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We describe an array of quantum gates implementing Shor’s algofithRroceedings of the 35th Annual
Symposium on Foundations of Computer Scigmchted by S. Goldwass€tEEE Computer Society, Los
Alamitos, CA, 1994, p. 116; (unpublishe@t Phys. Rev. A53, R2493(1995] for prime factorization in a
guantum computer. The array includes a circuit for modular exponentiation with several subcomsunemnts
as controlled multipliers and addgrhat are described in terms of elementary Toffoli gates. We present a
simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit.
For that purpose, we simulate a quantum computer that is running the program toNacidr while inter-
acting with a dissipative environment. As a consequence of this interaction, randomly selected quantum bits
(qubits may spontaneously decay. Using the results of our numerical simulations, we analyze the efficiency of
some simple error correction techniqugS1050-294®6)03409-9

PACS numbdps): 03.65.Bz

I. INTRODUCTION a few ideas have been advanced. Shor proposed a procedure
for recovering quantum coherence by using coditj (see

In recent years there has been an explosion of activity imlso[12]), and similar methods have been proposed for “pu-
the area of quantum computati¢see[1,2]). In part, this was  rifying” entangled pairs before using them for transmiting
a consequence of a very important discovery made by Shoguantum information through noisy channdl$5]. This,
who demonstrated that two problems, thought to be classieombined with the possibility of building error correction
cally intractable(finding prime factors and discrete loga- schemes based on the “watchdog” eff¢tb], is a promis-
rithms of integer numbeyscould be efficiently solved in a ing idea that is currently under investigatiphi7 —20.
guantum computdi3,4]. Shor’s results added a practical mo-  However, to give a specific answer to the question of how
tivation for the study of quantum computation, which, until important decoherence is for factoring one needs to be rather
that time had received the attention of a smaller communityspecific. The answer will depend upon the computer imple-
of people interested in fundamental aspects of quantum menentation(hardwarg and also on the particular algorithm
chanics, the physics of information, algorithmic complexity (softwarg used. For example, the possibility of implement-
theory, etc. By now, quantum computation is a growing fielding error correction schemes based on the watchdog effect
that is developing not only due to the work of theorists but,depends upon having a computer evolving in such a way that
fortunately, also due to recent advances in experimental teclat some known instants it is in a known styte at least
niques. In fact, in recent years there have been a few intelsome quantum bit&qubity are in a known state, so that we
esting experiments aiming at constructing quantum gate prazan measure them without disturbing the compufEne aim
totypes(see[5-7]). of this paper is to begin a study on the impact of dissipation

There are many open questions concerning the mathemaand decoherence on a quantum factoring computer. For this
ics and also the physics of quantum computers. In fact, weurpose we design a quantum factoring circuit analyzing
still do not know what the real power of quantum computa-how its performance is affected when the interaction with an
tion is from the algorithmic complexity point of viewUntil environment is included.
now, attempts towards demonstrating their usefulness to Several recent papers are related to ours. Churad.
solve other nonpolynomial problems were not succegsful.[10] described on general grounds the potentially devastating
On the other hand, the physics of quantum computers alseffects that decoherence may have upon a factoring com-
presents many important challenges. Among the most impoiputer. Their results, which were obtained using a simple de-
tant open questions is the understanding of the impact of thscription of the quantum computer, which makes no refer-
process of decoherencen issue that has attracted some at-ence to a specific quantum circuit, suggest that by having a
tention over the past few yea8—12]). Decoherencgl3]is  low enough decay rate and using appropriate error correction
a physical process by which the quantum interference eftechniques one may be able to implement factoring in a
fects, essential for the proper functioning of the quanturmguantum computer. Cirac and Zollgs] presented a numeri-
computer, are destroyed by the interaction between the coneal study of the effects of errors on the quantum Fourier
puter and its environment. This interaction creates irreductransform(FT) subroutine, which plays a central role in the
ible computer-environment correlations, which, as the envifactoring program. Their simulation was done by considering
ronment is unobserved, induce the dynamical collapse of ththe effect of spontaneous decay while a computer made of
computer’s wave function. Decoherence may be potentiallyold trapped ions runs the FT progrddesigned by Copper-
devastating, but, as recent studies suggest, there may beith and other$4,21]). Other studies of decoherence on
ways in which one can reduce the problem. For that purpose&uantum computers have been presented that are not directly

1050-2947/96/54)/26059)/$10.00 54 2605 © 1996 The American Physical Society



2606 CESAR MIQUEL, JUAN PABLO PAZ, AND ROBERTO PERAZZO 54

related to the issue of factoring. For example, the importance Il. SHOR'S ALGORITHM

of losses and decoherence have been analj@Zfor the Shor invented an algorithm for a quantum computer that

optical quanium computer d,e5|gned by Chuang and Y.amqfould be used to find the prime factors of integer numbers in
moto. [23] to solve Deutsch’s problerfi24] for a _one-b|t polynomial time. We will now briefly review the most im-
function. The effect of decoherence upon a static quanturlortant aspects of Shor's algorithm and later consider the
computer was also analyzed [i8,11]. . way to implement it in a quantum computer.

