
Factoring in a dissipative quantum computer

César Miquel,1 Juan Pablo Paz,1,3 and Roberto Perazzo1,2
1Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Pabello´n 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina

2Centro de Estudios Avanzados, Universidad de Buenos Aires, J.E. Uriburu 850, 1424 Buenos Aires, Argentina
3Instituto de Astronomı´a y Fı́sica del Espacio, CC 67, Suc. 28, 1428 Buenos Aires, Argentina

~Received 26 February 1996!

We describe an array of quantum gates implementing Shor’s algorithm@in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, edited by S. Goldwasser~IEEE Computer Society, Los
Alamitos, CA, 1994!, p. 116; ~unpublished!; Phys. Rev. A53, R2493 ~1995!# for prime factorization in a
quantum computer. The array includes a circuit for modular exponentiation with several subcomponents~such
as controlled multipliers and adders! that are described in terms of elementary Toffoli gates. We present a
simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit.
For that purpose, we simulate a quantum computer that is running the program to factorN515 while inter-
acting with a dissipative environment. As a consequence of this interaction, randomly selected quantum bits
~qubits! may spontaneously decay. Using the results of our numerical simulations, we analyze the efficiency of
some simple error correction techniques.@S1050-2947~96!03409-9#

PACS number~s!: 03.65.Bz

I. INTRODUCTION

In recent years there has been an explosion of activity in
the area of quantum computation~see@1,2#!. In part, this was
a consequence of a very important discovery made by Shor,
who demonstrated that two problems, thought to be classi-
cally intractable~finding prime factors and discrete loga-
rithms of integer numbers!, could be efficiently solved in a
quantum computer@3,4#. Shor’s results added a practical mo-
tivation for the study of quantum computation, which, until
that time had received the attention of a smaller community
of people interested in fundamental aspects of quantum me-
chanics, the physics of information, algorithmic complexity
theory, etc. By now, quantum computation is a growing field
that is developing not only due to the work of theorists but,
fortunately, also due to recent advances in experimental tech-
niques. In fact, in recent years there have been a few inter-
esting experiments aiming at constructing quantum gate pro-
totypes~see@5–7#!.

There are many open questions concerning the mathemat-
ics and also the physics of quantum computers. In fact, we
still do not know what the real power of quantum computa-
tion is from the algorithmic complexity point of view.~Until
now, attempts towards demonstrating their usefulness to
solve other nonpolynomial problems were not successful.!
On the other hand, the physics of quantum computers also
presents many important challenges. Among the most impor-
tant open questions is the understanding of the impact of the
process of decoherence~an issue that has attracted some at-
tention over the past few years@8–12#!. Decoherence@13# is
a physical process by which the quantum interference ef-
fects, essential for the proper functioning of the quantum
computer, are destroyed by the interaction between the com-
puter and its environment. This interaction creates irreduc-
ible computer-environment correlations, which, as the envi-
ronment is unobserved, induce the dynamical collapse of the
computer’s wave function. Decoherence may be potentially
devastating, but, as recent studies suggest, there may be
ways in which one can reduce the problem. For that purpose,

a few ideas have been advanced. Shor proposed a procedure
for recovering quantum coherence by using coding@14# ~see
also@12#!, and similar methods have been proposed for ‘‘pu-
rifying’’ entangled pairs before using them for transmiting
quantum information through noisy channels@15#. This,
combined with the possibility of building error correction
schemes based on the ‘‘watchdog’’ effect@16#, is a promis-
ing idea that is currently under investigation@17–20#.

However, to give a specific answer to the question of how
important decoherence is for factoring one needs to be rather
specific. The answer will depend upon the computer imple-
mentation~hardware! and also on the particular algorithm
~software! used. For example, the possibility of implement-
ing error correction schemes based on the watchdog effect
depends upon having a computer evolving in such a way that
at some known instants it is in a known state@or at least
some quantum bits~qubits! are in a known state, so that we
can measure them without disturbing the computer#. The aim
of this paper is to begin a study on the impact of dissipation
and decoherence on a quantum factoring computer. For this
purpose we design a quantum factoring circuit analyzing
how its performance is affected when the interaction with an
environment is included.

Several recent papers are related to ours. Chuanget al.
@10# described on general grounds the potentially devastating
effects that decoherence may have upon a factoring com-
puter. Their results, which were obtained using a simple de-
scription of the quantum computer, which makes no refer-
ence to a specific quantum circuit, suggest that by having a
low enough decay rate and using appropriate error correction
techniques one may be able to implement factoring in a
quantum computer. Cirac and Zoller@5# presented a numeri-
cal study of the effects of errors on the quantum Fourier
transform~FT! subroutine, which plays a central role in the
factoring program. Their simulation was done by considering
the effect of spontaneous decay while a computer made of
cold trapped ions runs the FT program~designed by Copper-
smith and others@4,21#!. Other studies of decoherence on
quantum computers have been presented that are not directly

PHYSICAL REVIEW A OCTOBER 1996VOLUME 54, NUMBER 4

541050-2947/96/54~4!/2605~9!/$10.00 2605 © 1996 The American Physical Society

related to the issue of factoring. For example, the importance
of losses and decoherence have been analyzed@22# for the
optical quantum computer designed by Chuang and Yama-
moto @23# to solve Deutsch’s problem@24# for a one-bit
function. The effect of decoherence upon a static quantum
computer was also analyzed in@8,11#.

