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The eigenstates of a charged particle with spin1
2 in the magnetic field surrounding a rectilinear current

filament are determined numerically. As they differ only slightly from local Landau levels, the wave functions
may be approximated analytically using stationary perturbation theory. The expectation values of the compo-
nent parallel to the wire of the velocity operator are calculated for both the exact and the approximated wave
functions. They are a measure for the drift of the gyration center parallel to the wire, which is predicted by
classical mechanics. Taking into account the quantization of the cyclotron rotation, this drift motion can also
be derived by applying the method of adiabatic expansion of the particle propagator. The resulting values for
the drift velocities are in excellent agreement with those from classical mechanics if, in the latter, one takes
into account energy quantization.@S1050-2947~96!00409-X#

PACS number~s!: 03.65.Ge, 03.65.Db, 02.60.Lj, 46.10.1z

I. INTRODUCTION

The quantum-mechanical motion of a charged spin1
2 par-

ticle in a homogeneous magnetic field was first investigated
by Landau @1# who, in this case, determined eigenstates
~‘‘Landau levels’’! and eigenenergies. His results are still of
interest in solid-state physics with regard to the quantized
Hall effect @2#. In this context, however, as well as in the
case of persistent currents in mesoscopic rings@3#, deviations
from the homogeneous field are of great significance for
charge flow. As a result the Pauli equation was solved re-
cently for particles in special nonuniform static field configu-
rations@4–6#. For one of the simplest possible magnetic field
configurations, namely, the magnetic field produced by a rec-
tilinear current filament, a detailed quantum-mechanical de-
scription is still unavailable. It is the purpose of the present
paper to provide such a solution and is an extension of the
theoretical@7–10# and experimental@11,12# studies of the
bound states of neutral particles possessing magnetic dipole
moments in a common field. It is, however, interesting to
investigate differences between the quantum-mechanical re-
sults and those recently published@13# on the basis of a
purely classical theory.

Classically, the motion of a charged particle in a uniform
magnetic field consists of a circular motion~‘‘gyration’’ or
‘‘cyclotron rotation’’! in the plane perpendicular to the field
lines, whilst the motion parallel to them is free. The radius of
the circular orbit is called the ‘‘gyroradius’’ and its center the
‘‘guiding center.’’ In the case of a nonuniform magnetic
field, the solution of the classical equations of motion is a
nontrivial problem. If, however, the distance over which the
magnetic field varies appreciably in magnitude or direction is
large compared to the local gyroradius, the classical equa-
tions of motion may be solved approximately using pertur-
bation methods@14,15#. These methods are based on a de-
composition of the motion into a fast gyration perpendicular
to the magnetic-field lines and a slow ‘‘drift’’ of the guiding
center ~‘‘guiding center approximation’’!. The resulting
equations of motion for the guiding center can also be de-

rived from Hamiltonian theory@16,17# or from variational
principles@18#.

It was shown in@13# that the guiding center approxima-
tion is applicable to describe the electronic motion outside of
a rectilinear current if the kinetic energy of the electron is not
too large. The inhomogeneity of the magnetic field causes a
uniform drift of the guiding center parallel to the filament.
Let us suppose that the wire be directed along thez axis.
Within the framework of quantum mechanics, the expecta-
tion values of thez component of the velocity operatorv̂z are
a measure for the drift motion. After a numerical solution of
the time-independent Pauli equation we will use the resulting
wave functions to compute the expectation values in various
stationary states.

Recently, equations of motion for the guiding center, tak-
ing into account the quantization of the cyclotron rotation,
were derived for the case of a charged particle which moves
in a plane perpendicular to a strong uniform magnetic field in
the presence of an external electrostatic field@19#. In this
work, the underlying idea is that the Landau levels should
become a local concept with their energy spacings depending
on the values of the guiding center coordinates. For this pur-
pose, the Born-Oppenheimer method was used to separate
the fast variables describing the gyration from the slowly
varying coordinates of the guiding center. Assuming that the
quantum numbern of the local Landau level is not affected
by the slow change of the guiding center coordinates, an
explicit formula for the path integral can be derived~‘‘adia-
batic expansion of the path integral’’!. It contains an expo-
nent, which represents the effective action function of the
guiding center motion for a fixed quantum number of the
gyration. Minimization of this action yields equations of mo-
tion for the guiding center.

