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This paper addresses some general questions of quantum information theory arising from the transmission of
quantum entanglement through~possibly noisy! quantum channels. A pure entangled state is prepared of a pair
of systemsR andQ, after whichQ is subjected to a dynamical evolution given by the superoperatorE Q. Two
interesting quantities can be defined for this process: the entanglement fidelityFe and the entropy exchange
Se . It turns out that neither of these quantities depends in any way on the systemR, but only on the initial state
and dynamical evolution ofQ. Fe andSe are related to various other fidelities and entropies and are connected
by an inequality reminiscent of the Fano inequality of classical information theory. Some insight can be gained
from these techniques into the security of quantum cryptographic protocols and the nature of quantum error-
correcting codes.@S1050-2947~96!03909-1#

PACS number~s!: 03.65.Bz, 05.30.2d, 89.70.1c

I. INTRODUCTION

In recent years, considerable progress has been made to-
ward developing a general quantum theory of information
@1#, analogous to classical information theory founded by
Shannon@2#. Distinctively quantum-mechanical notions of
coding@3# and channel fidelity@4# have been developed and
the role of entangled states in storing and transferring quan-
tum information has been explored@5#. Recently, the study
of noisy quantum channels has yielded important results
about quantum error-correcting codes@6# and the purification
of noisy entangled states@7#.

The aim of this paper is to further clarify our understand-
ing of noisy quantum channels by defining and exploiting
notions of fidelity and entropy associated with the quantum
transmission process. These quantities are based on an analy-
sis of the transmission of entangled states through the noisy
channel, although~as we shall see! the use of entanglement
is not essential to their definition. A number of applications
of these ideas will be outlined.

Here is the general situation that we will consider. Sup-
poseR andQ are two quantum systems andQ is described
by a Hilbert spaceHQ of finite dimensiond. Initially the
joint system RQ is prepared in a pure entangled state
uCRQ&. The systemR is dynamically isolated and has a zero
internal Hamiltonian, while the systemQ undergoes some
evolution that possibly involves interaction with the environ-
mentE. The evolution ofQ might, for example, represent a
coding, transmission, and decoding process via some quan-
tum channel for the quantum information inQ. The final
state ofRQ is possibly mixed and is described by the density
operatorrRQ8.

The fidelity of this process isFe5^CRQurRQ8uCRQ&,
which is the probability that the final staterRQ8 would pass a
test checking whether it agreed with the initial stateuCRQ&.
~This imagined test would be a measurement of a joint ob-

servable onRQ.! Femeasures how successfully the quantum
channel preserves the entanglement ofQ with the ‘‘reference
system’’R.

We will demonstrate three important results. First, the
fidelity Fe can be defined entirely in terms of the initial
state and evolution of the systemQ. Furthermore,Fe<F̄,
whereF̄ is the average fidelity when the channel carries one
of an ensemble of pure states ofQ described by
rQ5 TrRuCRQ&^CRQu. Thus channels that can convey en-
tanglement faithfully will also convey ensembles of pure
states faithfully.

Second, there exists a quantitySe called entropy ex-
change, also defined in terms of the internal properties of the
systemQ. This quantity can be viewed as the amount of
information that is exchanged with the environment during
the interaction ofQ andE and it characterizes the amount of
‘‘quantum noise’’ in the evolution ofQ.

Finally, we will find an inequality~resembling the Fano
inequality of classical information theory! that boundsFe in
terms of the dimensiond and the entropy exchangeSe in
Q. In other words, the faithfulness ofQ’s dynamical evolu-
tion in preserving entanglement is limited by the amount of
information that is exchanged with the environment.

The Appendix uses some ideas from the paper to give a
derivation of two representation theorems for trace-
preserving, completely positive maps, which are the most
general descriptions for quantum dynamical evolutions@8#.

Throughout this paper, the systems relevant to a particular
vector, operator, or superoperator will be indicated by a su-
perscript. ThusucQ& is a state vector for the systemQ, while
ARQ is an operator acting onHRQ5HR^HQ . ~If no super-
script is given, the quantum system is supposed to be ge-
neric.! A prime denotes that a particular state or density op-
erator arises as a result of some dynamical evolution. A tilde
is usually present when a particular state vector or operator is
not normalized, so that̂cuc&51, but ^c̃uc̃&Þ1 in general.

II. CHANNEL DYNAMICS

A. Completely positive maps

Imagine that the systemQ is prepared in an initial state
rQ and then subjected to some dynamical process, after
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which the state isrQ8. The dynamical process is described
by a mapEQ, so that the evolution is

rQ→rQ85EQ~rQ!. ~1!

In the most general case, the mapEQ must be a trace-
preserving, completely positive linear map@8#. In other
words, we have the following.

~i! EQ must be linear in the density operators. That is, if
rQ5p1r1

Q1p2r2
Q , then

EQ~rQ8!5p1r1
Q81p2r2

Q8

5p1„EQ~r1
Q!…1p2„EQ~r2

Q!….

A probabilistic mixture of inputs toEQ leads to a probabilis-
tic mixture of outputs. This means thatEQ must be asuper-
operator, that is, a linear operator acting on the space of
linear operators~e.g., density operators! onHQ .

~ii ! EQ must be trace-preserving, so that
TrrQ85 TrrQ51.

~iii ! EQ must be positive. This means that ifrQ is
positive1 thenrQ85EQ(rQ) must be positive.

These three conditions mean that the superoperatorEQ takes
normalized density operators to normalized density operators
in a reasonable way. The requirement ofcompletepositivity
is somewhat more subtle.

~iv! EQ must be completely positive. That is, suppose we
extend the evolution superoperatorEQ in a trivial way to an
evolution superoperator for a compound systemRQ, yield-
ing IR^EQ, where IR is the identity superoperator onR
states. Physically, this means adjoining a systemR that has
trivial dynamics~no state ofR is changed! and which does
not interact withQ. EQ is completely positive if, for all such
trivial extensions, the resulting superoperatorIR^EQ is
positive.

A completely positive map is not only a reasonable map
from density operators to density operators forQ, but it is
extensiblein a trivial way to a reasonable map from density
operators to density operators on any larger systemRQ.
Since we cannot excludea priori that our systemQ is in fact
initially entangled with some distant isolated systemR, any
acceptableEQ had better satisfy this condition.

B. Representations ofE Q

Completely positive, trace-preserving linear maps obvi-
ously include all unitary evolutions of the state
rQ85UQrQUQ†. They also include unitary evolutions in-
volving interactions with an external system. Suppose we
consider an environment systemE that is initially in the pure
stateu0E&. Then we could have

EQ~rQ!5 TrEU
QE~rQ^ u0E&^0Eu!UQE†, ~2!

whereUQE is some arbitrary unitary evolution on the joint
systemQE. This map is also trace preserving and completely
positive.

If we can write a superoperatorEQ as a unitary evolution
on an extended systemQE followed by a partial trace over
E, we say that we have a ‘‘unitary representation’’ of the
superoperator. Such a representation is not unique since
many different unitary operatorsUQE will lead to the same
EQ.

Another useful sort of representation for completely posi-
tive maps employs only operators onHQ . Let Am

Q be a col-
lection of such operators indexed bym. Then the mapEQ
given by

EQ~rQ!5(
m

Am
QrQAm

Q† ~3!

is a completely positive map. If, in addition, theAm operators
satisfy

(
m

Am
Q†
Am
Q51Q, ~4!

then the map is also trace preserving. Such a representation
for EQ in terms of operatorsAm

Q will be called an ‘‘operator-
sum representation’’ forEQ. A single EQ will admit many
different operator-sum representations.

Some insight into the connection between these represen-
tations forEQ can be gained by explicitly writing down the
partial trace TrE from Eq. ~2!. Suppose thatrQ5ufQ&^fQu
and let umE& be a complete orthonormal set of states ofE.
Then

EQ~rQ!5(
m

^mEuUQE~ ufQ&^fQu ^ u0E&^0Eu!UQE†umE&.

~5!