The paper is divided in two parts. We first present an  The mathematical basis for Shor's algorithm is the fol-
array of reversible quantum logic gates that implementowing (see[3,4,27). The goal is to find the prime factors of
Shor’s algorithm for factoring integer numbers in a quantuman integer numbeN. Instead of doing this directly, the al-
computer. To do that we first created subcomponents thajorithm finds theorder r of a numberx. The order ofx is
perform some specific tasks such as controlled multiplicadefined as the least integesuch thax"=1 (mod\). Know-
tion, controlled sums, and mbd Then we combined these ing r, one can find the prime factors of by using some
subcomponents in the precise way required to run Shor'sesults proved in number theory. Factorization reduces to
algorithm. The existence of work qubifeequired to handle findingr if one uses a randomized algorithm: as Shor shows
the reversible logicmakes the design of the quantum circuit in [4], choosingx at random and finding its order one can
a rather nontrivial task. In fact, for the quantum computer tofind a nontrivial factor by computing, the greatest common
work properly, it is necessary to reversibly erase the recordgivisor betweenx”?—1 and N. In fact, a is a nontrivial
created along the computational pagtored in the work factor of N unlessr is odd orx?=—1 modN. As x is
qubits. As an example, we present the gate array that coulg@hosen at random, the probability for the method yielding a
be used to factoN=15 in a quantum Computer_ nontrivial prime factor ofN is 1_1/2k71, wherek is the

Designing the factoring circuit is the first step required forn'umber of distinct prime factors .
studying the impact of decoherence and the possibility of [N his seminal work{3,4], Shor showed that a quantum
implementing error correction schemes. This is the purpos§°mputer could efficiently find the orderof the numbenx

of the second part of the paper, where we study how th&nd therefore factorizél in polynomial time. Let us now
coupling to an environment affects the functioning of thedescrlbe the basic operation of this quantum computer. This

guantum factoring circuit. For this, we use an oversimplifiedrequ'reS two quantum registers, which hold integers repre-

model of the system-environment interaction. We assumgented in binary notation. There should also be a number of

that this interaction takes place only at certgiandoml work qubits, which are required along the calculation but
: place y Y should be in a standard staay|0)) both at the beginning
chosef moments of time affecting only a fewrandomly

. . and at the end of the calculation. The role of these work

chosen qubits, Wh'Ch may spontaneously de_cay. . qubits is very important and will be described in detail in

After completing the design of the fa_lctorln_g CIrC_UI'[ and gec 11, For the moment, we will concentrate on describing
while we were working on the numerical simulations 10 {he state of the computer before and after every major step of
model dissipation, we became aware that a very similar gatg,e program. For that purpose, we can forget these qubits for
array was recently developed by Vedral, Barenco, and Ekethe moment. Apart from the quantum registers, there is also
[25]. Our circuit produces the same final quantum state andome classical information we should provide for operating
has roughly the same requiremefits number of qubits and the quantum computer. Thus we will assume that the num-
time stepy as the one described {25] (in that paper the bersN (the one we want to factyrx (chosen randomly
authors did not attempt to analyze the impact of losses anghodN), and a randomly chosen, which is such that
decoherence on the performance of their quantum circuit, aN?><q<2N? are part of the classical information available
issue that we analyze hgr&lore recently Plenio and Knight to the quantum computer.
[26] used some of the conclusions [#5] (the number of We start the process by preparing the first register in a
required qubits and time step® discuss some of the limi- uniform superposition of the states representing all numbers
tations imposed by decoherence on the size of the numbegs<q—1 [this can be done by a standard technique, i.e., ro-
one could factorize using various physical setups. tating each individual qubit, putting it in a superposition

In Sec. Il we briefly describe both the mathematical basig{1/1/2)(|0)+|1))]. The state of the computer is then
for Shor’s algorithm and the basic steps a quantum computer
would need to follow in order to implement it. In Sec. Il we 1971
describe the quantum network for implementing modular ex- |Wo)y=-—=2, |a)|0). @
ponentiation. We go from the coarser description, where the ‘/aa:O
circuit is just a black box, to the fine-grained picture, where
every component is dissected and built from elementary TofThe next step is to unitarily evolve the computer into the
foli gates. We analyze the architecture required to factostate
numbers ofL bits and explicitly exhibit the circuit to factor
N=15, that requires 27 qubitghe circuit to factorL bit 1971
numbers needsl5+ 7 qubits and involves a number of el- |W)=-—=2> |a)|x*(mocN)).
ementary gates that, for larde is close to 24D%). In Sec. V=0
IV we address the importance of decoherence and the pos-
sible strategies for error correction. We summarize our reThe next step is to Fourier transform the first register. That
sults in Sec. V. is, we apply a unitary operator that maps the sfdtg) onto
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19! , Quantum Computer
|W,)==> > exp2miac/q)|c)|x*(mod\)).
Ja=0 c=0
a)