As will be shown in this paper, the adiabatic path-integral
expansion may also be applied to the case of a bare inhomo-
geneous magnetic field, if the guiding center approximation
is valid. This method, therefore, allows one to derive the
guiding center motion in the magnetic field of a rectilinear
current.

The paper is organized as follows: In Sec. II, we investi-
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gate symmetries of the Hamiltonian and deduce radial equa-
tions for the spin-up and spin-down components of the Pauli
spinor. A general formula for the expectation value of the
velocity operatorv̂z is given. In Sec. III, we solve the sta-
tionary Pauli equation numerically and calculate the expec-
tation values ofv̂z for some of the resulting wave functions.
As the eigenstates and eigenvalues deviate only slightly from
the case of local Landau levels, in Sec. IV we use stationary
perturbation theory to obtain analytic approximations for the
wave functions. With their help, we derive analytic formulas
for the expectation values ofv̂z . In Sec. V, the method of the
adiabatic path-integral expansion is used to deduce equations
of motion for the guiding center. In each of the Secs. III, IV,
and V, the results for the drift velocity are compared with
those from classical mechanics. In Sec. VI, a short conclu-
sion is given. Appendix A contains the main results from the
classical calculations of Ref.@13# and in Appendix B we
summarize the adiabatic path-integral expansion in strong
magnetic fields, as derived in Ref.@19#.

II. SYMMETRIES AND EXPECTATION VALUES

The Hamiltonian of a nonrelativistic particle of massM ,
chargeq, and magnetic momentm in an external magnetic
field B(x)5 rotA(x) is given by@20#

ĤP5
1

2M S p̂2
q

c
A~x! D 22m̂•B~x!. ~1!

For particles with spin12, the operatorm̂ of the magnetic
moment is related to the vectors of the Pauli matrices by

m̂5
g

2
mPs, ~2!

wheremP5uqu\/2Mc denotes the ‘‘magneton’’ of the par-
ticle andg the gyromagnetic ratio. In the case of electrons,
mP is given by the Bohr magnetonmB and the absolute value
of g is approximately equal to two.

Outside of a current filament of lengthL, which is di-
rected along thez axis and whose radial extension can be
neglected, the vector potentialA(x) is given by

A~r,z!5
I

c H arsinhS L/21z

r D1 arsinhS L/22z

r D J ez , ~3!

whereI is the strength of the time-independent current. Here,
and in what follows, we use cylindrical coordinates
(r,f,z). If the particle is restricted to a region, whose ex-
tension in thez direction is much smaller thanL (uzu!L),
the vector potential~3! is approximately equal to

A~r!5
2I

c
arsinhS L2r Dez . ~4!

If, in addition, the distancer of the particle from thez axis
remains small compared toL,

r!L and uzu!L, ~5!

A(x) may be replaced by

A~r!52
2I

c
ezln

r

L
, ~6!

which agrees with the exact expression~3! up to terms of
second order inuzu/L andr/L.

The magnetic fieldB(x)5 rotA(x) originating from ~6!
reads

B~r!5
2I

cr
ef , ~7!

whereef denotes the azimuthal unit vector. Note that in~6!
the lengthL of the wire may be replaced by any other length
scalers by adding a constant vector toA(x). As the mag-
netic fieldB(x) is not influenced by such a modification of
A(x), the special choice ofrs is of no physical relevance.
Because the region where the charge is localized is restricted
to the spatial domain defined by~5!, a reasonable length
scale is given by the Compton wavelengthlc5\/Mc of the
particle under consideration. In this case,A(x) takes the
form

A~x!5A~r!52
2I

c
ln

r

lc
ez . ~8!