If we define the operatorAm
Q by

Am
QufQ&5^mEuUQE~ ufQ& ^ u0E&), ~6!

then we recover an expression identical to Eq.~3!. Since
every input staterQ is a convex combination of pure states,
we recover Eq.~3! for arbitraryrQ by linearity.

A pair of important representation theorems@9# state the
following.

~i! Every trace-preserving, completely positive linear map
EQ has a unitary representation, as in Eq.~2!.

~ii ! Every trace-preserving, completely positive linear
mapEQ has an operator-sum representation, as in Eq.~3!.

~By our argument above, the second statement follows
from the first.! These statements, particularly the first, moti-
vate us to assert that the trace-preserving, completely posi-
tive linear maps is exactly the class of allowed evolutions of
a quantum system. Any reasonable evolution should be such
a map and every such map could be accomplished by unitary
dynamics~i.e., Hamiltonian evolution! on a larger system. A
relatively simple proof of both of these representation theo-
rems is found in the Appendix.

1We will use the term ‘‘positive’’ to refer generically to operators
that arepositive semidefinite, i.e., those that are Hermitian and have
no negative eigenvalues.
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From now on we will assume that a particularEQ has
been specified, giving the evolution of states of the system
Q. We will use unitary representations and operator-sum rep-
resentations as convenient.

III. MIXED STATES AND PURIFICATIONS

A. Entangled states

Given a pure stateuCRQ& of a joint systemRQ, we can
form the reduced staterQ for one of the subsystemsQ by
means of a partial trace operation

rQ5 TrRuCRQ&^CRQu

5(
k

^kRuCRQ&^CRQukR&, ~7!

where ukR& is an orthonormal basis forHR . We can define
the reduced staterQ given a mixed joint staterRQ in the
same fashion.

We have made use of apartial inner productbetween
states ofR and states of a larger systemRQ. This is easy to
understand. The vector

ujQ&5^fRuCRQ& ~8!

is defined to be the unique vector inHQ such that

^aQujQ&5^fRaQuCRQ& ~9!

for all vectors uaQ& in HQ ~where ufRaQ&5ufR& ^ uaQ&).
We could also write this as

^fRuCRQ&5(
k

^fRjk
QuCRQ&ujk

Q& ~10!

for some orthonormal basis setujk
Q& for HQ .

There are, of course, many different pure entangled states
uCRQ& that give rise to a given reduced staterQ. These are
generically calledpurificationsof rQ. SupposeuC1

RQ& and
uC2

RQ& are two such purifications. Then we can write each of
them using the Schmidt decomposition

uC1
RQ&5(

k
Alkuj1k

R & ^ ulk
Q&, ~11!

uC2
RQ&5(

k
Alkuj2k

R & ^ ulk
Q&, ~12!

where thelk and ulk
Q& are eigenvalues and eigenstates of

rQ and theuj1k
R & anduj2k

R & are two orthonormal sets of states
in HR . Since the two purifications differ only in the choice
of orthonormal set inHR , they are connected by a unitary
operator of the formUR

^1Q. Any purification ofrQ can be
converted to any other by a unitary rotation acting on the
auxilliary ‘‘reference’’ systemR.

The Schmidt decomposition also makes clear the fact that,
given a pure entangled state

uCRQ&5(
k

AlkujR& ^ ulk
Q&, ~13!

the reduced states rQ5 TrRuCRQ&^CRQu and
rR5 TrQuCRQ&^CRQu will have exactly the same set of non-
zero eigenvalues, namely, thelk .

B. Mixed-state fidelity

The notion of purification is used to define thefidelity
between two density operatorsr1 andr2. This is

F~r1 ,r2!5maxz^1u2& z2, ~14!

where the maximum is taken over all purificationsu1& and
u2& of r1 andr2 @4#. The fidelity has several important prop-
erties: 0<F(r1 ,r2)<1, with F(r1 ,r2)51 if and only if
r15r2; F(r1 ,r2)5F(r2 ,r1); and if r15uc1&^c1u is a pure
state, then

F~r1 ,r2!5 Trr1r25^c1ur2uc1&. ~15!

This is just the probability that the stater2 would pass a
measurement testing whether or not it is the stateuc1&. The
fidelity is a general way of defining the ‘‘closeness’’ of a pair
of states.

If we have two statesr1
RQ andr2

RQ , we can form

r1
Q5 TrRr1

RQ, ~16!

r2
Q5 TrRr2

RQ. ~17!

Then F(r1
RQ,r2

RQ)<F(r1
Q ,r2

Q). This can be seen directly
from the definition by noting that every purification ofr1

RQ is
also a purification ofr1

Q , and so on.

C. Ensembles of pure states

A mixed staterQ may arise from a statistical ensemble
S of pure statesuc i

Q& of Q. In this case we can write

rQ5(
i
pi uc i

Q&^c i
Qu, ~18!

wherepi is the probability of the stateuc i
Q& in the ensemble

S.
If rQ5 TrRuCRQ&^CRQu for a pure entangled state

uCRQ& of RQ, we can ‘‘realize’’ an ensemble of pure states
for rQ by performing a complete measurement on the system
R. ~This and other characterizations of the ensembles de-
scribed byrQ are given in@10#.! Let ue i

R& be the basis for this
complete measurement. Each outcome of theRmeasurement
will be associated with a relative state@11# of the system
Q. If pi is the probability of thei th outcome of theR mea-
surement anduc i

Q& is the relative state ofQ associated with
this outcome, then

Api uc i
Q&5^e i

RuCRQ&. ~19!

~Note that, in dealing with ensembles of pure states, it is
sometimes useful to consider the non-normalized vectors
uc̃ i

Q&5Api uc i
Q&. In other words, we can normalize the com-

ponent states inS by their probabilities. The resulting vectors
are in themselves a complete description of the ensemble
S. See@10# for fuller details.! It follows that
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(
i
pi uc i

Q&^c i
Qu5(

i
^e i

RuCRQ&^CRQue i
R&

5 TrRuCRQ&^CRQu5rQ, ~20!

so that the ensembleS of relative states is a pure state en-
semble forrQ. In fact, any pure state ensemble forrQ can be
realized in just this way. That is, we can fix a particular
purification uCRQ& for rQ and give a prescription for realiz-
ing any pure state ensemble forrQ as a relative state en-
semble for some complete measurement onR.

Let S1 be a pure state ensemble forrQ given by probabili-
ties pi and statesuc i

Q& and suppose thatHR has arbitrarily
high dimension, at least as large as the number of distinct
pure states in the ensembles we consider. Then we can con-
struct a purificationuC1

RQ& by

uC1
RQ&5(

i
Api ua i

R& ^ uc i
Q&, ~21!

where theua i
R& are a basis forHR . ~Only some of these basis

vectors may appear in this superposition.! Clearly,
rQ5 TrRuC1

RQ&^C1
RQu. Similarly, if we have another en-

sembleS2 for rQ given by probabilitiesqi and statesuf i
Q&,

we can construct a purification

uC2
RQ&5(

i
Aqi ub i

R& ^ uf i
Q& ~22!

for some otherR basisub i
R&. Since both of these are purifi-

cations of the samerQ, there is a unitary operatorUR such
that uC2

RQ&5(UR
^1Q)uC1

RQ&.
We can clearly realize the ensembleS2 by making a mea-

surement of theub i
R& basis on the stateuC2

RQ& of R; but this
is equivalent to making a measurement of the basis
ug i

R&5UR†ub i
R& on the stateuC1

RQ&:

^g i
RuC1

RQ&5~^b i
RuUR!uC1

RQ&

5^b i
Ru@~UR

^1Q!uC1
RQ&#

5^b i
RuC2

RQ&

5Aqi uf i
Q&. ~23!

Thus the ensembleS2 can be realized by making anR mea-
surement on the purificationuC1

RQ&. It follows that we could
pick a particular purificationuCRQ& and obtainanypure state
ensemble forrQ by a suitable choice of measurement basis
for the systemR.