The final step is to observe both registéise method could
be implemented observing just the first register, but, follow-
ing Shor[4], for clarity we assume both registers are ob-
served. The probability for finding the state a
|c)[x¥(modN)) is

©o0000 ¥/ N
[

1 2 : — ——
P(c,xk<mooN>>=‘ ¢ 2 exp2miacl) g { 1= = vt
a/x%=x
[ JE—— s
. work-bits H— —
where the sum is over all numberss@=<qg—1 such that for multiplication] o — —
x2=x¥(modN). This sum can be transformed into
[(q—1-K)/r] 2 E— I— E
P(c,x*(modN))= q bZO exp(2mib{rc},/q)| , jwork-bits ':"—__ — E
= (mod N) M— ——
(2) : — :

where {rc}, is an integer in the interval —q/2

<{rc}4=a/2, which is congruent toc (mody). As shown

by Shor, the above probability has well defined peaks if

{rc}q is small (less thanr), i.e., if rc is a multiple ofq

(rc=dq for somed<N). Thus, knowingg and the fact that X1 X
the position of the peaks will be close to numbers of the

form dg/r, we can find the order (using well-established % *2
continuous fraction techniques Xy Xy
There is no doubt that Shor’s algorithm would work if a I
quantum computer could be built. However, to implement X X
Shor’s algorithm in a quantum computer one needs to explic- X X
itly construct the program. The procedure for Fourier trans-
forming is well known and has been extensively discussed in Xs & (K14 XgA Xga Xy} @ Xg
several recent papefsee[4,21,27). To explicitly construct
the unitary evolution that takes the statg,) into the state FIG. 1. (@ Black box description of the circuit for modular
| W) is a rather nontrivial task, which we will describe in the exponentiation. WherN has four bits one needs nine qubits to
next sectior{25]. representa and fifteen extra qubits to be used as work spéloe.
A, Toffoli gate with four-control bitsx,,X5,X3, and X4. Xs—Xg
IIl. QUANTUM NETWORK ® (X1/\X/\X3/\Xy).

FOR MODULAR EXPONENTIATION _ . _ . _
generalized Toffoli gates, with control qubits, which are

We will present an array of quantum gates that maps th@lenoted as\,,. Of course, all these gates can be constructed
state|a)®|0) onto|a)® [x*(modN)), transforming the state in terms of one- and two-qubit operations, as explained in
| W) into [W1). We describe the quantum circuit using dia- [28]. The diagram representing the gatg is shown in Fig.
grams such as the one in Fig. 1, which must be interpreted agp).
representing the time evolution of the system with time flow-  To design a quantum circuit for modular exponentiation

ing from left to right. Each line represents a single qubit, i.e.,we should first notice that if the binary representatior i
a two-level systenta thick line will represent a bundle of a=3"_,a;2', then

qubits. In describing the circuit we will go in steps from the
coarse description of Fig(d) (where the computer is a black n _
box) to a fine-grained description where the computer con- ya(mod\]):H [(yzl)ai(mod\])]_ (3)
sists of a complex array of interconnected elementary gates. =0

We will use Toffoli gates as “elementary” components
and follow the notation of28], denoting a gate acting on Thus modular exponentiation is just a chain of products
three qubits as\,. The action of a Toffoli gate on a compu- Where each factor is either equal to 1af=0 or equal to
tational  state |X;,Xp,X3), (where x;e{0,1) is y? if a;=1. Therefore, the circuit is easily constructed if one
As|X1,X2,X3) =|X1,X0,X3® (X1/\X,) ), Wwhere® denotes the is allowed to use a controlled multiplier as an auxiliary unit
exclusive OR and\ the AND operation between the Bool- (which, at this level, acts as a new black hokn Fig. 2 we
ean variables; . Thus Toffoli gates are just controlled-NOT show the basic architecture of the array of controlled multi-
gates where the last qubit changes its state only if the tweliers required for modular exponentiation. For the first mul-
control qubits are set to 1. It will also be convenient to usetiplication the control qubit isay and after each multiplica-
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Modular Exponentiation circuit that we denote aSy(2'C)]. The numbers involved in
the sum must also be provided as classical informatios
2" :o need to classically compute all numbeﬁsyzé, with i,j<L,

wherelL is the number of bits oN). In Fig. 3 we show a
controlled multiplier for four-bit numbers. The same archi-
tecture can be used to multiply-bit numbers. In that case,
the controlled multiplier requirek +1 work qubits, whose
state is set to zero before and after its operation. As we will
see below, the controlled adder itself also requires some
work space that must be independent of the one used specifi-
cally for multiplication.

