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Quantum-mechanical description of charged particles with spin; in the magnetic field outside
of a rectilinear current filament
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The eigenstates of a charged particle with sbi'm the magnetic field surrounding a rectilinear current
filament are determined numerically. As they differ only slightly from local Landau levels, the wave functions
may be approximated analytically using stationary perturbation theory. The expectation values of the compo-
nent parallel to the wire of the velocity operator are calculated for both the exact and the approximated wave
functions. They are a measure for the drift of the gyration center parallel to the wire, which is predicted by
classical mechanics. Taking into account the quantization of the cyclotron rotation, this drift motion can also
be derived by applying the method of adiabatic expansion of the particle propagator. The resulting values for
the drift velocities are in excellent agreement with those from classical mechanics if, in the latter, one takes
into account energy quantizatiof51050-294{@6)00409-X

PACS numbgs): 03.65.Ge, 03.65.Db, 02.60.Lj, 46.%

I. INTRODUCTION rived from Hamiltonian theon|16,17 or from variational
principles[18].
The quantum-mechanical motion of a charged spjrar- It was shown in[13] that the guiding center approxima-

ticle in a homogeneous magnetic field was first investigatedion is applicable to describe the electronic motion outside of
by Landau[1] who, in this case, determined eigenstatesa rectilinear current if the kinetic energy of the electron is not
(“Landau levels”) and eigenenergies. His results are still of to0 large. The inhomogeneity of the magnetic field causes a
interest in solid-state physics with regard to the quantizediniform drift of the guiding center parallel to the filament.
Hall effect [2]. In this context, however, as well as in the L€t us suppose that the wire be directed along zhexis.
case of persistent currents in mesoscopic rf@jsdeviations Within the framework of quantum mechanics, the expecta-

from the homogeneous field are of great significance fofion values of the component of the velocity operatog are

charge flow. As a result the Pauli equation was solved red Measure for the drift motion. After a numerical solution of

cently for particles in special nonuniform static field configu- the time-independent Pauli equation we will use the resulting

. ) . .. wave functions to compute the expectation values in various
rations[4—6]. For one of the simplest possible magnetic field stationary states,

c_qnfigurations, namely’ the magnetic field produced b_y arec- Recently, equations of motion for the guiding center, tak-
tilinear current filament, a detailed quantum-mechanical del'ng into account the quantization of the cyclotron rotation,

scription is still unavailable. It is the purpose of the presentyere gerived for the case of a charged particle which moves
paper to provide such a solution and is an extension of thg, 5 plane perpendicular to a strong uniform magnetic field in
theoretical[7-10] and experimentaf11,12 studies of the {he presence of an external electrostatic figdd]. In this
bound states of neutral particles possessing magnetic dipolgork, the underlying idea is that the Landau levels should
moments in a common field. It is, however, interesting tophecome a local concept with their energy spacings depending
investigate differences between the quantum-mechanical rgm the values of the guiding center coordinates. For this pur-
sults and those recently publish¢ti3] on the basis of a pose, the Born-Oppenheimer method was used to separate
purely classical theory. the fast variables describing the gyration from the slowly
Classically, the motion of a charged particle in a uniformvarying coordinates of the guiding center. Assuming that the
magnetic field consists of a circular moti¢tgyration” or guantum numben of the local Landau level is not affected
“cyclotron rotation”) in the plane perpendicular to the field by the slow change of the guiding center coordinates, an
lines, whilst the motion parallel to them is free. The radius ofexplicit formula for the path integral can be derivé@dia-
the circular orbit is called the “gyroradius” and its center the batic expansion of the path integral”It contains an expo-
“guiding center.” In the case of a nonuniform magnetic nent, which represents the effective action function of the
field, the solution of the classical equations of motion is aguiding center motion for a fixed quantum number of the
nontrivial problem. If, however, the distance over which thegyration. Minimization of this action yields equations of mo-
magnetic field varies appreciably in magnitude or direction igion for the guiding center.
large compared to the local gyroradius, the classical equa- As will be shown in this paper, the adiabatic path-integral
tions of motion may be solved approximately using pertur-expansion may also be applied to the case of a bare inhomo-
bation method414,15. These methods are based on a de-geneous magnetic field, if the guiding center approximation
composition of the motion into a fast gyration perpendicularis valid. This method, therefore, allows one to derive the
to the magnetic-field lines and a slow "drift” of the guiding guiding center motion in the magnetic field of a rectilinear
center (“guiding center approximation). The resulting current.
equations of motion for the guiding center can also be de- The paper is organized as follows: In Sec. I, we investi-
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gate symmetries of the Hamiltonian and deduce radial equa- 2|
tions for the spin-up and spin-down components of the Pauli A(p)=
spinor. A general formula for the expectation value of the

tionary Pauli equation numerically and calculate the expecsecond order inz|/L andpiL.

tation values of, for some of the resulting wave functions.  The magnetic fieldB(x)= rotA(x) originating from (6)
As the eigenstates and eigenvalues deviate only slightly frorpegs

the case of local Landau levels, in Sec. IV we use stationary

perturbation theory to obtain analytic approximations for the

wave functions. With their help, we derive analytic formulas Blp)= € (7)
for the expectation values of,. In Sec. V, the method of the P

adiabatic path-integral expansion is used to deduce equatiofheree, denotes the azimuthal unit vector. Note tha(éh
those from classical mechanics. In Sec. VI, a short conclupetic field B(x) is not influenced by such a modification of
sion is given. App_endlx A contains the_maln resul_ts from theA(X), the special choice of, is of no physical relevance.
classical calculations of Ref13] and in Appendix B we gecause the region where the charge is localized is restricted
summarize the adiabatic path-integral expansion in strong, he spatial domain defined L), a reasonable length

p
- ?ezm[, (6)

magnetic fields, as derived in R¢1.9]. scale is given by the Compton wavelengtf=%/Mc of the
particle under consideration. In this cas&(x) takes the
Il. SYMMETRIES AND EXPECTATION VALUES form

The Hamiltonian of a nonrelativistic particle of masg 21 p
chargeq, and magnetic moment in an external magnetic AX)=A(p)=— —In)\—ez. (8
field B(x)= rotA(x) is given by[20] € Ae

A 1 q 2 In this paper, we will use the expressio(® and (7) for
Hp=—(f)——A(x)) — - B(X). (1)  Vvector potential and magnetic field outside of a rectilinear
2M c current filament. Note tha(x) satisfies the Coulomb gauge
. , = N . condition
For particles with spin;, the operatoru of the magnetic
moment is related to the vecter of the Pauli matrices by divA=0. (9)
~_ 9 Applying Eq. (7), the last term on the right-hand side of
L Yalad @ (1) reads
where up=|q|#/2Mc denotes the “magneton” of the par- ~ o 9Ke 200
ticle andg the gyromagnetic ratio. In the case of electrons, m-B= 2 Cp( Sing+ yCOSP). (10

Mp IS given by the Bohr magnetqug and the absolute value o _

of g is approximately equal to two. Deflnl_ng the operatorso, := %(ax+|a¥) and o_:=3
Outside of a current filament of length, which is di-  (ox—ioy), Eq.(10) may be transformed into the form

rected along the axis and whose radial extension can be ol

neglected, the vector potentialx) is given by i BIQI“P Zi(eto_— e %), (11)

L/2+z L/2—z

)]ez- (3 Using Eqgs.(8), (9), and(11) in (1) we find for the Hamil-
tonianHp in cylindrical coordinates
wherel is the strength of the time-independent current. Here,
J D - R2[ 9 19 1 &2 (a 21q pﬂ

and in what follows, we use cylindrical coordinates |t —+ 5 +| = +i——In—
(p,¢,2). If the particle is restricted to a region, whose ex- ' 2M | dp2 " pap  p?ad? oz ke,
tension in thez direction is much smaller thah (]z|<L),

+ arsinl‘(

A(p,z)=|6[arsin)'(

the vector potentia(3) is approximately equal to _gzﬂ ﬂi( elto_— e %q,). (12)
cp
2 (L .
A(p)= arsin 2p) % 4 For particles with spirg, the z-component, of the total

angular momentum operatdy

If, in addition, the distance of the particle from thez axis

remains small compared to, J=L.+ d ho n
z z

502=7 P + 50z (13
p<L and |z|<L, (5)
takes the eigenvalugsy: =#(m+ 1/2) ,me Z, and the corre-
A(x) may be replaced by sponding eigenfunctions are of the form
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W(p,$,2)=F1(p,2) &7 V29x,+15(p,2) ei(””’w)(%- ) Vi, (X)—ioy Wi (%), (21)
14