We have assumed that dimHR is arbitrarily large so that
we can have an arbitrarily large number of basis vectors
~since the pure state ensembles may have an arbitrarily large
number of components!. But this is not really necessary. If
we allow positive operator measurements~POMs! @12# on
R, then the dimension ofHR need be no greater than the
dimension ofHQ , which is the minimum size necessary to
purify all mixed statesrQ. The only relevant part of the basis
ua i

R& is the set of subnormalized vectorsuã i
R&5Pua i

R&,
whereP is the projection onto the subspace ofHR that sup-
portsrR5 TrQuCRQ&^CRQu. Since dimHQ5d, this subspace

need have only up tod dimensions. Theuã i
R&^ã i

Ru are ele-
ments of a POM on this subspace. We can use this POM on
the d-dimensional subspace ofHR to find a POM for a pu-
rification that uses another reference systemR* , with
dimHR

*
5d.

D. Entropy

Since entropy will be of central importance for our re-
sults, we will review some of the relevant properties of clas-
sical and quantum entropy. Suppose the non-negative num-
bers p1 ,p2 , . . . sum to unity and thus form a probability
distribution. The Shannon entropyH(pW ) of this probability
distribution ~represented by the vectorpW ) is just

H~pW !52(
k

pklogpk . ~24!

We specify the base of our logarithms to be 2 and take
0log050. If pW forms the probability for some random vari-
ableX, so thatp(xk)5pk for various valuesxk of X, then we
will often write this entropy asH(X).

The Shannon entropyH(X) is the fundamental quantity in
classical information theory and it represents the average
number of binary digits~or bits! required to represent the
value of X @2#. It can be thought of as a measure of the
uncertainty in the value ofX expressed by the probability
distribution. We can use it to define various information-
theoretic quantities, such as the conditional entropy

H~XuY!5(
k

p~yk!H~Xuyk!52(
j ,k

p~xj ,yk!logp~xj uyk!

~25!

for a joint distributionp(xj ,yk) over values of two variables
X andY. A very important quantity is themutual informa-
tion I(X:Y) between two random variablesX andY:

I ~X:Y!5H~X!2H~XuY!, ~26!

which is the average amount that the uncertainty aboutX
decreases when the value ofY is known. IfX represents the
input of a communications channel andY represents the out-
put, thenI (X:Y) represents the amount of information con-
veyed by the channel. It turns out thatI (X:Y)5I (Y:X).

The quantum-mechanical definition of entropy was first
given by von Neumann@13#. SupposerQ is a density opera-
tor representing a mixed state ofQ. Then the entropy is

S~rQ!52 TrrQlogrQ. ~27!

If l1 ,l2 , . . . are the eigenvalues ofrQ, then
S(rQ)5H(lW ). The von Neumann entropy also has a signfi-
cance for coding similar to the Shannon entropy: it is the
average number of two-level quantum systems~or qubits!
needed to faithfully represent one of the pure states of an
ensemble described byrQ @3#.

Suppose that systemsR andQ are in a pure entangled
stateuCRQ&. ThenS(rRQ)50. However, unlike the classical
Shannon entropy, it is possible for the von Neumann entropy
of the subsystemsR andQ to be nonzero even when the
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entropy of the joint systemRQ is zero. We saw above that
the density operatorsrQ andrR have the same nonzero ei-
genvalues. ThusS(rR)5S(rQ). That is, if a pair of quantum
systems are in a pure entangled state, the reduced mixed
states will have the same von Neumann entropy.

The von Neumann entropy has a number of important
properties~usefully reviewed in@14#!. SupposeA andB are
quantum systems with joint staterAB and reduced statesrA

andrB. Then

S~rAB!<S~rA!1S~rB!, ~28!

S~rAB!>S~rA!2S~rB!. ~29!

Equation~28! is thesubadditivityproperty of the von Neu-
mann entropy and Eq.~29! is sometimes called the ‘‘triangle
inequality’’ for the entropy functional.

Another useful property of the von Neumann entropy re-
lates it to the Shannon entropy of the probability distribution
for the measurement outcomes of a complete observable. Let
r be a mixed state with eigenvalueslk , so that

r5(
k

lkulk&^lku. ~30!

Now imagine that a measurement is performed of some com-
plete ordinary observable, that is, the state is resolved using
an orthonormal basisuaj&. The probabilitypj that the j th
outcome is obtained is thus

pj5^aj uruaj&5(
k

lk^aj ulk&^lkuaj&

5(
k
M jklk . ~31!

The matrix Vjk5^aj ulk& is unitary, so the matrix
M jk5uVjku2 is doubly stochastic. That is, the rows and col-
umns ofVjk are orthonormal vectors, so that the rows and
columns ofM jk all sum to one:

(
i
M i j51 for all j, (

j
M i j51 for all i.

It is a standard theorem of information theory that the Shan-
non entropyH(qW )52( iqi logqi cannot decrease if the prob-
abilities qi are changed via a doubly stochastic matrix@15#.
Therefore,

H~pW !>H~lW !5S~r!. ~32!

The von Neumann entropy is thus a lower bound on the
Shannon entropy for the outcome of a complete measure-
ment on the system.

IV. ENTANGLEMENT FIDELITY

A. Definition

Suppose that an entangled stateuCRQ& is prepared for the
joint systemRQ and thatQ is subjected to a dynamical
evolution described byEQ ~so that the overall evolution is
given byIR^EQ). The final state is

rRQ85IR^EQ~ uCRQ&^CRQu!. ~33!

The fidelity of this process is

Fe5 TruCRQ&^CRQurRQ85^CRQurRQ8uCRQ&. ~34!

We callFe theentanglement fidelityof the process.
Written in these terms,Fe depends on the initial and final

states of the systemRQ. We will next show thatFe depends
only on the mapEQ and the initial reduced staterQ obtained
by a partial trace

rQ5 TrRuCRQ&^CRQu. ~35!

That is, the entanglement fidelityFe , which is associated
with an entangled state includingQ, is ~rather surprisingly! a
propertyintrinsic to the systemQ itself.

The superoperatorIR^EQ can be expressed

IR^EQ~rRQ!5(
m

~1R^Am
Q!rRQ~1R^Am

Q!†. ~36!

Suppose that the initial statesuC1
RQ& and uC2

RQ&, both puri-

fications ofrQ, lead to final statesr1
RQ8 and r2

RQ8, respec-
tively, under the action of the superoperatorIR^EQ and let
UR be the unitary operator forR such that

uC2
RQ&5~UR

^1Q!uC1
RQ&. ~37!

Clearly,UR
^1Q commutes with 1R^Am

Q for all m. There-
fore,

r2
RQ85(

m
~1R^Am

Q!uC2
RQ&^C2

RQu~1R^Am
Q!†

5(
m

~1R^Am
Q!~UR

^1Q!uC1
RQ&

3^C1
RQu~UR

^1Q!†~1R^Am
Q!

5~UR
^1Q!S (

m
~1R^Am

Q!uC1
RQ&^C1

RQu~1R^Am
Q!† D

3~UR
^1Q!†r2

RQ8

5~UR
^1Q!r1

RQ8~UR
^1Q!†. ~38!

@Note that Eq.~38! implies thatr1
RQ8 andr2

RQ8 must have the
same eigenvalues. This will be important later in the defini-
tion of entropy exchange.# From Eq.~38! it follows that

Fe25^C2
RQur2

RQ8uC2
RQ&

5^C1
RQu~UR

^1Q!†~UR
^1Q!r1

RQ8~UR
^1Q!†

3~UR
^1Q!uC1

RQ&

5^C1
RQur1

RQ8uC1
RQ&

5Fe1 . ~39!
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Hence the fidelityFe does not depend onwhichpurification
for rQ is chosen. It only depends onrQ and the superopera-
tor EQ.

B. Intrinsic expression for Fe

It is instructive to derive an expression forFe in terms of
things that are intrinsic to the systemQ, i.e., an expression
that does not refer toR. Suppose we have an operator-sum
representation forEQ, as in Eq.~3!. Consider a particular
pure entangled state forRQ

uCRQ&5(
k

ApkukR& ^ ufk
Q&, ~40!

where theukR& are orthonormal states inHR . ~We do not
need to require theufk

Q& to be orthonormal.! This state

evolves underIR^EQ into rRQ8. The initial state ofQ is

rQ5 TrRuCRQ&^CRQu5(
k

pkufk
Q&^fk

Qu. ~41!

