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Sending entanglement through noisy quantum channels

Benjamin Schumacher
Theoretical Astrophysics, T-6 M.S. B288, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 26 April 1996

This paper addresses some general questions of quantum information theory arising from the transmission of
guantum entanglement througtossibly noisy quantum channels. A pure entangled state is prepared of a pair
of systemsR andQ, after whichQ is subjected to a dynamical evolution given by the superopeétoTwo
interesting quantities can be defined for this process: the entanglement fleghiyd the entropy exchange
S. . It turns out that neither of these quantities depends in any way on the sistauh only on the initial state
and dynamical evolution d. F, andS, are related to various other fidelities and entropies and are connected
by an inequality reminiscent of the Fano inequality of classical information theory. Some insight can be gained
from these techniques into the security of quantum cryptographic protocols and the nature of quantum error-
correcting coded.S1050-294{®6)03909-]

PACS numbg(s): 03.65.Bz, 05.30-d, 89.70+c

I. INTRODUCTION servable orRQ.) F, measures how successfully the quantum
channel preserves the entanglemenaokith the “reference
In recent years, considerable progress has been made @ystem”R.

ward developing a general quantum theory of information We Wwill demonstrate three important results. First, the
[1], analogous to classical information theory founded byfidelity Fe can be defined entirely in terms of the initial
Shannon[2]. Distinctively quantum-mechanical notions of State and evolution of the syste@. FurthermoreF.<F,
coding[3] and channel fidelity4] have been developed and whereF is the average fidelity when the channel_ carries one
the role of entangled states in storing and transferring quanQ‘:? an ensRemeIeRQOf pure states d described by
tum information has been explor¢f]. Recently, the study P~ Tre|WE¥)(W™Y]. Thus channels that can convey en-

of noisy quantum channels has yielded important result§anglement faithfully will also convey ensembles of pure

. e States faithfully.
abou;quantum error-correcting codé$ and the purification Second, there exists a quanti called entropy ex-
of noisy entangled statdg].

The aim of this paper is to further clarify our understanol_change also defined in terms of the internal properties of the

. £ noi h s by defini q loit systemQ. This quantity can be viewed as the amount of
Ing of noisy quantum channels by defining and exploitinG;aomation that is exchanged with the environment during

notions of fidelity and entropy associated with the quanturqlhe interaction of) andE and it characterizes the amount of
transmission process. These quantities are based on an anal ¥uantum noise” in the evolution of).

sis of the transmission of entangled states through the noisy" Finally, we will find an inequality(resembling the Fano

channel, althouglias we shall sgethe use of entanglement inequality of classical information thedryhat bounds= in

is not essential to their definition. A number of applicationsterms of the dimensiom and the entropy exchand® in

of these ideas will be outlined. Q. In other words, the faithfulness &’s dynamical evolu-
Here is the general situation that we will consider. Sup-ion in preserving entanglement is limited by the amount of

poseR andQ are two quantum systems aQis described information that is exchanged with the environment.

by a Hilbert spaceHq of finite dimensiond. Initially the The Appendix uses some ideas from the paper to give a

joint system RQ is prepared in a pure entangled statederivation of two representation theorems for trace-

|WRQ), The systenR is dynamically isolated and has a zero preserving, completely positive maps, which are the most

internal Hamiltonian, while the syste® undergoes some general descriptions for quantum dynamical evolutif8is

evolution that possibly involves interaction with the environ- ~ Throughout this paper, the systems relevant to a particular

mentE. The evolution OfQ m|ght, for examp|e, represent a vector, operator, or superoperator will be indicated by a su-

coding, transmission, and decoding process via some quaRerscript. Thusy?) is a state vector for the syste@ while

tum channel for the quantum information ®. The final A"?is an operator acting ofro=Hr®Hq - (If No super-

state ofRQ is possibly mixed and is described by the densitySCript is given, the quantum system is supposed to be ge-
OperatorpRQ’ neric) A prime denotes that a particular state or density op-

L . . , erator arises as a result of some dynamical evolution. A tilde
= (PRQ R |PRQ . . -
The fidelity of this process isFe=( p™7 ] ) is usually present when a particular state vector or operator is

which is the probability that the final sta,bé*Q' would passa ot normalized. so that =1 but(&l s #1 in general.
test checking whether it agreed with the initial stpieR©). ’ aly)=1, but(ylv) g

(This imagined test would be a measurement of a joint ob- Il. CHANNEL DYNAMICS

A. Completely positive maps

"Permanent address: Department of Physics, Kenyon College, Imagine that the syster® is prepared in an initial state
Gambier, OH 43022. p® and then subjected to some dynamical process, after
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which the state i$?'. The dynamical process is described WhereU®F is some arbitrary unitary evolution on the joint

by a map&®, so that the evolution is systemQE. This map is also trace preserving and completely
positive.
pR—pQ =E9(pQ). ) If we can write a superoperatéi? as a unitary evolution

on an extended syste@E followed by a partial trace over

In the most general case, the maB must be a trace- E, we say that we have a “unitary representation” of the
preserving, completely positive linear mdg]. In other ~ Superoperator. Such a representation is not unique since
words, we have the following. many different unitary operatod °F will lead to the same
(i) &2 must be linear in the density operators. That is, if€ <. ] ]
pQ= plp?Jr png, then . Another useful sort of representation for completely posi-
tive maps employs only operators &fy, . Let A% be a col-

) , , lection of such operators indexed hy. Then the magE®
EAp)=p1p? +p2p3 given by

=p1(E%pD))+P2(E%Ap3)).
E%pQ) =2 AZpOAY 3
A probabilistic mixture of inputs t&< leads to a probabilis- M

tic mixture of outputs. This means thé® must be asuper- N ) -
operator, that is, a linear operator acting on the space ofiS @ completely positive map. If, in addition, the, operators

linear operatorge.g., density operatoren Hg. satisfy
(i) &£° must be trace-preserving, so that

TrpQ = TrpQ=1. S AQ'AQ=1Q, 4
(i) €2 must be positive. This means that i is n F

positive' then pQ' = £°(p?) must be positive. _ _ _

- then the map is also trace preserving. Such a representation
These three conditions mean that the ;uperope@aakes for £ in terms of operator&® will be called an “operator-
normalized density operators to normalized density operatorg,m representation” fo£9. A single £2 will admit many
in a reasonable way. The requirementcompletepositivity  gitferent operator-sum representations.
IS s_omev(ghat more subtle. - _ Some insight into the connection between these represen-

(iv) £ must be completely positive. That is, suppose Wetations for£Q can be gained by explicitly writing down the

extend the evolution superoperatd? in a trivial way to an partial trace Tg from Eq. (2). Suppose thap®=|4?)( 2|

evolution superoperator for a compound syste, yield-  5nq |et| 4F) be a complete orthonormal set of statesEof
ing ZR’®E°, where IR is the identity superoperator 0R  Then

states. Physically, this means adjoining a syskmiat has

trivial dynamics(no state ofR is changey and which does :

not interact withQ. £ is completely positive if, for all suich ~ £2(pQ) =, (uF|URE(| $)( 9| @ |0F)(0F|)UE| wF).
trivial extensions, the resulting superoperafBt® £ is w

positive. 5

A completely positive map is not only a reasonable mapif we define the operatcAS by
from density operators to density operators €@y but it is
extensiblen a trivial way to a reasonable map from density AS|¢Q)=<,¢E|UQE(|¢Q>®|OE)), (6)
operators to density operators on any larger sysike@

Since we cannot excludepriori that our systen@ is infact  then we recover an expression identical to E8). Since
initially entangled with some distant isolated systBmnany every input state® is a convex combination of pure states,

acceptable£? had better satisfy this condition. we recover Eq(3) for arbitrary pQ by linearity.
A pair of important representation theorep®g state the
B. Representations of® following.