Here f,(p,z) and f,(p,2) denote arbitrary functions of the '€aves the set of equations invariant. Therefoks,,

cylindrical coordinatep andz and x;, x, are the eigen- =Ey —,, which means that the energy eigenvaluebipfare
spinors ofe, (ox; =+ x7, 02, = — x)). Because of ¢ylin-  doubly degeneratéwith eigenfunctionsPy , andio, ¥y ).
drical symmetry,J, commutes with the Hamiltoniallp, |y Ref.[21], it is shown that the same degeneracy occurs in
[Jz,Hp]=0, and thusv is an exact quantum number. the more general case of a magnetic field with negative par-

In addition, the operatop, commutes withHp and thus ity B(—x)=—B(x) if g sgn@) is exactly equal to two. As
the z component of the canonical momentum is also a conthe magnetic field7) is of higher symmetry, the energy ei-
served quantity. If we denote the corresponding quantungenvalues ofHp are doubly degenerate even for arbitrary
number byfk,, the solution of the stationary Pauli equation values of the gyromagnetic ratio. From now on, we will re-

~ strict ourselves to the case of non-negative

HpW ,(X)=E,, Wi, (X) (15 The equations for{™)(p) are coupled by the terms
has the form |
lotlee C(p)=W(p)e' ) (p) (22

1 . Cp
Vi) =V (p.¢.2)= 5" g, (p) 7120y, X
originating from the potential energy u- B of the magnetic
i(v+1/2>¢Xl], (16)  dipole momentu in the magnetic field. Owing to the fac-
tor sgn@l) in the ansatz216) for the wave functions, the

where k, is real. The physical meaning of the factor sign ofW(p) is negative. This implies parallel orientation of
sgn(@l) in front of the second term on the right-hand side of # andB. From classical mechanics it is known that in this
(16) will be explained later. The eigenfunctions case the force- VW points in the direction of the wire.
¥\ .(p,¢,z) are normalized according to: Neutral particles with a nonvanishing magnetic moment are

‘ hence confined in the plane perpendicular to the current fila-

+i sgrighe!(p) e

o 27 o . ment and it can be shown that quantum mechanically they
<‘I’kzv|‘1’k’w>:f Pdpf dd’f dz¥, (X)W, (X) possess an infinite number of bound std2#23.
z 0 0 —o z z . .
If sgn(gl) is replaced by— sgn@l), p and B point in
=6,, 8(k,—K.), (17 different directions anlV(p) becomes positive and the force
— VW thus repels the particles from the wire. Consequently,
which implies that neutral particles are no longer bound in the radial direction.

For charged particles, however, the numerical solution of the
(+), (2 2 radial equations shows that bound states still persist. The
f pdplle, ' (p)*+ e, (p)[7]=1. 18 sityation is comparable to the case of a homogeneous mag-
netic field[1,20]: There, the energy levels for particles with
Inserting(16) into (15) yields the following set of coupled spin 3 depend on the relative orientation pfandB,
differential equations for the radial wave function§"(p)

(=), B
and¢; ’(p): E,= h|wc| h|wc| with w: I?/IC’nENO’
__d_2+31_ﬂ (+)( ) (23
2M [dp® * p dp P A

where the negativéositive sign in front of the second term

2q1 p\? (+) lgl|up (=) belongs to parallefantiparalle] orientation of magnetic mo-
+ o ket oz =] el ()= ==l (p ic f _
2M c? N T cp v ment and magnetic field. i sgn(@) =2, the Landau levels
. are doubly degeneratef. Fig. 1). Due to the inhomogeneity
=Ey, .2, (p), (190 of the magnetic field7), in our case this degeneracy is lifted.
The difference between the corresponding levels are of the
d> 1d (v+1/2)? . order of the ground-state energy of the radial equati¢s
oM d_PzJFEE_T @, '(p) (20).
Equations(19) and (20) contain thez componentik, of
2ql p\? lgl|up + the canonical momentum and therefore, the form of the ra-
ikt 7 Im- o)\ (p) g ionse(®) :
2M v cp v ial wave functionsg;,’(p) depends on the choice of the
5 guantum numbek,. (For reasons of notational simplicity,
=Ey, @4 (p). (200 however, we leave out the index..” ) Note that the value

of this quantum number is gauge dependent: If, for example,
Note that the differential operators i{19) and (20) differ  the length scale\. of the vector potential is changed to
only by the centrifugal terma?(v=1/2)%/2Mp?. The trans-  p, by a gauge transformation
formation v— — v, ¢{*)(p)— ¢©{*)(p), which is equivalent
to A(X)— A'(X)=A(X)+ V x(X) (24



2580 M.
En (ho,] .
i+ —
by —
1 _<
2 \\\\

FIG. 1. Energy levels of particles without spiteft) and with

spin% (right) in a homogeneous magnetic field. If the gyromagnetic
ratio g of the particle is equal to two, the energy levels become

doubly degenerate.

with a scalar function

2l (xc)
X(X)——Fm p_ z, (25

S

the eigenvalue equatidAH’P\I’((Zf Ex,, Wy, is solved by the
wave functiong20]

. (26)
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Expressinge!~)(p) by ul")(p) and taking into account the
definition (29) of p, Egs.(19) and(20) are transformed into

2 [ d?>  v(v¥1) (=) +M 5 |p2(t)
ToM|d2 T T 2 U, (p)F 5 Uscal 5 u,”’(p)
lgllue -
_ 2R (F) — (*)
cp uV (p) Ekzvuv (P): (32)
where
2lq
Uscal::W (33

denotes a scaling velocity which plays an important role in
classical calculations: As explained in Appendix A, the guid-
ing center approximation is only valid if the kinetic energy
of a charged particle is much smaller thaBg.,:
=(M/2)v2,, The calculations of the next section will show
that this condition is well satisfied for the lowest-lying eigen-
states ofHp .

In a uniform magnetic field, the expectation values for
those components of the velocity operator which are perpen-
dicular to the magnetic field vanish if the particle is in a
Landau level. This is in agreement with the results of classi-
cal mechanics: Since the projection of the particle orbit on
the plane perpendicular to the magnetic field is a circle, the
time average of the velocity in this plane is zero. In our field
configuration, however, a uniform drift motion parallel to the

Using (25) and (16), the new eigenfunctions read exp||c|t|y wire is predicted because the time average of the VE|OCiW in

1 . 2 .
\I’QZV(X): o eilk— (2lalhc )|n<>\0/ps]z[¢(v+>(p) el(r=12¢

+ sgrigh e (p) e'"+124y 1.

X1

(27)

thez direction does not vanish. We suppose therefore, that in
an eigenstat{é\l’kzy> of the HamiltoniarHp , the expectation
value(‘IkaV|ﬁz|‘IkaV) for the z component of the velocity

operator differs from zero. The general relation
MvV=p— (g/c) A [20] and the special forni8) of the vector

Hence a modification .— ps of the length scale of the vec- Potential yield forv,

tor potentialA(x) leads to the substitution

k,—k. =k 2Iq| a: 28
— k= z—%zng (28

in the eigenfunctionsiszv of I:Ip.

- 1/ 2l p
vz=m(pz+?ln)\—c>.

Using the radial functionsi{")(p) and the definitions fop -
and v, the expectation valuezz(\lszy|z}z|\lszy) takes

(39

As can be verified directly from the foregoing equation, the form

the radial distance

_ hk,c? fhk,c?
p=\.exp — 21q =pexp — 21 (29

is gauge independent. Classicallygives the distance from

the z axis at which the particle velocity in the direction

vanishes. Apart from small corrections coincides with the

radial coordinatepy of the guiding centefcf. Appendix A.
Let us now introduce new radial functions

uS(p):=pe! (p),

(30

U_Z: <\szv| az|\l,kzv>
=vsca|J “dpm(%\[|ug+>(p)|2+|u<;>(p)|2], (35)
0 p

In the following section, we will solve the radial equations
(32) numerically and compute expectation valuesvgffor
some of the resulting wave functions.

Ill. NUMERICAL SOLUTION OF THE PAULI EQUATION

Before turning to the numerical solution (82), we note

which, according tq18), satisfy the normalization condition that the expression&) and (7) for the vector potential and

fo”dp[|ug+>(p)|2+|u<;>(p)|2]=1, (31)

the magnetic field used in the Hamiltoniép are only valid

outside the current filament. Moreover, khp interactions
between the surface of the wire and the charged particle are
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neglected. Both assumptions are only justified, if the particle . w21 d?2 2] M ) p\?
is entirely located outside the wire. To check whether eigen- Hu,(p): Z[ Y d_pz_ ’? + 7Usca( “"7}
states oHp exist which satisfy this condition, let us analyze
the radial equation§32). They contain a quadratic logarith- lgl|wp
mic potential of the form T e u,(p)=E,t(p). (42
Vv L M 2 () P 2 36 Note thatH is the guantum-mechanical counterpart of the
log(P)= 5 Usca ol B8 (lassical Hamiltoniam .,ss(A3), if L, is replaced ifA3) by
o v and w) by (|9]/2)pp . .