In this paper, we will use the expressions~8! and ~7! for
vector potential and magnetic field outside of a rectilinear
current filament. Note thatA(x) satisfies the Coulomb gauge
condition

divA50 . ~9!

Applying Eq. ~7!, the last term on the right-hand side of
~1! reads

m̂•B5
gmP

2

2I

cr
~2sxsinf1sycosf!. ~10!

Defining the operatorss1 :5 1
2(sx1 isy) and s2:5

1
2

(sx2 isy), Eq. ~10! may be transformed into the form

m̂•B5
gmP

2

2I

cr
i ~ eifs22 e2 ifs1!. ~11!

Using Eqs.~8!, ~9!, and ~11! in ~1! we find for the Hamil-
tonian ĤP in cylindrical coordinates

ĤP52
\2

2M F ]2

]r2
1
1

r

]

]r
1

1

r2
]2

]f2 1S ]

]z
1 i

2Iq

\c2
ln

r

lc
D 2G

2
gmP

2

2I

cr
i ~ eifs22 e2 ifs1!. ~12!

For particles with spin12, thez-componentĴz of the total
angular momentum operatorĴ,

Ĵz5L̂z1
\

2
sz5

\

i

]

]f
1

\

2
sz ~13!

takes the eigenvalues\n:5\(m11/2),mPZ, and the corre-
sponding eigenfunctions are of the form
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C~r,f,z!5 f 1~r,z! ei ~n21/2!fx↑1 f 2~r,z! ei ~n11/2!fx↓ .
~14!

Here f 1(r,z) and f 2(r,z) denote arbitrary functions of the
cylindrical coordinatesr and z and x↑ , x↓ are the eigen-
spinors ofsz (szx↑51x↑ , szx↓52x↓). Because of cylin-
drical symmetry,Ĵz commutes with the HamiltonianĤP ,
@ Ĵz ,ĤP#50, and thusn is an exact quantum number.

In addition, the operatorp̂z commutes withĤP and thus
the z component of the canonical momentum is also a con-
served quantity. If we denote the corresponding quantum
number by\kz , the solution of the stationary Pauli equation

ĤPCkzn
~x!5Ekzn

Ckzn
~x! ~15!

has the form

Ckzn
~x!5Ckzn

~r,f,z!5
1

2p
eikzz@wn

~1 !~r! ei ~n21/2!fx↑

1 i sgn~gI !wn
~2 !~r! ei ~n11/2!fx↓#, ~16!

where kz is real. The physical meaning of the factor
sgn(gI) in front of the second term on the right-hand side of
~16! will be explained later. The eigenfunctions
Ckzn

(r,f,z) are normalized according to:

^Ckzn
uCk

z8n8&5E
0

`

rdrE
0

2p

dfE
2`

`

dzCkzn
† ~x!Ck

z8n8~x!

5dnn8d~kz2kz8!, ~17!

which implies that

E
0

`

rdr@ uwn
~1 !~r!u21uwn

~2 !~r!u2#51 . ~18!

Inserting~16! into ~15! yields the following set of coupled
differential equations for the radial wave functionswn

(1)(r)
andwn

(2)(r):

2
\2

2M F d2dr2
1
1

r

d

dr
2

~n21/2!2

r2 Gwn
~1 !~r!

1
1

2M S \kz1
2qI

c2
ln

r

lc
D 2wn

~1 !~r!2
ugIumP

cr
wn

~2 !~r!

5Ekzn
wn

~1 !~r!, ~19!

2
\2

2M F d2dr2
1
1

r

d

dr
2

~n11/2!2

r2 Gwn
~2 !~r!

1
1

2M S \kz1
2qI

c2
ln

r

lc
D 2wn

~2 !~r!2
ugIumP

cr
wn

~1 !~r!

5Ekzn
wn

~2 !~r!. ~20!