Now, for any operatorXQ acting onHQ ,

^CRQu~1R^XQ!uCRQ&5(
jk

Apjpk^ j Ru1RukR&^f j
QuXQufk

Q&

5(
jk

Apjpkd jk^f j
QuXQufk

Q&

5(
k

pk^fk
QuXQufk

Q&5 TrrQXQ.

~42!

We can now work out the fidelity very easily:

Fe5^CRQurRQ8uCRQ&

5(
m

^CRQu~1R^Am
Q!uCRQ&^CRQu~1R^Am

Q!†uCRQ&,

Fe5(
m

~ TrrQAm
Q!~ TrrQAm

Q†!. ~43!

Although this is written with respect to a particular operator-
sum representation ofEQ ~which is not unique!, the value of
Fe will clearly be independent of this representation. Equa-
tion ~43! expressesFe entirely in terms of the initial state
rQ of the systemQ and the evolution superoperatorEQ.

C. Relations to other fidelities

It is worth noting whatFe is not. It is not the simple
fidelity of the input and output states ofQ. This fidelity can
be writtenF(rQ,rQ8), whererQ85EQ(rQ). We can show
that FeÞF(rQ,rQ8) in general by considering an operation
defined by

Am
Q5umQ&^mQu ~44!

for some orthonormal basisumQ&. The effect of the operation
is to completely destroy any coherences between different
elements of the basis. That is, the superposition(mcmumQ&
would be transformed into the mixed state

rQ85(
m

ucmu2umQ&^mQu. ~45!

Now supposerQ5(mlmumQ&^mQu. ThenrQ85rQ and thus
F(rQ,rQ8)51. However, let uCRQ& be a purification of
rQ, for example,

uCRQ&5(
m

Almufm
R& ^ umQ&. ~46!

The action of the superoperatorIR^EQ on this state yields

rRQ85(
m

lmufm
R&^fm

Ru ^ umQ&^mQu. ~47!

If more than one of the lm’s is nonzero, then
Fe5F(rRQ,rRQ8)Þ1. ThusFeÞF(rQ,rQ8).

However, there is a general relation betweenFe and
F(rQ,rQ8),

Fe5F~rRQ,rRQ8!<F~rQ,rQ8!. ~48!

The entanglement fidelityFe is thus a lower bound to the
input-output fidelityF(rQ,rQ8) for states ofQ.

Fe andF(r
Q,rQ8) do sometimes agree. Suppose that the

initial staterQ is in fact a pure state ofQ, so that there is no
entanglement betweenR and Q. Then, letting
rQ5ucQ&^cQu,

F~rQ,rQ8!5^cQurQ8ucQ&

5(
m

^cQuAm
QucQ&^cQuAm

Q†ucQ&

5(
m

~ TrrQAm
Q!~ TrrQAm

Q†!

5Fe . ~49!

The entanglement fidelity equals the ‘‘input-output’’ fidelity
when the input state is a pure state.

Now suppose thatrQ is a mixed state ofQ arising from
an ensembleS in which the pure stateuc i

Q& occurs with
probability pi . The average input-output fidelity for this en-
semble is

F̄5(
i
piF~ uc i

Q&^c i
Qu,r i

Q8!

5(
i
pi^c i

Qur i
Q8uc i

Q&, ~50!

wherer i
Q85EQ(uc i

Q&^c i
Qu).

It turns out thatF̄>Fe . Some such connection is reason-
able physically, since we can realize a pure state ensemble
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S by means of anR measurement on a purification ofrQ,
and this measurement may be performed either before or
after the dynamical evolution given bySQ. A full proof fol-
lows.

Let ua i
R& be an orthonormal set inHR ~assumed to have as

many dimensions as there are elements in the ensembleS)
and let

uCRQ&5(
i

Api ua i
R& ^ uc i

Q&. ~51!

uCRQ& is clearly a purification ofrQ and theua i
R& basis is the

basis inHR that, when measured, generates the ensembleS
as an ensemble of relative states inQ. That is,
Api uc i

Q&5^a i
RuCRQ&, which we could also write as

~ ua i
R&^a i

Ru ^1Q!uCRQ&5Api ua i
R& ^ uc i

Q&. ~52!

Now consider the operatorGRQ given by

GRQ5(
j

ua j
R&^a j

Ru ^ uc j
Q&^c j

Qu

5(
j

~1R^ uc j
Q&^c j

Qu!~ ua j
R&^a j

Ru ^1Q!. ~53!

SinceGRQ is the sum of an orthogonal set of projections, it is
itself a projection operator onto some subspace of
HR^HQ . uCRQ& itself is in this subspace:

GRQuCRQ&5(
j

~1R^ uc j
Q&^c j

Qu!~ ua j
R&^a j

Ru ^1Q!uCRQ&

5(
j

~1R^ uc j
Q&^c j

Qu!Apj ua j
R& ^ uc j

Q&

5(
j

Apj ua j
R& ^ uc j

Q&

5uCRQ&. ~54!

Therefore, we have the operator inequality
GRQ>uCRQ&^CRQu. This means that, for any vectoruxRQ&,

^xRQuGRQuxRQ&>^xRQu~ uCRQ&^CRQu!uxRQ&, ~55!

which in turn implies that, for all positive operatorsXRQ,

TrGRQXRQ> TruCRQ&^CRQuXRQ5^CRQuXRQuCRQ&.
~56!

Let Am
Q be the operators in an operator-sum representation

of the evolution superoperatorEQ. Then

GRQ~1R^Am
Q!uCRQ&

5(
j

~1R^ uc j
Q&^c j

Qu!~ ua j
R&^a j

Ru ^1Q!~1R^Am
Q!uCRQ&

5(
j

~1R^ uc j
Q&^c j

Qu!~1R^Am
Q!~ ua j

R&^a j
Ru ^1Q!uCRQ&

5(
j

~1R^ uc j
Q&^c j

Qu!~1R^Am
Q!Apj ua j

R& ^ uc j
Q&

5(
j

~1R^ uc j
Q&^c j

Qu!Apj ua j
R& ^Am

Quc j
Q&

5(
j

Apj^c j
QuAm

Quc j
Q&ua j

R& ^ uc j
Q&. ~57!

If rRQ85I R
^EQ(uCRQ&^CRQu), then

Fe5 TruCRQ&^CRQurRQ8

< TrGRQrRQ8

5 TrGRQrRQ8GRQ

5(
m

TrGRQ~1R^Am
Q!uCRQ&^CRQu~1R^Am

Q!†GRQ

5(
j ,k

(
m

Apjpk^c j
QuAm

Quc j
Q&^ck

QuAm
Q†uck

Q&^ck
Quc j

Q&

3^ak
Rua j

R&

5(
k

(
m

pk^ck
QuAm

Quck
Q&^ck

QuAm
Q†uck

Q&

5(
k

pk^ck
QuS (

m
Am
Quck

Q&^ck
QuAm

Q† D uck
Q&

5(
k

pk^ck
Qurk

Q8uck
Q&

5F̄. ~58!

Thus F̄>Fe , as we wished to show. The average input-
output fidelity under the evolution superoperatorEQ for any
ensemble of pure states with density operatorrQ is bounded
below by the entanglement fidelityFe .