Its minimum lies at the distangefrom thez axis. According According to (16) and (41), the total wave function

to Eq. (29), the value ofp depends on the quantum number ¥,.(p.¢.2) now reads
k,. Therefore, by an appropriate choice lof, p becomes
much larger than the radilR of the wire. Suppose that the
latter is of magnitude 10% to 101 cm. Then, forp>R, the
centrifugal potential £2/2M)(v+ 1/2)?/p? and the coupling _
term W(p)=—|gl|up/cp in (32) are only slowly varying Wherey. (¢) denotes the angle-dependent spinor
functions ofp. Consequently, the localization of the particle _ Liv—12¢ ; i(v+12¢
is_determined byVi,,(p) and hence concentrated around x+($)=¢ xi+isgrgl) e X, (49
which is an eigenvector af- e, with eigenvalue sgryl),

~ 1
\szv(pr(ﬁiz):Zelkzz()ov(p)/\/+(¢)! (43)

p~px. Thus, if the difference {—R) is sufficiently large,
the particle is located entirely outside the current filament. In

the following calculations, we will restrict ourselves to this o eux+ ()= sgngl)x(¢). (45)
situation.
As stated earlier, the operators in E82) differ from one  Thus, the approximatio43) for the total wave function is
another only by a term equivalent to the assumption that the projection of the mag-
netic moment u=(g/2)upo along the magnetic field
2 h2v B=(2l/cp)e, remains constant.
Ayp):= W[V(V_ D-v(v+1)]=- Mp? 37) The energy eigenvalues of the Saflimger equatior(42)

can be estimated with the help of the Bohr-Sommerfeld

In the localization region of the particld,,(p) can be esti- guantization rulg20]
mated by its value g,

1
jgppdpz np+§ h, n,eNo, (46)
76.2v m,
A (p)~— nev, (39 .
p(um)? M wheren, denotes the number of zeros of the corresponding

radial wave functions. Taking into account the “classical”

wherem,, denotes the electron mass. For values of the quarequationgA4), (A12), and the substitutions2— (% v)2 and
tum numbery up to order of 18...1C, A ,(p) becomes u;—(|g|/2)up mentioned above, the dependence of the mo-
negligibly small compared to the other terms in the radialmentump, on the radial coordinatg is given by
equations. Hence the differential operators #f’(p) and
uC)( : i i h2v? p\? 2M|gl|up

. '(p) are approximately equal. This is also the case for P :i[ 2ME- —, —M2%p2 (“.,:) n
larger values ofv: Because the centrifugal potential in- P <A p Cp
creases quadratically with, the relative difference of the (47)
corresponding terms ifB2),

12

If the turning points in the radial direction are denoted by
p2>p1, EQ. (46) reads

_ 2MA(p) 2 2
77"'_f'121/(11—1)~1/' (39 P2 h2v? 5 2 p\? 2M|gl|up]*?
2] dp| 2MEgs— . —M v, | ; +T
vanishes asr~! for v—o. Therefore, we conclude that in -
the whole range of definition of, the approximation 1
= np+§ h. (48)

v(v+1)~v(v—1)~1? (40
The integral on the left-hand side @f8) cannot be solved
does not modify the eigenvalue problem essentially. The difanalytically. However, if the parameteld, g, wp, | and
ferential equations fom(f)(p) andu(;)(p) are then formally  quantum numbers, n, are given, the Bohr-Sommerfeld ap-

equal. Identifying the radial wave functions (82) by proximation Egg of the eigenenergies may be determined
numerically. For electrons, a current=500 A and
uS () =u(p) = u(p)=e (P =¢\ (p)=:¢,(p),  p=1cm, the results foiEgs for 0=n,<10 andv=3; are
(41)  listed in Table I. The large value dfwas assumed to ensure

that the quantized energy levels can be verified experimen-
leads to the one-dimensional Sctimger equation tally. To transport a current of 500 A, a wire radius of about
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TABLE I. Energy eigenvalues and drift velocities for the lowest n,=0, v=1/2 =1, v=1/2
electronic eigenstates foe=500 A andp=1cm. Egzg denotes the o e o
Bohr-Sommerfeld approximation of the energy IeveE&,Zmp the _ 1or 1 _ ost /\
values from numerical integration of the radial equati@3®. The g gg 00
expectation valueaz=(\IkaV|ﬁz|\Iszy) are calculated according to 3osf 12
formula (35) using the radial functions(f)(p) from the shooting " coesr
method. To compare with classical mechanics, the drift velocity oo loefe ol

. . . . -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
vp of a particle with energ)EkZVnp is computed with the help of p um p luml

(52). The correspondence of the numerical values for energies and n,=2, v=1/2 n,=3, v=1/2

drift velocities is explained in the main text. Y ' A
05 Bl 0.5
n, v Egs (ueV) Eg.n (ueV) v, €m/s vp (cm/9 T o ﬂ /\ E 00 /\ /\
0 12 ~-10%® ~-10% ~-10% ~-10° Z s \/ | % el \/ \/
0 212 =~10° ~-10°% ~-10* ~-10° N R N R
0 41/2 ~ 10—7 ~ 71076 ~ 710—4 ~ 710—6 ~ 10 -08 pc[)p:I?n] 05 10 T -0 -05 p([);l?n] 05 1.0
1 1/2 1.158 1.158 1.157 1.158 e, vetr2 s, vt
1 412 1.158 1.158 1.157 1.158 10 0
2 1/2 2.315 2.315 2.314 2.315 os | A /\ ] 0s | /\
3 1R 3.473 3.473 3.471 3.473 T /\ oo A A
4 1/2 4.631 4.631 4.628 4.631 = \/ v = V \/
5 1/2 5.788 5.788 5.784 5.788 s sy 1 7 s 1
6 1/2 6.946 6.946 6.939 6.946 Y 0
7 1/2 8104 8104 8098 8104 -1.5 -1.0 -O.SP(IJL.L&] 05 1.0 15 -1.5 -1.0 -0.5p([)‘;?n] 05 1.0 15
8 1/2 9.262 9.261 9.255 9.262 o mesvet2 o meTveE
9 1/2 10.42 10.42 10.41 10.42
10 12 1157 11.58 11.57 11.58 -~ °-5A /\ /\ /\ ~ A /\ /\/\
& oo E oo

_ A ERTNIANE N iiaye

1mm is necessary. Therefore, we chpselcm to guarantee

that the interaction between the electron and the surface of 95 10 05 00 05 10 15 7% 1.0 05 00 05 10 15
the wire can be neglected. These valuesl fandp are used P luml P luml
throughout all numerical calculations of this section. The ef-
fects of a modification of andp will be discussed later. FIG. 2. Normalized radial wave functions™)(p) for the eight
Moreover, for the lowest-lying states with,=0,1, the  lowest-lying electronic states fdr=500 A andp=21cm (= origin
influence of the angular motion was investigated by varyingof the p axis). Due to the small differencé87) of the radial equa-
the quantum numbep. As can be seen from Table I, the tions (32), the components{*)(p) andu{(p) cannot be distin-
changes in the absolute values Bfs remain very small. guished graphically.

They are of the same order as the electronic centrifugal po-. _
Y 98" PSjiifference between(")(p) and ul)(p) cannot be resolved

tential atp=1 cm, v, n,
graphically. Further calculations show that this is also the
72,2 case f(_)r larger values of the quantum numb_erThus_ the_
T [38.1x1071%2] ueV. (49 approximate ansa(z}s) fqr the total wave functlorl, wh|c_h is
P based on the identificatio1) of u(V;:(p) and u(mg(p), is

, confirmed by our numerical results. We will exploit it further
One may be surprised about the small absolute values of thg the following sections.
eigenenergies fon,=0. They are a consequence of the dif-  \yjth the help of the radial wave functions, the expecta-

ferent sign of the zero-point energy of the logarithmic poten+jon values foro, in the corresponding eigenstaﬂehkz,,n )
P

tial and the potential energy of the magnetic moment. Due to _ L .
their small absolute values, the results for the eigenenergieOf Hp can be compuited by numerical integratior(8f). The

) o - fesults are listed in the fifth column of Table I. They imply a
and dr_|ft velocities f_omp—o cannot b_e resolved exactly by fslow drift motion parallel to the wire, if a particle is in an
numerical computations. Therefore, in Table | only orders Oeigenstate of]
magnitudes are given. o, P . . .