The paper is divided in two parts. We first present an
array of reversible quantum logic gates that implements
Shor’s algorithm for factoring integer numbers in a quantum
computer. To do that we first created subcomponents that
perform some specific tasks such as controlled multiplica-
tion, controlled sums, and modN. Then we combined these
subcomponents in the precise way required to run Shor’s
algorithm. The existence of work qubits~required to handle
the reversible logic! makes the design of the quantum circuit
a rather nontrivial task. In fact, for the quantum computer to
work properly, it is necessary to reversibly erase the records
created along the computational path~stored in the work
qubits!. As an example, we present the gate array that could
be used to factorN515 in a quantum computer.

Designing the factoring circuit is the first step required for
studying the impact of decoherence and the possibility of
implementing error correction schemes. This is the purpose
of the second part of the paper, where we study how the
coupling to an environment affects the functioning of the
quantum factoring circuit. For this, we use an oversimplified
model of the system-environment interaction. We assume
that this interaction takes place only at certain~randomly
chosen! moments of time affecting only a few~randomly
chosen! qubits, which may spontaneously decay.

After completing the design of the factoring circuit and
while we were working on the numerical simulations to
model dissipation, we became aware that a very similar gate
array was recently developed by Vedral, Barenco, and Ekert
@25#. Our circuit produces the same final quantum state and
has roughly the same requirements~in number of qubits and
time steps! as the one described in@25# ~in that paper the
authors did not attempt to analyze the impact of losses and
decoherence on the performance of their quantum circuit, an
issue that we analyze here!. More recently Plenio and Knight
@26# used some of the conclusions of@25# ~the number of
required qubits and time steps! to discuss some of the limi-
tations imposed by decoherence on the size of the numbers
one could factorize using various physical setups.

In Sec. II we briefly describe both the mathematical basis
for Shor’s algorithm and the basic steps a quantum computer
would need to follow in order to implement it. In Sec. III we
describe the quantum network for implementing modular ex-
ponentiation. We go from the coarser description, where the
circuit is just a black box, to the fine-grained picture, where
every component is dissected and built from elementary Tof-
foli gates. We analyze the architecture required to factor
numbers ofL bits and explicitly exhibit the circuit to factor
N515, that requires 27 qubits~the circuit to factorL bit
numbers needs 5L17 qubits and involves a number of el-
ementary gates that, for largeL, is close to 240L3). In Sec.
IV we address the importance of decoherence and the pos-
sible strategies for error correction. We summarize our re-
sults in Sec. V.

II. SHOR’S ALGORITHM

Shor invented an algorithm for a quantum computer that
could be used to find the prime factors of integer numbers in
polynomial time. We will now briefly review the most im-
portant aspects of Shor’s algorithm and later consider the
way to implement it in a quantum computer.

The mathematical basis for Shor’s algorithm is the fol-
lowing ~see@3,4,27#!. The goal is to find the prime factors of
an integer numberN. Instead of doing this directly, the al-
gorithm finds theorder r of a numberx. The order ofx is
defined as the least integerr such thatxr[1 ~modN). Know-
ing r , one can find the prime factors ofN by using some
results proved in number theory. Factorization reduces to
finding r if one uses a randomized algorithm: as Shor shows
in @4#, choosingx at random and finding its orderr , one can
find a nontrivial factor by computinga, the greatest common
divisor betweenxr /221 andN. In fact, a is a nontrivial
factor of N unlessr is odd or xr /2521 modN. As x is
chosen at random, the probability for the method yielding a
nontrivial prime factor ofN is 121/2k21, wherek is the
number of distinct prime factors ofN.

In his seminal work@3,4#, Shor showed that a quantum
computer could efficiently find the orderr of the numberx
and therefore factorizeN in polynomial time. Let us now
describe the basic operation of this quantum computer. This
requires two quantum registers, which hold integers repre-
sented in binary notation. There should also be a number of
work qubits, which are required along the calculation but
should be in a standard state~say u0&) both at the beginning
and at the end of the calculation. The role of these work
qubits is very important and will be described in detail in
Sec. III. For the moment, we will concentrate on describing
the state of the computer before and after every major step of
the program. For that purpose, we can forget these qubits for
the moment. Apart from the quantum registers, there is also
some classical information we should provide for operating
the quantum computer. Thus we will assume that the num-
bersN ~the one we want to factor!, x ~chosen randomly
modN), and a randomly chosenq, which is such that
N2<q<2N2 are part of the classical information available
to the quantum computer.

We start the process by preparing the first register in a
uniform superposition of the states representing all numbers
a<q21 @this can be done by a standard technique, i.e., ro-
tating each individual qubit, putting it in a superposition
(1/A2)(u0&1u1&)#. The state of the computer is then

uC0&5
1

Aq(a50

q21

ua&u0&. ~1!

The next step is to unitarily evolve the computer into the
state

uC1&5
1

Aq(a50

q21

ua&uxa~modN!&.

