanced Studies, Department of Physics and Astronomy,
University of New Mexico, Albuquerque, New Mexico 87131
2Theoretical Astrophysics, T-6, M.S. B288, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 26 April 1996

This paper investigates properties of noisy quantum information channels. We define a quantity called
coherent informationwhich measures the amount of quantum information conveyed in the noisy channel. This
guantity can never be increased by quantum information processing, and it yields a simple necessary and
sufficient condition for the existence of perfect quantum error correcti®h050-2947®6)03809-7

PACS numbd(s): 03.65.Bz, 89.70:c

I. INTRODUCTION

This paper reports some results relating to the transmis- R
sion of quantum information through noisy channels, that is,
channels that are not isolated from their environments. It ’\I/RQ> v
builds upon an earlier investigation of this situation by one — &
of us[1]. We begin with a brief general discussion of noisy Q Q'
guantum processes and their mathematical descriptions.

Suppose a quantum systépis subjected to a dynamical
evolution, which may represent the transmissiorQQofia a
noisy quantum channel. In general, the evolutiorQofwill

be represented by superoperato€®, which gives the map- We will call R the “reference” systemQ may in fact
ping from initial states(represented by density operators initially be in a pure entangled state with some external sys-
pQ) to final states tem, but from our point of viewR is introduced simply as a

mathematical device to purify the initial state.
, The overall systenrRQ evolves according to the “ex-
pQ =E&9(p9), (1)  tended” superoperatdf® 9, wherelR is the identity. That
is,

where we use primes to denote states after the evolution. The RQ 1R RQ

mapping represented I8 is linear inp® and preserves both pRY =1R2£3(pR9). (2
the trace and the positivity of its arguments. The evolution of

Q will be unitary only if it is isolated from other systems. The extended superoperatdte £ is also trace preserving

We might represent this by the schematic diagram and if it is to be a legitimate quantum evolution it had also
£ better preserve the positivity of the density operator. This
o Q Q' second condition is in fact a nontrivial requirement on the

original superoperataf? calledcomplete positivity2]. The

physical requirement tha dynamics be extensible in this
trivial way to dynamics for the compound systdRQ im-
poses the mathematical requirement that the superoperator
o _ £ER be completely positive.
We might imagine, however, that the syst€mis part of It turns out that every completely positi# has a rep-
a larger systenRQ and that this compound system is ini- resentation as anitary evolution on a larger systerf8].
tially in a pure state|WR?). Then po=Trg|WR(WR.  Thatis, if &2 is an allowable quantum evolution f&¥ (one

(We say tha{PR?) is a “purification” of p?.) The system  that is extensible as indicated abdvéren we can introduce
R is isolated and has a zero internal Hamiltonian. This situan “environment” systenE, initially in a pure state, such

ation might be represented by a slightly more complicatednat

diagram
E%pQ)=TrgU%(p°a |0F)(0F U (3)
*Permanent address: Department of Physics, Kenyon College,
Gambier, OH 43022. for a unitary operatok) °F. This might be represented as
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If we have an operator-sum representation 88r then we
e Q Q' can easily write down an operator-sum representation for the
extended superoperatbf® £2 using the operatorsfR AJ
The following three conditions are equivaldii.

yeor

(i) E° is a trace-preserving, completely positive linear
map on density operators &f.

(i) EQ has a unitary representation.

(iii ) 2 has a normalized operator-sum representation.

E

The environment systeii and operatot) °F might be cho-
sen to be the actual physical environment and its interactio
with Q, but this is not really necessary. The only thing that
matters for our purposes is the dynamics@f and E is
introduced only as a mathematical artifice. There are many Il. ENTANGLEMENT FIDELITY
choices ofE, |0F), andURE that will do the same job. We
will call a representation of? in terms of a unitary evolu-
tion of a larger systenwith the environmenk initially in a
pure statg a unitary representatiorof £2. Every allowable
£ admits such a representation.

If we introduce both the reference systé&rto purify the
initial state and the environmeift to give a unitary repre-
sentation for€Q, the situation looks like

ﬁor a given&Q, neither the unitary representation nor the
operator-sum representation is unique.

From now on, we will suppose that the syst@ninitially
in the statep?, is subjected to the evolution operatdt. We
may introduce a reference systé&rto purify the initial state
to |wRQ) and we may introduce a unitary representation for
£Q involving an environment systel, as convenient. Nev-
ertheless, our focus will be on quantities that eteinsic to
Q, depending only op® and &°.