As shown in Fig. 3J1y(C) is schematically divided into

FIG. 2. Gate array used for modular exponentiatifmocN is three pieces. In all of them the work qubits play an important
calculated by repeatedly multiplying the second register by P ) g piay P

om . _ o role. The quantum state entering the circuit is
Yzmmod\J only. i ap=1. E‘fiCh ,box multiplies its input by Ix0)=1|1)®|0)wg, Wherel is the number stored in the input
Y* modN only if the control bitay, is 1. register and0)yg is the state of the work qubits. The qubits
) } i ) |I;) are used as control for tH&(2'Cmod\) adders and the
tion the control is moved to the next qubit. For this array toregylt of the sum is temporarily written in the work qubits.
work we need to know all th'e numerical factors entering inafer this, the state i$x;)=|1)®|IC)ws: almost what we
(3)i [thus we must classically compute the numbersheeq, except for the fact that the inglit also appears in the
yZ (modN)]. output state. Erasing this extra copy of the input is essential:

Our next step is to analyze the controlled multiplier. Otherwise we would be keeping a record of the computa-

Given an input|l), this circuit, which we denote as tional path affecting the interference pattern of the quantum
IT\(C), produces an output* C(modN)). The controlled computer (apart from forcing us to use an enormous
multiplier is constructed using a smaller black box: a con-amount of spade The reversible erasure of the input is the
trolled modN adder. In fact, multiplication of two numbers purpose of the second part of the circuit. In designing this we
I=3",1;2" and C reduces to a sum of the form followed well-known techniques developed by Benrjeg]
S oli(2'C). Thus we just need to ugeas the control qubit and described by Sh¢#]. The procedure is as follows. We
in a controlled motl adder adding the number '@) [a  first consider the evolution operatéf mapping the input

coo -

Multiplication TT (c)

a)

ctl | | et

1 — —l i Irc
f(0) e
1] I 1—': I'_G 0
%0 %4 fXz2)
b)
FIG. 3. (a) Three stages of the controlled mul-
o T o et o . . ; -
— b 1 _ " tiplier (mod N) IT(C). First the inputl is mul-
e o= . tiplied by C. Thenl is reversibly erased and fi-
° modN nally the result is swapped with the upper
register.(b) Multiplication by C is achieved by
repeated addition of 2ZCmodN controlled by
1 Im. This is done using the controlled madd
¢ &N addersSy(2MCmodN). In the figure we denote
— — modN as %N.
Sy(c%N) e Su(8c% N)
Sp(c! %N) e Su(8c'% N)
ctl s S ctl otl ctl
1 — (1] =
' - 1 —
mIo‘ch — [r— ml;:N — 0

LTy T

I*c I*c

(% N) (%N)
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Adder (modN) S, (v) 2-bitadders

N | cu [
i LSB
X .1 . 1, LsB
2(1) 1, 1 i, i 1,
) MSB
0 — MSB

FIG. 4. Addition modN is achieved with five controlled adders:

. ) 3 — LSB cHl
The first addsC to the input. The second “subtractsN from 1 - i, f;;
a+ C. The third operation addd only if a+ C is smaller tharN. Z(O) =1, 0 — 1, 1, i,

&+

a

X,
X
0
0
0

=le

i
At this stage the first four bits hawet+ CmodN. The last two stages 0 | wsp 0 —P— wsp
erase the record left in the seventh bit, whose state depends on the
sign ofa+C—N.

|0Y®|[1")wg Onto |I"'C 1Y@ |1")wg, whereC™ 1 is the mul- cu

tiplicative inverse of C(mod\) [the number satisfying .

Cx C—1:1(mod\|)].~The operator needed in the second part Z:-(1) - 1y LSB clu
of the multiplier isU 1. To convince ourselves that this is i, — '
the case, we should notice that, as the input to the second

part of the multiplier is|x1)=|1)®[IC)wg, the output will

be |X2>=U_~1|X1>= |0)®|1C)wg [because, by construction, ctl

U Sat|StLeSU(|O>®|IC>WB):||>®|IC>WB:|X1>] The cir-
cuit for U1, shown in Fig. 3, is just the specular image of — LSB t

cu
LSB

2e

Ctl
LSB

the one used for the first part of the multipliswitching the Z(O) = i

role of register and work qubitsFinally, the multiplier is

completed with a controlled swap that interchanges once

more the register and work qubits so that the final state of the

work qubits is alwayé?O)WB. swap gate
The circuit for doing controlled mdd sums of a number

X, which is stored in a quantum register, and a nuner

stored in a classical register, is call8g(Y). This circuit, for . i, L

five-bit numbers, is shown in Fig. @eneralization td_-bit . ] : ﬁﬁ L

numbers is straighforwayd The circuit for Sy(Y) is built 1, 1, ) !