The next step is to Fourier transform the first register. That
is, we apply a unitary operator that maps the stateuC1& onto

2606 54CÉSAR MIQUEL, JUAN PABLO PAZ, AND ROBERTO PERAZZO

uC2&5
1

q(a50

q21

(
c50

q21

exp~2p iac/q!uc&uxa~modN!&.

The final step is to observe both registers~the method could
be implemented observing just the first register, but, follow-
ing Shor @4#, for clarity we assume both registers are ob-
served!. The probability for finding the state
uc&uxk(modN)& is

P„c,xk~modN!…5U 1q (
a/xa[xk

exp~2p iac/q!U2,
where the sum is over all numbers 0<a<q21 such that
xa5xk(modN). This sum can be transformed into

P„c,xk~modN!…5U 1q (
b50

@~q212k!/r #

exp~2p ib$rc%q /q!U2,
~2!

where $rc%q is an integer in the interval2q/2
,$rc%q<q/2, which is congruent torc ~modq). As shown
by Shor, the above probability has well defined peaks if
$rc%q is small ~less thanr), i.e., if rc is a multiple of q
(rc5dq for somed,N). Thus, knowingq and the fact that
the position of the peaksc will be close to numbers of the
form dq/r , we can find the orderr ~using well-established
continuous fraction techniques!.

There is no doubt that Shor’s algorithm would work if a
quantum computer could be built. However, to implement
Shor’s algorithm in a quantum computer one needs to explic-
itly construct the program. The procedure for Fourier trans-
forming is well known and has been extensively discussed in
several recent papers~see@4,21,27#!. To explicitly construct
the unitary evolution that takes the stateuC0& into the state
uC1& is a rather nontrivial task, which we will describe in the
next section@25#.

III. QUANTUM NETWORK
FOR MODULAR EXPONENTIATION

We will present an array of quantum gates that maps the
stateua& ^ u0& onto ua& ^ uxa(modN)&, transforming the state
uC0& into uC1&. We describe the quantum circuit using dia-
grams such as the one in Fig. 1, which must be interpreted as
representing the time evolution of the system with time flow-
ing from left to right. Each line represents a single qubit, i.e.,
a two-level system~a thick line will represent a bundle of
qubits!. In describing the circuit we will go in steps from the
coarse description of Fig. 1~a! ~where the computer is a black
box! to a fine-grained description where the computer con-
sists of a complex array of interconnected elementary gates.

We will use Toffoli gates as ‘‘elementary’’ components
and follow the notation of@28#, denoting a gate acting on
three qubits asL2. The action of a Toffoli gate on a compu-
tational state ux1 ,x2 ,x3&, ~where xiP$0,1%) is
L2ux1 ,x2 ,x3&5ux1 ,x2 ,x3% (x1`x2)&, where% denotes the
exclusive OR and̀ the AND operation between the Bool-
ean variablesxi . Thus Toffoli gates are just controlled-NOT
gates where the last qubit changes its state only if the two
control qubits are set to 1. It will also be convenient to use

generalized Toffoli gates, withn control qubits, which are
denoted asLn . Of course, all these gates can be constructed
in terms of one- and two-qubit operations, as explained in
@28#. The diagram representing the gateLn is shown in Fig.
1~b!.

To design a quantum circuit for modular exponentiation
we should first notice that if the binary representation ofa is
a5(i50

n ai2
i , then

ya~modN!5)
i50

n

@~y2
i
!ai~modN!#. ~3!

Thus modular exponentiation is just a chain of products
where each factor is either equal to 1 ifai50 or equal to
y2

i
if ai51. Therefore, the circuit is easily constructed if one

is allowed to use a controlled multiplier as an auxiliary unit
~which, at this level, acts as a new black box!. In Fig. 2 we
show the basic architecture of the array of controlled multi-
pliers required for modular exponentiation. For the first mul-
tiplication the control qubit isa0 and after each multiplica-

FIG. 1. ~a! Black box description of the circuit for modular
exponentiation. WhenN has four bits one needs nine qubits to
representa and fifteen extra qubits to be used as work space.~b!
L4 Toffoli gate with four-control bitsx1 ,x2 ,x3, and x4. x5→x5
% (x1`x2`x3`x4).

54 2607FACTORING IN A DISSIPATIVE QUANTUM COMPUTER

tion the control is moved to the next qubit. For this array to
work we need to know all the numerical factors entering in
~3! @thus we must classically compute the numbers
y2

i
(modN)#.
Our next step is to analyze the controlled multiplier.

Given an input uI &, this circuit, which we denote as
PN(C), produces an outputuI *C(modN)&. The controlled
multiplier is constructed using a smaller black box: a con-
trolled modN adder. In fact, multiplication of two numbers
I5(i50

n I i2
i and C reduces to a sum of the form

(i50
n I i(2

iC). Thus we just need to useI i as the control qubit
in a controlled modN adder adding the number (2iC) @a

circuit that we denote asSN(2
iC)#. The numbers involved in

the sum must also be provided as classical information~we

need to classically compute all numbers 2j y2
i
, with i , j<L,

whereL is the number of bits ofN). In Fig. 3 we show a
controlled multiplier for four-bit numbers. The same archi-
tecture can be used to multiplyL-bit numbers. In that case,
the controlled multiplier requiresL11 work qubits, whose
state is set to zero before and after its operation. As we will
see below, the controlled adder itself also requires some
work space that must be independent of the one used specifi-
cally for multiplication.

