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I. INTRODUCTION

This paper reports some results relating to the transmis-
sion of quantum information through noisy channels, that is,
channels that are not isolated from their environments. It
builds upon an earlier investigation of this situation by one
of us @1#. We begin with a brief general discussion of noisy
quantum processes and their mathematical descriptions.

Suppose a quantum systemQ is subjected to a dynamical
evolution, which may represent the transmission ofQ via a
noisy quantum channel. In general, the evolution ofQ will
be represented by asuperoperatorEQ, which gives the map-
ping from initial states~represented by density operators
rQ) to final states

rQ85EQ~rQ!, ~1!

where we use primes to denote states after the evolution. The
mapping represented byEQ is linear inrQ and preserves both
the trace and the positivity of its arguments. The evolution of
Q will be unitary only if it is isolated from other systems.
We might represent this by the schematic diagram

We might imagine, however, that the systemQ is part of
a larger systemRQ and that this compound system is ini-
tially in a pure stateuCRQ&. Then rQ5TrRuCRQ&^CRQu.
~We say thatuCRQ& is a ‘‘purification’’ of rQ.! The system
R is isolated and has a zero internal Hamiltonian. This situ-
ation might be represented by a slightly more complicated
diagram

We will call R the ‘‘reference’’ system.Q may in fact
initially be in a pure entangled state with some external sys-
tem, but from our point of viewR is introduced simply as a
mathematical device to purify the initial state.

The overall systemRQ evolves according to the ‘‘ex-
tended’’ superoperatorI R^EQ, whereI R is the identity. That
is,

rRQ85I R^EQ~rRQ!. ~2!

The extended superoperatorI R^EQ is also trace preserving
and if it is to be a legitimate quantum evolution it had also
better preserve the positivity of the density operator. This
second condition is in fact a nontrivial requirement on the
original superoperatorEQ calledcomplete positivity@2#. The
physical requirement thatQ dynamics be extensible in this
trivial way to dynamics for the compound systemRQ im-
poses the mathematical requirement that the superoperator
EQ be completely positive.

It turns out that every completely positiveEQ has a rep-
resentation as aunitary evolution on a larger system@3#.
That is, if EQ is an allowable quantum evolution forQ ~one
that is extensible as indicated above!, then we can introduce
an ‘‘environment’’ systemE, initially in a pure state, such
that

EQ~rQ!5TrEU
QE~rQ^ u0E&^0Eu!UQE† ~3!

for a unitary operatorUQE. This might be represented as
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The environment systemE and operatorUQE might be cho-
sen to be the actual physical environment and its interaction
with Q, but this is not really necessary. The only thing that
matters for our purposes is the dynamics ofQ, and E is
introduced only as a mathematical artifice. There are many
choices ofE, u0E&, andUQE that will do the same job. We
will call a representation ofEQ in terms of a unitary evolu-
tion of a larger system~with the environmentE initially in a
pure state! a unitary representationof EQ. Every allowable
EQ admits such a representation.

If we introduce both the reference systemR to purify the
initial state and the environmentE to give a unitary repre-
sentation forEQ, the situation looks like

.

The initial pure state of the joint systemRQE is

uCRQE&5uCRQ& ^ u0E&. ~4!

Since the overall evolution is unitary, the final state is also a
pure state

uCRQE8&5~1R^UQE!uCRQE&. ~5!

The states of the various subsystems before and after the
evolution may be obtained from these states by partial traces.

It is also possible to representEQ in an ‘‘intrinsic’’ way,
one that does not introduce any additional quantum systems.
One particularly useful representation of this sort is the
operator-sum representation, which involves a collection of
operatorsAm

Q that act in the Hilbert spaceHQ describing
Q. This is

rQ85EQ~rQ!5(
m

Am
QrQAm

Q†. ~6!

The operatorsAm
Q must satisfy a normalization condition

(
m

Am
Q†Am

Q51Q. ~7!

If we have an operator-sum representation forEQ, then we
can easily write down an operator-sum representation for the
extended superoperatorI R^EQ using the operators 1R^Am

Q

The following three conditions are equivalent@3#.

~i! EQ is a trace-preserving, completely positive linear
map on density operators ofQ.

~ii ! EQ has a unitary representation.
~iii ! EQ has a normalized operator-sum representation.

For a givenEQ, neither the unitary representation nor the
operator-sum representation is unique.