V. ENTROPY EXCHANGE

A. Definition

As shown in Eq.~38! above, ifuC1
RQ& anduC2

RQ& are two
purifications ofrQ and each is subjected to the same evolu-

tion superoperatorI R
^EQ, the resulting statesr1

RQ8 and

r2
RQ8 will have exactly the same eigenvalues. Therefore,

S~r1
RQ8!5S~r2

RQ8!, ~59!

whereS(r) is the von Neumann entropy of the density op-
eratorr. In other words, the entropy of the final joint state of
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RQ is independent of which purification is chosen. Again,
rather surprisingly, we have a quantity that depends only on
the initial staterQ and the evolution superoperatorEQ; that
is, we have a quantity that isintrinsic to Q. For a givenrQ

andEQ, we therefore define theentropy exchange Se to be

Se52 TrrRQ8logrRQ8 ~60!

where rRQ85I R
^EQ(uCRQ&^CRQu) and uCRQ& is some

purification ofrQ.
Why call Se the entropy ‘‘exchange’’? Suppose we have

two systemsA and B, initially in the staterAB5rA^ rB,
which interact according to a unitary evolution operator
UAB. The evolution of each system will be describable in
terms of a superoperator. That is,

E A~rA!5 TrBU
AB~rA^ rB!UAB†, ~61!

E B~rB!5 TrAU
AB~rA^ rB!UAB†. ~62!

~In the definition ofE A we imagine thatrB is given, and vice
versa.! We can thus calculate the entropy exchangesSe

A and
Se
B This can be done by including reference systemsRA and
RB to purify the initial state:

uCABRARB&5uCARA& ^ uFBRB&. ~63!

Now, since the overall evolution is unitary, the final state

uCABRARB8& is also pure. This means thatrARA8 and rBRB8

have exactly the same nonzero eigenvalues and thus the
same entropy. ThusSe

A5Se
B In other words, the entropy ex-

change is acommonquantity for two initially uncorrelated
systems that interact unitarily.

We will now derive an explicit expression forSe in terms
of rQ andEQ. Suppose we have an operator-sum represen-
tation for EQ and we define

uF̃m
RQ8&5~1R^Am

Q!uCRQ&. ~64!

~These are not normalized vectors in general.! Then

rRQ85(
m

~1R^Am
Q!uCRQ&^CRQu~1R^Am

Q!†

5(
m

uF̃m
RQ8&^F̃m

RQ8u. ~65!

Thus the vectorsuF̃m
RQ8& give us a pure state ensemble for

rRQ8. We can use these states to construct a purification for
rRQ8. Let us adjoin a systemE whose Hilbert spaceHE has
at least as many dimensions as the number ofAm

Q operators.
Then the state

uYRQE8&5(
m

uF̃m
RQ8& ^ umE& ~66!

~where theumE& are an orthonormal set ofE states! will be a
purification forrRQ8.

Since the stateuYRQE8& is a pure state, the reduced states

rRQ85 TrEuYRQE8&^YRQE8u, ~67!

rE85 TrRQuYRQE8&^YRQE8u ~68!

will have the same entropy. Therefore,
Se5S(rRQ8)5S(rE8). We can write down the density op-
eratorrE8,

rE85 TrRQuYRQE8&^YRQE8u

5(
m,n

^F̃n
RQ8uF̃m

RQ8&umE&^nEu. ~69!

That is,rE85(mnWmnumE&^nEu, where

Wmn5^F̃n
RQ8uF̃m

RQ8&

5 TruF̃m
RQ8&^F̃n

RQ8u

5 Tr~1R^Am
Q!uCRQ8&^CRQ8u~1R^An

Q!†

5 TrQAm
Q~ TrRuCRQ&^CRQu!An

Q†

5 TrQAm
QrQAn

Q†. ~70!

In other words, we have the following prescription. LetW be
a density operator with components~in some orthonormal
basis!

Wmn5 TrAm
QrQAn

Q†. ~71!

Then

Se5S~W!. ~72!

As explained in the Appendix, any two operator-sum rep-
resentations forEQ are related by a unitary matrixUmn . This
simply corresponds to the freedom to write the matrixWmn

with respect to any basis~which obviously does not affect
Se). Let Pm5Wmm be the diagonal elements ofWmn . These
would be the probabilities given the stateW for a complete
measurement using the basis that yields the matrix elements
Wmn . Therefore,H(PW )>S(W). But we could, by choosing
the unitary matrix that diagonalizesWmn , find a representa-
tion such thatH(PW )5S(W). This yields another expression
for Se ,

Se5minS 2(
m

PmlogPmD , ~73!

wherePm5 TrAm
QrQAm

Q† and the minimum is taken over all
operator-sum representations ofEQ.

For a given input staterQ, there is a ‘‘diagonal’’ operator-
sum representation, in whichWmn is diagonal. In this repre-
sentation,

TrAm
QrQAn

Q†50 for mÞn. ~74!

If rQ5d211Q ~the ‘‘maximally mixed’’ state!, then this sim-
ply means that the variousAm

Q operators are orthogonal in the
operator inner product̂B,C&5 TrB†C. This diagonal repre-
sentation is minimal, in the sense that no other operator-sum
representation includes a smaller number ofAm

Q operators.
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The evolutionEQ might in fact be due to unitary evolu-
tion of a larger system that includes an environmentE, with
E initially in a pure state andRQ initially in a pure entangled
state. In this case the final state ofRQE will be also be a
pure state. ThenS(rE8)5S(rRQ8)5Se . In other words, the
entropy exchangeSe is just the entropy produced in the en-
vironment, if it is initially in a pure state.

Note that the samerE8 would have been obtained if we
ignored the reference systemR entirely and simply consid-
ered the unitary evolution ofQE with an initial staterQ for
Q. The entropy produced in the environment does not de-
pend on the dynamically isolated reference systemR.

The assumption that the environment is initially in a pure
stateu0E& at first seems too restrictive. For example, we may
wish to consider environments that are initially in some ther-
mal equilibrium staterE. However, we may imagine that the
environment consists of a ‘‘near’’ environmentEn and a
‘‘far’’ environmentEf . The systemQ interacts only with the
near environmentEn . The initial state of the full environ-
ment may be an entangled pure state, but the systemQ will
‘‘see’’ a mixed state forEn .

To summarize, the entropy exchangeSe has the following
properties.

~i! Se is a quantity intrinsic to the systemQ and can be
defined entirely in terms of the initial staterQ and the super-
operatorEQ.

~ii ! If the initial staterQ arises because a larger system
RQ is in a pure entangled state and if the reference system
R has trivial dynamics, then the entropy exchangeSe is the
entropy of the final staterRQ8 of RQ. ~It is easy to generalize
this to the case whenR itself can have arbitrary unitary evo-
lution, i.e., whenR is dynamically isolated but may have a
nonzero internal Hamiltonian.!

~iii ! If the nonunitary evolution ofQ arises becauseQ
interacts with an environmentE that is initially in a pure
state, thenSe is the entropy of the final staterE8 of the
environment.

~iv! If the initial staterQ of the systemQ is a pure state,
we can adopt a unitary representation forEQ in which E is
also initially in a pure state. ThenrQ8 andrE8 have the same
eigenvalues. In this case,Se5S(rQ8), the entropy produced
in the systemQ.

B. Relation to other entropies

Once again, it is useful to emphasize whatSe is not. It is
not, in general, the increase in the entropy of the system
Q; in fact, this entropy may actually decrease, whereasSe is
never negative. It is also not always the entropy increase of
the environment if the initial environment state is mixed. The
entropy exchangeSe simply characterizes the information
exchange between the systemQ and the external world dur-
ing the evolution given byEQ.

There are, however, inequalities relatingSe to entropy
changes inQ and E. First we will relate the entropy ex-
change to changes in the entropy ofQ. Suppose an evolution
superoperatorEQ is given, together with an initial staterQ of
Q. We can always find a representation forEQ as a unitary
evolution on a larger systemQE with an initial pure state
u0E& for the environment system. With this representation,

the entropy of the joint initial stateS(rQE)5S(rQ). The
joint systemQE evolves unitarily, so the entropy of the joint
state remains unchanged. ThusS(rQE8)5S(rQ). The en-
tropy exchange in this case is the final entropy of the envi-
ronmentS(rE8). The triangle inequality@Eq. ~29!# yields

S~rQ!>S~rQ8!2S~rE8!, Se>S~rQ8!2S~rQ!. ~75!

In other words, the entropy exchange is no less than the
increase in entropy of the systemQ. We can also in this way
establish that

Se<S~rQ!1S~rQ8!. ~76!