Note that the differential operators in~19! and ~20! differ
only by the centrifugal terms\2(n61/2)2/2Mr2. The trans-
formation n→2n, wn

(6)(r)→wn
(7)(r), which is equivalent

to

Ckzn
~x!→ isyCkzn

* ~x!, ~21!

leaves the set of equations invariant. Therefore,Ekzn

5Ekz2n , which means that the energy eigenvalues ofĤP are

doubly degenerate~with eigenfunctionsCkzn
and isyCkzn

* ).

In Ref. @21#, it is shown that the same degeneracy occurs in
the more general case of a magnetic field with negative par-
ity B(2x)52B(x) if g sgn(q) is exactly equal to two. As
the magnetic field~7! is of higher symmetry, the energy ei-
genvalues ofĤP are doubly degenerate even for arbitrary
values of the gyromagnetic ratio. From now on, we will re-
strict ourselves to the case of non-negativen.

The equations forwn
(6)(r) are coupled by the terms

2
ugIumP

cr
wn

~7 !~r!5:W~r!wn
~7 !~r! ~22!

originating from the potential energy2m̂•B of the magnetic
dipole momentm in the magnetic fieldB. Owing to the fac-
tor sgn(gI) in the ansatz~16! for the wave functions, the
sign ofW(r) is negative. This implies parallel orientation of
m andB. From classical mechanics it is known that in this
case the force2“W points in the direction of the wire.
Neutral particles with a nonvanishing magnetic moment are
hence confined in the plane perpendicular to the current fila-
ment and it can be shown that quantum mechanically they
possess an infinite number of bound states@22,23#.

If sgn(gI) is replaced by2 sgn(gI), m andB point in
different directions andW(r) becomes positive and the force
2“W thus repels the particles from the wire. Consequently,
neutral particles are no longer bound in the radial direction.
For charged particles, however, the numerical solution of the
radial equations shows that bound states still persist. The
situation is comparable to the case of a homogeneous mag-
netic field @1,20#: There, the energy levels for particles with
spin 1

2 depend on the relative orientation ofm andB,

En5S n1
1

2D\uvcu6
g

4
\uvcu, with vc :5

qB

Mc
,nPN0 ,

~23!

where the negative~positive! sign in front of the second term
belongs to parallel~antiparallel! orientation of magnetic mo-
ment and magnetic field. Ifg sgn(q)52, the Landau levels
are doubly degenerate~cf. Fig. 1!. Due to the inhomogeneity
of the magnetic field~7!, in our case this degeneracy is lifted.
The difference between the corresponding levels are of the
order of the ground-state energy of the radial equations~19!,
~20!.

Equations~19! and ~20! contain thez component\kz of
the canonical momentum and therefore, the form of the ra-
dial wave functionswn

(6)(r) depends on the choice of the
quantum numberkz . ~For reasons of notational simplicity,
however, we leave out the index ‘‘kz . ’’ ! Note that the value
of this quantum number is gauge dependent: If, for example,
the length scalelc of the vector potentialA is changed to
rs by a gauge transformation

A~x!→ A8~x!5A~x!1“x~x! ~24!
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with a scalar function

x~x!52
2I

c
lnS lc

rs
D z, ~25!

the eigenvalue equationĤP8Ckzn
8 5Ekzn

Ckzn
8 is solved by the

wave functions@20#

Ckzn
8 ~x!5Ckzn

~x!expF iq\cx~x!G . ~26!

Using ~25! and ~16!, the new eigenfunctions read explicitly

Ckzn
8 ~x!5

1

2p
ei @kz2 ~2Iq/\c2 !ln~lc/rs#z@wn

~1 !~r! ei ~n21/2!fx↑

1 sgn~gI !wn
~2 !~r! ei ~n11/2!fx↓#. ~27!

Hence a modificationlc→rs of the length scale of the vec-
tor potentialA(x) leads to the substitution

kz→kz85kz2
2Iq

\c2
lnS lc

rs
D ~28!

in the eigenfunctionsCkzn
of ĤP .