As shown in Fig. 3,PN(C) is schematically divided into
three pieces. In all of them the work qubits play an important
role. The quantum state entering the circuit is
ux0&5uI & ^ u0&WB , whereI is the number stored in the input
register andu0&WB is the state of the work qubits. The qubits
uI i& are used as control for theSN(2iCmodN) adders and the
result of the sum is temporarily written in the work qubits.
After this, the state isux1&5uI & ^ uIC&WB : almost what we
need, except for the fact that the inputuI & also appears in the
output state. Erasing this extra copy of the input is essential:
Otherwise we would be keeping a record of the computa-
tional path affecting the interference pattern of the quantum
computer ~apart from forcing us to use an enormous
amount of space!. The reversible erasure of the input is the
purpose of the second part of the circuit. In designing this we
followed well-known techniques developed by Bennett@29#
and described by Shor@4#. The procedure is as follows. We
first consider the evolution operatorŨ mapping the input

FIG. 3. ~a! Three stages of the controlled mul-
tiplier ~modN) PN(C). First the inputI is mul-
tiplied by C. Then I is reversibly erased and fi-
nally the result is swapped with the upper
register.~b! Multiplication by C is achieved by
repeated addition of 2mCmodN controlled by
I m . This is done using the controlled modN
addersSN(2

mCmodN). In the figure we denote
modN as %N.

FIG. 2. Gate array used for modular exponentiation.YamodN is
calculated by repeatedly multiplying the second register by

Y2mmodN only if am51. Each box multiplies its input by

Y2mmodN only if the control bitam is 1.

2608 54CÉSAR MIQUEL, JUAN PABLO PAZ, AND ROBERTO PERAZZO

u0& ^ uI 8&WB onto uI 8C21& ^ uI 8&WB , whereC
21 is the mul-

tiplicative inverse of C(modN) @the number satisfying
C*C2151~modN)#. The operator needed in the second part
of the multiplier isŨ21. To convince ourselves that this is
the case, we should notice that, as the input to the second
part of the multiplier isux1&5uI & ^ uIC&WB , the output will
be ux2&5Ũ21ux1&5u0& ^ uIC&WB @because, by construction,
Ũ satisfiesŨ(u0& ^ uIC&WB)5uI & ^ uIC&WB5ux1&#. The cir-
cuit for Ũ21, shown in Fig. 3, is just the specular image of
the one used for the first part of the multiplier~switching the
role of register and work qubits!. Finally, the multiplier is
completed with a controlled swap that interchanges once
more the register and work qubits so that the final state of the
work qubits is alwaysu0&WB .

The circuit for doing controlled modN sums of a number
X, which is stored in a quantum register, and a numberY,
stored in a classical register, is calledSN(Y). This circuit, for
five-bit numbers, is shown in Fig. 4~generalization toL-bit
numbers is straighforward!. The circuit for SN(Y) is built
using a simple controlled adder, which we denote asS(Y),
whose functioning will be explained below. The only differ-
ence betweenSN(Y) andS(Y) is that the former gives the
output moduloN. Constructing a reversible circuit for com-
puting the sum modN is not a trival task, which is only
possible because we know that the two numbers being added
(X and Y) are both less thanN ~and therefore
X1Y<2N22). Without this information it would not be
possible to compute modN reversibly without keeping un-
wanted records of the computation~since modN is not a
one-to-one function!. The input to the circuit is
ux̄0&5uX& ^ u0&WB . After the first adder, this is transformed
to ux̄1&5uX1Y& ^ u0&WB . We then apply another simple
adder which adds the positive number 2L112N, thus pro-
ducing an outputux̄2&5u2L111X1Y2N& ^ u0&WB . The
most significant bit~MSB! of 2L111X1Y2N is one~zero!
if X1Y>N (X1Y,N). It is easy to realize that the oppo-
site is true for the second MSB of the output. Thus, if we use
this qubit to control the inverse operation, we will addN
only if X1Y,N. Therefore, after the third gate of the circuit
shown in Fig. 5, the firstL qubits of the output always store
the numberA1C modN. However, theL11 andL12 qu-
bits, which are used to control the third gate, keep a record of
the first result. As usual, this record must be reversibly

erased and this can be done by using the following simple
trick: We first add the positive number 2L2Y and notice that
the MSB of the result 2L2Y1(XmodN) is always identical
to the qubit used to control the third gate. Thus we are done:
We apply a control-NOT gate and then we undo the first sum
~by addingY).