Given a pure statgy) of a quantum system, we can de-

fine thefidelity F of an arbitrary(possibly mixed statep of
R the system as
R L
jere) F=(ulplw)- ®
Q Q F is a measure of “how close) is to|#)( | and is equal to
unity if and only if p=|y)(¥]|. (It is possible to extend the
Uer definition of fidelity to a measure of closeness between two

arbitrary density operators,; and p,, but this simpler defi-
nition is sufficient for our purposd4].)

E The first important intrinsic property @ we will define
is the entanglement fidelity & This is[1]

The initial pure state of the joint systeRQE is

Fo=(WRYpRY|WRAY = (TrpRAQ)(TrpRAR"). (9
[WRE) = ¥R ®|0F). (@) (PRAPRERY =2 (TrpCAR)(TrpCAZ"). (9)

Since the overall evolution is unitary, the final state is also 3 ccording to the first expressiof,, measures how faithfully

pure state the entangled statgPR?) is preserved by the dynamics of
) Q. The second expression emphasizes that this is a quantity
RQE'\ _ R E RQE
[WROE) = (1Re U R WREE). 4 intrinsic to Q, i.e., depending only op® and&. The exact

The states of the various subsystems before and after Y that p? is “purified into [WF) is |rrelev_ant. It is
evolution may be obtained from these states by partial trace _sef_u_l to explore the relqtlon betweEy and various other
It is also possible to represe&i® in an “intrinsic” way, idelities that may be defined fap. . .
one that does not introduce any additional quantum systems. Suppose wg have an e_nsem6lef pure states, in which
One particularly useful representation of this sort is thel € ith state|¢;") occurs with probabilityp; . The ensemble

operator-sum representatiowhich involves a collection of 1S described by the density operator

operatorsAS that act in the Hilbert spacé{y describing
Q. Thisis p2=3 pludufl (10

P =EApY =2 AZpOAT". (6) o |
© If we subject theith state to the dynamical superoperator
S?, the resulting state ipQ = £2(| y2)(y2]). The “input-

The operatordA? must satisfy a normalization condition o . .
P m fy output” fidelity of this process is

QtAQ_ !
; ARTAL=102. @) Fi=(ullo? [¢d). (1D



54 QUANTUM DATA PROCESSING AND ERROR CORRECTION 2631

The average fidelity?_for the ensemblé& is given by Se=S(pRY)=S(pE)=S(W), (15)
rp - 0Q Q[ Q whereW is a density operator with componeitis an ortho-
F=20 piFi=2 piuille? [9)- (12 [ imal basis

Given p@ and £2 we can also define the entanglement W, =TrASp A", (16)
fidelity Fe. It turns out that this entanglement fidelity is ) ] o
never greater than the average fidelity Once again,S, has an easy interpretation in terms of the
entangled stat¢¥WRQ), as the entropy of the joint system
FesE (13 RQ after the evolutionor, equivalently, the entropy of the

environmentE afterward if the environment starts out in a
Thus the entanglement fidelity is a lower bound for the avure state NeverthelessS, is an intrinsic property ofQ,
erage fidelity of an ensemble of pure states. depending only op® and £°.

We will briefly sketch the reasons for this connection be- The entropy exchange is not in general equal to the
tweenF, andF. Given a purificatio] ¥ R®) for p°, we can changes in entropy of either the systegnor the actual
always realize the ensemblz as an ensemble of relative Physical environment d®. Itis a measure of the information
states ofQ given by the outcomes of the measurement of arf*changed betwee@ and the rest of the world during the
observable orR. In other words, the entangled stateR® gvc_)IutlonEQ. It has several useful properties; for example, it
allows us to create the ensemilef Q states by a procedure limits the amount of information that an eavesdropper might
that affects onlyR. This procedure commutes with the dy- @cduire in a quantum cryptographic protog].
namics of the syster® given by &2 and so could be per- _ A connection betweeR ands, is given by thequantum
formed afterQ has undergone its dynamical evolution. This Fano inequality[1], which states that, if the Hilbert space
allows us to expresE as the probability of a measurement Hq describing systen@ hasd complex dimensions,

outcome on the evolved stat& <, and this condition turns h(Fe)+ (1—F)log(d?—1)=S,, 17)
out to be weaker than the condition that expre$sesThus
F.<F. whereh(p) = — plogp—(1—p)log(1—p). This means, among