. . . . (i) Every trace-preserving, completely positive linear map
Completely positive, trace-preserving linear maps obvi-.q h . . i
ously include all unitary evolutions of the state €% has a unitary representation, as in E2). " .
Y 0.0y 0t g . ) . (i) Every trace-preserving, completely positive linear
p _=U P ] . They_also include unitary evolutions in- map&Q has an operator-sum representation, as in(8q.
volving interactions with an external system. Suppose we

consider an environment systerthat is initially in the pure (By our argument above, the second statement follows
state|0F). Then we could have from the first) These statements, particularly the first, moti-
vate us to assert that the trace-preserving, completely posi-
E9(pQ) = TreUF(p°®|0F)(0F|)UQET, (2) tive linear maps is exactly the class of allowed evolutions of

a quantum system. Any reasonable evolution should be such
a map and every such map could be accomplished by unitary
we will use the term “positive” to refer generically to operators dynamics(i.e., Hamiltonian evolutionon a larger system. A
that arepositive semidefinité.e., those that are Hermitian and have relatively simple proof of both of these representation theo-
no negative eigenvalues. rems is found in the Appendix.
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From now on we will assume that a particul&® has
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the  reduced  states p®= Trg/TRA(WRY  and

been specified, giving the evolution of states of the systempR= TrQ|\IfRQ><\I'RQ| will have exactly the same set of non-
Q. We will use unitary representations and operator-sum repzero eigenvalues, namely, the.

resentations as convenient.

Il. MIXED STATES AND PURIFICATIONS
A. Entangled states

Given a pure staté¥?RQ) of a joint systemRQ, we can
form the reduced statg® for one of the subsysten® by
means of a partial trace operation

p= Tre WRO(WRY

=§ (KR WRAY(WRAKR), (7)

where |kR) is an orthonormal basis fakr. We can define
the reduced statp® given a mixed joint stateR? in the
same fashion.

We have made use of partial inner productbetween
states ofR and states of a larger systdRQ. This is easy to
understand. The vector

€9 =( R WR) (€S)
is defined to be the unique vector g such that
(aC|E9)=(pRa®[¥RO) €)

for all vectors|a®) in Hq (where|¢RaR)=|¢R)®]a?)).
We could also write this as

($FWR9 =2, ($RRIVEQI&R) (10

for some orthonormal basis sg) for Ho-

B. Mixed-state fidelity

The notion of purification is used to define tfidelity
between two density operatops andp,. This is

F(Plapz):ma>‘1<1|2>|2,

where the maximum is taken over all purificatioids and
|2) of p; andp, [4]. The fidelity has several important prop-
erties: O<F(pq,p2)<1, with F(py,p2)=1 if and only if

p1=p2; F(p1.p2) =F(p2.p1); and if py=|41)( 4] is a pure
state, then

(14

F(p1.p2)= Trp1po={(t1lpol ). (15

This is just the probability that the stae would pass a
measurement testing whether or not it is the stéte. The
fidelity is a general way of defining the “closeness” of a pair
of states.

If we have two statep?? and pX<, we can form

pE= Trrot<, (16)

(17

Then F(pRQ,p59<F(p%,p9). This can be seen directly
from the definition by noting that every purification @?Q is
also a purification ofo‘f, and so on.

R
p3= Trrp5°.

C. Ensembles of pure states

A mixed statep® may arise from a statistical ensemble
S of pure state$y2) of Q. In this case we can write

There are, of course, many different pure entangled states

|WRQ) that give rise to a given reduced stat® These are
generically calledpurifications of p®. Supposd ¥'§?) and

| WX are two such purifications. Then we can write each o
them using the Schmidt decomposition

(Wi =2 o), (11
[WEY=2 WWdEBdeR), (12

f

p=2 piludNul, (18)
wherep; is the probability of the statgy?®) in the ensemble
S.

If p®= Trg/WRO(WRY for a pure entangled state
|WRQ) of RQ, we can “realize” an ensemble of pure states
for p< by performing a complete measurement on the system
R. (This and other characterizations of the ensembles de-
scribed byp® are given in10].) Let | eiR) be the basis for this
complete measurement. Each outcome ofRheeasurement
will be associated with a relative staf#l] of the system

where thek, and [\Q) are eigenvalues and eigenstates ofQ. If p, is the probability of thath outcome of theR mea-

p@ and the|¢R) and|&5,) are two orthonormal sets of states
in Hr. Since the two purifications differ only in the choice
of orthonormal set ir{g, they are connected by a unitary
operator of the formUR® 1°. Any purification ofp® can be

surement andly?) is the relative state o associated with
this outcome, then

Vil Ry =(f wRQ). (19

converted to any other by a unitary rotation acting on the

auxilliary “reference” systenmR.

(Note that, in dealing with ensembles of pure states, it is

The Schmidt decomposition also makes clear the fact thagsometimes useful to consider the non-normalized vectors

given a pure entangled state

[WEQ =21 W€ e ), (13

|42)=\pi|¥2). In other words, we can normalize the com-
ponent states i¥ by their probabilities. The resulting vectors
are in themselves a complete description of the ensemble
S. See[10] for fuller details) It follows that
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need have only up td dimensions. Théa ")(a R are ele-

Z pi|¢iQ><¢iQ| :Z <EiR|‘I’RQ><‘I’RQ| fiR> ments of a POM on this subspace. We can use this POM on
the d-dimensional subspace @{y to find a POM for a pu-
= Trg| WRUWRY=)pQ (200 rification that uses another reference syst&p, with
dimHg =d.

so that the ensembl§ of relative states is a pure state en-
semble forp©. In fact, any pure state ensemble fét can be

. S . . ) . D. Entropy
realized in just this way. That is, we can fix a particular
purification|¥RQ) for p? and give a prescription for realiz-  Since entropy will be of central importance for our re-
ing any pure state ensemble fpP as a relative state en- sults, we will review some of the relevant properties of clas-
semble for some complete measuremenfRon sical and quantum entropy. Suppose the non-negative num-
Let S; be a pure state ensemble fﬂ? given by probabili-  bersp;,p,, ... sum to unity and thus form a probability

ties p; and state$¢iQ) and suppose thdtig has arbitrarily  distribution. The Shannon entropy(ﬁ) of this probability
high dimension, at least as large as the number of distincistribution (represented by the vectéo is just
pure states in the ensembles we consider. Then we can con-

struct a purificatiod ¥R b -
P Vi) by H(|o)=—2k prlogpy - (24)