So far, we first explained modular exponentiation in terms
of controlled multiplicationPN(C). Later, we explained
PN(C) in terms of controlled modN sumsSN(Y) and this
circuit in terms of a simple adderS(Y). We will now present
the gate array for the simple controlled adderS(X), which is
best explained in terms of a smaller gate: a controlled two-
qubit adder. This will be our smallest black box and, for
clarity, we will explain here how it works. The two-qubit

FIG. 4. Addition modN is achieved with five controlled adders:
The first addsC to the input. The second ‘‘subtracts’’N from
a1C. The third operation addsN only if a1C is smaller thanN.
At this stage the first four bits havea1CmodN. The last two stages
erase the record left in the seventh bit, whose state depends on the
sign ofa1C2N.

FIG. 5. Two-qubit addersS(s) are shown in terms of Toffoli
gates. They have four input and four output qubits. If the inputs are
ctl, i 1, i 2, and 0, the outputs arectl, the least significant bit~LSB!
of i 11 i 21s, i 2, and the most significant bit~MSB! of the sum. A
swap gate is also shown that interchanges its two input qubitsi 1 and
i 2.

54 2609FACTORING IN A DISSIPATIVE QUANTUM COMPUTER

adder, denoted asS(s), has four input qubits and a classical
input bits ~i.e., there are two types of two-qubit adders, one
for s50 and another fors51). The first input qubit is the
control, the second qubit isi 1, the third one isi 2, and the
fourth one is a work qubit that is always set to 0 at the input.
At the output, the control qubit is unchanged, the first qubit
changes into the least significant bit~LSB! of the sum
(i 11 i 21s), the third one storesi 2, and the fourth stores the
MSB of the sum. In Fig. 5 we can see how to build the gates
S(0) andS(1) ~and other useful simple gates! in terms of
Toffoli gates.

UsingS(s) it is possible to construct a circuit mapping
an inputuX& into uX1Y&. This is displayed in Fig. 6, where,
for simplicity, we assumed that bothX andY have five bits.
For numbers ofL bits the number of work qubits required is
L13. The quantum state entering the adder is
ux̃0&5uX& ^ u0&WB . This goes through the sequence of two-
qubit addersS(Yi) ~we useXi ,YiP$0,1% for the binary rep-
resentation ofX andY). After this chain ofS gates, the state
is ux̃1&5uX& ^ uX1Y&WB , which has an unwanted copy of
the input. To reversibly erase this extra copy we apply
the same method used in the multiplication. We first con-
sider an auxiliary operatorW that adds the positive
numberȲ[2L2Y (Ȳ is known as the 2’s complement of
Y and its binary representation is simply obtained from that
of Y by interchanging zeros and ones and adding 1). The
operatorW satisfiesW(uR& ^ u0&WB)5uR& ^ uR12L2Y&WB .
Therefore, its inverse is such thatW21uX1Y& ^ u2L
1X&WB5uX1Y& ^ u0&WB , which is precisely what we need
as the output of our circuit~the properties ofW21 simply
follow from that of W, which, by construction, satisfies

WuX1Y& ^ u0&WB5uX1Y& ^ u2L1X&WB). Therefore, using
W21 after appropriately interchanging the role of the register
and the work qubits~and adding an extra work qubit to store
the qubit representing 2L) we complete the controlled adder.
The circuit forW21 that is shown in Fig. 6 is almost the
specular image from the one used as the first part of the
adder. The only difference is that instead of the first two-
qubit adder we can use a smaller circuit that only stores the
LSB of the first sum~this circuit is shown in Fig. 5!.

Having explained the essential pieces of the quantum
computer, let us now summarize what its space and time
requirements are~i.e., the number of qubits and the number
of elementary operations!. As explained above, to factor an
L-bit number we needL11 qubits as work space for the
controlled multiplier andL14 for controlled sums. The
modN circuit requires an extra qubit. Adding the qubits re-
quired to store the two quantum registers (2L11 qubits to
storea in the first register andL qubits for the second reg-
ister! we get a total of 5L17 qubits. Computing the number
of elementary operations is also possible. By inspecting our
controlled adder one realizes that the number of elementary
gates isaL1b(L11), wherea andb are, respectively, the
number of gates in a two-qubit adder and in its inverse and
the one in a swap circuit. Using the estimatea5b53 one
gets 12n117 operations for the sum. Using similar argu-
ments to analyze the multipliers one finally concludes that
the complete modular exponentiation circuit requires
240n31484n21182n elementary operations. ForL54 this
is about 2.53104.

IV. LOSSES AND DECOHERENCE
IN A FACTORING COMPUTER

Before analyzing the impact of dissipative effects on the
quantum circuit it is convenient to introduce some notation.
The quantum computer has a Hilbert space with a computa-
tional basis with statesur 1 ,r 2 ,W& ~wherer 1, r 2, andW are
the bit strings determining the states of the first register, the
second register, and the work qubits, respectively!. We as-
sume that the environmentE has a Hilbert space spanned by
a basis of statesue&E . The quantum state of the computer–
environment ensemble can always be written as

uC~ t !&5 (
r1 ,r2 ,W,e

A~r 1 ,r 2 ,W,e,t !ur 1 ,r 2 ,W&ue&E . ~4!

The temporal evolution of the probability amplitude
A(r 1 ,r 2 ,W,e,t) is governed by the interplay between the
quantum circuit described in Sec. III and the computer-
environment interaction. At the initial time, when the com-
puter is in state~1!, the amplitudes are given by

A~r 1 ,r 2 ,W,e,t50!5
1

Aq
d~r 2,0!d~W,0!d~e,0!.