using a simple controlled adder, which we denoteSg@s),

whose functioning will be explained below. The only differ-

ence betweersy(Y) and S(Y) is that the former gives the

output moduloN. Constructing a reversible circuit for com-

puting the sum mad is not a trival task, which is only

possible because we know that the two numbers being add Jiy, i, and 0, the outputs artl, the least significant bitSB)

(X and Y) are both less thanN (and therefore of i;+i,+ 0, i,, and the most significant biMSB) of the sum. A

X+Y=<2N-2). Without this information it would not be swap gate is also shown that interchanges its two input qisbitsd
possible to compute mdd reversibly without keeping un-

wanted records of the computatigeince modl is not a

one-to-one function The input to the circuit is erased and this can be done by using the following simple
|x0)=|X)®|0)\g . After the first adder, this is transformed trick: We first add the positive numbet 2 Y and notice that

to |x1)=|X+Y)®|0)ws. We then apply another simple the MSB of the result 2— Y+ (XmodN) is always identical
adder which adds the positive number*2—N, thus pro-  to the qubit used to control the third gate. Thus we are done:
ducing an output|y,)=|2""1+X+Y—-N)®|0)ws. The We apply a control-NOT gate and then we undo the first sum
most significant bitMSB) of 2" "1+ X+Y—N is one(zerg  (by addingY).

if X+Y=N (X+Y<N). It is easy to realize that the oppo-  So far, we first explained modular exponentiation in terms
site is true for the second MSB of the output. Thus, if we useof controlled multiplicationII(C). Later, we explained
this qubit to control the inverse operation, we will abd  IIy(C) in terms of controlled maod sumsSy(Y) and this
only if X+ Y<N. Therefore, after the third gate of the circuit circuit in terms of a simple add&(Y). We will now present
shown in Fig. 5, the firsk qubits of the output always store the gate array for the simple controlled ad&€X), which is

the numberA+ C modN. However, theL+1 andL+2 qu-  best explained in terms of a smaller gate: a controlled two-
bits, which are used to control the third gate, keep a record ofubit adder. This will be our smallest black box and, for
the first result. As usual, this record must be reversiblyclarity, we will explain here how it works. The two-qubit

Ll
[T

ctt

o

FIG. 5. Two-qubit adder& (o) are shown in terms of Toffoli
%ﬁltes. They have four input and four output qubits. If the inputs are
I

i2.
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Adder  S(Y) W|X+Y)®|0)ws=|X+Y)®|2"+ X)\s). Therefore, using
W1 after appropriately interchanging the role of the register

o I o and the work qubit¢and adding an extra work qubit to store

X - X X+Y, —x+v the qubit representing2 we complete the controlled adder.
A | x A(Y) The circuit for W1 that is shown in Fig. 6 is almost the

o = 0 specular image from the one used as the first part of the

adder. The only difference is that instead of the first two-
qubit adder we can use a smaller circuit that only stores the
LSB of the first sum(this circuit is shown in Fig. b

Having explained the essential pieces of the quantum
computer, let us now summarize what its space and time
requirements aré.e., the number of qubits and the number
of elementary operationsAs explained above, to factor an
L-bit number we need. +1 qubits as work space for the
controlled multiplier andL+4 for controlled sums. The
modN circuit requires an extra qubit. Adding the qubits re-

of ——— cf =Y

A(Y) = . .
0 — L R=X+Y . ]

x
x
ll
- x
E
<
Arxapra x:x:x);

ctl cl x I P quired to store the two quantum registerd (21 qubits to
R — L ReXsY : ™ . storea in the first register andl qubits for the second reg-
A(Y) == le—L— " isten we get a total of &+ 7 qubits. Computing the number
X — — 0 - B I',] = of elementary operations is also possible. By inspecting our
] 7 — - controlled adder one realizes that the number of elementary
- " gates isaL + B(L+1), wherea and g are, respectively, the

number of gates in a two-qubit adder and in its inverse and
FIG. 6. (a) Addition is performed in three stages: The first addsthe one in a swap circuit. Using the estimate 3=3 one
Y to the inputX, the second interchang&swith X+Y, and the last gets 12+ 17 operations for the sum. Using similar argu-
reversibly erases the inpit (b) The first and last stages are shown ments to analyze the multipliers one finally concludes that

in terms of the individual qubits and two-qubit addiés). Yo~  the complete modular exponentiation circuit requires
Y, are the bits in the binary representationofY=2—Y is used 243+ 48402+ 182 elementary operations. Far=4 this
to eraseX. is about 2.5 10,