Now we relateSe to the entropy change in the environ-
ment. In this case, we are given a particular~possibly mixed!
initial staterE for the environment and a particular unitary
evolution UQE for the joint systemQE. Again, the initial
state ofQ is rQ, but now we will imagine that this is a partial
state of a pure entangled stateuCRQ&, whereR is an isolated
reference system. The entropy of the joint systemRQE is
initially S(rRQE)5S(rE) and remains unchanged during the
unitary evolution of the joint system. By definition, the en-
tropy exchange is just the entropyS(rRQ8) of the final state
of RQ. Thus

S~rE!>S~rE8!2S~rRQ8!, Se>S~rE8!2S~rE!,
~77!

so that the entropy exchange is no less than the increase in
the entropy of the environment. We can also derive

Se<S~rE!1S~rE8!, ~78!

which, for a large environment, is probably not very useful.
Similar arguments based on the subaddtivity of the en-

tropy functional@Eq. ~28!#, also demonstrate thatSe is no
smaller than the entropydecreasein either the systemQ or
the environmentE. To summarize the lower bounds for
Se ,

Se>uDSQu, ~79!

Se>uDSEu, ~80!

whereDSQ andDSE are the changes in entropy of the sys-
temQ and environmentE, respectively.

C. Entropy exchange and eavesdropping

There is a simple application of these ideas to quantum
cryptography@16#. Suppose Alice prepares the staterk

Q of
Q with probabilitypk and then conveys the systemQ to Bob
as part of a quantum cryptographic protocol.~Alternatively,
we could imagine that Alice preparesQ in a state entangled
with a system R, which she retains, as part of an
entanglement-based protocol@17#. But, in such protocols,
Alice usually later makes a measurement onR, giving rise to
an ensemble of relative states ofQ.! Along the wayQ may
interact with the rest of the world, represented by the envi-
ronment systemE, producing some level of ‘‘noise’’ inQ.
The environment, however, may also contain the measuring
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apparatus of an eavesdropper Eve. We will assume that the
environment is initially in a pure state~but see the remark
above about the possibility of an entangled state of near and
far zones within the environment!.

The dynamical evolution ofQ is given by the evolution
superoperatorEQ. Let Se,k be the entropy exchange inQ for
the input staterk

Q which equals the entropy of the final en-

vironment staterk
E8 resulting from the input ofrk

Q and let
Se be the entropy exchange associated with the ‘‘average’’
input staterQ5(kpkrk

Q which equals the entropy of the

average final environment staterE8.
The eavesdropper Eve will try to infer the preparation

rk
Q by examining the state of her measuring apparatus, that
is, by trying to distinguish the various environment states

rk
E8 Denote Alice’s preparation, and thus the final environ-
ment state produced by that preparation, by the random vari-
ableX and the reading on Eve’s measuring apparatus byY.
Then a theorem of Kholevo@18# limits the mutual informa-
tion I (X:Y), which is the amount of information aboutX that
Eve obtains from a knowledge ofY. This limit is

I ~X:Y!<S~rE8!2(
k

pkS~rk
E8!5Se2(

k
pkSe,k ~81!

<Se . ~82!

@If the eavesdropper Eve only has access to part of the envi-
ronment systemE, then she will be able to do no better and
I (X:Y) will still be bounded in this way.#

Thus the entropy exchange associated with the ensemble
of input states and the evolution superoperatorEQ, both of
which can be determined, in principle, from repeated use of
the channelQ, limits the amount of information that any
eavesdropper might obtain about the input. Put another way,
any process by which the eavesdropper obtains information
about the channel systemQ disturbs the system, leaving
traces in the evolution superoperatorEQ. The disturbance
produced by the eavesdropper~and other interactions with
the environment! is characterized by the entropy exchange
Se .

VI. THE QUANTUM FANO INEQUALITY

A. Classical theorem

In classical information theory, there is a simple relation
between the noise in a channel and probability of error in
that channel@15#. This relation is Fano’s inequality. We will
derive an analogous quantum relation.

Let X be a classical random variable representing the in-
put of a noisy channel and suppose thatX can take on up to
N different values. The output of the noisy channel is repre-
sented by the random variableY. The channel itself is rep-
resented by the conditional probabilitiesp(ykuxj ) of an out-
put valueyk given an input valuexj . These probabilities,
together with the input probability distributionp(xj ), char-
acterize the situation. The receiver makes an estimateX̂ of
the inputX based only on the channel outputY. The prob-
ability of errorPE is the total likelihood thatX̂ÞX.

Fano’s inequality~in its stronger form! states that

h~PE!1PElog~N21!>H~XuY!, ~83!

whereh(PE)52PElogPE2(12PE)logPE andH(XuY) is the
Shannon conditional entropy ofX givenY. H(XuY), the av-
erage residual information uncertainty about the input given
the output, is a measure of the noise in the channel.
H(XuY)50 for a noiseless channel, in which the inputX can
be exactly determined by the outputY. Noting that
h(PE)<1 ~since our logarithms are base 2!, we can derive a
simpler but slightly weaker form of Fano’s inequality,

11PElogN.H~XuY!. ~84!

Fano’s inequality is used to prove the ‘‘weak converse’’ of
the classical noisy coding theorem, which states that infor-
mation cannot be sent at a rate greater than the channel ca-
pacity with arbitrarily low probability of error@15#.

B. Quantum theorem

We now turn to the quantum problem. As before, we sup-
pose that the systemRQ is initially in the entangled state
uCRQ& and thatQ is subjected to an evolution described by
EQ. The reference systemR is isolated and has trivial dy-
namics described byI R. The dimensions ofHQ andHR are
both finite and equal tod. After the evolution, the system is
described by a joint staterRQ8.

Now suppose that we subject the final staterRQ8 to a
measurement of a complete ordinary observable on the sys-
tem RQ, which is described by a basis ofd2 orthogonal
states forRQ. Let the random variableX represent the out-
come of this measurement. Then we know@from Eq. ~32!#
that

Se5S~rRQ8!<H~X!. ~85!

Further suppose that one of these basis vectors is chosen to
be the original state uCRQ&. Then the fidelity
Fe5^CRQurRQ8uCRQ& is just the probability of this out-
come. Given this probability, the largest possible value of
H(X) would occur when all of thed221 other outcomes
have equal probability. Then

maxH~X!52FelogFe2~d221!
12Fe

d221
log

12Fe

d221

52FelogFe2~12Fe!log~12Fe!

1~12Fe!log~d
221!. ~86!

Therefore we can conclude that

h~Fe!1~12Fe!log~d
221!>Se . ~87!

This is our quantum version of the Fano inequality, relating
the entanglement fidelityFe with the entropy exchangeSe .
Although we have made use of the reference systemR in
deriving this inequality, bothFe andSe have meanings that
are intrinsic to the systemQ.

As before, we can give a slightly weaker form of the
inequality:

112~12Fe!logd>Se . ~88!
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It is instructive to compare the form of this equation to that
of Eq. ~84!. The numberN of possible input states is analo-
gous the dimensiond of HQ . The probability of errorPE
roughly corresponds 12Fe , the amount by which the final
entangled state fails to correspond to the initial one. The
noise termH(XuY) is replaced by the entropy exchange
Se . Finally, a factor of 2 appears in the error term in the
quantum case, which in fact corresponds to replacingN by
d2, the dimension ofHQ^HR .

We can strengthen the quantum Fano inequality in a num-
ber of ways. First, if the reference systemR has a Hilbert
space of dimensiondR,d, the quantityd2 can be replaced
by the productdRd. The required dimensiondR is in fact just
the dimension of the subspace that supportsrR and so
dR<d even if R is much larger thanQ. Since we wish to
considerFe andSe to be quantities intrinsic toQ, though, we
will simply adoptdR5d.

Finally, we note that the fidelityFe can be lowered by
internal dynamicsof Q as well as by information exchange
with the environment. To take this into account, we could
allow the final state of the system to be ‘‘processed’’ via any
unitary transformationUQ onQ and define

F̂e5max
UQ

^CRQu~1R^UQ!rRQ8~1R^UQ!†uCRQ&. ~89!