Starting with the Bohr-Sommerfeld valugs as a first Within the framework of classical mechanics, a uniform

; . ; X drift motion in thez direction is predicted to¢13]. If the
estimate of the eigenenergies, the radial equat{8@s can total energy E of a particle pis small éﬁom]pared to

be solved numerically by applying the so-called “shooting _ 2 . Lo :
method,” which is described, e.g., [24]. The forth column Esija'_(M/Z)lvs?a" the gu@ngfcenrt]erjlpf?rox;mgtlon IS \t/)a“d
of Table | shows the resulting eigenenerdigs,,, . They are and an ana ytlp expression for the drift veloctly can be
. _ 2N’ derived. It is given by(A15)

in excellent agreement with the Bohr-Sommerfeld results ) )
Egs. In Fig. 2, the radial wave functions)(p) and _ Uscal ETLZ/2Mpg

(- _1 - . P Up="5 E ;
Uvnp(p) are plotted forv=3 and O<n,<7. For fixedn,, the scal

(50
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wherep, denotes the initial distance of the electron from the 75 T ; . . 7
z axis andL, the z component of its angular momentum.

According to Table I, the energies of the lowest-lying \ /
electronic states ofHp, are much smaller tharE®), \ /
=8.76x10° eV. Therefore, we can usé0) to compare 50 ]

classical and quantum-mechanical results for the drift veloc-
ity parallel to the wire. Setting

V,oe(P) [1eV]
/
\

E=Equm, L:=hv, po~p, (51) 28 f |

Eq. (50) can be written in the form

0.0 1 1 )
Ekzvn +ﬁ2v2/2M;'Z -1.0 -0.5 0 0.5 1.0
p

(52 p [um]

_ Uscal
Up= 2

Escal
) ) _ o FIG. 3. Quadratic logarithmic potentidd,4(p) for 1=500 A
The approximationpg~p is valid in the lowest quantum andp=1 cm (= origin of the p axig in the vicinity of p. The
states because the gyration radii of the corresponding classénergies of the first six excited electronic states are depicted addi-
cal orbits are much smaller thap=1 cm and hence tionally.
lpo—pllpo<<1. The values forwy resulting from(52) are
listed in the last column of Table I. Within deviations of —
. . . — qB¢(P) 2lq Uscal

order pars per mile, they agree with the quantum-mechanical wlp):= == (54)
expectation values. Thus even for the lowest quantum- Mc Mcp p
mechanical states the drift velocity of electrons can be cal- .
culated from(52), if energy quantization is taken into ac- denotes the corresponding cyclotron frequency. A more de-
count. f[alle_d anaIyS|s of the numerical data shows that, in the Ioc_al—

Note that the correspondence of the numerical values folation region °2f the Ioﬂeft quantum states, the potential
energies and drift velocities listed in Table | occurs only by Vieg(?) =(M/2)v e[ In(p/p)]* defined in Eq(36) can be ex-
chance, because for electrons the quotiegy/2E .. is equal cellently es_tlmated by the first nonvanishing term of its Tay-
to 1cm/s{ueV), if 1=500 A. As the centrifugal energy OF expansion aroungd,
#2v2[2M p? is only a small correction to the eigenenergies M 2 M
!Ekzmp, the valueg fovp and Ekzvn,, are approximately equal Vosdp)i= ?Ugca(g__ 1) :?wg(ﬁ(p_ﬁz (55)
in the chosen units.

In the preceding numerical calculations we used fixed valag 54 illustration, Fi
ues forl andp. A variation of these parameters shows thatvicinity of p=1cm for electrons and a currehtof 500 A.

the energy eigenvalues, ,, are proportional to the quo- T4 yisyalize their localization region the energies of the first
tient I/p and only for very large currents and p~R do  six excited states are also plotted. The difference between
deviations from this proportionality occur. In these cases, theg/log(p) and V,{p) cannot be resolved graphically in the
radial wave functionsu';)(p) become distinctly different depicted region.

from one another ands no longer coincides with the  As mentioned at the beginning of Sec. Ill, fprp the
quantum-mechanical expectation values for the drift veloccentrifugal potential £%/2M)(v+1/2)°/p*> and W(p)

ity. However, since forp~R the distance of the charged =—|9llxp/cp [cf. Eq.(22)] are slowly varying functions of
particle from the wire becomes small, its interaction with thep. Leaving them out in the radial equatiof32) does not
surface of the wire cannot be neglected any more, and thelter the form of the wave functio@fﬁnp(p) significantly.
HamiltonianHp must be modified accordingly. Therefore, The difference between the new energy eigenvalues and the
we conclude that the results for=500 A andp=1 cmare exact ones is approximately equal to the sumAiip) and
representative for charged particles, which are exposed to thae centrifugal potential gi. Therefore we suppose that the

g. 3 shows the potenthl,(p) in the

magnetic field of a rectilinear current filament. Hamiltonian
2 2 2 _ 2
IV. PERTURBATION THEORY H(O: = _ ﬁ_ d__v_ + MUZ PP} _ |gl|ﬁp
2M dp2 Z 2 scal p cp
The energy eigenvalueEkzmp of Table | are approxi- (56)

mately equidistant. Up to small deviations, their differences - -

agree with those of electronic Landau levels in a uniformiS a good approximation té1 and henceHp. Note that

magnetic field of strengtB ,(p) (= local Landau levels at H© can be derived front by taking into account only the

p), first nonvanishing terms in the Taylor expansions of
Vieg(p), W(p) and the centrifugal potential around The

hilodp)|=1.16 weV, (53 Hamiltonian H(® represents a harmonic oscillator of fre-

quency|vseal/p=|wc(p)|, whose center lies gi. The do-

where main D of the relative coordinatg:=p—p is restricted to
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[—p,=). However, for not too large values of their quantum
number, the eigenstates &f(®) are localized in a region

aroundp whose magnitude can be estimated by the oscillator

length €y = elementary charge

ord

As ag is much smaller thap, we can extend® to the whole
set of real numbers without great error. The Scimger
equation

plem] me &
I[A] M |[q

e

(57)

aB3:[ﬁ/M|wc(ﬁ|]U2:

HOUR (p)=Elln U2 (p) (58)

is then equivalent to the eigenvalue problem of a one-

dimensional harmonic oscillator with the solutions

ul) (p)= !
o 7T1/4( B—l/zp_)1/2 /—annp!

B(p—p)? p—p
45(% | 722 e

and corresponding energy eigenvalues

£2v

2Mp?”

91| pp 2

Eioun, =l wc(p)l(n,+1/2) = == (60)
In (59), Hnﬂ denotes the Hermite polynomial of ordey and

the parametep is defined by

_ M |vscaIP_

7 (61)

lts numerical value ig8=3.04x 10P|1|p, if | is given in A
andp in cm. The exponential in the eigenfunction) (p)

only differs significantly from zero therefore in the ir")nmedi— :

ate vicinity of p.
The differences between the exact radial wave function
ul- )(p) and the approximate solutlomi,,o) (p) cannot be

gigenenergies i @O+ HD are equal tE

K. DIETRICH 54
P
===1 64
3 ; (64)
and a parameter
2M|gl|ppp
—9.2
a=2v"+ 7 . (65)

Within the localization region of the lowest-lying statés),

is much smaller than unity. Because of the small numerical
value of22/2Mp?, H!) acts in this region as a small “per-
turbation” onH©. Carrying out time-independent perturba-
tion theory, the corrections of the energy eigenvalues and
wave functions read in first approximati¢f0,25

Elin = (v, [H® wn,), (66)
Uin (p)= 2 oy Uy, (P), (67)

with coefficients
M (vm,)| |:|(1)| vn,) 69)

m,

0 0
ey
(the prime at the sum means that the term with=n, is

omitted. Thus, to first order in the perturbation, the eigen-

functions ofH(©@+H® are given by

Uy, (p):=[Uiy) (p)+uin (p)INy | (69)
with a normalization constant
-1
an=< \/1""2, |Cnp+k|2) . (70
My

The first-order correctionE(kiln of the energy eigenval-

ues vanish due to the even parity of the squared wave func-
tions (59). Hence, to first order in perturbation theory, the

(koin The matrix

elements vm,[H®|vn ) may easily be calculated. As a re-

resolved graphically. Nevertheless, the expectatlon values @ult, we obtain the following coeff|C|ent§“P

0, change dramatically, ifi% (p) is inserted in(35) instead
of ul: )(p) This is a consequence of the symmetry of
ul® (p) with respect top.