adder, denoted 8(o), has four input qubits and a classical
input bit o (i.e., there are two types of two-qubit adders, one
for =0 and another forr=1). The first input qubit is the
control, the second qubit i, the third one isi,, and the Before analyzing the impact of dissipative effects on the
fourth one is a work qubit that is always set to 0 at the inputquantum circuit it is convenient to introduce some notation.
At the output, the control qubit is unchanged, the first qubitThe quantum computer has a Hilbert space with a computa-
changes into the least significant WitSB) of the sum tional basis with statel,,r,,V) (wherer,, r,, andW are
(i;+i,+ o), the third one storeis, and the fourth stores the the bit strings determining the states of the first register, the
MSB of the sum. In Fig. 5 we can see how to build the gatesecond register, and the work qubits, respectivélye as-
2(0) andX (1) (and other useful simple gajem terms of  sume that the environme#t has a Hilbert space spanned by
Toffoli gates. a basis of statege).. The quantum state of the computer—
Using % (o) it is possible to construct a circuit mapping environment ensemble can always be written as
an input|X) into | X+ Y). This is displayed in Fig. 6, where,
for simplicity, we assumed that bo¥ andY have five bits. _
For numbers of. bits the number of work qubits required is W(t»_rl,,zz,we Alrurz e dlrurz Wle)s. (4)
L+3. The quantum state entering the adder is
[Xo)=|X)®|0)ws . This goes through the sequence of two- The temporal evolution of the probability amplitude
qubit adders(Y;) (we useX;,Y;e{0,1} for the binary rep- A(ry,r,,,e,t) is governed by the interplay between the
resentation oX andY). After this chain of> gates, the state quantum circuit described in Sec. Il and the computer-
is [x1)=|X)®|X+Y)we, Which has an unwanted copy of environment interaction. At the initial time, when the com-
the input. To reversibly erase this extra copy we applyputer is in statg1), the amplitudes are given by
the same method used in the multiplication. We first con-
sider an_auxiliary operatoW that adds the positive 1
numberY=2-—Y (Y is known as the 2’s complement of Al rz,W,e,t=0)= \/—aa(rz,O) o(W,0)5(e,0).
Y and its binary representation is simply obtained from that
of Y by interchanging zeros and ones and adding 1). Thélere we assumed that the computer is initially uncorrelated
operatorW satisfiesW(|R)®|0)yg) =|R)®|R+2"—Y)yg.  with the environment, which is taken to be in an unexcited
Therefore, its inverse is such thatv !|X+Y)®|2" state|0), [we used(a,b) to denote Kronecker’s delta func-
+X)we=|X+Y)®|0)wg, Which is precisely what we need tion]. If the computer evolves without interaction with the
as the output of our circuitthe properties ofW~! simply  environment the amplitudes after the modular exponentiation
follow from that of W, which, by construction, satisfies circuit are

IV. LOSSES AND DECOHERENCE
IN A FACTORING COMPUTER
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Aexac(rlir21W1e!t:tf): _5(r2!y 1(m0d\l)) (a)

Jgq I ]

X 8(W,0)6(e,0). (5) 0_6 l[,\\ 6=5 I\ 1:'36

However, when the computer interacts with the environment,
the actual amplitudes will deviate from the exact expression . :
(5). To model this interaction we will use a very simple 0.01
approach that incorporates the losses induced by the sponta- =
neous decay of the computer’s qubits: The environment con- 7~
sists of a collection of two level systerds, i.e., a collection e 5 : 55
of “environmental qubits” (each & qubit has an excited
s:tate|1)gi and a ground statk§)>gi). For simplicity we will
assume that at a given time, a randomly selected computer 0031
qubit g; interacts with one of environmental qub#s. As a
result of this sudden interaction correlations are established

I

(b) 7

according to 0
|1>qi|0>fi_>pi/2| 1>qi|0>5i+ p%/2|0>qi|1>£iv (6) It
o). 10 o 10 FIG. 7. Probability distribution for, andr,=7. In the simula-
| >qi| >£i—>| >qi| >5i’ tions N=15, =130, andp,=p,=1/2Vt[0,1]. (a) Exact result.

(b) Result with ten decaying qubits at randomly chosen instants of
wherep,=1-p;. The interpretation of the evolutiof®) is  timet,—t,,. (c) Probability distribution forr;, r,=7, and all work
quite clear. If the computer qubit is in the st$1«$qi ithas a qubits in their zero state.

probability p; to persist and a probabilitp, to decay into
|0>qi’ creating an excitation in the environment. On the otheran oversimplification of realitywhich has been used before

hand, if the computer qubit is in the std@, nothing hap- 0 model losses in quantum computatiaz]).
. - : N We computed the amplitudes from the output state of the
pens. It is worth mentioning that the decay ru(ésimplic-

itly assume that the state used to representtimeputational Eogrier trans_form circuit,.wh.ich fOHOW‘?‘ mogiular exponen-
0 iis the ground statéor, at least, has lower energy than thetlatlon (the dl_screte FT circuit is described in the Ilterature
one used to represent ’themputétionall) In fact, the situ- [.4’5.’2]])' I.n Fig. 7 resultg are presentepl for the probabmFy of
ation may be exactly the opposite in whi-ch casé the r(@s finding ryin the first register anq2=7 in the .second regis-