Now, given any staté¢®) in the subspace that supports other things, that iF =1, thenS,=0. (The quantum Fano
pQ, it is always possible to find an ensemtdefor p© in inequality is analogous to the classical Fano inequality
which |¢®) is a component with nonvanishing probability. which gives a roughly similar relation between the probabil-

This has an interesting implication. Let ity of error in a classical channel and an entropy term de-
scribing the noise in the channel.
F=(E%A[¢°N(¢D19?) (14)
IV. COHERENT QUANTUM INFORMATION
be the input-output fidelity associated wifl$®). Then Q
F.=1 only if F=1 for all states|¢®) in the support of We now define a third intrinsic quantity of interest, which

pQ. This is because we can find an ensemblepféicontain-  we will call coherent (quantum) information I This may be

ing | Q) and the average fidelity of that ensemble must be defined as

unity. It follows that the fidelity of every component of the

ensemble is unity. le=S(p?) —S(pRY)=S(p?) - S.. (18
Another connection between the pure state fidelity and the

entanglement fidelity is this: Lety=0 and suppose (This obviously depends only op? and £2.) I, may be

F=1—y for all |¢°) in the support ofp®. Then it can be positive, negative, or zero. An analogous quantity for classi-

shown that[5] F.=1—-3%/2 (a similar result was also cal systems can never be positive since the entropy of the

pointed out to us by Barnufi6]). Thus we can conclude that joint systemRQ can never be less than the entropy of the

F.=1 if and only if F=1 for every pure staté)®) in the  subsystemQ. Thus we can think of, as measuring the

support ofp®. “nonclassicity” of the final joint statepRQ', the degree of
The entanglement fidelitfr,, which depends only on quantum entanglement retained Ryand Q. Phrased in this

p® and &9, thus has some useful relations to the other fideli-way, | is a natural measure of the degree to which quantum

ties of the systen®. We might informally summarize these coherence is retained by the dynamical proc#ss

by saying that a high entanglement fidelity implies a high We will begin exploring the properties df by making

ensemble average fidelify and a high minimum fidelity on use of thesubadditivity of the von Neumann entrop}8].

the supporting subspace p® implies that the entanglement Consider a compound systeAB composed of subsystems

fidelity F. cannot be too much lower. A andB. Then

AB A B
Ill. ENTROPY EXCHANGE S(p™")=S(p") +S(p"). (19

The second important intrinsic quantity that we will de- Equality holds if and only ifAB is in a product state
fine is theentropy exchange§1]. Let S(p)=—Trplogp be  pB=p”®p".
the von Neumann entropy of a density operatdwhere the A second useful fact applies AB is in a pure state. In
logarithm is taken to be basg.ZThen this casep” andp® have exactly the same nonzero eigenval-
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ues(as can be easily seen from the Schmidt decomposition pQ”:SQ(pQ’)
of |®*B)) and thusS(p*) = S(pB). 2
Now suppose that we have a unitary representation for =83:89(pQ). (25

£° involving an environment systerB initially in a pure

state. The total systelRQE is thus initially in a pure state, We will call the evolution by the “first stage” of the
and since it evolves according to unitary dynamics, the finakvolution and the evolution b&ZQ the “second stage.” These
state ofRQE is also pure. The coherent informatidg is  might represent, for example, the transmission of the infor-

thus mation inQ through a noisy channétlescribed b)E?) fol-
lowed by some quantum information processing such as er-
= S(pQ') -s, ror correction(described b;é?). Our schematic is
U ! Q Q
=S(p"F)—S(p%) & &;
’ pQ Q Ql QII
=S(p"), (20)

The overall process is represented by the composition of
these two processes, so thg= 3£

We adopt adopt unitary representations for these pro-
cesses. That is, we imagine that there are two environment
, systemsE, andE,, initially in pure state§0F1) and|0F2),
S(p9)= S(p?)-S, 21) which interact in succession wit via unitary operators

———— U®E1L and VRE2, The full schematic diagram, including the
I, reference systerR, looks like

The coherent information can be no greater than the initial
entropy ofQ, which measures the initial degree of entangle- R
ment of R and Q. [S(p°) also measures the resources nec- RO s
essary to faithfully store this entanglemdntl].] Equality I\I’ >

holds if and only ifpRE = pRe pE'. This is a special case of 0 o Q"

where the last inequality follows by subadditivity. BRtis
not affected by the interaction betwee@ and E, so
pR =pR. SinceRQ is initially in a pure state, we conclude
that

a more general property of the coherent informatiQn
which we will demonstrate in the next section. UQE VQE:
V. QUANTUM DATA PROCESSING INEQUALITY E E,
SupposeX, Y, andZ are classical random variables and
suppose that The initial state of the whole system is
X—Y—2Z 22 [WROEE) =R ®[0%1)®]0%2). (26)