Deviations from this symmetry arise, if the next order
terms in the Taylor expansions &fi,(p), W(p) and the
centrifugal potential are added td(®). This results in a
Hamiltonian of the form

HO+H®, (62)
with
- K2
W= _ 3
H M52 (BE+af), (63)

where we have introduced the dimensionless variable

c”mf;=0, if: |m,—n,|>3 or m,<0, (79)
c:H: B Y4n,(n,—1)(n,—2)/288"2 (72
cglpﬁzzo, (73)

cgz_l_ B YAn,18)Y4(3n, 12+ al B), (74
'n‘ﬂ “Yq(n,+1)/8]Y43(n,+1)/2+alB], (75
c:}z:o, (76)
c:Z+3:3*1’2[(np+1)(np+2)(np+3)/288]1’2. (77)
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Due to the small factod~*2 their numerical values are Thys the wave functiongszv(p,¢’z) of Eq. (43) represent

even for large qqantum numbetg mucz[l)smallerthgn unity. an excellent quantum-mechanical description of the elec-
Therefore the first-order correcnonynp(p) modifies the tronic state. We now introduce the function

wave functions by only a small amount and the localization
region remains almost unchanged. ~ s s
Using Tj,,np(p) as an approximation to the radial wave ,(p,2):= €%z \/—;%(P): e"u,(p), (83
functions u(Vﬁ)(p), we now derive an analytic estimate for
14

the expectation value of,. According to(35), (41), and Which, according to(42 and (29), satisfies the two-

Uunp(P)mﬁvnp(P), v, is approximately equal to dimensional Schidinger equation
foc ) p HLlpV(piZ):Elev(paz)r (84)
T,=v dp[T,, (p)|2In= (78) .
2 Teal]y Pl (p)| P whereH, is given by
As U,,np(p) is localized in the immediate vicinity of, we ~  h? 9 1 (ho 2 p\* #*WP
expand the logarithm in the integral around this point Hi="om a2 TaM\ T 9z TheE ™) T 2Mp2
gl

Ing—:ln(1+§)=§—%§2+%§3+O(§4), (79) | C'p = (85)

where we used the variabfeas defined in64). To be con- The Hamiltonian|:|L describes the motion of a charged

sistent with the order in perturbation theory, we have to takearticle in the plane perpendicular to the magnetic field
into account in the integral itv8) the first three terms of this  B(x)=B,(p)e,, if in addition a scalar potential
expansion. This leads to the following expressiondor

7202 |glpp

So(P) = o7~ g, (86)

¥, =Veca f ds( B*“zs—% B is2+ % ,83’283)
o is present. Note that the effects of azimuthal motion are com-
1 pletely taken into account il , by the centrifugal potential
Xexﬂsz){—Hn (s) h2v212M p2.
2%n,! Vo As discussed in Sec. lll, even for large quantum numbers,
2 the quantum-mechanical eigenenergies are much smaller
Nﬁp, than the scaling enerdy..,. Hence, for a classical descrip-
tion of the motion in the corresponding states, the guiding
(80) center approximation can be applied. Quantum mechani-
cally, a separation of the slow guiding center motion from
where the variable the fast gyration can be achieved by applying the Born-
Oppenheimer method. However, since the position operators
s:=pY% (81 of the guiding center in general do not commute with one
another{ 20], a generalization of this method using the path-
has been used. integral approach must be employed. This is beautifully
The analytic solution of the integral on the right-hand sidehandled in Ref[19], where the motion of a charged particle
of (80), together with Eqs(70), (72—(77), yieldsv, as a in the plane perpendicular to a strong uniform magnetic field
function ofn,, @ and8~*. As 7' is a small quantity, a is investigated, when an electrostatic field is simultaneously
power expansion ob, with respect tog~* suggests itself. present. The corresponding calculations are summarized in

3

+ > "

2 kon K ,\/—H
k==3 e "2 (n,+K)! VT

n,+ k()

The leading-order term is Appendix B, to which we will refer in the remainder of this
5 5 ) section whenever necessary. One can show that the addi-
~ _ Uscal | (o) hv 217 4 82) tional electric field causes a dependence of the energy spac-

VsT OB ke 2MpZ T 30722Mp7)" ings of the Landau levels on the position of the guiding
center. The corresponding eigenfunctions contain the guiding
Up to the small additional term (217/3072)2Mp?, this  center coordinates as slowly varying paramefase Eq.
expression coincides with formul®2) and hence with the (B13)]. An expansion of the particle propagator with respect
“classical” result for the drift velocity parallel to the wire, if to these functions leads to a matrix of coefficients, which
E( s identified with the exact eigenener@y ,n . depend only on the coordinates of the guiding center. If one
o ' assumes that the quantum numbers of the Landau levels are
not affected by a slow variation of the guiding center posi-
tion (adiabatic limi}, the off-diagonal elements of this matrix
vanish[cf. (B15)—(B17)]. The remaining coefficients have
The previous two sections confirmed the validity of thethe form of path integrals over the guiding center motion for
assumption that the projection of the particle’s magnetic moa fixed quantum number of the gyration. The exponential
ment parallel to the magnetic field is a constant of motion.appearing in them represents the effective action of the slow

V. APPLICATION OF THE ADIABATIC EXPANSION OF
THE PATH INTEGRAL
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variableq see(B19)]. Minimization of this action yields clas- remains small within the localization region of the particle

sical equations of motion for the guiding center, which takecompared to its total velocity. The gauge principle implies

into account the quantization of the gyration. that velocity operators do not change under gauge transfor-
We will now show that the method described above cammations. Thereforeg,(x) is also gauge invariant. Setting

also be applied, if a charged particle moves in the inhomos,=55+ ¢,(x) and making use of the relation

geneous magnetic field outside of a rectilinear current fila-l;qugl(X): $1(x)05 we obtain fonih

ment. For this purpose, we introduce for arbitrary, but fixed

azimuthal angle¢ a local Cartesian coordinate system, . M__, ) - M,
whosez axis is parallel to the wire and whoseaxis points Hy =5 [0kt () 1+ Méa(X)vz + 5 $1(X) + o(X).
in the radial direction. The magnetic fieB(x) is then ori- (96)

ented in positivey direction,
We now define the position operators

21
B(x)=C—Xey=By(x)ey. (87) R o 0N
Xi=x——, Zi=z+—, (97)
We We
It can be derived from the vector potential
where
2l x
AX) =~ = In—e,=Ay(X)e, (88) qB"
c wWe.= W (98)

by the relationB(x)=V X A(x). Using the momentum op-

eratorsp, : = (f/i)(dlx), @z:=(ﬁ/i)((9/az) and Eqgs.(86) is the (constank cyclotron frequency in the magnetic field

and (89), the HamiltonianH, reads in the new coordinate B". Up to negligible deviationsX andZ correspond to the

system coordinates X,Z) of the guiding center in th&-z plane. If
the guiding center approximation is valik and Z are

2 slowly varying functions of time compared to the compo-

+téo(X). (89 nentsv, andv, of the particle velocity. Note that, owing to
the orientation of the coordinate systei,is equal to the

The velocity operators ir- resp.z direction are related to radial distance x of the guiding center from the axis.

~n2
- P . q
HL_ZM + 2M (pZ EAZ(X)

the corresponding momentum operators via Using position and momentum operators
~H
.1, . 1/, q ~ Uz A ~
Ux:Mpx= Uzzm(pz_ EAz(X) . (90) q':w_cv p':MUX’ (99)
Their commutator is different from zero, Q:=X, P:=MwZ, (100
~ - . af which satisfy the canonical commutator relations
[UX,UZ]Z—ImBy(X), (91)
~ ~ & h
[P.QlI=7. [p.al=7 (101

which means that a charged particle cannot have simulta-
neously definite values of the velocity components. Using .
0y andv,, the HamiltonianH, can be written in the form  (all other commutators vanighwe can writeH, in the form

N Mo s C p* ngz S o Moy
HLZ?(UX+UZ)+¢O(X)_ (92) HLZW“‘ > d +M¢1(Q+Q)wcq+?¢1(Q+Q)
We now introduce another velocity operator +¢o(Q+0). (102

The termsg¢,, ¢4 and d)i are independent oP due to the
' (93 symmetry of the magnetic field. A comparison with EB8)
shows thatH, is formally equivalent to the Hamiltonian

where AH(x)=Al(x)e, is chosen in such a way that the H(P,Q;p,d), which describes the dynamics of a charged

- 1(. ¢
v?1=m<pz— EAZH(X)

corresponding magnetic field particle in the superposition of a uniform magnetic field and
an electrostatic field. Consequently, we can use the results of
B"=B"g := VXA (x) (94  Ref.[19] to derive equations of motion for the guiding center
in our field configuration.
is homogeneous. The magnitudeBt will be fixed later in According to the remarks at the beginning of Sec. lll, the
such a way that the absolute value of the difference potentialpy(p) defined in Eq(86) is a slowly varying func-

tion of p in the localization region of the particle, which is
centered aroung~ pyx= Q. By an appropriate choice of the
vector potentialA!', the same statement holds concerning

b= AN A= a0 (99
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¢,. Therefore, in analogy withl9], we expand the potential 2] ( X ) (
, 111

terms in(102) around the guiding center coordinade Up to C=—-—
second order i, H, then reads

A b2 ngAz because then
HLZW'FTQ +

M 2
5 Q)+ 6o(Q)

L T 2l x X
J’_

M N

ch¢1(Q)+7(¢§)’(Q)+¢6(Q)}q
X X

2 :vsca(lni_i"'l

(112
’ M 2\n " q
2M w1 (Q)+ 5 (41)"(Q) + ¢°(Q)}?’