[PEY=2 Vpilad@|yR), (21)

i We specify the base of our logarithms to be 2 and take
0log0=0. If 5 forms the probability for some random vari-
where thd of) are a basis fot(z . (Only some of these basis apleX, so thatp(x,) = p, for various values; of X, then we
vectors may appear in this superpositionClearly,  will often write this entropy a#i(X).
pQ= Trgl WEO(WTY. Similarly, if we have another en-  The Shannon entropi(X) is the fundamental quantity in
sembleS, for p@ given by probabilities); and states¢2),  classical information theory and it represents the average

we can construct a purification number of binary digitsor bits) required to represent the
value of X [2]. It can be thought of as a measure of the

uncertainty in the value oK expressed by the probabilit

WEY=2 Vailgheled) (22) Y P y e P Y

distribution. We can use it to define various information-
theoretic quantities, such as the conditional entropy
for some otheR basis|87). Since both of these are purifi-
cations of the samp®, there is a unitary operatasR such _ _
! H(X|Y)= H(X|y ) =— Xi,Yilogp(X;
that [E9) - (URe19) W79, (XIY) =2 p(yiH(Xlyw) % p(x;,Yi)logp(x;|yi)
We can clearly realize the ensembieby making a mea- (25

surement of thé8F) basis on the statel 59) of R; but this L _
is equivalent to making a measurement of the basidor a joint dlstrlbu_tlonp(xj Vi) over vqlues of two_varlables
|7R>:URT|IBR> on the Statéq,RQ). X andY. A very important quantity is thenutual informa-

i i 17/

tion 1(X:Y) between two random variablesandY:
RI\pRQy — / aR| R [\ RQ
<7i |\P1Q> (<:8||U )|\Pl > |(XZY)=H(X)—H(X|Y), (26)

—(gR Rg1Q)[wpRQ
=(B|I[(UTe1%)|¥
(B W3] which is the average amount that the uncertainty abéout

=(BRPEY decreases when the valuefis known. If X represents the
input of a communications channel aMdepresents the out-
=ai| 62). (23 put, thenl(X:Y) represents the amount of information con-
veyed by the channel. It turns out thHgX:Y)=1(Y:X).
Thus the ensembls, can be realized by making & mea- The quantum-mechanical definition of entropy was first

surement on the purificatiolr‘lf?Q). It follows that we could  given by von Neumanfil3]. Suppose?® is a density opera-
pick a particular purificatiorh\I/RQ) and obtairanypure state  tor representing a mixed state ©f Then the entropy is
ensemble fop® by a suitable choice of measurement basis

for the systenR. S(p®) = — Trplogp®. (27
We have assumed that dhgg is arbitrarily large so that .
we can have an arbitrarily large number of basis vectordf \i,\p,... are the eigenvalues ofp?, then

(since the pure state ensembles may have an arbitrarily largg p?) = H(X). The von Neumann entropy also has a signfi-
number of componenksBut this is not really necessary. If cance for coding similar to the Shannon entropy: it is the
we allow positive operator measureme®OMSs [12] on  average number of two-level quantum systefos qubits

R, then the dimension ot{r need be no greater than the needed to faithfully represent one of the pure states of an
dimension ofHq, which is the minimum size necessary to ensemble described P [3].

purify all mixed statep®. The only relevant part of the basis Suppose that systeni® and Q are in a pure entangled
|af) is the set of subnormalized vectof&l)=TI|al), state]WRQ). ThenS(pR)=0. However, unlike the classical
wherell is the projection onto the subspace’®f that sup-  Shannon entropy, it is possible for the von Neumann entropy
portspR= Tro| WRY(WR. Since dinHy=d, this subspace of the subsystem® and Q to be nonzero even when the
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entropy Qf the joint systerRQ is zero. We saw above thqt pRQ’:ZR®5Q(|\PRQ><\PRQ|)_ (33
the density operators® and pR have the same nonzero ei-
genvalues. ThuS(p®) =S(p?). That is, if a pair of quantum  The fidelity of this process is
systems are in a pure entangled state, the reduced mixed
states will have the same von Neumann entropy. _ R RQ RQ' _ /xi;RQ| -RQ' [T,R

The von Neumann entropy has a number of important Fe= THWRO(WEApRT =(WFApRYWRY). (34
properties(usefully reviewed irf14]). SupposeA andB are
quantum systems with joint stagé'® and reduced statgs’
andp®. Then

We call F, the entanglement fidelitpf the process.

Written in these termd;, depends on the initial and final
states of the systelRQ. We will next show thaf . depends
S(p"B)<S(p") +S(pB), (29) only on the ma£ @ and the initial reduced stape® obtained
by a partial trace

S(p"®)=8(p") —S(p®). (29

Equation(28) is the subadditivityproperty of the von Neu-

mann entropy and E@29) is sometimes called the “triangle That is, the entanglement fidelity., which is associated

inequality” for the entropy functional. with an entangled state includirg@, is (rather surprisinglya
Another useful property of the von Neumann entropy re-propertyintrinsic to the systenQ itself.

lates it to the Shannon entropy of the probability distribution  The superoperatdfR® £ can be expressed

for the measurement outcomes of a complete observable. Let

p be a mixed state with eigenvalugg, so that

pQ= Trg| WRO(WRQ, (35

IRSEPRY=2 (1ReAYpRALRRAD)T.  (36)
)73

p=2 MMl (30

k Suppose that the initial stat¢¥ =) and|¥&?), both puri-
Now imagine that a measurement is performed of some confications of p, lead to final statep? and p5?, respec-
plete ordinary observable, that is, the state is resolved usiniively, under the action of the superoperafdt® £ and let
an orthonormal basifa;). The probabilityp; that thejth UR be the unitary operator fdR such that

outcome is obtained is thus
W59 =(UR219)|¥EQ). (37)

i=(aj|p|a;)= M@ NNk a;
Pi=(ajlelay) Ek: 3 (nday) Clearly, UR® 12 commutes with F& AY for all u. There-

fore,
= M. (31)
jkvk
k ’
P3¢ =2 (1R@AD)|WFY(PEA(1R0AD)T
The matrix Vj,=(aj|\¢) is unitary, so the matrix #
M;x=|V;i/? is doubly stochastic. That is, the rows and col-
umns ofVj, are orthonormal vectors, so that the rows and =2 (1ReAY)(UR219)|¥T9)
columns ofM, all sum to one: #
X(¥EY(UR219)T(1R2 AD)
Z Mjj=1forallj, > M;=1foralli.
’ =(URe19)| X (1Re AW ENTFA(1R0AD)
It is a standard theorem of information theory that the Shan- a

non entropyH((i)= —2;qilogg, cannot decrease if the prob- X (UR® 1Q)TP§Q’

abilities g; are changed via a doubly stochastic mafti%]. /

Therefore, =(UR219)pR (UR219)", (39
H(p)=H(\)=S(p). (32 [Note that Eq(38) implies thatpRQ andpR? must have the

same eigenvalues. This will be important later in the defini-

The von Neumann entropy is thus a lower bound on th
by dion of entropy exchanggFrom Eq.(38) it follows that

Shannon entropy for the outcome of a complete measur
ment on the system. RO RO/ R
Feo=(¥59p5° |¥59)

IV. ENTANGLEMENT FIDELITY '
=(TRY(UR19T(UR®19)pf? (UR1Y)T

A. Definition Ro 10\ 1R
X 19)|w
Suppose that an entangled stalel?) is prepared for the (Ue1%)] 1Q>
joint systemRQ and thatQ is subjected to a dynamical :<\P?le?Q'|\p?Q>

evolution described by ? (so that the overall evolution is
given by ZR®£9). The final state is =Fg. (39)
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for some orthonormal basjg ). The effect of the operation

for pQ is chosen. It only depends @i and the superopera- is to completely destroy any coherences between different

tor £Q.