. i ; : ter. The ideal result, plotted in Fig(&J, is obtained from Eq.
must be trivially modified by interchanging th? roles of (2). This error-free curve has three sharp peaks, with a sepa-
|1>qi and |O>qi (see below Morfa general evol'ut|on rules ration approximately equal tq/r=130/4 (we deliberately
(such as the ones used [44] which are best suited to ana- choose a rather small value fqrso that the small structure
lyze a noisy but almost losseless compltgill be studied the plots can be seen using a reasonable sdatevided

elsewher¢ 30]. , o _ we do not know the final state of the environment and the
Thus we can summarize the basic ingredients of oufork qubits(see belowthe probability is

computer-environment modél) It is characterized by a ran-

domly chosen sequence of timds (. . . .t,,) that define the

instants where the computer interacts with the environment Pren(T1,F2) =2 |A(r1, o, W e,t)|2
(in between these times the computer evolves according to Wee

the unitary operators associated with the quantum circuit de-

scribed in Sec. Il (ii) At each timet; we randomly choose (the subscript NED stands for “no error detection,” see be-
a computer _qubiqi that is iryvolvg_d in a sudden interaction |o\). This probability is shown in Fig. (), where we can
with an environmental qubif; . (iii) As a consequence of geq that the errors slightly widen the peaks and notably de-
this interaction the computer-environment ensemble evolvegrease their amplitudes. As the number of errors is increased
according to the rule). Implicit in our assumptions is the it || be less and less likely to measure a value pfocated
validity of the simplifying Markovian approximation, which near 3 peak making the identification of the ordéobtained
ensures that at every instanta different(and independent  from the separation between peaks, as explainéd]jmore
environmental qubit§; is involved in the interaction. A and more difficult. The appearence of intermediate peaks is
simple way of visualizing this computer-environment modely|so evident in Fig. (b). Apart from the above probability

is by thinking of the times; as the instants where there may \ye also calculated the probability for finding in the first

be a “branching” of the computational trajectory. Every registerr,=7 in the second, and the work qubits in the state
time an environmental qubit is excited an “erroneous” COM-| 0y, o i.e.;

putational trajectory emerges. At the end of the modular ex-

ponentiation circuit, the state vector of the computer-

enwro_nment en_f,emble is written as(#) W|th.an amphtude_ PED(HM)ZE |A(r1.r2, W=0ge,1)[2
that will not be given by(5). We already admitted that this is e
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This is plotted in Fig. {), where we see that while a noisy 003
dc componen{present in(b)] is supressed, the amplitude
ratio between the misleading and correct peaks is increased.
These plots correspond to simulations of the quantum com-
puter running the program to factdr=15 while coupled to

an environment at a randomly chosen set of ten instants
(we usep;=p,=1/2). The modular exponentiation circuit
requires about 2:810* elementary(Toffoli) gates. This 001
roughly correspond to fOone-bit operations for Cirac and

Zoller's cold ions computer,5] Thus, in that case we are
considering an error rate of order 19 which is a rather i ] L
optimistic figure. e L Lo Lo et

Our simulations can be used not only to visualize the
importance of the environmental interaction on the quantum
algorithm but also to test simple error detecti@md correc- vore
tion) schemes. The simplest of such schemes is probably the
one based on checking the state of the qubits that are sup-
posed to be in a known state. Our factoring program is suited
for this purpose since the work qubits must start and end in
the state representing the computational 0. Two comments
concerning error detectiofiand correctiop are in order. £ ooos
First, by checking the final state of the work qubits we are
not able to detect a special class of errors that are produced
by the decay of the qubits representing the first and second o«
registers of the computer{ andr,). Errors of that kind
leave(most of the timg the work qubits untouched but gen- |
erate a misleading outplithey are responsible for the inter- %o
mediate peaks seen in Fig(c), which make the measure-
ment of the order a much more difficult task Second, and FIG. 8. Graphs showing the probability distribution for and
more important, by measuring the final state of the workr,=7 with q=130. We simulated the circuit for factoring=15
gubits we are only able tdetecterrors but not to corredor with ten decaying qubits at randomly chosen instants of time. The
prevenj them. probability distribution is plotted with and without using the watch-