Here we assumed that the computer is initially uncorrelated
with the environment, which is taken to be in an unexcited
stateu0&E @we used(a,b) to denote Kronecker’s delta func-
tion#. If the computer evolves without interaction with the
environment the amplitudes after the modular exponentiation
circuit are

FIG. 6. ~a! Addition is performed in three stages: The first adds
Y to the inputX, the second interchangesX with X1Y, and the last
reversibly erases the inputX. ~b! The first and last stages are shown
in terms of the individual qubits and two-qubit addersS(s). Y0–
Y4 are the bits in the binary representation ofY. Ȳ[2L2Y is used
to eraseX.

2610 54CÉSAR MIQUEL, JUAN PABLO PAZ, AND ROBERTO PERAZZO

Aexact~r 1 ,r 2 ,W,e,t5t f !5
1

Aq
d„r 2 ,y

r1~modN!)

3d~W,0!d~e,0!. ~5!

However, when the computer interacts with the environment,
the actual amplitudes will deviate from the exact expression
~5!. To model this interaction we will use a very simple
approach that incorporates the losses induced by the sponta-
neous decay of the computer’s qubits: The environment con-
sists of a collection of two level systemsEi , i.e., a collection
of ‘‘environmental qubits’’ ~each Ei qubit has an excited
stateu1&Ei and a ground stateu0&Ei). For simplicity we will
assume that at a given time, a randomly selected computer
qubit qi interacts with one of environmental qubitsEi . As a
result of this sudden interaction correlations are established
according to

u1&qiu0&Ei→p1
1/2u1&qiu0&Ei1p2

1/2u0&qiu1&Ei, ~6!

u0&qiu0&Ei→u0&qiu0&Ei,

wherep2512p1. The interpretation of the evolution~6! is
quite clear. If the computer qubit is in the stateu1&qi it has a
probability p1 to persist and a probabilityp2 to decay into
u0&qi, creating an excitation in the environment. On the other
hand, if the computer qubit is in the stateu0&qi nothing hap-
pens. It is worth mentioning that the decay rules~6! implic-
itly assume that the state used to represent thecomputational
0 is the ground state~or, at least, has lower energy than the
one used to represent thecomputational1). In fact, the situ-
ation may be exactly the opposite in which case the rules~6!
must be trivially modified by interchanging the roles of
u1&qi and u0&qi ~see below!. More general evolution rules
~such as the ones used in,@14# which are best suited to ana-
lyze a noisy but almost losseless computer! will be studied
elsewhere@30#.

Thus we can summarize the basic ingredients of our
computer-environment model.~i! It is characterized by a ran-
domly chosen sequence of times (t1 , . . . ,tn) that define the
instants where the computer interacts with the environment
~in between these times the computer evolves according to
the unitary operators associated with the quantum circuit de-
scribed in Sec. III!. ~ii ! At each timet i we randomly choose
a computer qubitqi that is involved in a sudden interaction
with an environmental qubitEi . ~iii ! As a consequence of
this interaction the computer-environment ensemble evolves
according to the rules~6!. Implicit in our assumptions is the
validity of the simplifying Markovian approximation, which
ensures that at every instantt i a different~and independent!
environmental qubitEi is involved in the interaction. A
simple way of visualizing this computer-environment model
is by thinking of the timest i as the instants where there may
be a ‘‘branching’’ of the computational trajectory. Every
time an environmental qubit is excited an ‘‘erroneous’’ com-
putational trajectory emerges. At the end of the modular ex-
ponentiation circuit, the state vector of the computer-
environment ensemble is written as in~4! with an amplitude
that will notbe given by~5!. We already admitted that this is

an oversimplification of reality~which has been used before
to model losses in quantum computation@22#!.

We computed the amplitudes from the output state of the
Fourier transform circuit, which follows modular exponen-
tiation ~the discrete FT circuit is described in the literature
@4,5,21#!. In Fig. 7 results are presented for the probability of
finding r 1 in the first register andr 257 in the second regis-
ter. The ideal result, plotted in Fig. 7~a!, is obtained from Eq.
~2!. This error-free curve has three sharp peaks, with a sepa-
ration approximately equal toq/r5130/4 ~we deliberately
choose a rather small value forq so that the small structure
in the plots can be seen using a reasonable scale!. Provided
we do not know the final state of the environment and the
work qubits~see below! the probability is

PNED~r 1 ,r 2!5(
W,e

uA~r 1 ,r 2 ,W,e,t !u2

~the subscript NED stands for ‘‘no error detection,’’ see be-
low!. This probability is shown in Fig. 7~b!, where we can
see that the errors slightly widen the peaks and notably de-
crease their amplitudes. As the number of errors is increased
it will be less and less likely to measure a value ofr 1 located
near a peak making the identification of the orderr ~obtained
from the separation between peaks, as explained in@4#! more
and more difficult. The appearence of intermediate peaks is
also evident in Fig. 7~b!. Apart from the above probability
we also calculated the probability for findingr 1 in the first
register,r 257 in the second, and the work qubits in the state
u0&WB , i.e.;

PED~r 1 ,r 2!5(
e

uA~r 1 ,r 2 ,W50,e,t !u2.