B. Intrinsic expression for F

It is instructive to derive an expression feg in terms of
things that are intrinsic to the syste@ i.e., an expression

that does not refer tR. Suppose we have an operator-sum

representation fo£9, as in Eq.(3). Consider a particular
pure entangled state f&tQ

IWRQ>=§ VpdlkRy e[ 4R), (40

where the|kR) are orthonormal states ig. (We do not
need to require thé¢R) to be orthonormal. This state

evolves undeZ R £Q into pRQ'. The initial state ofQ is
pO= TRl WRO(WRI=2 pf o34 (4D

Now, for any operatoX® acting onHg,

(PRALFXA)WEY=2) Vo, Pl iF LK AR1XO 42)

= % \/pjpk5jk< ¢J'Q|XQ| d’S)

=2 PARIXC #R) = Tro®XC.
(42

We can now work out the fidelity very easily:
Fe=(WRYYpRY[WRQ)

=§ (FRY(1R@ AQ)|WRA(TRY(1Re AT WRQ),

Fe=> ( TrpRAY)( TrpRAYN). (43)
“

elements of the basis. That is, the superposiqumMmQ)
would be transformed into the mixed state

P =2 e, (nql. (45)
I

Now suppose®=3 A ,|u®)(u®|. Thenp? =p? and thus

F(pQ,p?)=1. However, let|¥RQ be a purification of

pR, for example,

|\PRQ>=§ N6 @] u®). (46)

The action of the superoperatdf® £ on this state yields

PR =20 NN @ u(n?. (47)
M
If more than one of the\,’s is nonzero, then
Fe=F(pRpRY)#1. ThusF#F(p?,p?).
However, there is a general relation betwelep and
F(p%p?),

Fe=F(pRQpRY)<F(p?,p?"). (48)

The entanglement fidelit§, is thus a lower bound to the
input-output fidelityF (p2,pQ") for states ofQ.

Fo andF(p?,pR") do sometimes agree. Suppose that the
initial statep® is in fact a pure state @, so that there is no

entanglement betweenR and Q. Then, Iletting
pO=y )y,
F(p2p?)=(yp? |4°)
=2 (1AW uOIATT Y7
zg ( TrpRAQ)( TrpRAT)
=F. (49

The entanglement fidelity equals the “input-output” fidelity

Although this is written with respect to a particular operator-When the input state is a pure state.

sum representation @ (which is not uniqug the value of

Now suppose thgp? is a mixed state o) arising from

F. will clearly be independent of this representation. Equa2N ensembles in which the pure stat¢y®) occurs with

tion (43) expressed-, entirely in terms of the initial state
pR of the systenQ and the evolution superoperaisf.

C. Relations to other fidelities

It is worth noting whatF, is not. It is not the simple
fidelity of the input and output states @. This fidelity can

be written F(p?,p?"), wherep? =£°(p?). We can show

that F,# F(p?,p?) in general by considering an operation

defined by

A= (u (44)

probability p; . The average input-output fidelity for this en-
semble is

F_=Ei PiF(u)(9R.p2)
=2 pi(uRlpR [4R), (50)

wherep? =£°(|y2)(y).
It turns out that-=F.. Some such connection is reason-
able physically, since we can realize a pure state ensemble
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S by means of arR measurement on a purification pP,  TRY1R@A2)|WRQ)

and this measurement may be performed either before or

after the dynamical evolution given &&°. A full proof fol-

lows. =2 (1 |yR)(pD(af)(a©10)(1 e AD TR
Let|af) be an orthonormal set iHg (assumed to have as

many dimensions as there are elements in the ensef)ble

and let =2 (1R |y (1R A (|af)(af| ©19) | ¥R

i

_ R Q Q R Q R Q

TRY=S o afya|p9), cy  —2 WReleuRhateAdpledelvR)
1
=2 (LRl Vpilaf)y o ARluf)

|WRQ) is clearly a purification op? and the|af?) basis is the J
basis inHg that, when measured, generates the ensesible
as an ensemble of relative states @. That is, = VP RIAY YD) ey |y (57)
Vpil ¥2)=(af| ¥R, which we could also write as :

If pRY =7 Ro £Q(WRA(PRQ)), then

(laf)(af| 19| ¥RY=p|alely?). (52 ,

o B Fe= TIWR(WRIpR0

Now consider the operatdiR? given by < TITRQpRY
= TITRQpRATRQ
TRO=2 |af)(aflely?) (¢}
pooe e =3 TTRY1R2AY)|WRY(WRY(1R0 AQ)TTRR
N

=> (1R (el (al®19). (53
j S =3 3 oAl uRIATTR) Rl u)

Sincel'RQis the sum of an orthogonal set of projections, it is X(aylaf)
itself a projection operator onto some subspace of
. | TR jtself is in thi b :
e Ho. [ isefis i this sbspace -3 S oAU USIATIUE)
PR =2 (R lyP) (s (o219 ¥7) =3 pufl| Z AR uRIAT" | luf)
"
=3 @sluf)uRpllaf)sluf) =3 pwloR 10D

F.
=2 Vplah)slu) (58)
RO Thus F=F., as we wished to show. The average input-
=|TRI). (54 output fidelity under the evolution superoperagdt for any
ensemble of pure states with density operaf®iis bounded

Therefore, we have the operator inequality P€lowW by the entanglement fidelity .

[RC=|WRO (YR, This means that, for any vectpyR©),
V. ENTROPY EXCHANGE

(XRATRAXRY=(x (| WR(TRA[XRY),  (59) A. Definition
As shown in Eq(38) above, if| #*?) and|¥5%) are two
which in turn implies that, for all positive operatox&<, purifications ofp® and each is subjected to the same evolu-
tion superoperatof R® £Q, the resulting state$lRQ' and
TITROXRO= Tr|wRQ)(WRAYXRQ= (WRQYXRQY PR pR? will have exactly the same eigenvalues. Therefore,
(56) , )
S(pF?)=S(p3?), (59

Let Af;’ be the operators in an operator-sum representatiowhere S(p) is the von Neumann entropy of the density op-
of the evolution superoperaté?. Then eratorp. In other words, the entropy of the final joint state of
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RQ is mdepe.ndent of which punﬁca}tlon is chosen. Again, pRQ’: TrE|YRQE’><YRQE’|, (67)
rather surprisingly, we have a quantity that depends only on
niti Q 1 . 2 ! !

fche initial statep and the eyolgthn superoperatﬁ_P, th%t pE' = TrRQ|YRQE )(YRQE| (69)

is, we have a quantity that istrinsic to Q. For a givenp

and£Q, we therefore define thentropy exchange So be will have the same entropy. Therefore,
, , Se=S(pRY)=S(pE"). We can write down the density op-

S.=— TrpR%logpRQ (60) eratorp®,
where pRQ =7 Rg £9(|WRA(WRQ) and |[¥RY) is some pE' = Trgg YRQE )(YRQE|
purification of p°.
Why call S, the entropy “exchange”? Suppose we have _ TRQ | FRQ\| E\/.E
two systemsA and B, initially in the statep”B=p”® pB, =2, (@] Rt 69

which interact according to a unitary evolution operator
U”B. The evolution of each system will be describable inThat is,p® ==, W, | uE)(»F|, where
terms of a superoperator. That is, ~
RQ'| 7 RQ’
W, =(PF[D5?)