_ In the first stage of the dynamics, this evolves to
is a Markov process, so thatdepends only oY and not on

X directly. For exampleX and Y might be the input and | WRQEE) = (1Rg UQF1g 1F2)| WRQEES)
output of a noisy communication channel ahanight be the
result of somgpossibly stochastjgrocessing of the output. = |PRRE") g |0F2), (27
It is possible to prove a “data processing inequalify] for
classical information theory, which states that In the second stage, this evolves to
1(X:Z)=I(X:Y), (23 [WROEE) = (170 1510 V%) |[WRORES) . (28)

The states of the subsystems can be derived by partial traces
wherel (X:Z) is the mutual information betweex andZ,  of these.
etc. This means that the mutual information between the in- To analyze this two-stage process, we make use of a prop-
put and output of a channel cannot be increased by processrty of the von Neumann entropy callsttong subadditivity
ing the output in any way. [8]. Let ABC be a compound system composed of three
We can establish a similar inequality for the coherent in-subsystem#\, B, andC. Then
formationl . Suppose the initial state @ is p® (which has

a purification| ¥ R9)) and further suppose th& undergoes S(p*B9) +S(p®) <S(p"®) +S(p®°). (29
two successive dynamical evolutions, described by superop- ] ] ] o
eratorse and£9 . Then This property is logically stronger than simple subadditivity;

if B is supposed to be in a pure statso that
/ pABC=pABo| ¢B)($B|), then we recover ordinary subaddi-
pQ =E2(p9), (24)  tivity for A andC.
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We will apply this inequality to the compound system initial state of the system either exactly or very nearly by an
RE;E, after both stages of the dynamics have taken placeallowable quantum proce$8]. This error correction process

This yields typically consists of an incomplete measurement performed
. , : . on Q followed by a unitary evolution 0@ that depends on
S(pREE2) + S(pE1) < S(pREL) + S(pF1F2). (300  the measurement outcome. We will describe our quantum

) o ] ) ] ) error correction scheme by the evolution superoperﬁ?qr
][Each 't:erm In th'ls me_qualtl:]y may b"e rte\évrltteg Ilg a different gq the overall process of channel dynamics plus error correc-
orm. For example, since the overall stateRIDE E, is pure 1 ic i —
at every stage, it follows that tion Is given k-)yé% gg £ , :
' The following question naturally arises: Under what cir-

" " cumstances can quantum error correction be performed? We
RE E = Q . . . . . . .
S(p™72)=S(p™ ). (31 will consider an interesting special case of this question:

Neither of the system® or E; is involved in the second Given some channel dynamiég, when is.it possible to find
stage of the dynamics, in which andE, interact. Thus their @ Subsequent quantum evolutié that givesperfecterror

" ’ 1 ’)
state does not change during this stag8=i=pRE1. After correction

. We will take perfect error correction to mean that the
Fh‘? first stage, as noted above, the compound syRtQE, entanglement fidelity ¢, of the overall process is unity. In
is in a pure state. Thus

other words, we require that the error correction scheme be

RE\ _ o REN_ ' able to perfectly restore the entanglementofvith the sys-
S(pRF1)=S(pRF1)=9(p?). (32 tem R. (This is a reasonable definition since we know that
The remaining two terms can both be recognized as entrop{?® €ntanglement fidelity equals unity if and only if every

exchanges of various processes. That is, pure state in the su_bspaqe supportifyhas fidelity unity)

If Fe=1 then the final(mixed state ofQ must equal the
S(pE1)=S(pF1) =Sy, (33 initial state:p?" = p®. From the quantum Fano inequality we

can also infer that the entropy exchargg, of the overall

S( pElEZ):seH, (34)  process must be zero.