II. ENTANGLEMENT FIDELITY

From now on, we will suppose that the systemQ, initially
in the staterQ, is subjected to the evolution operatorEQ. We
may introduce a reference systemR to purify the initial state
to uCRQ& and we may introduce a unitary representation for
EQ involving an environment systemE, as convenient. Nev-
ertheless, our focus will be on quantities that areintrinsic to
Q, depending only onrQ andEQ.

Given a pure stateuc& of a quantum system, we can de-
fine thefidelity F of an arbitrary~possibly mixed! stater of
the system as

F5^curuc&. ~8!

F is a measure of ‘‘how close’’r is to uc&^cu and is equal to
unity if and only if r5uc&^cu. ~It is possible to extend the
definition of fidelity to a measure of closeness between two
arbitrary density operatorsr1 andr2, but this simpler defi-
nition is sufficient for our purposes@4#.!

The first important intrinsic property ofQ we will define
is theentanglement fidelity Fe . This is @1#

Fe5^CRQurRQ8uCRQ&5(
m

~TrrQAm
Q!~TrrQAm

Q†!. ~9!

According to the first expression,Femeasures how faithfully
the entangled stateuCRQ& is preserved by the dynamics of
Q. The second expression emphasizes that this is a quantity
intrinsic toQ, i.e., depending only onrQ andEQ. The exact
way that rQ is ‘‘purified’’ into uCRQ& is irrelevant. It is
useful to explore the relation betweenFe and various other
fidelities that may be defined forQ.

Suppose we have an ensembleE of pure states, in which
the i th stateuc i

Q& occurs with probabilitypi . The ensemble
is described by the density operator

rQ5(
i
pi uc i

Q&^c i
Qu. ~10!

If we subject thei th state to the dynamical superoperator

SQ, the resulting state isr i
Q85EQ(uc i

Q&^c i
Qu). The ‘‘input-

output’’ fidelity of this process is

Fi5^c i
Qur i

Q8uc i
Q&. ~11!
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The average fidelityF̄ for the ensembleE is given by

F̄5(
i
piFi5(

i
pi^c i

Qur i
Q8uc i

Q&. ~12!

Given rQ and EQ we can also define the entanglement
fidelity Fe . It turns out that this entanglement fidelity is
never greater than the average fidelity@1#

Fe<F̄. ~13!

Thus the entanglement fidelity is a lower bound for the av-
erage fidelity of an ensemble of pure states.

We will briefly sketch the reasons for this connection be-
tweenFe and F̄. Given a purificationuCRQ& for rQ, we can
always realize the ensembleE as an ensemble of relative
states ofQ given by the outcomes of the measurement of an
observable onR. In other words, the entangled state ofRQ
allows us to create the ensembleE of Q states by a procedure
that affects onlyR. This procedure commutes with the dy-
namics of the systemQ given by EQ and so could be per-
formed afterQ has undergone its dynamical evolution. This
allows us to expressF̄ as the probability of a measurement
outcome on the evolved staterRQ8, and this condition turns
out to be weaker than the condition that expressesFe . Thus
Fe<F̄.

Now, given any stateufQ& in the subspace that supports
rQ, it is always possible to find an ensembleE for rQ in
which ufQ& is a component with nonvanishing probability.
This has an interesting implication. Let

F5^fQuEQ~ ufQ&^fQu!ufQ& ~14!

be the input-output fidelity associated withufQ&. Then
Fe51 only if F51 for all statesufQ& in the support of
rQ. This is because we can find an ensemble forrQ contain-
ing ufQ& and the average fidelityF̄ of that ensemble must be
unity. It follows that the fidelity of every component of the
ensemble is unity.

Another connection between the pure state fidelity and the
entanglement fidelity is this: Leth>0 and suppose
F>12h for all ufQ& in the support ofrQ. Then it can be
shown that @5# Fe>123h/2 ~a similar result was also
pointed out to us by Barnum@6#!. Thus we can conclude that
Fe51 if and only if F51 for every pure stateucQ& in the
support ofrQ.

The entanglement fidelityFe , which depends only on
rQ andEQ, thus has some useful relations to the other fideli-
ties of the systemQ. We might informally summarize these
by saying that a high entanglement fidelityFe implies a high
ensemble average fidelityF̄ and a high minimum fidelity on
the supporting subspace ofrQ implies that the entanglement
fidelity Fe cannot be too much lower.

III. ENTROPY EXCHANGE

The second important intrinsic quantity that we will de-
fine is theentropy exchange Se @1#. Let S(r)52Trr logr be
the von Neumann entropy of a density operatorr ~where the
logarithm is taken to be base 2!. Then

Se5S~rRQ8!5S~rE8!5S~W!, ~15!

whereW is a density operator with components~in an ortho-
normal basis!