EA(pA) — TrBUAB(pA@)pB)UABT, (61) —
= Tr®R W] 2|
B/ By_ AB/ Ao Byl ABT
(In the definition of€” we imagine thap® is given, and vice = TroAQ( Trg/ wRY(WRY)AL!
versa) We can thus calculate the entropy exchan@and
SE This can be done by including reference systétpsand = TroASpRAYT. (70)

Rg to purify the initial state: i L
In other words, we have the following prescription. Métbe

| WABRARB) = | IrARA) @ | D BRe), (63) a density operator with componenti® some orthonormal
basis
Now, since the overall evolution is unitary, the final state
| WABRARS'Y s also pure. This means thafRa and pBRe
have exactly the same nonzero eigenvalues and thus thghen
A_ B

same entropy. ThuS;=S; In other words, the entropy ex-
change is acommonquantity for two initially uncorrelated Se=S(W). (72)

systems that interact unitarily. . . .
. . - . . As explained in the Appendix, any two operator-sum rep-
We will now derive an explicit expression f& in terms Q .
Q Q resentations fof < are related by a unitary matrlst,,, . This
of p~ and £%. Suppose we have an operator-sum represen-.
! 0 ; simply corresponds to the freedom to write the mang
tation for £~ and we define
with respect to any basigvhich obviously does not affect
Se). LetP,=W, , be the diagonal elements @, . These
would be the probabilities given the staté for a complete

measurement using the basis that yields the matrix elements
W,,. Therefore,H(|5)>S(V\0. But we could, by choosing
RO’ R A IyROL /ROl R A O\t the unitary matri>§ that diagonalizé¥,,, , find a representa-

p _% (1 ®AM)|‘P H(PA(L ®AL) tion such thatH(P)=S(W). This yields another expression
for Sg,

W,,= TrAZpRAY", (72)

|ORY)=(1Re AQ)|WRQ). (64)

(These are not normalized vectors in gengrghen

- | HRY\(FRQ
DETASRE €9 Se:min(—E PﬂlogPM), (73

Thus the vector$<I>RQ) give us a pure state ensemble for whereP , = TrA QAQT and the minimum is taken over all
RQ . We can use these states to construct a purification f0<5perator -sum representanonséb‘?

RQ . Let us adjoin a syster® whose Hilbert spacé{g has For a given input statg®, there is a “diagonal” operator-
at least as many dimensions as the numbemg)bperators. sum representation, in whidW,,, is diagonal. In this repre-
Then the state sentation,

- TrAQpQART=0 for w#v. (74)
[YROE)=3 [FY) & |uf) (66) )
z If pP=d 119 (the “maximally mixed” state, then this sim-

Q
£ ) ply means that the various; operators are orthogonal in the
(where the u=) are an orthonormal set & state$ will be a operator inner produc{tB C)— TrB'C. This diagonal repre-

purification forpR<. sentation is minimal, in the sense that no other operator-sum
Since the stat¢Y RQF') is a pure state, the reduced statesrepresentation includes a smaller numbeA§foperators.
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The evolution£®? might in fact be due to unitary evolu- the entropy of the joint initial stat&(p®F)=S(p<). The
tion of a larger system that includes an environmentwith  joint systemQE evolves unitarily, so the entropy of the joint

E initially in a pure state an&Qinitially in a pure entangled  state remains unchanged. Th86p2F)=S(pQ). The en-
state. In this case the final state RQE will be also be a  tropy exchange in this case is the final entropy of the envi-
pure state. The®(p® ) =S(p"?)=S,. In other words, the yonmentS(pE'). The triangle inequalityEq. (29)] yields
entropy exchang&, is just the entropy produced in the en-
vironment, if it is initially in a pure state. S(p=S(p?)—S(pF), S=S(p?)—S(pQ). (75
Note that the sampE' would have been obtained if we i
ignored the reference systeRientirely and simply consid- N other words, the entropy exchange is no less than the
ered the unitary evolution dE with an initial statep® for ~ increase in entropy of the systeth We can also in this way
Q. The entropy produced in the environment does not de€Stablish that
pend on the dynamically isolated reference syskem o Q'
The assumption that the environment is initially in a pure Se=S(p~)+S(p~ ). (76)
state|OF) at first seems too restrictive. For example, we may

. . . T Now we relateS, to the entropy change in the environ-
wish to consider environments that are initially in some ther-ment In this case, we are given a particufaossibly mixed
mal equilibrium state®. However, we may imagine that the ' : 9 P y

. . o o i initial state pF for the environment and a particular unitary
environment consists of a “near” environmeft, and a luti QE for the ioi in the initial
“far” environment E; . The systen@ interacts only with the evolution U* for the joint systemQE. Again, the initial

) fe N . state ofQ is p®, but now we will imagine that this is a partial
near environmenk, . The initial state of the full environ- f led RQ) wh ; isolated
ment may be an entangled pure state, but the syQemill state of a pure entangled sta®@™), w e.re.R IS an 150 at_e
. . ' reference system. The entropy of the joint systRQE is

see” a mixed state folE,,.

. . initially S(pR°F) =S(pF) and remains unchanged during the
progc;rsé?er;\marlze, the entropy excharf§enas the following unitary evolution of the joint system. By definition, the en-
(i) S, is a quantity intrinsic to the syste@ and can be OPY exchange is just the entro®(pR?) of the final state
defined entirely in terms of the initial stap€ and the super- ©f RQ- Thus
operatorE©. £ £ RQ' £ £

(i) If the initial statep® arises because a larger system S(p7)=S(p= ) =S(p™"),  Se=S(p™ ) —S(p7), ;
RQ is in a pure entangled state and if the reference system (77)
R has trivial dynamics, then the entropy exchasges the  gq that the entropy exchange is no less than the increase in
entropy of the final statgeR? of RQ. (It is easy to generalize the entropy of the environment. We can also derive
this to the case wheR itself can have arbitrary unitary evo- ,
lution, i.e., whenR is dynamically isolated but may have a Se=<S(pF)+S(pF), (78
nonzero internal Hamiltonian. _ . .