As can be verified directly from the foregoing equation,
the radial distance

r̄5lcexpS 2
\kzc

2

2Iq D 5rsexpS 2
\kz8c

2

2Iq D ~29!

is gauge independent. Classically,r̄ gives the distance from
the z axis at which the particle velocity in thez direction
vanishes. Apart from small corrections,r̄ coincides with the
radial coordinaterX of the guiding center~cf. Appendix A!.

Let us now introduce new radial functions

un
~6 !~r!:5Arwn

~6 !~r!, ~30!

which, according to~18!, satisfy the normalization condition

E
0

`

dr@ uun
~1 !~r!u21uun

~2 !~r!u2#51 . ~31!

Expressingwn
(6)(r) by un

(6)(r) and taking into account the
definition ~29! of r̄, Eqs.~19! and ~20! are transformed into

2
\2

2M F d2dr2
2

n~n71!

r2 Gun
~6 !~r!1

M

2
vscal
2 S lnr

r̄ D 2un
~6 !~r!

2
ugIumP

cr
un

~7 !~r!5Ekzn
un

~6 !~r!, ~32!

where

vscal:5
2Iq

Mc2
~33!

denotes a scaling velocity which plays an important role in
classical calculations: As explained in Appendix A, the guid-
ing center approximation is only valid if the kinetic energy
of a charged particle is much smaller thanEscal:
5(M /2)vscal

2 The calculations of the next section will show
that this condition is well satisfied for the lowest-lying eigen-
states ofĤP .

In a uniform magnetic field, the expectation values for
those components of the velocity operator which are perpen-
dicular to the magnetic field vanish if the particle is in a
Landau level. This is in agreement with the results of classi-
cal mechanics: Since the projection of the particle orbit on
the plane perpendicular to the magnetic field is a circle, the
time average of the velocity in this plane is zero. In our field
configuration, however, a uniform drift motion parallel to the
wire is predicted because the time average of the velocity in
thez direction does not vanish. We suppose therefore, that in
an eigenstateuCkzn

& of the HamiltonianĤP , the expectation

value ^Ckzn
uv̂zuCkzn

& for the z component of the velocity
operator differs from zero. The general relation
M v̂5p̂2 (q/c) A @20# and the special form~8! of the vector
potential yield forv̂z

v̂z5
1

M S p̂z1 2Iq

c2
ln

r

lc
D . ~34!

Using the radial functionsun
(6)(r) and the definitions forr̄

and vscal, the expectation valuev̄z5^Ckzn
uv̂zuCkzn

& takes
the form

v̄z5^Ckzn
uv̂zuCkzn

&

5vscalE
0

`

dr lnS r

r̄ D @ uun
~1 !~r!u21uun

~2 !~r!u2#. ~35!

In the following section, we will solve the radial equations
~32! numerically and compute expectation values ofv̂z for
some of the resulting wave functions.

III. NUMERICAL SOLUTION OF THE PAULI EQUATION

Before turning to the numerical solution of~32!, we note
that the expressions~6! and ~7! for the vector potential and
the magnetic field used in the HamiltonianĤP are only valid
outside the current filament. Moreover, inĤP interactions
between the surface of the wire and the charged particle are

FIG. 1. Energy levels of particles without spin~left! and with
spin 1

2 ~right! in a homogeneous magnetic field. If the gyromagnetic
ratio g of the particle is equal to two, the energy levels become
doubly degenerate.
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neglected. Both assumptions are only justified, if the particle
is entirely located outside the wire. To check whether eigen-
states ofĤP exist which satisfy this condition, let us analyze
the radial equations~32!. They contain a quadratic logarith-
mic potential of the form

Vlog~r!:5
M

2
vscal
2 S lnr

r̄ D 2. ~36!