The quantum data processing inequality allows us to es-
where S, is the entropy exchange of the first stage andtablish a necessary condition for the existence of a perfect
Se12 is the overall entropy exchange of both stages. Noterror correction scheme.‘ISi“zg is such a scheme for the initial

that, in generalSe;,# Se; + Se. In fact, the overall entropy  statep® and the channel dynamicﬁ, then
exchangeS,,, can be less than either of the individual en-

tropy exchange$,; and S.,. S(pQ)BS(pQ')—Sel
Making these substitutions, the strong subadditivity in-
equality (30) for RE;E, after both stages of the dynamics =S(p?") —Se1,
yields a
, , =S(p~),
S(p?) +Ser=<S(p?) +Ser2, (35) ,
o o S(p?)=S(p? )~ Ser=le1- (38)
S(p~ )= Se12=S(p~ )~ Se1- (36)

) ) o . Thus perfect error correction is possible only if the coherent
That is,le12=1e1. The coherent |.n.format|on m_the first stage jhformation of the channel equals the entropy of the input
cannot be increased by the additional dynamics of the secongte.

stage. We thus can summarize our results so far as We will next show thatS(p?) =1, is also asufficient
condition for the existence of a perfect error correction
S(PQ)?S(pQ,)"Sel ;5(pQ”)_5m scheme. We begin by writing down the Schmidt decomposi-
——~— e~ (37 tion of the initial pure entangled staf@R®) of the system
Iel Ie12 RQ
This is.the guantum Qata proqessing inequalitfhe first . |prQ>:2 \/?\—k|a|5>®|ﬁ8>, (39
inequality, of course, is a special case of the second, since k

S(p®) is the coherent information in the trivial process given
by £9=19.] where we take the sum to include all of the nonzero eigen-
values\ of p@ (and thus als@®). If S(p?) =1.,, then we

VI. ERROR CORRECTION have already shown thafFi= pR® pE1. This means that

Supposé‘f represents the transmission of quantum infor- )
mation via a noisy channefy may involve “decoherence” pREL=" M| af)(aR ®| y,El)()quI. (40
and other noise processes, which will reduce the entangle- k!
ment fidelityF.; of the channel. However, it has been shown _ , £
that under some circumstances it is possible taqdantum  Where thew, are the nonzero eigenvalues @t and|y,™)
error correctionon the output of the channel, restoring the are the corresponding eigenstates.
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The overall state o0RQE; is a pure statéWRQE). We

can use our expression f@REL to write down a Schmidt
decomposition of this overall statéseparating into sub-

1Re AR 1B WROE) = I\ |af) @ (AR 42))
Kl

E
systemsQ andRE,): ®|y,")
/ — R Q E
(WROE) = WulafeloDolnh). @D =2 WaulalyelgR)eln
k,I
(This yields a sort of “triple Schmidt decomposition” be- = \/E Ek: \/)\—k|a5>®|:88> ®|7|E1>
cause the eigenstates p‘sz, are product statesHere the
Q states|¢Q) are orthonormal and span a subspace of :\/E|\PRQ>®|)/IE1>. (49
Hg. LetI1? be the projection onto the subspace perpendicu-
lar to this one, so that Therefore,

RQE[— |Rg £Q@ | E1(| WRQE) (WRQE
Mo+ [d)(4RI =1 4 P ®E @17 X )

= (1R@ AQ® 151)| wRRE)(WRQE)| (1Rg AQw 1F1) '
We will now explicitly construct an operator-sum repre-

sentation for the error correction procegsand show that it +> (1Re AR 1F1)| WwRQE) (YRQE|
is a perfect error-correction scheme. Let !

1R AQ 1E T
AQ=TIC, 43) (ATl
=3 [ RYUTR e (o ]

AR=2 1Bl (44 ,
=[TRO(TRY @ pFa. (50)

Intuitively, for eachl the operatoAlQ represents a projection

. i« RQ_ RQE/ _ |\yR RQ)
onto the subspace spanned by the vec|t¢i%> (for all val- Th? fmal state oiRQ 'S_ ‘_O Tre,p v Q><qf k
ues ofk), followed by a unitary transformation that takes which is exactly the original entangled state. Therefore the

|¢Q> to |I8Q> It is easy to see that entanglement fidelity of the entire processHg ,=1. Our
K ks superoperatorS® thus gives a perfect error correction
AQ|¢Q>_0 (45) scheme. Once again we emphasize that, although we made
01Pxi) =Y

use of the particular input state® (with purification
01 40 o |WRQ)) to construct our perfect error-correction scheme, this
AP D) =11 Be)- (46)  is equivalent to perfect error correction for all pure states in
the support ofp? or indeed for any other entangled state
To yield an allowable dynamical evolution &, these must with the same support ifi(q .
be properly normalized. That is, We may compare our result to a classical theofém
Suppose the random variabl¥sandY represent the inputs
Ot A0 QtAQ_ 110 O\ 20! 4Q\/ 4Q and outputs of a classical information chan.nel. Then the in-
As A+ EI‘« ArAr=11-+ Z g} |k (BRI B ) by put may be reconstructed from the output with zero probabil-
’ ity of error if and only ifH(X)=1(X:Y), whereH(X) is the
Shannon entropy of the input variable.
=M+ [gN(eRI=12 (47
' VII. REMARKS