(iii) If the nonunitary evolution ofQ arises becaus@  Which, for a large environment, is probably not very useful.
interacts with an environmerf that is initially in a pure Similar arguments based on the subaddtivity of the en-

state, thenS, is the entropy of the final statgf’ of the tropy functional[Eq. (28)], also demonstrate th&, is no
environment. smaller than the entropgecreasen either the systen® or

(iv) If the initial statep® of the systen® is a pure state, the environmentE. To summarize the lower bounds for

we can adopt a unitary representation &t in which E is Se.
also initially in a pure state. Thep‘ff/ andpE' have the same S.=|AS?, (79
eigenvalues. In this cas&,=S(p? ), the entropy produced
in the systenQ. S.=|ASH, (80)
B. Relation to other entropies whereAS® and ASF are the changes in entropy of the sys-

o . ) ) tem Q and environmenE, respectively.
Once again, it is useful to emphasize wiatis not. It is

not, in general, the increase in the entropy of the system
Q; in fact, this entropy may actually decrease, whei®ais
never negative. It is also not always the entropy increase of There is a simple application of these ideas to quantum
the environment if the initial environment state is mixed. Thecryptography[16]. Suppose Alice prepares the stai@ of
entropy exchanges, simply characterizes the information Q with probability p, and then conveys the systépto Bob
exchange between the syst€rand the external world dur- as part of a quantum cryptographic protog@lternatively,
ing the evolution given by ©. we could imagine that Alice prepar€¥in a state entangled
There are, however, inequalities relatigg to entropy with a system R, which she retains, as part of an
changes inQ and E. First we will relate the entropy ex- entanglement-based protocf7]. But, in such protocaols,
change to changes in the entropy@fSuppose an evolution Alice usually later makes a measurementRyrgiving rise to
superoperatof  is given, together with an initial stage® of ~ an ensemble of relative states @f) Along the wayQ may
Q. We can always find a representation £ as a unitary interact with the rest of the world, represented by the envi-
evolution on a larger systeQE with an initial pure state ronment systenkt, producing some level of “noise” irQ.
|OF) for the environment system. With this representation,The environment, however, may also contain the measuring

C. Entropy exchange and eavesdropping
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apparatus of an eavesdropper Eve. We will assume that the h(Pg)+ Pglog(N—1)=H(X|Y), (83

environment is initially in a pure statédut see the remark

above about the possibility of an entangled state of near andthereh(Pg) = — PglogPe—(1—Pg)logPg andH (X|Y) is the

far zones within the environment Shannon conditional entropy &f givenY. H(X]|Y), the av-
The dynamical evolution of) is given by the evolution erage residual information uncertainty about the input given

superoperatof 2. Let S, be the entropy exchange @ for ~ the output, is a measure of the noise in the channel.

the input stateg which equals the entropy of the final en- H(X|Y) =0 for a noiseless channel, in which the inputan

vironment statepE resulting from the input ofoE and let be exactly determined by the outpuf. Noting that

S. be the entropy exchange associated with the “average’h.(nI:El);é (finl_cehﬁur Izgigtrhfrgrsmagef Egﬁ%ﬁ/engangirive a
input statepQ=Ekpkp(k3 which equals the entropy of the simp ut stightly w S Inequaity,

average final environment stgt€ . 1+ PelogN>H(X|Y). (84)
The eavesdropper Eve will try to infer the preparation _ o
pR by examining the state of her measuring apparatus, thdtano’s inequality is used to prove the “weak converse” of

is, by trying to distinguish the various environment statesthe classical noisy coding theorem, which states that infor-
PE/ Denote Alice’s preparation, and thus the final environ-mation cannot be sent at a rate greater than the channel ca-

ment state produced by that preparation, by the random Varp_acity with arbitrarily low probability of errof15].

able X and the reading on Eve’s measuring apparatuy by
Then a theorem of Kholevfl8] limits the mutual informa-
tion 1 (X:Y), which is the amount of information aboXtthat We now turn to the quantum problem. As before, we sup-
Eve obtains from a knowledge &f. This limit is pose that the systeRQ is initially in the entangled state
|\I(f2RQ> and thatQ is subjected to an evolution described by
V< S(pE') — E'\_c _ E*. The reference system is isolated and has trivial dy-
1Y) =S(p™) ; PiS(Pic )= Se Ek PiSex (81 namics described by R. The dimensions of{, andH are
both finite and equal td. After the evolution, the system is
<S.. (82)  described by a joint stateR< .
Now suppose that we subject the final staf%Q' to a
[If the eavesdropper Eve only has access to part of the envineasurement of a complete ordinary observable on the sys-
ronment systenk, then she will be able to do no better and tem RQ, which is described by a basis df orthogonal
I (X:Y) will still be bounded in this way. states forRQ. Let the random variablX represent the out-
Thus the entropy exchange associated with the ensembi®me of this measurement. Then we knffvom Eq. (32)]
of input states and the evolution superoperat8r both of  that
which can be determined, in principle, from repeated use of
the channelQ, limits the amount of information that any Se=S(pRY)<H(X). (85)
eavesdropper might obtain about the input. Put another way,
any process by which the eavesdropper obtains informatiofurther suppose that one of these basis vectors is chosen to
about the channel syste@ disturbs the system, leaving be the original state |[¥R?). Then the fidelity
traces in the evolution superoperai®f. The disturbance F,=(¥RpRY|WRQ) is just the probability of this out-
produced by the eavesdropp@nd other interactions with come. Given this probability, the largest possible value of
the environmentis characterized by the entropy exchangeH(X) would occur when all of thel?>—1 other outcomes

B. Quantum theorem

Se. have equal probability. Then
1-F., 1-F,
VI. THE QUANTUM FANO INEQUALITY maxH (X) = — FlogF . — (d?—1) P19

A. Classical theorem | |
— —FogF.— (1-Fg)log(1—F
In classical information theory, there is a simple relation elogFe( e)log( 2

between the noise in a channel and probability of error in +(1—F¢)log(d?—1). (86)
that channe[15]. This relation is Fano’s inequality. We will
derive an analogous quantum relation. Therefore we can conclude that

Let X be a classical random variable representing the in-
put of a noisy channel and suppose tKatan take on up to
N different values. The output of the noisy channel is repre
sented by the random variab¥e The channel itself is rep-
resented by the conditional probabilitipeyklxj) of an out-

put valuey, given an input valuex;. These probabilities, iving this i l = h ; h
together with the input probability distributiop(x;), char- greemi/rllr':rgi]ntsi::st??ﬁgiggfe?qgt e andS, have meanings that

acterize the situation. The receiver makes an estiKatd As before, we can give a slightly weaker form of the
the inputX based only on the channel outpyit The prob-  jnequality:
ability of error Pg is the total likelihood thaX # X.