>

+

is equal to the difference between the logarithmd¥)( and
(103 the first two terms of its Taylor expansion arouXd
Evaluating ¢y and ¢, at the pointQ=X leads to the

where the primes at the potentials denote their derivativefc,OIIOWing result for ¢:

with respect tog. This expansion oH is equal to that of
H(P,Q;p,q) given in(B25), if the potential terms occurring 52,2

- e : 91| up
in (103 and(B25) are identified in the following way: = =7
(103 and(B25) g way S ox (113
M >
b=~ b1+ do, (104 Note that this formula contains no terms originating from

¢4, becausep, and ¢ vanish atX.
M To write down the equation of motion for the coordinate
dy=Mow o+ §(¢f)’+ b0, (1059 Z=(1Mw.)P explicitly, we have to transcribe several
quantities defined in Appendix B to our case. First note that,
M according to(102, H, does not depend oR. Taking into
dyy=2Mwcd;+ 7(¢§)”+ &g, (106 account Eqs(B20)—(B22), the variabled® andQ turn out to
be canonical. This is a direct consequence of the symmetry
of the magnetic fieldB(x). The time development oP is

Px= bxy= Pxx=0. (107 getermined byfcf. (B24)]
Here we left out the argume on the right-hand sides.
Inserting(104)—(107) into Egs.(B27), (B28) for the local S ‘9_En (114
Landau levelE,(P,Q), we obtain Landau levels which are Q"
independent of. Therefore, the equation of motidiB23)
for the coordinate yields where, according t§B26), the energyE, can be written in
the form
% 0 (108
o =0.
aP En(Q)=2Q(Q)(n+3)+Eq(Q), (119

This means that the distan€@=px of the gyration center \ith O and E, given by (B27) and (B28). Using (113 we
from thez axis remains constant, in agreement with the re-gpiain forQ and Eo

sults from classical mechani¢sf. Appendix A).
The fact that thex coordinate of the guiding center is time

1/2
independent implies that the strendl(X) of the magnetic Q= [vseal 263’22)() =Q(X), (116)
field stays constant at this point. If we choose the homoge- X Mv Seal
neous magnetic fielB"(x) defined in(94) to be equal to the
magnetic field at the guiding center position, 1 2e.(X)] 71
Eom e~ 5 00| 14+ 28 g0,
" 21 2Mvscal Mvscal
B"=By(X)g =&, (109 (117)

the corresponding vector potentiéﬂ*:AzH(x)eZ is given by where the functiore,(X) is defined by

2.2
2l ) h2v? gl e
A“(x)=—c—xx e,+Ce,. (110 €lX)i=amra————, ack (118

The constantC is determined by the requirement that the Note that by the definition&2) and (49), €,(x) is equal to
difference¢l(x)ocAz(x)—A;'(x) should become as small as the sum ofW(x) and « times the centrifugal potential. As a
possible within the localization region of the particle. This isresult of(114—(118), the equation of motion for the coor-
achieved, if dinate of the guiding center reads
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. 1 . 1 JE, far the extension of the wave functions in perpendicular di-
Z= Moy P=- M wg 9Q rection to the current. o _
As one can guess from the macroscopic dimension of the
_ RQ(X)(n+1/2) €3(X) 2e5X)| 71 field producing current, the classical approximation for the
- MU gcal M Ugcal Mvgcal motion of the charged patrticle is found to be very good, even

. for low values of the quantum numbers. This is particularly
€2(X)  €3(X) 2€3)(X) true for the motion of the guiding center. If one treats the
MuvZ, Muoi, MvZ,, gyration quantum mechanically assuming that the quantum

. numbers of the gyration are adiabatic invariants, one can
<14 2€3(X) (119 justify this statement.
Mvica, ' The macroscopic dimension of the field producing current

) . ] ) . implies necessarily that the problem has many similarities
SinceX remains constant, the right-hand side(®19) is  \yith the one of a plasma in an external magnetic field.

time independent. Thus the guiding center motion parallel torperefore, we could use an ingenious method developed in

the quantum numbers and v, but also onk,. This is S0 0 time scales in the problem, separating the rapid gyration
because the radial coordinate= px of the guiding centeris  om the slow motion of the guiding center.

approximately equal tp (cf. Sec. Il), which is related to When trying to apply this method in the quantum-

k, via Eq. (29). mechanical theory, one faces the difficulty that the variables

The hasic assumption of the precedmg ca_lculatlons Wagt the gyration motion are not canonical—physically no sur-
that the total energy of the charged particle is small com-

pared toE.,. In particular, this implies that the centrifugal prise in view of the fact that the gyration center does not

energy and the potential energy of the magnetic dipole rnogorrespond to a particle. Here the results of a paper by En-

ment are much smaller thay., within the localization re- EEI'S ar;g .I_?vn[l?]fwerelluseful (I;O; us. Thlgzivcirk ":' &asid on
gion of the particle, especially at the position of the guiding € paih-integral formalism and designed to treat the dynam-

center. From Eq(118), we therefore conclude that the esti- ics of a charged particle in a superposition of a homogeneous
mation magnetic field and &mal) electric field. The same formal-

ism could also be used for our case of a charged particle in
an inhomogeneous magnetic field.

The quantum features of our problem become more pro-
nounced as the length of the current filament is decreased.
is valid for not too large values of the parametarand a. Since any natural application will be based on a circular

€4(X)
M Ugcal

<1 (120

a

Hence we expand all terms of the form current, one should in principle solve the quantum-
b mechanical problem for the magnetic field produced by a
aeq(X) be7 circular current. We note, however, that for not too small
7 y e Z (121) . .-
Mo gea lengthL of the circumference, one can use local curvilinear

coordinates and treat the deviations from the rectilinear case
appearing on the right-hand side @19 in power series 35 a perturbation.

with respect toe,(X)/Mv2., Considering in addition the The most important open questions concern eventual ap-
special form ofQ2(X) given in(116), the leading order term plications of the system we have studied. Is it purely aca-

of this expansion reads demic or can it be used?
- ) Here we mention some ideas for application, hoping, at
5 Vscalft|@c(n+1/2) = [gl up /CX+ 715 IMX the same time, that this list will be extended by the imagina-
2 Eccal ' tion of the reader.
(122 (i) In Ref.[26] we investigated the effect of gravity on an

antiproton moving in the magnetic field of a vertical current.

Up to small deviations, which can be neglected in guidingris could possibly be used to determine the gravitational
center approximation, the sum of the quantized gyration €My 555 of the antiproton. Only the classical features of the

ergy filw|(n+3) and#%v2/2MX?—|gl|up/cX is equal to  system would enter this application.
the total energyEy ,n of the particle. Using again the iden- (i) So far we have only investigated the case where the

tification (51) of Sec. IIl, one can show th&l2?) is equiva-  overlap of the wave functions with the material of the wire

lent to the “classical” formula(50) for the drift velocity. are negligible. It is, however, clear that there are also bound
states where this overlap is not negligible. Then the particle
V. SUMMARY AND DISCUSSION feels the interaction with the solid, especially its surface, in