Its minimum lies at the distancer̄ from thez axis. According
to Eq. ~29!, the value ofr̄ depends on the quantum number
kz . Therefore, by an appropriate choice ofkz , r̄ becomes
much larger than the radiusR of the wire. Suppose that the
latter is of magnitude 1024 to 1021 cm. Then, forr.R, the
centrifugal potential (\2/2M )(n61/2)2/r2 and the coupling
termW(r)52ugIumP /cr in ~32! are only slowly varying
functions ofr. Consequently, the localization of the particle
is determined byVlog(r) and hence concentrated around
r̄'rX . Thus, if the difference (r̄2R) is sufficiently large,
the particle is located entirely outside the current filament. In
the following calculations, we will restrict ourselves to this
situation.

As stated earlier, the operators in Eq.~32! differ from one
another only by a term

Dn~r!:5
\2

2Mr2
@n~n21!2n~n11!#52

\2n

Mr2
. ~37!

In the localization region of the particle,Dn(r) can be esti-
mated by its value atr̄,

Dn~r!'2F 76.2n

r̄~mm!2
me

M G neV, ~38!

whereme denotes the electron mass. For values of the quan-
tum numbern up to order of 102 . . . 103, Dn(r) becomes
negligibly small compared to the other terms in the radial
equations. Hence the differential operators forun

(1)(r) and
un
(2)(r) are approximately equal. This is also the case for
larger values ofn: Because the centrifugal potential in-
creases quadratically withn, the relative difference of the
corresponding terms in~32!,

hn :5
2MDn~r!

\2n~n21!
'
2

n
, ~39!

vanishes asn21 for n→`. Therefore, we conclude that in
the whole range of definition ofn, the approximation

n~n11!'n~n21!'n2 ~40!

does not modify the eigenvalue problem essentially. The dif-
ferential equations forun

(1)(r) andun
(2)(r) are then formally

equal. Identifying the radial wave functions in~32! by

un
~1 !~r!5un

~2 !~r!5:un~r!⇔wn
~1 !~r!5wn

~2 !~r!5:wn~r!,
~41!

leads to the one-dimensional Schro¨dinger equation

Ĥun~r!:5H 2
\2

2M F d2dr2
2

n2

r2G1
M

2
vscal
2 S lnr

r̄ D 2
2

ugIumP

cr J un~r!5Ekzn
un~r!. ~42!

Note thatĤ is the quantum-mechanical counterpart of the
classical HamiltonianHclass~A3!, if Lz is replaced in~A3! by
\n andm i by (ugu/2)mP .

According to ~16! and ~41!, the total wave function
Ckzn

(r,f,z) now reads

C̃kzn
~r,f,z!5

1

2p
eikzzwn~r!x1~f!, ~43!

wherex1(f) denotes the angle-dependent spinor

x1~f!5 ei ~n21/2!fx↑1 i sgn~gI ! ei ~n11/2!fx↓ , ~44!

which is an eigenvector ofs•ef with eigenvalue sgn(gI),

s•efx1~f!5 sgn~gI !x1~f!. ~45!

Thus, the approximation~43! for the total wave function is
equivalent to the assumption that the projection of the mag-
netic moment m5(g/2)mPs along the magnetic field
B5(2I /cr)ef remains constant.

The energy eigenvalues of the Schro¨dinger equation~42!
can be estimated with the help of the Bohr-Sommerfeld
quantization rule@20#

R prdr5S nr1
1

2Dh, nrPN0 , ~46!

wherenr denotes the number of zeros of the corresponding
radial wave functions. Taking into account the ‘‘classical’’
equations~A4!, ~A12!, and the substitutionsLz

2→(\n)2 and
m i→(ugu/2)mP mentioned above, the dependence of the mo-
mentumpr on the radial coordinater is given by

pr56F 2ME2
\2n2

r2
2M2vscal

2 S lnr

r̄ D 21 2M ugIumP

cr G1/2.
~47!

If the turning points in the radial direction are denoted by
r2.r1, Eq. ~46! reads

2E
r1

r2
drF 2MEBS2

\2n2

r2
2M2vscal

2 S lnr

r̄ D 212M ugIumP

cr G1/2

5S nr1
1

2Dh. ~48!