Of course, it would be much better to have a methoddog effect. The parameters of E) are(a) y=1, t,=0.173, and
enabling us tereventthe errors from occurring. For this, the A=1.008 andb) y=2,t,=0.127, andA=1.016.
use of the watchdog effe€¢l6] has been proposed. Thus, if
some of the computer’s qubits are supposed to be in a knowigquired to run the program, i.¢5 1 corresponds to the end
state at some time, one could inhibit their decay by making #f the computation In the simulations shown in Fig. 8 we
measurement on the known state. This method can indeed l§@nsideredy=1,2 andt;~10"?y~* so that towards the end
applied here since the work qubits are supposed to be in thef the computation a qubit will have a high decay probabil-
state representing the computational 0 at many intermediaté/-
instants of the computation. In fact, this is what happens To implement the watchdog we measure the state of the
after the action of eacH (C) circuit and after the action of Work qubits at every instant when they are supposed to be in
each controlled adde®,(C). For largeL, the number of the computational 0. Every time we do this we reset the time
times one could measure the state of some of the work qubit§ (7). Thus a work qubit will decay with probabilities pro-
grows asL2. portional to the ones given if¥), where the time will effec-

To test the efficiency of the watchdog effect as an erroftively be measured froni,;, the last instant at which the
correction technique we slightly changed our computerWork qubit was supposed to be in the computational O state.
environment interaction model. In fact, we now assume thaf herefore the survival probability for a work qubit is
the decay rules are of the for(6) but with time-dependent
coefficients given by

P()

—
.
%ﬁ

‘Watchdog
No watchdog -----

0.012 |

>, ,;_n‘j.“\,,:m -, LAY At
85

3

Pwolt)= pl(t_tlast)iljo p1(Aty),

2\ 2
(1— t—2> , O=ts=t, ) ) )
p.(t)= to where At; is the time between two consecutive measure-
Aexp(—29t), t>ty, ments of the work qubits. On the other hand, the qubits in-
volved in the first or second registers of the computer will
P2(t)=1—p,(1). (7)  have decay probabilities given k) with time counting
from the beginning of the computation.
In this way, after having an initialtt,) quadratic depen- The effectiveness of the watchdog effect as an error pre-

dence, the survival probability for a qubit decreases expovention technique can be seen in Fig. 8, where the probabil-
nentially with time(measured from the start of the computa- ity with and without the watchdog effect are plotted together.
tion and, by convention, expressed in units of the total timeéwWithout using this method we get a very noisy probability



54 FACTORING IN A DISSIPATIVE QUANTUM COMPUTER

2613

with a substantial widening of the principal peaks. The am-not allow us to test the importance of other sources of prob-
plitude of the central peak, which in Fig.(# is about lems for quantum computers. One of the most important
0.01, is of the same order as the one shown in Fig) but  sources of errors we excluded here is related to the fact that
the decay rules we are using here are more damaging thdhe elementary quantum gates are never 100% efficient. If
the ones we used befgrdJsing the watchdog technique we we think of Cirac and Zoller'd5] cold ion hardware, the
substantially increase the amplitude of the main pegbksa  elementary gates are built by applying a sequence of laser
factor of 2 or 3 and also eliminate almost all the noise. The pulses on individual ions. If these pulses are not exact
only remaining spurious peaks are those produced by thpulses(or 7/2 pulse$ the quantum gate will not be exactly
decay of qubits involved in the first and second registersthe one we want. The corresponding unitary evolution opera-
They cannot be eliminated using the watchdog effect sinceor U, will have nonzero matrix elements in places where
their existence is not a consequence of a process affecting tiike exact quantum gate operatdy., has zero matrix ele-
work qubits. It is worth stressing that for the watchdog effectments. These imperfections may be rather important since
to be useful in preventing errors, the Zeno tiljemust be  their effects accumulate in time. To include this effects in
larger than the time required for a work bit to return to its our model one needs to follow the evolution of the comput-
logical zero state. This is a rather strong constraint and magr’s state vector in the 2-dimensional Hilbert space. Even
turn out to be physically unrealistic in most situations. though our work enables us to explicitly write down the
matrix U,., at every step of the calculation, we are not able
to numerically simulate this because of space limitations
. (thus simulating a quantum computer withqubits needs an

The factoring circuit we presented is by no means optigynonentially large amount of space in a classical computer

mal. Several improvements are possible to reduce the nun;m,jations of smaller versions of our circuit for modular

ber o_f work qubits. However, when_ des_igning a circu_it for exponentiation are planned to be presented elseviBéile
practical purposes one has to keep in mind that the existence

of work qubits is not necesarily a burden. Our results show

they can play a very useful role by allowing the use of the

watchdog effect as an error prevention technique. It would be

important to find the optimal balance minimizing the number We thank Adriano Barenco for useful comments on an

of work qubits but still allowing an efficient use of the earlier version of this manuscript. J.P.P. was partially sup-

watchdog method. ported by grants from UBACYT, FundacicAutorchas, and
The simulations we performed are rather simple and d&CONICET.

V. SUMMARY AND OUTLOOK
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