addition to the magnetic field of the current. If, for instance,
In this paper we presented the quantum-mechanical dehese interactions lead to a trapping of the particle in the
scription of electrongor more generally of pointlike charged surface, this could be seen by looking at the electromagnetic
particles with spin3) in the magnetic field of a rectilinear transitions.
current. The assumption of a rectilinear current of lerigth We note at this point that the rate for spontaneous elec-
represents at the same time a good approximation for a citromagnetic transitions between the bound states is negligi-
cular current whenever the macroscopic lengtaxceeds by bly small. On the other hand, transitions could probably be
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induced in very much the same way as in atomic beam extrapped have no intrinsic excitations, as for the case of elec-
periments. trons, this mechanism does not work. We believe that in this
(i) A very different aspect is the possibility to generatecase trapping could be achieved by directing a well colli-
chaotic motion of the bound charged particle by subjecting imated low-energy beam of the charged particles tangentially
to the field of a time-dependent electric current. We investito the wire. The energy must be in the range of the energies
gated this classically for the case of an alternating currentdf the bound states, i.e., it depends on the strength of the
[26]. In this case, essentially no transition to chaotic motionmagnetic field which is present.
was observed. Chaotic motion would, however, certainly be
produced if the strength and/or the direction of the current ACKNOWLEDGMENTS
changed in a random way. The crucial question is how the
dynamical state of the charged particle is observed. Again A large part of this work was performed under the support
this could, in principle, be done by inducing transitions. ~ Of the Deutsche ForschungsgemeinschdG) for M.
(|V) An open prob'em, which we have not yet investigatedMU”er. We should like to express our gratitude for this sup-
is that the current contair{statistical and quantunfluctua-  POrt.
tions and that the temperature of the wire is finite and cannot
be made zero exactly. If the quantum numbers of the particle APPENDIX A
are such that no overlap occurs with the interior of the wire, . . . . . .
these effects are negligible. In the opposite case, they are In this appendl_x, we br|ef|_y review the cla_35|_cal dyna_mlcs
likely to play an important role. Thus they will have the ofach_arged _partlcle with spl%nn_ the magnetic field outside
consequence that the charged particle is never in a pun%'c a thin rect_lllnear current, as mv_esngated[irB].
guantum state but in a mixture of such states. It might even The classical Hamiltonian of this system has the form
be ejected from the bound states into the continuum by the 1 q 2
interactions with the fluctuations of the wire. We note in Hclassz_(p__A(x)) - u-B(%), (A1)
passing that this problem is also present, and in even more 2M ¢
acute form, for neutral particles which are only bound by the P
coupling of their magngtic moment with the n%agnetic fi%ald. whergq Qeqotes the (;harge of the partiché, its mass, and
(v) In applications it is important to know the upper limit # Its Intrinsic magnetic moment. _—
of the electronic density which can be reached without losin In orqler to describe the interaction betwegn t_he parﬂclg s
the electrons on account of their Coulomb repulsion. Fo agnetic momeng: and the e_xte_rnal magnetic f|_eId glassp
this, one has to compare the repulsive Coulomb potentia(fa"y’ We assume thf_it the projectionmialong the f!eld lines
acting on an electron due to the interaction with all the othelS & constant of motion. As shown [a3] and confirmed by

bound electrons outside of tlipeutra) wire with the height thetpalt:_ulatllc?gg w;hSec. lll of the preslent p?;f)er, this approxi-
of the barrier of the magnetic potential. For a straight wire ofnation IS valid In th€ energy range reievant for a comparison

; : SRR between classical and quantum mechanics. In this case, the

lengthL, this barrier height is given byA14) potential p-B(x) takes the simple form
M L
Vo o2 arsint z_m\ pBX) = — B, (A2)

_ _ where u >0 denotes thétime-independentcomponent of

The repulsive Coulomb potential has the form 1, Which points in the direction of the magnetic field. If the
, latter is produced by a filamentary current, the corresponding
v :ezf d3x’ p(x") (123 force V(u|B(x)|) attracts the particle to the wire.
Cb [x—x"]" Inserting the special form®) and(7) for vector potential

and magnetic field int¢Al), we get for the Hamiltonian
wherep(x’) is the density of the bound particles. As a rough

: , 2 2

estimate forVq,, we replacep(x’) by a constant charge _ 1, Py 2lg p

density in a sphere of radi®around the wire. The outcome ~ Helas{PiPp Py P = 51| P+ 2 +| Pzt ?Tlny\_c)

of this is that one can attain charge densities of about

3x 10'%electrons/cr) for large currents of =500 A. The 21

critical charge density is, of course, a function of the strength - cp (A3)

of the current. For comparison, the charge density in electron

lasers is about (electrons/crf). The corresponding Hamiltonian equations of motion read
The question of whether stimulated laserlike transitions

could be produced suggests itself. We cannot judge whether . JHgass Py

this is realistic. The interest could be that the lifetime of p= ap, M (A4)

excited states is not reduced too much by thermal effects as

compared to laser transitions in solids at low transition ener- . IHeass  Po

gies. b= T Mo (AS5)
(vi) A final remark concerns the question of how electrons Po p

or other charged particles can be trapped in the magnetic

potential. If the particles are ions, i.e., composite, this could

be achieved by laser cooling27]. If the particles to be p, M

: (QHcIass 1

2lq p)
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_ IH glass 21q. p’é 2|1 Note that in the vicinity ofp_,whﬂe the lowest quantum
Po=—, Ez;ZJr Mp ™ cp? (A7)  states are localizedM/2)v2..,[In(p/p)]? and the expression
(A13) coincide. Therefore, the simpler for(6) of the vector
9H potential was taken as a basis for the quantum-mechanical
Pg=— class_ 4, ps=const=:L,, (A8) calculations of this paper.
I If the total energy of the particle is small compared to
H Esca= (M/2)v2,,,, one can show that the motion consists of a
p,=— aﬂs=0:>p2:const= P,. (A9)  rapid gyration around the magnetic field lines and a drift of

Jz the guiding center parallel to the wire. In this case, the time
o . integration of Eqs(A12) and (A6) can be carried out ana-
Due to the symmetry of the magnetic field, the canonicalytically. As a result, one gets the following formula for the
momentap, and p, are conserved quantities. According to qyift velocity vp in z direction:
(A6), the velocity inz direction, however, is not constant. It
vanishes, if the particle is at a distance Veca E+L22M p2

Up 2

, Al15
Escal ( )

_ P,c?
pz)\cex;{— ol ) (A10) _ _ _
q wherep, denotes the radial coordinate of the particle at the
beginning of the motion.
Equation(A15) is in agreement with general results for
the guiding center motion, which are derived, e.g.[16—
18]. Especially, one can shovsee[26]) that up to small

from thez axis.
Using the scaling velocity ¢, 21q/Mc? defined in(33)
and taking into accoun{A8)—(A10) we obtain for the

Hamiltonian deviations, which can be neglected in guiding center ap-
2 L2 M 2 o proximation, the radial coordinajs, of the guiding center is
He ooy Pe btz M [ p)® 2w caual oo
C|aS£p!pp)_m 2Mp2 ?Usca — 7 q p.
(A11)

APPENDIX B
Equations(A11) and (A4), together with the fact that the
energy of the system is conservetas{p;pP,.Py P2)
=E=const, lead to the following relation betwegnand

1 L2 p\? aM|l|u
=+ _— — —M?2p2 — A
p=+1r| 2ME p Mvsca(lnp—>+ o

For a charged particle moving in a strong homogeneous
magnetic field in the presence of an electrostatic potential a
separation of the slow guiding center motion from the fast
gyration was carried out quantum mechanically by Entelis
1/2 and Levit[19]. As we make direct use of their method in

Sec. V of the present paper, the relevant calculations of Ref.
[19] are summarized in this appendix.
To this end, consider a particle with magsand charge
N vy g, confined to the-y plane, which is exposed to a homoge-
T Dip). (A12) neous magnetic field=Be, and an electrostatic potential

#(X,y). The two-dimensional Hamiltonian of this system is
To learn something about the classically allowed region ingiven by

radial direction, the functio (p) must be analyzed. As a

result, one finds that in the field configuration given®y . 1 [/, q 2 (. q 2
charged particles cannot move arbitrarily far away from theH = 5| | Px= cAXY) | +{ Py~ CA/XY) | |+ B(Xy),
wire. (B1)

If the conditionp<L is no longer valid, the expression
(4) for the vector potential has to be used instead®f \where A(x,y) =Ax(x,y)e+Ay(X,y)e, denotes the vector
Except for a modification of the magnetic field, which is potential.
negligible for the determination of the classically allowed |ntroducing the velocity operators
region, the quadratically logarithmic potential

(M/2)v2.[In(p/p)1? in (A11) has to be replaced by . 1(. q .1/, q
Ux=17 | Px— ZA], Uy=17| Py~ _Ay (B2)
2 M c M c
M, L L
S Uscal arsinfh -—f— arsinh 5— (A13) . .
2 2p 2p and the operators of the guiding center coordiné&téq20])