FIG. 7. Probability distribution forr 1 andr 257. In the simula-
tionsN515, q5130, andp15p251/2;tP@0,1#. ~a! Exact result.
~b! Result with ten decaying qubits at randomly chosen instants of
time t1–t10. ~c! Probability distribution forr 1, r 257, and all work
qubits in their zero state.

54 2611FACTORING IN A DISSIPATIVE QUANTUM COMPUTER

This is plotted in Fig. 7~c!, where we see that while a noisy
dc component@present in~b!# is supressed, the amplitude
ratio between the misleading and correct peaks is increased.
These plots correspond to simulations of the quantum com-
puter running the program to factorN515 while coupled to
an environment at a randomly chosen set of ten instantst i
~we usep15p251/2). The modular exponentiation circuit
requires about 2.53104 elementary~Toffoli ! gates. This
roughly correspond to 105 one-bit operations for Cirac and
Zoller’s cold ions computer,@5# Thus, in that case we are
considering an error rate of order 1024, which is a rather
optimistic figure.

Our simulations can be used not only to visualize the
importance of the environmental interaction on the quantum
algorithm but also to test simple error detection~and correc-
tion! schemes. The simplest of such schemes is probably the
one based on checking the state of the qubits that are sup-
posed to be in a known state. Our factoring program is suited
for this purpose since the work qubits must start and end in
the state representing the computational 0. Two comments
concerning error detection~and correction! are in order.
First, by checking the final state of the work qubits we are
not able to detect a special class of errors that are produced
by the decay of the qubits representing the first and second
registers of the computer (r 1 and r 2). Errors of that kind
leave~most of the time! the work qubits untouched but gen-
erate a misleading output@they are responsible for the inter-
mediate peaks seen in Fig. 7~c!, which make the measure-
ment of the orderr a much more difficult task#. Second, and
more important, by measuring the final state of the work
qubits we are only able todetecterrors but not to correct~or
prevent! them.

Of course, it would be much better to have a method
enabling us topreventthe errors from occurring. For this, the
use of the watchdog effect@16# has been proposed. Thus, if
some of the computer’s qubits are supposed to be in a known
state at some time, one could inhibit their decay by making a
measurement on the known state. This method can indeed be
applied here since the work qubits are supposed to be in the
state representing the computational 0 at many intermediate
instants of the computation. In fact, this is what happens
after the action of eachPN(C) circuit and after the action of
each controlled adderSN(C). For largeL, the number of
times one could measure the state of some of the work qubits
grows asL2.

To test the efficiency of the watchdog effect as an error
correction technique we slightly changed our computer-
environment interaction model. In fact, we now assume that
the decay rules are of the form~6! but with time-dependent
coefficients given by

p1~ t !5H S 12
t2

t0
2D 2, 0<t<t1

Aexp~22gt !, t.t1 ,

p2~ t !512p1~ t !. ~7!

In this way, after having an initial (t,t1) quadratic depen-
dence, the survival probability for a qubit decreases expo-
nentially with time~measured from the start of the computa-
tion and, by convention, expressed in units of the total time

required to run the program, i.e.,t51 corresponds to the end
of the computation!. In the simulations shown in Fig. 8 we
consideredg51,2 andt1;1022g21 so that towards the end
of the computation a qubit will have a high decay probabil-
ity.

To implement the watchdog we measure the state of the
work qubits at every instant when they are supposed to be in
the computational 0. Every time we do this we reset the time
in ~7!. Thus a work qubit will decay with probabilities pro-
portional to the ones given in~7!, where the time will effec-
tively be measured fromt last, the last instant at which the
work qubit was supposed to be in the computational 0 state.
Therefore the survival probability for a work qubit is

pWQ~ t !5p1~ t2t last!)
i50

n

p1~Dt i !,

where Dt i is the time between two consecutive measure-
ments of the work qubits. On the other hand, the qubits in-
volved in the first or second registers of the computer will
have decay probabilities given by~7! with time counting
from the beginning of the computation.

The effectiveness of the watchdog effect as an error pre-
vention technique can be seen in Fig. 8, where the probabil-
ity with and without the watchdog effect are plotted together.
Without using this method we get a very noisy probability

FIG. 8. Graphs showing the probability distribution forr 1 and
r 257 with q5130. We simulated the circuit for factoringN515
with ten decaying qubits at randomly chosen instants of time. The
probability distribution is plotted with and without using the watch-
dog effect. The parameters of Eq.~7! are ~a! g51, t050.173, and
A51.008 and~b! g52, t050.127, andA51.016.