(F̂e is also independent of the particular purification forrQ

and is thus an quantity intrinsic toQ.! Clearly F̂e>Fe . A
derivation very similar to the one we have given allows us to
replaceFe by F̂e in Eq. ~87!, obtaining

h~ F̂e!1~12F̂e!log~d
221!>Se , ~90!

112~12F̂e!logd>Se . ~91!

We could further extend this by allowingQ to be sub-
jected to a second arbitrary completely positive map after
EQ and obtain a similar relation. However, in this case the
relevant entropy exchangeŜe would be that due to the total
evolution, bothEQ, and the subsequent ‘‘processing.’’ Since
it is possible thatŜe,Se , we do not obtain a useful general
relation. ~This is precisely what happens in quantum error-
correcting codes, as explained below.!

VII. REMARKS

One possible application of entanglement fidelity and en-
tropy exchange is in the study of nonideal quantum comput-
ers @19#. In a typical state of a quantum computer, the dif-
ferent parts of the computer are in a highly entangled state.
The elements of the computer’s memory must maintain their
states in such a fashion that this entanglement is preserved.
The considerations in these notes are thus particularly suited
to studying the effects of noise and decoherence in this con-
text.

What we have found is that the capability of a system
Q to preserve its entanglement with some other systemR can
be determined from the initial state and the dynamics ofQ
itself. Destruction or distortion of entanglement, and infor-
mation exchange with the environment, leave distinct traces
in the dynamics of the system itself. We can characterize

these by the entanglement fidelityFe and the entropy ex-
changeSe .

Fe is properly thought of not as the fidelity of one state
with another~though it can be given that interpretation by
including a reference systemR) but as the fidelity of apro-
cessgiven by the input staterQ and the system dynamics
EQ. Fe does not just measure howwell the state ofQ is
preserved byEQ, but also howcoherently. If the input state
is a pure state, these amount to the same thing; but otherwise,
Fe is a stronger measure of the amount of disturbance the
state experiences.

Se is also properly thought of not as the entropy of some
state but as the entropy associated with the dynamical pro-
cess given byrQ and EQ. Information exchange with the
environment, even if it does not change the entropy of either
the systemQ or the environmentE, can lead to nonzero
entropy exchangeSe . Entropy exchange is therefore a
clearer measure of this exchange than the changes in entropy
of either system.

The relationship betweenFe andSe amounts to a quan-
tum Fano inequality, connecting the information exchange
with the environment to the disturbance of the state. This
illustrates very clearly a general principle: In quantum infor-
mation theory, noise is exactly information exchange with an
external system. In a classical system, information can be
‘‘leaked’’ into the environment with arbitrarily little distur-
bance to the system: the environment can simply make a
copy of the information, leaving the original intact within the
system. But quantum information cannot be copied. Any de-
parture of information into the environment necessarily
yields an irreducible disturbance of the system.~This is the
fundamental idea behind quantum cryptography see@20#.!
The departing information leaves its ‘‘footprints’’ behind in
the entropy exchangeSe and associated imperfect entangle-
ment fidelityFe .

These ideas shed an interesting light on the recently dis-
covered quantum error-correcting codes@6#. In these codes,
input quantum states are represented by massively entangled
states of a systemQ composed of many qubits:
Q5Q1•••Qn . The environment is assumed to act indepen-
dently on these systems, which in our language corresponds
to the requirement that the evolution superoperator for the
systemQ factorizes:

EQ5EQ1^ •••^EQ2. ~92!

The resulting state is then subjected to a second process,
which typically involves an incomplete measurement onQ
followed by a unitary evolution~which depends on the mea-
surement result!. Under certain circumstances, the original
state of the system may be restored with very high fidelity.

The action of the channel and the subsequent restoration
process of the sequence of qubits can be written as a single
superoperator forQ1•••Qn . Since the fidelity of this com-
bined process is high, we can conclude, rather surprisingly,
that the total entropy exchange is quite low. At first this
seems paradoxical since the individual entropy exchanges of
the noise process and the restoration measurement may both
be high.

But this is not too difficult to understand. LetE represent
the environment system that interacts with the qubits during
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the noise stage and letM represent the apparatus that per-
forms the restoration process. To begin with, we might imag-
ine thatE andM are in pure states. AfterQ interacts with
E ~and thus exchanges information!, the state ofQE be-
comes entangled. In the second stage,M interacts and ex-
changes information withQ, and the entanglement ofQ with
the rest of the world is reduced: it is passed toM . At the end
of the process, bothQ and the ‘‘rest of the world’’EM are
in near-pure states, butE and M have now become en-
tangled.

Thus the process of quantum error correction can be
thought of as a process of passing entanglement~produced
by a previous interaction with the environment! to the appa-
ratus, in such a way that the entropy exchange for the total
process~noise followed by restoration! onQ is very low. If
Se is very low, then the overall dynamics forQ is nearly
unitary, so that the original state ofQ can be approximately
recovered. It is not yet known under what general circum-
stances, and to what fidelity, this can be accomplished.
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APPENDIX: REPRESENTATION THEOREMS

1. Index states and relative states

In this appendix we will use some of the ideas from the
main text to show that any trace-preserving, completely
positve linear map has both an operator-sum representation
and a unitary representation. This derivation is somewhat
more direct than that found in@9#. We will also suggest a
useful characterization of all such representations.

Suppose R and Q are quantum systems with
dimHR5dimHQ5d and let uak

R& and ubk
Q& be orthonormal

basis vectors forHR andHQ . We can write down a maxi-
mally entangled pure state ofRQ,

uCRQ&5
1

Ad(k uak
R& ^ ubk

Q&. ~A1!

It will be convenient to consider instead the non-normalized
vector

uC̃RQ&5AduCRQ&5(
k

uak
R& ^ ubk

Q&. ~A2!

~Using uC̃RQ& rather thanuCRQ& will eliminate some factors
of Ad in our expressions.!

For every stateuzR& of R there is a unique stateujQ& such
that

1

Ad
ujQ&5^zRuCRQ& ~A3!

ujQ&5^zRuC̃RQ&. ~A4!

The relation betweenuzR& and ujQ& is a one-to-one corre-
spondence. We callujQ& the relative statein Q to uzR& and
we call uzR& the index statein R that yieldsujQ&.

Given a stateufQ&, let us denote the associated index
state inR by uf* R&. We can give a simple prescription for
finding uf* R& from ufQ&. Suppose

ufQ&5(
k
ckubk

Q&. ~A5!

Then

uf* R&5(
k
ck* uak

R&, ~A6!

as can be easily seen:

^f* RuC̃RQ&5(
kl

ck^ak
Rua l

R&ub l
Q&

5(
k
ckubk

Q&5ufQ&. ~A7!

It is also clear that

uf* R&^f* Ru ^ ufQ&^fQu

5~ uf* R&^f* Ru ^1Q!uC̃RQ&^C̃RQu~ uf* R&^f* Ru ^1Q!,
~A8!

a relation that will be useful later on.
The function that takesufQ& to uf* R& is conjugate linear.

If ufQ&5a1uf1
Q&1a2uf2

Q&, then

uf* R&5a1* uf1*
R&1a2* uf2*

R&, ~A9!

^f* Ru5a1^f1*
Ru1a2^f2*

Ru. ~A10!

2. Operator-sum representations

Let EQ be the trace-preserving, completely positive linear
map that describes the dynamical evolution of the system
Q. SinceEQ is completely positive, any trivial extension of it
is positive; in particular, the superoperatorI R

^EQ is posi-
tive. Thus the state

rRQ85I R
^EQ~ uCRQ&^CRQu! ~A11!

is a positive operator, as is

DRQ85drRQ85I R
^EQ~ uC̃RQ&^C̃RQu!. ~A12!

Of course,rRQ8 has unit trace, so it is a normalized density
operator, while TrDRQ85d.