Fano’s inequality(in its stronger form states that 1+2(1—-Fy)logd=S,. (89

h(Fe)+(1—F¢)log(d?—1)=S,. (87

This is our quantum version of the Fano inequality, relating
the entanglement fidelitf§, with the entropy exchangg,.
Although we have made use of the reference sysiein
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It is instructive to compare the form of this equation to thatthese by the entanglement fidelif, and the entropy ex-
of Eq. (84). The numbeiN of possible input states is analo- changeS,.
gous the dimensionl of Hqy. The probability of erroPg F. is properly thought of not as the fidelity of one state
roughly corresponds 1F., the amount by which the final with another(though it can be given that interpretation by
entangled state fails to correspond to the initial one. Thencluding a reference systeR) but as the fidelity of gro-
noise termH(X|Y) is replaced by the entropy exchange cessgiven by the input state? and the system dynamics
S.. Finally, a factor of 2 appears in the error term in the£°. F, does not just measure howell the state ofQ is
quantum case, which in fact corresponds to repladingy  preserved by ®, but also howcoherently If the input state
d?, the dimension oHo®HR- is a pure state, these amount to the same thing; but otherwise,
We can strengthen the quantum Fano inequality in a numF, is a stronger measure of the amount of disturbance the
ber of ways. First, if the reference systd®nhas a Hilbert state experiences.
space of dimensiodg<d, the quantityd® can be replaced S, is also properly thought of not as the entropy of some
by the productizgd. The required dimensiody, is in fact just  state but as the entropy associated with the dynamical pro-
the dimension of the subspace that suppgrfsand so cess given byp? and £°. Information exchange with the
dr=<d even if R is much larger tharQ. Since we wish to environment, even if it does not change the entropy of either
considerF, andS; to be quantities intrinsic tQ, though, we the systemQ or the environmen€g&, can lead to nonzero
will simply adoptdg=d. entropy exchangeS,. Entropy exchange is therefore a
Finally, we note that the fidelityF, can be lowered by clearer measure of this exchange than the changes in entropy
internal dynamicsof Q as well as by information exchange of either system.
with the environment. To take this into account, we could The relationship betweeR, and S, amounts to a quan-
allow the final state of the system to be “processed” via anytum Fano inequality, connecting the information exchange
unitary transformatiotd? on Q and define with the environment to the disturbance of the state. This
R illustrates very clearly a general principle: In quantum infor-
Fo=max ¥R (1R UQ)pRY (1ReUQTWRY). (89)  mation theory, noise is exactly information exchange with an
u external system. In a classical system, information can be
- “leaked” into the environment with arbitrarily little distur-
(Fe is also independent of the particular purification f&t  pance to the system: the environment can simply make a
and is thus an quantity intrinsic 1Q.) Clearly Fc=F,. A copy of the information, leaving the original intact within the
derivation very similar to the one we have given allows us tosystem. But quantum information cannot be copied. Any de-

replaceF, by F. in Eq. (87), obtaining parture of information into the environment necessarily
R ) yields an irreducible disturbance of the systdithis is the
h(Fo)+(1—Fg)log(d?—1)=S,, (900  fundamental idea behind quantum cryptography [&26.)
The departing information leaves its “footprints” behind in
1+2(1- 'Ee)IOQd?Se- (91) the entropy exchang8, and associated imperfect entangle-
ment fidelity F.
We could further extend this by allowin@ to be sub- These ideas shed an interesting light on the recently dis-

jected to a second arbitrary completely positive map aftecovered quantum error-correcting codés In these codes,

£Q and obtain a similar relation. However, in this case theinput quantum states are represented by massively entangled
relevant entropy exchang®& would be that due to the total States of a systemQ composed of many qubits:
evolution, both€?, and the subsequent “processing.” Since Q=Q1---Qn. The environment is assumed to act indepen-

it is possible thaée< S., we do not obtain a useful general dently on th_ese systems, which in our language corresponds
relation. (This is precisely what happens in quantum error-to the requwemgnt that the evolution superoperator for the
correcting codes, as explained belpw. systemQ factorizes:

VIl. REMARKS E0=E%® - 0% (92)

One possible application of entanglement fidelity and enThe resulting state is then subjected to a second process,
tropy exchange is in the study of nonideal quantum computwhich typically involves an incomplete measurement@n
ers[19]. In a typical state of a quantum computer, the dif- followed by a unitary evolutioiwhich depends on the mea-
ferent parts of the computer are in a highly entangled statesurement result Under certain circumstances, the original
The elements of the computer's memory must maintain theistate of the system may be restored with very high fidelity.
states in such a fashion that this entanglement is preserved. The action of the channel and the subsequent restoration
The considerations in these notes are thus particularly suitgofocess of the sequence of qubits can be written as a single
to studying the effects of noise and decoherence in this corsuperoperator foQ- - - Q,. Since the fidelity of this com-
text. bined process is high, we can conclude, rather surprisingly,

What we have found is that the capability of a systemthat the total entropy exchange is quite low. At first this
Q to preserve its entanglement with some other syfRetan  seems paradoxical since the individual entropy exchanges of
be determined from the initial state and the dynamicQof the noise process and the restoration measurement may both
itself. Destruction or distortion of entanglement, and infor-be high.
mation exchange with the environment, leave distinct traces But this is not too difficult to understand. LEtrepresent
in the dynamics of the system itself. We can characterize¢he environment system that interacts with the qubits during
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the noise stage and I& represent the apparatus that per- 1

forms the restoration process. To begin with, we might imag- —|EQ)=(R|¥RQ) (A3)
ine thatE andM are in pure states. Afte® interacts with Vd

E (and thus exchanges informatjprthe state ofQE be- ~

comes entangled. In the second stalgejnteracts and ex- |£9)=({RIWR). (Ad)

changes information witlp, and the entanglement &f with
the rest of the world is reduced: it is passedtoAt the end
of the process, bot and the “rest of the world’EM are

in near-pure states, blg and M have now become en- : . .
tangled P Given a statgl¢?), let us denote the associated index

- *R . . . .
Thus the process of quantum error correction can b .tate iR by [¢* ™). We can give a simple prescription for

thought of as a process of passing entanglenjemduced inding |¢*) from |$<). Suppose

by a previous interaction with the environmgtd the appa-

ratus, in such a way that the entropy exchange for the total |¢Q>=E ck|,8(,3). (A5)
procesgnoise followed by restoratigron Q is very low. If K
S is very low, then the overall dynamics f&) is nearly

The relation betweef,R) and |£9) is a one-to-one corre-
spondence. We cak®) the relative statein Q to |{R) and
we call|{R) the index statein R that yields|£9).

. - . hen
unitary, so that the original state Qf can be approximately
recovered. It is not yet known under what general circum- R «l R
stances, and to what fidelity, this can be accomplished. |p >:Ek clag), (A6)
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APPENDIX: REPRESENTATION THEOREMS = (| ¢* RY($*R| @ 19)| WRY(TRY(| p* R)($*R| 2 19),
1. Index states and relative states (

In this appendix we will use some of the ideas from the@ relation that will be useful later on. . _ _
main text to show that any trace-preserving, completely The function that takelsp?) to |¢*F) is conjugate linear.
positve linear map has both an operator-sum representatidﬁ |¢9) =ay| $2) +az|¢3), then
and a unitary representation. This derivation is somewhat

*R\ _ o%| 4*%R *| gxR
more direct than that found if8]. We will also suggest a [¢* ") =ails1")+azl¢z "), (A9)
useful characterization of all such representations. *RI_ *R *R
Suppose R and Q are quantum systems with (@™ =ar( 1™ +ax(43 7. (A10)
dimHg=dimHo=d and let|af) and|B2) be orthonormal _
basis vectors fof{g and Hg. We can write down a maxi- 2. Operator-sum representations
mally entangled pure state &Q, Let £2 be the trace-preserving, completely positive linear
1 map that describes the dynamical evolution of the system
i Qj letely positive, any trivial extension of it
PR = R Qy. Al Q Sln_c_eE is comp vy P , any r :
A \/ag @) ®15¢) A1) is positive; in particular, the superoperaf® £Q is posi-
tive. Thus the state
It will be convenient to consider instead the non-normalized pRQ’:I R®5Q(|\I,RQ><\I,RQ|) (A11)
vector

is a positive operator, as is
PR = ¥FY=3 |af) o). (A2) DRQ = dpRQ =7 Rg £Q(|FRY(TRY).  (A12)