Wmn5TrAm
QrQAn

Q†. ~16!

Once again,Se has an easy interpretation in terms of the
entangled stateuCRQ&, as the entropy of the joint system
RQ after the evolution~or, equivalently, the entropy of the
environmentE afterward if the environment starts out in a
pure state!. Nevertheless,Se is an intrinsic property ofQ,
depending only onrQ andEQ.

The entropy exchange is not in general equal to the
changes in entropy of either the systemQ or the actual
physical environment ofQ. It is a measure of the information
exchanged betweenQ and the rest of the world during the
evolutionEQ. It has several useful properties; for example, it
limits the amount of information that an eavesdropper might
acquire in a quantum cryptographic protocol@1#.

A connection betweenFe andSe is given by thequantum
Fano inequality@1#, which states that, if the Hilbert space
HQ describing systemQ hasd complex dimensions,

h~Fe!1~12Fe!log~d
221!>Se , ~17!

whereh(p)52plogp2(12p)log(12p). This means, among
other things, that ifFe51, thenSe50. ~The quantum Fano
inequality is analogous to the classical Fano inequality@7#,
which gives a roughly similar relation between the probabil-
ity of error in a classical channel and an entropy term de-
scribing the noise in the channel.!

IV. COHERENT QUANTUM INFORMATION

We now define a third intrinsic quantity of interest, which
we will call coherent (quantum) information Ie . This may be
defined as

I e5S~rQ8!2S~rRQ8!5S~rQ8!2Se . ~18!

~This obviously depends only onrQ and EQ.! I e may be
positive, negative, or zero. An analogous quantity for classi-
cal systems can never be positive since the entropy of the
joint systemRQ can never be less than the entropy of the
subsystemQ. Thus we can think ofI e as measuring the
‘‘nonclassicity’’ of the final joint staterRQ8, the degree of
quantum entanglement retained byR andQ. Phrased in this
way, I e is a natural measure of the degree to which quantum
coherence is retained by the dynamical processEQ.

We will begin exploring the properties ofI e by making
use of thesubadditivityof the von Neumann entropy@8#.
Consider a compound systemAB composed of subsystems
A andB. Then

S~rAB!<S~rA!1S~rB!. ~19!

Equality holds if and only ifAB is in a product state
rAB5rA^ rB.

A second useful fact applies ifAB is in a pure state. In
this caserA andrB have exactly the same nonzero eigenval-
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ues~as can be easily seen from the Schmidt decomposition
of uFAB&) and thusS(rA)5S(rB).

Now suppose that we have a unitary representation for
EQ involving an environment systemE initially in a pure
state. The total systemRQE is thus initially in a pure state,
and since it evolves according to unitary dynamics, the final
state ofRQE is also pure. The coherent informationI e is
thus

I e5S~rQ8!2Se

5S~rRE8!2S~rE8!

<S~rR8!, ~20!

where the last inequality follows by subadditivity. ButR is
not affected by the interaction betweenQ and E, so
rR85rR. SinceRQ is initially in a pure state, we conclude
that

~21!

The coherent information can be no greater than the initial
entropy ofQ, which measures the initial degree of entangle-
ment ofR andQ. @S(rQ) also measures the resources nec-
essary to faithfully store this entanglement@11#.# Equality
holds if and only ifrRE85rR^ rE8. This is a special case of
a more general property of the coherent informationI e ,
which we will demonstrate in the next section.

V. QUANTUM DATA PROCESSING INEQUALITY

SupposeX, Y, andZ are classical random variables and
suppose that

X→Y→Z ~22!

is a Markov process, so thatZ depends only onY and not on
X directly. For example,X and Y might be the input and
output of a noisy communication channel andZ might be the
result of some~possibly stochastic! processing of the output.
It is possible to prove a ‘‘data processing inequality’’@7# for
classical information theory, which states that

I ~X:Z!<I ~X:Y!, ~23!

where I (X:Z) is the mutual information betweenX andZ,
etc. This means that the mutual information between the in-
put and output of a channel cannot be increased by process-
ing the output in any way.

We can establish a similar inequality for the coherent in-
formationI e . Suppose the initial state ofQ is rQ ~which has
a purificationuCRQ&) and further suppose thatQ undergoes
two successive dynamical evolutions, described by superop-
eratorsE1Q andE2Q . Then

rQ85E1Q~rQ!, ~24!

rQ95S2Q~rQ8!