2612 54CÉSAR MIQUEL, JUAN PABLO PAZ, AND ROBERTO PERAZZO

with a substantial widening of the principal peaks. The am-
plitude of the central peak, which in Fig. 8~a! is about
0.01, is of the same order as the one shown in Fig. 7~b! ~but
the decay rules we are using here are more damaging than
the ones we used before!. Using the watchdog technique we
substantially increase the amplitude of the main peaks~by a
factor of 2 or 3! and also eliminate almost all the noise. The
only remaining spurious peaks are those produced by the
decay of qubits involved in the first and second registers.
They cannot be eliminated using the watchdog effect since
their existence is not a consequence of a process affecting the
work qubits. It is worth stressing that for the watchdog effect
to be useful in preventing errors, the Zeno timet1 must be
larger than the time required for a work bit to return to its
logical zero state. This is a rather strong constraint and may
turn out to be physically unrealistic in most situations.

V. SUMMARY AND OUTLOOK

The factoring circuit we presented is by no means opti-
mal. Several improvements are possible to reduce the num-
ber of work qubits. However, when designing a circuit for
practical purposes one has to keep in mind that the existence
of work qubits is not necesarily a burden. Our results show
they can play a very useful role by allowing the use of the
watchdog effect as an error prevention technique. It would be
important to find the optimal balance minimizing the number
of work qubits but still allowing an efficient use of the
watchdog method.

The simulations we performed are rather simple and do

not allow us to test the importance of other sources of prob-
lems for quantum computers. One of the most important
sources of errors we excluded here is related to the fact that
the elementary quantum gates are never 100% efficient. If
we think of Cirac and Zoller’s@5# cold ion hardware, the
elementary gates are built by applying a sequence of laser
pulses on individual ions. If these pulses are not exactp
pulses~or p/2 pulses! the quantum gate will not be exactly
the one we want. The corresponding unitary evolution opera-
tor U real will have nonzero matrix elements in places where
the exact quantum gate operatorU ideal has zero matrix ele-
ments. These imperfections may be rather important since
their effects accumulate in time. To include this effects in
our model one needs to follow the evolution of the comput-
er’s state vector in the 228-dimensional Hilbert space. Even
though our work enables us to explicitly write down the
matrixU real at every step of the calculation, we are not able
to numerically simulate this because of space limitations
~thus simulating a quantum computer withN qubits needs an
exponentially large amount of space in a classical computer!.
Simulations of smaller versions of our circuit for modular
exponentiation are planned to be presented elsewhere@30#.

ACKNOWLEDGMENT

We thank Adriano Barenco for useful comments on an
earlier version of this manuscript. J.P.P. was partially sup-
ported by grants from UBACYT, Fundacio´n Autorchas, and
CONICET.

@1# S. Lloyd, Sci. Am.273, 44 ~1995!.
@2# C. Bennett, Phys. Today48 ~10!, 24 ~1995!; C. Bennett and D.

DiVincenzo, Nature377, 389 ~1995!.
@3# P. Shor, inProceedings of the 35th Annual Symposium on

Foundations of Computer Science, edited by S. Goldwasser
~IEEE Computer Society, Los Alamitos, CA, 1994!, p. 116.

@4# P. Shor, SIAM J. Comput.~to be published!.
@5# A. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091~1995!.
@6# T. Sleator and H. Weinfurter, Phys. Rev. Lett.74, 4087~1995!.
@7# Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.

Kimble, Phys. Rev. Lett.~to be published!.
@8# W. G. Unruh, Phys. Rev. A51, 992 ~1995!.
@9# J. P. Paz~unpublished!.

@10# I. Chuang, R. Laflamme, P. Shor, and W. Zurek, Science270,
1633 ~1995!.

@11# G.M. Palma, K.-A. Suominen, and A. Ekert~unpublished!.
@12# I. Chuang and R. Laflamme~unpublished!.
@13# W. H. Zurek, Phys. Today44 ~10!, 36 ~1991!; 46 ~4!, 13

~1993!.
@14# P. Shor, Phys. Rev. A53, R2493~1995!.
@15# C. Bennettet al., Phys. Rev. Lett.76, 722 ~1996!.
@16# W. H. Zurek, Phys. Rev. Lett.53, 391 ~1984!.

@17# A. M. Steane, Phys. Rev. A~to be published!.
@18# A. R. Calderbank, E. M. Rains, N. J. Sloane, and P. W. Shor

~unpublished!.
@19# R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys.

Rev. Lett.77, 198 ~1996!.
@20# C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wooters~unpublished!.
@21# D. Coppersmith, IBM Research Report No. RC19642, 1994

~unpublished!.
@22# I. Chuang, R. Laflamme, J. P. Paz, and T. Yamamoto~unpub-

lished!.
@23# I. Chuang and Y. Yamamoto, Phys. Rev. A52, 3489~1995!.
@24# D. Deutsch and R. Josza, Proc. R. Soc. London Ser. A439,

553 ~1992!.
@25# V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A54, 147

~1996!.
@26# M. B. Plenio and P. L. Knight, Phys. Rev. A53, 2986~1996!.
@27# A. Ekert and R. Josza, Rev. Mod. Phys.~to be published!.
@28# A. Barencoet al., Phys. Rev. A52, 3457~1995!.
@29# C. Bennett, IBM J. Res. Dev.17, 525 ~1973!; SIAM J. Com-

put. 18, 766 ~1989!.
@30# C. Miquel, J. P. Paz, and R. Perazzo~unpublished!.

54 2613FACTORING IN A DISSIPATIVE QUANTUM COMPUTER