B Of course,pRQ" has unit trace, so it is a normalized density
(Using | WR®) rather thar| WR) will eliminate some factors operator, while TDRQ =d.
of \d in our expressions. The operation of realizing a state Qf via choosing an
For every stat¢/R) of R there is a unique staté®) such index state ofR commutes with the dynamical operation
that given byZ R® £9. In other words, if we wish to write down



2626 BENJAMIN SCHUMACHER 54
the final statep® =£°(p?) wherep®=|4?)( 42|, we can for each statd$®) of Q. Because of the conjugate linear
- ; o % R IR ' relation between®) and|¢*R), eachAQ thus defined is a

either apply the index stafes* ®) to |WR?) and then apply : ' M
£° or we can apply the extended superoperate £° to perfectly good linear operator cHq,. Furthermore,
the joint state and then apply the index state; thus

)y A,?|¢Q><¢Q|AST=§ (¢* RIERY ) (ARY| p*R)

p? =(4*FIDRY|p*F). (A13)
This makes sense on physical grounds. A measurement of an =(p*N| DRY | p* )
observable omR involves a completely different system than
the dynamical evolution of, and the two operations might =& p(9). (A19)
take place arbitrarily far apart. The time order of the two
should irrelevant to the result. We have thus derived an operator-sum representation for the

A more formal argument runs as follows. L& be the ~completely positive mapg® for all pure input states
superoperatofi.e., a linear map on operators Gtk) asso- |¢Q><¢Q|-' Extending this to mixed state inputs is trivial, of
ciated with multiplication by|¢*R)(4*R| on both sides. COUrse, since every mixed state is a linézonvey combi-
That is, if TR is an operator on Mg, then nation of pure states. We can further see that each com-
OR(TR) = | * R $* R TR|6*R)(¢*R|. The superoperator Pletely positive marE? has an operator-sum representation

®R®Z Q (which is just multiplication on both sides by With no more thard® terms. _
|p* R\ p*R|®19) obviously commutes with the dynamical We also find that, for our operator-sum representation for

superoperatof Re £9. Therefore, £9,
R QrRQ 71— HR Qr7 Ro cQ/[rRQ\ /11,RQ)
ORI XD |=D"0T ¢[I7®E (|\If Q><\P |)] z <¢Q|ASAST|¢Q>= TrE AS|¢Q><¢Q|AST
=T Roe@RaT (| TRYTRY)] g g
R R R TR = TrPQ/
=T R (|4* "N ¢*R@ 19 ¥R
~ =1 A20
X (TR (| ¢* ) $*R|219)] (A20)
=T R EQ|p* ) p* R @] p () since£Q is trace preserving by assumption. Since this is true
for all states| ¢?), including the eigenstates of the positive
=|¢*R)(p*RlopQ. (A14)  operators ,A2TA? we conclude that
From this we can see that
> AQTAQ=1°, (A21)
o

pQ =E(| () =(*RDRY|p*R)  (A15)

as we wished to show.
The operatoDR? is positive; thus we can find a set of
vectors|zR?') such that

3. Unitary representations
Having derived an operator-sum representation£for it
is easy to arrive at a unitary representation. Add an extra

. RO ~RO! quantum systerE and write down a purificatiofYR?E') for
DRY'=2 [uRY)(uR. (A16)  pRQ a5
I

These vectors, for example, might be constructed from the |§RQE'>:Z |ﬁRQ’>®|6E> (A22)
o
o

eigenvectors oDRQ',| normalized by their eigenvalues; but
there are many such decompositions. In fact, it is easy to see

—_ ’ E . . . .
that the| zRQ') vectors are simply related to the representa-for an orthonormal set of vectofs,) in He . (Again, finding
tion of pRQ" by an ensemble of pure states. That is, given@ Purification forDRQ is equivalent to finding a purification

such a representation for pR?', but it is slightly easier to work with the non-
normalized states.We note that we require no more than
, , , 2 . . . . oy . .
pRQ :2 pMWiQ ><¢lRLQ I (AL7) d< dimensions _lr.HE to cgn,stru_ct this purlflcatlon25|nce there
u are decompositions ddR? with no more thand? vectors

, ey . |ZRY). Fix some stat¢0F) of E. We can define an operator
we can simply sefuR? )= \/p#d|1,//ffQ ). Itis also clear that (jQE g 4 subspace oflo® He by

there is a decomposition &R<?" with no more thard? vec-
tors |zR?Q'), since the dimension of the spagt;®Hog is ~noe ——y
A I YRR ¢R)8[05) =(#*RITRE) = (4 HERY )
)

Here comes the essential trick. Define the operAﬁ)by

A pQ) = (p*RuRY) (A18) =§ A% p |5y =|DF) (A9
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for all | ¢®) in Hgq . Once again, the conjugate linear relation pjy deﬁnemRQ’): (1R®AQ)|\1;RQ>_] Thus the operator-sum

operator. Furthermore, given two stafes’) and|¢%), with the pure state ensembles §d?? .

Similarly, we obtained a unitary representation &t by
finding a purification foDRQ" or equivalently forpR<Q". But
every unitary representation will be associated with such a
=2 (dRAAYAY| pR)( Q| €5) purification because the initial total staf@R?)®|0F) of

g RQE will evolve unitarily to a pure state, from which the
statepRQ' is obtained by a partial trace ové&. Now, any

(PF|PFE)=(YRO| 6 )(3 " YRT)

_ Q| AQTAQ[ 4Q ,

—% (or|ALTAL¢3) such purification opR? can be obtained from any other by
means of a unitary transformation that acts g, which

=($31453). (A24)  corresponds to an internal rotation of the environment sys-

OF ) ) tem E that actsafter the interaction ofQ andE.

the entire spacé{Q@)H,_E. . state ensemble fquQ' can be realized by fixing a purifica-
Thus we have a unitary representation £, _ ROE' ) .

tion |Y y and choosing a complete ordinary measurement

TrEUQE(|¢Q><¢Q|®|0E><0E|)UQET fo_r E (i_.e., an orthonormal bgsis fote). Equivqlently, we

might fix a measurement basis fafz and a particular puri-
e B fication. A change of representation in each case will be
= TreY, (A (QA @ [€5) (5] associated with a unitary matrix corresponding to a rotation

v in He . That is, suppose that for g,

— Q| 4Q QIART)( | E
% (A,u,|¢ ><¢ |Av )<Ev|6,u> SQ(pQ):E ASpQA8T=E B?pQBST, (A26)

N v

=2 AQIp(BAAY = pN().  (A25) 50 that theA? and theB§ operators both form operator-sum
. representations fa 2. Then there is a unitary matrld ,, so
Once again, we can extend this unitary representation téat
mixed state inputs since these are linG@nvexy combina-

tions of pure states. AS:E U,WB(S- (A27)

4. Remarks
Note that we may have to extend one operator-sum repre-

In the above arguments, we arrived at an ,operator-su entation by a finite number of zero operators so that the two
representation fof° by a decomposition oDR?, that is,  representations have the same number of opergithe. ma-
by a pure state ensemble fp?Q'. It is also easy to see that trix U, is in fact the matrix that relates two different bases
every operator-sum representation ¥, when extended in E, corresponding to two purifications related, in the sense
and applied tg¥ RQ), will yield such a decompositiofiSim-  outlined above, to the two operator-sum representations.
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