5S2Q+S1Q~rQ!. ~25!

We will call the evolution byE1Q the ‘‘first stage’’ of the
evolution and the evolution byE2Q the ‘‘second stage.’’ These
might represent, for example, the transmission of the infor-
mation inQ through a noisy channel~described byE1Q) fol-
lowed by some quantum information processing such as er-
ror correction~described byE2Q). Our schematic is

.

The overall process is represented by the composition of
these two processes, so thatE12Q5E2Q+E1Q

We adopt adopt unitary representations for these pro-
cesses. That is, we imagine that there are two environment
systemsE1 andE2, initially in pure statesu0E1& and u0E2&,
which interact in succession withQ via unitary operators
UQE1 andVQE2. The full schematic diagram, including the
reference systemR, looks like

.

The initial state of the whole system is

uCRQE1E2&5uCRQ& ^ u0E1& ^ u0E2&. ~26!

In the first stage of the dynamics, this evolves to

uCRQE1E28&5~1R^UQE1^1E2!uCRQE1E2&

5uCRQE18& ^ u0E2&. ~27!

In the second stage, this evolves to

uCRQE1E29&5~1R^1E1^VQE2!uCRQE1E28&. ~28!

The states of the subsystems can be derived by partial traces
of these.

To analyze this two-stage process, we make use of a prop-
erty of the von Neumann entropy calledstrong subadditivity
@8#. Let ABC be a compound system composed of three
subsystemsA, B, andC. Then

S~rABC!1S~rB!<S~rAB!1S~rBC!. ~29!

This property is logically stronger than simple subadditivity;
if B is supposed to be in a pure state~so that
rABC5rAB^ ufB&^fBu), then we recover ordinary subaddi-
tivity for A andC.
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We will apply this inequality to the compound system
RE1E2 after both stages of the dynamics have taken place.
This yields

S~rRE1E29!1S~rE19!<S~rRE19!1S~rE1E29!. ~30!

Each term in this inequality may be rewritten in a different
form. For example, since the overall state ofRQE1E2 is pure
at every stage, it follows that

S~rRE1E29!5S~rQ9!. ~31!

Neither of the systemsR or E1 is involved in the second
stage of the dynamics, in whichQ andE2 interact. Thus their

state does not change during this stage:rRE195rRE18. After
the first stage, as noted above, the compound systemRQE1
is in a pure state. Thus

S~rRE19!5S~rRE18!5S~rQ8!. ~32!

The remaining two terms can both be recognized as entropy
exchanges of various processes. That is,

S~rE19!5S~rE18!5Se1 , ~33!

S~rE1E29!5Se12, ~34!

where Se1 is the entropy exchange of the first stage and
Se12 is the overall entropy exchange of both stages. Note
that, in general,Se12ÞSe11Se2. In fact, the overall entropy
exchangeSe12 can be less than either of the individual en-
tropy exchangesSe1 andSe2.

Making these substitutions, the strong subadditivity in-
equality ~30! for RE1E2 after both stages of the dynamics
yields

S~rQ9!1Se1<S~rQ8!1Se12, ~35!

S~rQ9!2Se12<S~rQ8!2Se1 . ~36!

That is,I e12<I e1. The coherent information in the first stage
cannot be increased by the additional dynamics of the second
stage. We thus can summarize our results so far as

~37!

This is the quantum data processing inequality.@The first
inequality, of course, is a special case of the second, since
S(rQ) is the coherent information in the trivial process given
by EQ5I Q.#

VI. ERROR CORRECTION

SupposeE1Q represents the transmission of quantum infor-
mation via a noisy channel.E1Q may involve ‘‘decoherence’’
and other noise processes, which will reduce the entangle-
ment fidelityFe1 of the channel. However, it has been shown
that under some circumstances it is possible to doquantum
error correctionon the output of the channel, restoring the

initial state of the system either exactly or very nearly by an
allowable quantum process@9#. This error correction process
typically consists of an incomplete measurement performed
onQ followed by a unitary evolution ofQ that depends on
the measurement outcome. We will describe our quantum
error correction scheme by the evolution superoperatorE2Q ,
so the overall process of channel dynamics plus error correc-
tion is given byE12Q5E2Q+E1Q

The following question naturally arises: Under what cir-
cumstances can quantum error correction be performed? We
will consider an interesting special case of this question:
Given some channel dynamicsE1Q , when is it possible to find
a subsequent quantum evolutionE2Q that givesperfecterror
correction?