The operation of realizing a state ofQ via choosing an
index state ofR commutes with the dynamical operation
given byI R

^EQ. In other words, if we wish to write down
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the final staterQ85EQ(rQ), whererQ5ufQ&^fQu, we can
either apply the index stateuf* R& to uC̃RQ& and then apply
EQ or we can apply the extended superoperatorI R

^EQ to
the joint state and then apply the index state; thus

rQ85^f* RuDRQ8uf* R&. ~A13!

This makes sense on physical grounds. A measurement of an
observable onR involves a completely different system than
the dynamical evolution ofQ, and the two operations might
take place arbitrarily far apart. The time order of the two
should irrelevant to the result.

A more formal argument runs as follows. LetFR be the
superoperator~i.e., a linear map on operators onHR) asso-
ciated with multiplication byuf* R&^f* Ru on both sides.
That is, if TR is an operator on HR , then
FR(TR)5uf* R&^f* RuTRuf* R&^f* Ru. The superoperator
FR

^I Q ~which is just multiplication on both sides by
uf* R&^f* Ru ^1Q) obviously commutes with the dynamical
superoperatorI R

^EQ. Therefore,

FR
^I Q@DRQ8#5FR

^I Q@I R
^EQ~ uC̃RQ&^C̃RQu!#

5I R
^EQ@FR

^I Q~ uC̃RQ&^C̃RQu!#

5I R
^EQ@~ uf* R&^f* Ru ^1Q!uC̃RQ&

3^C̃RQu~ uf* R&^f* Ru ^1Q!#

5I R
^EQ~ uf* R&^f* Ru ^ ufQ&^fQu!

5uf* R&^f* Ru ^ rQ8. ~A14!

From this we can see that

rQ85EQ~ ufQ&^fQu!5^f* RuDRQ8uf* R& ~A15!

as we wished to show.
The operatorDRQ8 is positive; thus we can find a set of

vectorsum̃RQ8& such that

DRQ85(
m

um̃RQ8&^m̃RQ8u. ~A16!

These vectors, for example, might be constructed from the
eigenvectors ofDRQ8, normalized by their eigenvalues; but
there are many such decompositions. In fact, it is easy to see
that theum̃RQ8& vectors are simply related to the representa-
tion of rRQ8 by an ensemble of pure states. That is, given
such a representation

rRQ85(
m

pmucm
RQ8&^cm

RQ8u, ~A17!

we can simply setum̃RQ8&5Apmducm
RQ8&. It is also clear that

there is a decomposition ofDRQ8 with no more thand2 vec-
tors um̃RQ8&, since the dimension of the spaceHR^HQ is
d2.

Here comes the essential trick. Define the operatorAm
Q by

Am
QufQ&5^f* Rum̃RQ8& ~A18!

for each stateufQ& of Q. Because of the conjugate linear
relation betweenufQ& and uf* R&, eachAm

Q thus defined is a
perfectly good linear operator onHQ . Furthermore,

(
m

Am
QufQ&^fQuAm

Q†
5(

m
^f* Rum̃RQ8&^m̃RQ8uf* R&

5^f* RuDRQ8uf* R&

5EQ~ ufQ&^fQu!. ~A19!

We have thus derived an operator-sum representation for the
completely positive mapEQ for all pure input states
ufQ&^fQu. Extending this to mixed state inputs is trivial, of
course, since every mixed state is a linear~convex! combi-
nation of pure states. We can further see that each com-
pletely positive mapEQ has an operator-sum representation
with no more thand2 terms.

We also find that, for our operator-sum representation for
EQ,

(
m

^fQuAm
QAm

Q†ufQ&5 Tr(
m

Am
QufQ&^fQuAm

Q†

5 TrrQ8

51 ~A20!

sinceEQ is trace preserving by assumption. Since this is true
for all statesufQ&, including the eigenstates of the positive
operator(mAm

Q†Am
Q , we conclude that

(
m

Am
Q†Am

Q51Q. ~A21!

3. Unitary representations

Having derived an operator-sum representation forEQ, it
is easy to arrive at a unitary representation. Add an extra
quantum systemE and write down a purificationuỸRQE8& for
DRQ8 as

uỸRQE8&5(
m

um̃RQ8& ^ uem
E& ~A22!

for an orthonormal set of vectorsuem
E& inHE . ~Again, finding

a purification forDRQ8 is equivalent to finding a purification
for rRQ8, but it is slightly easier to work with the non-
normalized states.! We note that we require no more than
d2 dimensions inHE to construct this purification since there
are decompositions ofDRQ8 with no more thand2 vectors
um̃RQ8&. Fix some stateu0E& of E. We can define an operator
UQE on a subspace ofHQ^HE by

UQE~ ufQ& ^ u0E&)5^f* RuỸRQE8&5(
m

^f* Rum̃RQ8& ^ uem
E&

5(
m

Am
QufQ& ^ uem

E&5uFQE8& ~A23!
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for all ufQ& in HQ . Once again, the conjugate linear relation
of index state and relative state guarantees that this is a linear
operator. Furthermore, given two statesuf1

Q& and uf2
Q&,

^F1
QE8uF2

QE8&5^ỸRQE8uf1*
R&^f2*

RuỸRQE8&

5(
m,n

^f1
QuAm

Q†An
Quf2

Q&^em
Quen

E&

5(
m

^f1
QuAm

Q†Am
Quf2

Q&

5^f1
Quf2

Q&. ~A24!

The operatorUQE preserves inner products on this subspace
of states; it can therefore be extended to a unitary operator on
the entire spaceHQ^HE .

Thus we have a unitary representation forEQ,

TrEU
QE~ ufQ&^fQu ^ u0E&^0Eu!UQE†

5 TrE(
m,n

~Am
QufQ&^fQuAn

Q†! ^ uem
E&^en

Eu

5(
m,n

~Am
QufQ&^fQuAn

Q†!^en
Euem

E&

5(
m

Am
QufQ&^fQuAn

Q†5EQ~ ufQ&^fQu!. ~A25!

Once again, we can extend this unitary representation to
mixed state inputs since these are linear~convex! combina-
tions of pure states.

4. Remarks

In the above arguments, we arrived at an operator-sum
representation forEQ by a decomposition ofDRQ8, that is,
by a pure state ensemble forrRQ8. It is also easy to see that
every operator-sum representation forEQ, when extended
and applied touCRQ&, will yield such a decomposition.@Sim-

ply defineum̃RQ8&5(1R^Am
Q)uCRQ&.# Thus the operator-sum

representations forEQ are in a one-to-one correspondence
with the pure state ensembles forrRQ8.

Similarly, we obtained a unitary representation forEQ by
finding a purification forDRQ8 or equivalently forrRQ8. But
every unitary representation will be associated with such a
purification because the initial total stateuCRQ& ^ u0E& of
RQE will evolve unitarily to a pure state, from which the
staterRQ8 is obtained by a partial trace overE. Now, any
such purification ofrRQ8 can be obtained from any other by
means of a unitary transformation that acts onHE , which
corresponds to an internal rotation of the environment sys-
temE that actsafter the interaction ofQ andE.

The nonuniqueness of the operator-sum representation
and the unitary representations are related since every pure
state ensemble forrRQ8 can be realized by fixing a purifica-
tion uYRQE8& and choosing a complete ordinary measurement
for E ~i.e., an orthonormal basis forHE). Equivalently, we
might fix a measurement basis forHE and a particular puri-
fication. A change of representation in each case will be
associated with a unitary matrix corresponding to a rotation
in HE . That is, suppose that for allrQ,

EQ~rQ!5(
m

Am
QrQAm

Q†5(
n

Bn
QrQBn

Q†, ~A26!

so that theAm
Q and theBn

Q operators both form operator-sum
representations forEQ. Then there is a unitary matrixUmn so
that

Am
Q5(

n
UmnBn

Q . ~A27!

~Note that we may have to extend one operator-sum repre-
sentation by a finite number of zero operators so that the two
representations have the same number of operators.! The ma-
trix Umn is in fact the matrix that relates two different bases
in E, corresponding to two purifications related, in the sense
outlined above, to the two operator-sum representations.
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