The integral on the left-hand side of~48! cannot be solved
analytically. However, if the parametersM , g, mP , I and
quantum numbersn, nr are given, the Bohr-Sommerfeld ap-
proximation EBS of the eigenenergies may be determined
numerically. For electrons, a currentI5500 A and
r̄51cm, the results forEBS for 0<nr<10 andn5 1

2 are
listed in Table I. The large value ofI was assumed to ensure
that the quantized energy levels can be verified experimen-
tally. To transport a current of 500 A, a wire radius of about
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1mm is necessary. Therefore, we choser̄51cm to guarantee
that the interaction between the electron and the surface of
the wire can be neglected. These values forI andr̄ are used
throughout all numerical calculations of this section. The ef-
fects of a modification ofI and r̄ will be discussed later.

Moreover, for the lowest-lying states withnr50,1, the
influence of the angular motion was investigated by varying
the quantum numbern. As can be seen from Table I, the
changes in the absolute values ofEBS remain very small.
They are of the same order as the electronic centrifugal po-
tential atr̄51 cm,

\2n2

2M r̄2
5@38.1310210n2# m eV. ~49!

One may be surprised about the small absolute values of the
eigenenergies fornr50. They are a consequence of the dif-
ferent sign of the zero-point energy of the logarithmic poten-
tial and the potential energy of the magnetic moment. Due to
their small absolute values, the results for the eigenenergies
and drift velocities fornr50 cannot be resolved exactly by
numerical computations. Therefore, in Table I only orders of
magnitudes are given.

Starting with the Bohr-Sommerfeld valuesEBS as a first
estimate of the eigenenergies, the radial equations~32! can
be solved numerically by applying the so-called ‘‘shooting
method,’’ which is described, e.g., in@24#. The forth column
of Table I shows the resulting eigenenergiesEkznnr

. They are
in excellent agreement with the Bohr-Sommerfeld results
EBS. In Fig. 2, the radial wave functionsunnr

(1)(r) and

unnr

(2)(r) are plotted forn5 1
2 and 0<nr<7. For fixednr , the

difference betweenunnr

(1)(r) andunnr

(2)(r) cannot be resolved
graphically. Further calculations show that this is also the
case for larger values of the quantum numbern. Thus the
approximate ansatz~43! for the total wave function, which is
based on the identification~41! of unnr

(1)(r) and unnr

(2)(r), is
confirmed by our numerical results. We will exploit it further
in the following sections.

With the help of the radial wave functions, the expecta-
tion values forv̂z in the corresponding eigenstatesuCkznnr

&
of ĤP can be computed by numerical integration of~35!. The
results are listed in the fifth column of Table I. They imply a
slow drift motion parallel to the wire, if a particle is in an
eigenstate ofĤP .

Within the framework of classical mechanics, a uniform
drift motion in thez direction is predicted too@13#. If the
total energy E of a particle is small compared to
Escal5(M /2)vscal

2 , the guiding center approximation is valid
and an analytic expression for the drift velocityvD can be
derived. It is given by~A15!

vD5
vscal
2

E1Lz
2/2Mr0

2

Escal
, ~50!

TABLE I. Energy eigenvalues and drift velocities for the lowest
electronic eigenstates forI5500 A andr̄51cm.EBS denotes the
Bohr-Sommerfeld approximation of the energy levels,Ekznnr

the
values from numerical integration of the radial equations~32!. The
expectation valuesv̄z5^Ckzn

uv̂zuCkzn
& are calculated according to

formula ~35! using the radial functionsun
(6)(r) from the shooting

method. To compare with classical mechanics, the drift velocity
vD of a particle with energyEkznnr

is computed with the help of
~52!. The correspondence of the numerical values for energies and
drift velocities is explained in the main text.

nr n EBS (meV) Ekznnr
(meV) v̄z ~cm/s! vD ~cm/s!