We will take perfect error correction to mean that the
entanglement fidelityFe12 of the overall process is unity. In
other words, we require that the error correction scheme be
able to perfectly restore the entanglement ofQ with the sys-
tem R. ~This is a reasonable definition since we know that
the entanglement fidelity equals unity if and only if every
pure state in the subspace supportingrQ has fidelity unity.!
If Fe51 then the final~mixed! state ofQ must equal the
initial state:rQ95rQ. From the quantum Fano inequality we
can also infer that the entropy exchangeSe12 of the overall
process must be zero.

The quantum data processing inequality allows us to es-
tablish a necessary condition for the existence of a perfect
error correction scheme. IfS2Q is such a scheme for the initial
staterQ and the channel dynamicsS1Q , then

S~rQ!>S~rQ8!2Se1

>S~rQ9!2Se12

5S~rQ!,

S~rQ!5S~rQ8!2Se15I e1 . ~38!

Thus perfect error correction is possible only if the coherent
information of the channel equals the entropy of the input
state.

We will next show thatS(rQ)5I e1 is also asufficient
condition for the existence of a perfect error correction
scheme. We begin by writing down the Schmidt decomposi-
tion of the initial pure entangled stateuCRQ& of the system
RQ

uCRQ&5(
k

Alkuak
R& ^ ubk

Q&, ~39!

where we take the sum to include all of the nonzero eigen-
valueslk of rQ ~and thus alsorR). If S(rQ)5I e1, then we

have already shown thatrRE185rR^ rE18. This means that

rRE185(
k,l

lkm l uak
R&^ak

Ru ^ ug l
E1&^g l

E1u, ~40!

where them l are the nonzero eigenvalues ofrE18 and ug l
E1&

are the corresponding eigenstates.
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The overall state ofRQE1 is a pure stateuCRQE18&. We

can use our expression forrRE18 to write down a Schmidt
decomposition of this overall state~separating into sub-
systemsQ andRE1):

uCRQE18&5(
k,l

Alkm l uak
R& ^ ufkl

Q& ^ ug l
E1&. ~41!

~This yields a sort of ‘‘triple Schmidt decomposition’’ be-
cause the eigenstates ofrRQ8 are product states.! Here the
Q states ufkl

Q& are orthonormal and span a subspace of
HQ . LetP

Q be the projection onto the subspace perpendicu-
lar to this one, so that

PQ1(
k,l

ufkl
Q&^fkl

Qu51Q. ~42!

We will now explicitly construct an operator-sum repre-
sentation for the error correction processE2Q and show that it
is a perfect error-correction scheme. Let

A0
Q5PQ, ~43!

Al
Q5(

k
ubk

Q&^fkl
Qu. ~44!

Intuitively, for eachl the operatorAl
Q represents a projection

onto the subspace spanned by the vectorsufkl
Q& ~for all val-

ues of k), followed by a unitary transformation that takes
ufkl

Q& to ubk
Q&. It is easy to see that

A0
Qufkl

Q&50, ~45!

Al
Qufkl8

Q &5d l l 8ubk
Q&. ~46!

To yield an allowable dynamical evolution ofQ, these must
be properly normalized. That is,

A0
Q†A0

Q1(
l
Al
Q†Al

Q5PQ1(
l

(
k,k8

ufkl
Q&^bk

Qubk8
Q &^fk8 l

Q u

5PQ1(
k,l

ufkl
Q&^fkl

Qu51Q. ~47!

Thus the operatorsA0
Q andAl

Q yield an operator-sum repre-
sentation of an allowed quantum evolution superoperator
E2Q .

To see thatE2Q specifies a perfect error-correction scheme,

consider the effect onuCRQE18& of the extended superoperator
I R^EQ^ I E1. The operator-sum representation of
I R^EQ^ I E1 is composed of operators of the form
1R^Al

Q
^1E1,

1R^A0
Q

^1E1uCRQE18&5(
k,l

Alkm l uak
R& ^ ~A0

Qufkl
Q&)^ ug l

E1&

50, ~48!

1R^Al
Q

^1E1uCRQE18&5(
k,l 8

Alkm l 8uak
R& ^ ~Al

Qufkl8
Q &)

^ ug
l 8

E1&

5(
k

Alkm l uak
R& ^ ubk

Q& ^ ug l
E1&

5Am l S (
k

Alkuak
R& ^ ubk

Q& D ^ ug l
E1&

5Am l uCRQ& ^ ug l
E1&. ~49!

Therefore,

rRQE195I R^E2Q^ I E1~ uCRQE18&^CRQE18u!