This potential approaches a finite boundary value for - -

—00 X=xt+ L, Y=y— X (B3)
p ' U)C, wci
M, L .
Viar: = ?vscaarsmﬁ eTIk (A14)  one can writeH in the form
Consequently, the motion in radial direction is no longer |3|=M({,)2(+{,2)+¢ N AL ﬂ) (B4)
bound, if the total energy of the particle exceads,. 2 y (O O
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If the magnetic fieldB is strong compared to the electric Q:=VY, P:=MaoX (B6)
field E(x,y)=—V ¢(X,y), the classical guiding center ap-
proximation is valid. This implies that the velocity of the are defined, which satisfy the commutation relations
particle changes rapidly in time compared to the position of
the gyration center. The Hamiltonian thus contains mo- [ﬁ@]: é [p,a]= é (B7)
tions on two different time scales via the operatogs v, I I
(fast andX, Y (slow). Therefore, an application of the Born-
Oppenheimer method to describe the dynamics of the pa

ticle suggests itself. As, howeveX,andY do not commute
with one another, the guiding center coordinates cannot b

As all other commutators vanistij, p and Q, P can be
considered as canonically conjugate position and momentum

8perators. UsingB4)—(B6), the HamiltonianH reads

specified simultaneously and a generalization of the Born- =~ P2 Mwg? 1 . )
Oppenheimer method is needed. It can be obtained by apply-H(P,Q;p,q)= >mt 2° + b (P f)),Q+d}.
ing the path-integral formalisi28,29. We B8
To cast the corresponding formulas into a conventional

form, the operators According to(B7) and(B8), the classical variableg and

N Q can be interpreted ageneralizefl coordinates. Quantum

q:= ﬂ, P:=Md,, (85)  mechanically, their time development is determined by the
wc propagator
LAt —t) (Qf.a¢) it -
(Qf,a,t:] Qi i, t): =(Qsas| & W[ Qi) = © .0 DQ()Da(t)exn - ) L(Q,q;Q,q)dt/, (B9)

where the indices i’ resp. “f” denote the values of the variables at the beginning resp. end of the time interval under
consideration. In the path integral, the coordinds), q(t) are time-dependent functions and the Lagrangias given by

L(Q,9;Q,9)=PQ+pg—H(P,Q;p.q), (B10)

wherep resp.P are classical momenta conjugategtoesp.Q. Due to the definition$B5) and(B6), the variable® andQ are
slowly varying in time compared tp andq.

In analogy with the ansatz for the total wave function in the Born-Oppenheimer method, we now split up the path integral
in the following way:

t it - 0 i,
(Qr .0 4Q .G )= J’s_ DP(t)DQ(t)exp<% J: Pth) fq _ Dp(t)Dq(t)exp{% J: [pq—H(P,Q;p,q)]dt}, (B11)

which means that we carry out first the path integration over the fast variables at fixed trajgetoryQ(t)} and then
integrate over all paths of the guiding center motion. FormaBy,1) is equal to[30]

Qs it .
(Qf,a5,t4] Qi1 q; vti>:fQ_ DP(t)DQ(t)eX[(%L Pth)<Qf

Texp{ - | tfﬁ’[P(t),Q(t);b,ﬁ]dt] qi>. (B12)
t

The HamiltonianH’ appearing in the time-ordered exponential has the same for|3h, dmit contains the variable® and

Q as slowly varying functions of time and not as operators.

_ We will now derive an explicit expression for the propagator of the fast variables using the complete set of eigenstates of
H' for fixed parameter® andQ, which we denote byn(P,Q)). The corresponding wave functiosg(q; P,Q) are according

to (B8) solutions of the stationary Schiimger equation

1 # Moeig? _
W&_qZ+ 5t ¢L(P+ifdloq)/Mwc,Q+a] 1 ¢(q;P,Q)=Ex(P,Q)¥(q;P,Q), (B13
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where the energy eigenvalueg(P,Q) can be interpreted as local Landau levels, whose distance depends on the position of
the guiding center. An expansion of the second factor in the path int@fra] with regard to the eigenstatgs(P,Q)) at the
parameter valuePB;, Q; andP;, Q; yields

Qi>

<Qf
—_—
:% ¥y (A3 P, Q) (n(Py ,Qf)|TeXP{ - %Jt_fH'[P(t),Q( :p,qldt Im(P;, Qi) ¢m(di ;Qi ,Qr)

T —i—ftfﬁ' P(t),Q(t);p,q]dt
expl | A'[P().Q(:P.4]

=:§ W5 (5P Q) Kl 1) ¥hm(i Qi Q) (B14)

If one assumes that the quantum numbers of the eigerwith the functions
states ofH’ are not affected by a slow time variation of the

parameters® and Q (adiabatic approximation the matrix f (P.O):=ih(n(P 9190In(P B16
elementsK,,(ts:t;) are of the form(31] o(PQ):=iA(n(P.Q)I/7QIn(P.Q)).  (B16)

Kt 3t)= 5nmexp[ +|attp.010+ auP.oP 9n(P.Q):=iA(N(P.Q)|#/7PIN(P. Q). (B17

As a result, the adiabatic expansion of the total particle
—En(P,Q)]], (B15)  propagatorB9) is given by

<quftf|Qiqiti>2§n: J DP(t1)DQ(t) ¢y (a¢; Ps, Q) n(ai s Py, Qi)

XEXpr ;i_f”dt[P.Q-l—fn(P,Q).Q-i-gn(P,Q)[:)_En(p,Q)] ) (B18)
f;

The integral in the exponential can be interpreted as the ef-

fective action of the guiding center motion for fixed quantum {P.Ql=5—=A (B20)
Rn(P,Q)

numbern of the Landau level,

off tf . . where the functiorR,,(P,Q) takes the form
SH'(P(.QuiPLQ): = | AM1(P.QIQ+,(P.QIP

79
—En(P.Q)]. (B19) Ro(P.Q)=1+ —(P Q-5 PQ.  (B2)
Here, E,(P,Q) plays the role of a Hamiltonian and the
Berry phase ternf,Q+g,P modifies the structure of the Note that according to general results in connection with the

(P,Q) phase space: the Poisson bracket of the original\Berry phase[32], the differencedf,/dP—dg,/dQ can be

canonical variable® andP are changed into calculated using the formula
< JH’ >< IH’ > < JH’ >< IH’ >
nN— m){m—=|n)—{n—=m){m—=|n
af, JP Q dQ P
— (P, P, 7 Im B22
(PO SGE.=rm| 5 [E(P.Q)En(P.Q (822
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Minimization of the effective actios:" yields the classi-
cal equations of motion

1 9E,
1 9E

== (B24)
Ry 9Q

for the guiding center coordinatéé=P/Mw, and Y=Q.
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where the indices X” and “ y” denote partial derivatives of
$(X,y) with respect to the corresponding variables. The
functions ¢, ¢,, etc., have to be evaluated at the point
(X,Y)=(P/Mw.,Q).

After an elimination of the term—(¢,,/2Mw.)(dp
+qp) in (163 by a Bogoliubov transformation, the eigenen-

ergies ofH’ take the form
En(P,Q)=%|Q(P,Q)|(n+1/2)+Ex(P,Q), (B26)

with an oscillator frequency

They can be written down in closed form, whenever the de-

pendence of the local Landau levdis(P,Q) on the vari-
ablesP and Q is explicitly known. For this purpose, an
analytic solution of the Schdinger equation(B13) is
needed, which in general cannot be given.

If, however, the potentiap(x,y) is slowly varying within

the localization region of the particle, which can be esti-

mated by the quantum-mechanical oscillator
ag=(#/M|w¢)Y? (o,=qB/Mc denotes the cyclotron fre-
guency corresponding to the uniform magnetic fiB)d an

expansion of¢(x,y) around the guiding center position

(X,Y) is possible. Up to second order in the operators

p/Mw, andq, the HamiltonianH’ (P,Q;p,q) reads

"2 N2

-~ A P wgq f)
H'(P.Qip.O)=57+— ¢_¢XM_LUC+¢yq
Dxx ~9 ¢xy AnAn
+ Z(ch)Zp Zch(qp+pq)
1 n2
+§¢yyq ' (825)

length

1 1 1/2
— 2
Q=g 1+ Mw§(¢xx+ ¢yy)+ Mzwg((ﬁxx(ﬁyy_ ¢xy)

(B27)
and an energy constant
c _¢_¢21+ byyIMw? L byx! M w?
o X 2MQ? y  2MQ?
¢xy
+ (ﬁxqbym. (B28)

Starting from(B26)—(B28), an analytic expression for the
guiding center equation®23) and (B24) can be derived if,
in addition, the approximation

¢>2<y_ d’xxd’yy
(M ch)z

99n

Q
is used. The latter is obtained by neglecting(B22) all
matrix elements but the ones with=n=1 and inserting the

expansionB25) for H.

(P,Q)~ (B29)

of,
W(P,Q)—
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