Thus the operatorAOQ andA|Q yield an operator-sum repre-
sentation of an allowed quantum evolution superoperato

&

The conditionS(p®) =1, which is necessary and suffi-
Eient for perfect quantum error correction, has some interest-
. ing implications, which we will briefly mention here. Sup-
To see thaty specifies a perfect error-correction scheme,pose that the state? is due to an ensembli& in which the
consider the effect ohPRQEi) of the extended superoperator pure staté<) appears with probabilitp; . As we remarked
IRe 9181, The operator-sum representation  of before, we can realize such an ensemble by starting with a
IRe Q181 is composed of operators of the form purification|WR?) and performing a measurement of a suit-
1Re AR® 151, ableR observable. Théth outcome of this measurement will

appear with probabilityp; an% the relative state @ given
, that measurement will beg;°). The question “Which Q
1ReAfe 1E1|‘I’RQE1>:; Wil @ (AJI#N @Y state?” is then equivalenflﬁlo>the qugstion “Whighmea-
’ surement outcome?”
=0, (48) As we showed, the equality5(p®)=I, means that
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pRE'=pRe pE'. If R andE are in a product state after the try,” being defined for an input statg® and a process®?,
dynamical evolution, then measurement result&drave no  while the mutual informatioh(X:Y) is a symmetric quantity
statistical correlation with measurement results RniIn  built out of a joint probability distribution foX and Y in
other words, no observable @ alone will be able to pro- which time does not explicitly appear. For another,
vide any information about the outcome of a measurement — 5 ,Q") — 5(pR?') is a quantity that can never be positive
performed orR. Therefore, nd observable can provide any classically, so that no classical channel can convey a positive
information about whichQ state from the ensemblé is  amount of coherent quantum information.

present. In short, perfect quantum error correction is possible Recent work by Lloyd10] indicates that ,, is related to
only if the environment obtains no information about thethe capacity of a noisy quantum channel in a way that par-
state of the syster@. allels the relation of the mutual information to the classical

We summarize our main points and conclusions here. capacity. That is, he defines the capa@tyo be
(i) For a given initial state® and dynamical superopera-

tor S, we may define several intrinsic quantities of interest, C=maxl,. (51
including the entanglement fidelify,, the entropy exchange P2
S., and the coherent informatidy. F, and S, are related
by a quantum version of the Fano inequality of classica
information theory.

(ii) The entanglement fidelity is closely related to various
input-output fidelities for pure states .

(iii) The coherent information is a measure of the amoun[
of “distinctively quantum” information that passes through

Q
a channel. In generafi(p™)=I,. mentE to make the overall dynamics unitary. This approach

(iv) The coherent information can never be increased b . - N : . )
the action of further dynamics, so that for successive inde%\ppears to yield many important insights into quantum infor

pendent processdd) and (2) we obtain the quantum data mation theory.
processing inequalityle;=1¢15.
(v) Perfect quantum error correction is possible if and
only if S(p?)=1,, in which case the environment has ob-  The authors wish to acknowledge the help of many people
tained no information about the state@fvia its interaction  during the course of this work, including H. Barnum, C. H.
with Q. Bennett, C. M. Caves, C. A. Fuchs, E. H. Knil, R.
In general, we believe that the coherent informatign Laflamme, A. Peres, J. Smolin, M. D. Westmoreland, and W.
will play a role in quantum information theory analogous to H. Zurek. This work was supported in part by the Office of
that played by the mutual informatidigX:Y) in the classical Naval ResearckGrant No. NO0014-93-1-0116M.N. would
theory. There are many differences between the two. For onkike to thank the Australian-American Education Foundation
thing, the coherent information has a built-in “time asymme- (Fulbright Commissionfor financial support.

ccording to Lloyd, quantum information can be transmitted
hrough a noisy channel at any rate less ti@anvith arbi-
trarily good fidelity. This is very much in accord with our
own results and speculations.

The paper continues the program of finding useful “in-
rinsic” quantities by “extrinsic” means, introducing a ref-
erence systenR to purify the initial state and an environ-
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