5~1R^A0
Q

^1E1!uCRQE18&^CRQE18u~1R^A0
Q

^1E1!†

1(
l

~1R^Al
Q

^1E1!uCRQE18&^CRQE18u

3~1R^Al
Q

^1E1!†

5(
l

m l uCRQ&^CRQu ^ ug l
E1&^g l

E1u

5uCRQ&^CRQu ^ rE18. ~50!

The final state ofRQ is rRQ95TrE1r
RQE195uCRQ&^CRQu,

which is exactly the original entangled state. Therefore the
entanglement fidelity of the entire process isFe1251. Our
superoperatorSQ thus gives a perfect error correction
scheme. Once again we emphasize that, although we made
use of the particular input staterQ ~with purification
uCRQ&) to construct our perfect error-correction scheme, this
is equivalent to perfect error correction for all pure states in
the support ofrQ or indeed for any other entangled state
with the same support inHQ .

We may compare our result to a classical theorem@7#.
Suppose the random variablesX andY represent the inputs
and outputs of a classical information channel. Then the in-
put may be reconstructed from the output with zero probabil-
ity of error if and only ifH(X)5I (X:Y), whereH(X) is the
Shannon entropy of the input variable.

VII. REMARKS

The conditionS(rQ)5I e , which is necessary and suffi-
cient for perfect quantum error correction, has some interest-
ing implications, which we will briefly mention here. Sup-
pose that the staterQ is due to an ensembleE in which the
pure stateuc i

Q& appears with probabilitypi . As we remarked
before, we can realize such an ensemble by starting with a
purification uCRQ& and performing a measurement of a suit-
ableR observable. Thei th outcome of this measurement will
appear with probabilitypi and the relative state ofQ given
that measurement will beuc i

Q&. The question ‘‘Which Q
state?’’ is then equivalent to the question ‘‘WhichR mea-
surement outcome?’’

As we showed, the equalityS(rQ)5I e means that
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rRE85rR^ rE8. If R andE are in a product state after the
dynamical evolution, then measurement results onE have no
statistical correlation with measurement results onR. In
other words, no observable onE alone will be able to pro-
vide any information about the outcome of a measurement
performed onR. Therefore, noE observable can provide any
information about whichQ state from the ensembleE is
present. In short, perfect quantum error correction is possible
only if the environment obtains no information about the
state of the systemQ.

We summarize our main points and conclusions here.
~i! For a given initial staterQ and dynamical superopera-

tor SQ, we may define several intrinsic quantities of interest,
including the entanglement fidelityFe , the entropy exchange
Se , and the coherent informationI e . Fe andSe are related
by a quantum version of the Fano inequality of classical
information theory.

~ii ! The entanglement fidelity is closely related to various
input-output fidelities for pure states ofQ.

~iii ! The coherent information is a measure of the amount
of ‘‘distinctively quantum’’ information that passes through
a channel. In general,S(rQ)>I e .

~iv! The coherent information can never be increased by
the action of further dynamics, so that for successive inde-
pendent processes~1! and ~2! we obtain the quantum data
processing inequality,I e1>I e12.

~v! Perfect quantum error correction is possible if and
only if S(rQ)5I e , in which case the environment has ob-
tained no information about the state ofQ via its interaction
with Q.

In general, we believe that the coherent informationI e
will play a role in quantum information theory analogous to
that played by the mutual informationI (X:Y) in the classical
theory. There are many differences between the two. For one
thing, the coherent information has a built-in ‘‘time asymme-

try,’’ being defined for an input staterQ and a processEQ,
while the mutual informationI (X:Y) is a symmetric quantity
built out of a joint probability distribution forX andY in
which time does not explicitly appear. For another,
I e5S(rQ8)2S(rRQ8) is a quantity that can never be positive
classically, so that no classical channel can convey a positive
amount of coherent quantum information.

Recent work by Lloyd@10# indicates thatI e is related to
the capacity of a noisy quantum channel in a way that par-
allels the relation of the mutual information to the classical
capacity. That is, he defines the capacityC to be

C5max
rQ

I e . ~51!

According to Lloyd, quantum information can be transmitted
through a noisy channel at any rate less thanC with arbi-
trarily good fidelity. This is very much in accord with our
own results and speculations.

The paper continues the program of finding useful ‘‘in-
trinsic’’ quantities by ‘‘extrinsic’’ means, introducing a ref-
erence systemR to purify the initial state and an environ-
mentE to make the overall dynamics unitary. This approach
appears to yield many important insights into quantum infor-
mation theory.
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