0 1/2 '210210 ' 21026 ' 21024 '21026

0 21/2 ' 1028 ' 21026 ' 21024 ' 21026

0 41/2 ' 1027 ' 21026 ' 21024 ' 21026

1 1/2 1.158 1.158 1.157 1.158
1 41/2 1.158 1.158 1.157 1.158
2 1/2 2.315 2.315 2.314 2.315
3 1/2 3.473 3.473 3.471 3.473
4 1/2 4.631 4.631 4.628 4.631
5 1/2 5.788 5.788 5.784 5.788
6 1/2 6.946 6.946 6.939 6.946
7 1/2 8.104 8.104 8.098 8.104
8 1/2 9.262 9.261 9.255 9.262
9 1/2 10.42 10.42 10.41 10.42
10 1/2 11.57 11.58 11.57 11.58

FIG. 2. Normalized radial wave functionsun
(6)(r) for the eight

lowest-lying electronic states forI5500 A andr̄51cm ~5 origin
of the r axis!. Due to the small difference~37! of the radial equa-
tions ~32!, the componentsun

(1)(r) andun
(2)(r) cannot be distin-

guished graphically.
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wherer0 denotes the initial distance of the electron from the
z axis andLz the z component of its angular momentum.

According to Table I, the energies of the lowest-lying
electronic states ofĤP are much smaller thanEscal

~el!

58.763102 eV. Therefore, we can use~50! to compare
classical and quantum-mechanical results for the drift veloc-
ity parallel to the wire. Setting

E5Ekznnr
, Lz5\n, r0'r̄, ~51!

Eq. ~50! can be written in the form

vD5
vscal
2

Ekznnr
1\2n2/2M r̄2

Escal
. ~52!

The approximationr0'r̄ is valid in the lowest quantum
states because the gyration radii of the corresponding classi-
cal orbits are much smaller thanr̄51 cm and hence
ur02 r̄u/r0!1. The values forvD resulting from ~52! are
listed in the last column of Table I. Within deviations of
order pars per mile, they agree with the quantum-mechanical
expectation values. Thus even for the lowest quantum-
mechanical states the drift velocity of electrons can be cal-
culated from~52!, if energy quantization is taken into ac-
count.

Note that the correspondence of the numerical values for
energies and drift velocities listed in Table I occurs only by
chance, because for electrons the quotientvscal/2Escal is equal
to 1cm/s /~m eV ), if I5500 A. As the centrifugal energy
\2n2/2M r̄2 is only a small correction to the eigenenergies
Ekznnr

, the values forvD andEkznnr
are approximately equal

in the chosen units.
In the preceding numerical calculations we used fixed val-

ues forI and r̄. A variation of these parameters shows that
the energy eigenvaluesEkznnr

are proportional to the quo-

tient I / r̄ and only for very large currentsI and r̄'R do
deviations from this proportionality occur. In these cases, the
radial wave functionsunnr

(6)(r) become distinctly different

from one another andvD no longer coincides with the
quantum-mechanical expectation values for the drift veloc-
ity. However, since forr̄'R the distance of the charged
particle from the wire becomes small, its interaction with the
surface of the wire cannot be neglected any more, and the
Hamiltonian ĤP must be modified accordingly. Therefore,
we conclude that the results forI5500 A andr̄51 cm are
representative for charged particles, which are exposed to the
magnetic field of a rectilinear current filament.

IV. PERTURBATION THEORY

The energy eigenvaluesEkznnr
of Table I are approxi-

mately equidistant. Up to small deviations, their differences
agree with those of electronic Landau levels in a uniform
magnetic field of strengthBf( r̄) ~5 local Landau levels at
r̄),

\uvc~ r̄ !u51.16 m eV, ~53!

where

vc~ r̄ !:5
qBf~ r̄ !

Mc
5

2Iq

Mc2r̄
5
vscal
r̄

~54!

denotes the corresponding cyclotron frequency. A more de-
tailed analysis of the numerical data shows that, in the local-
ization region of the lowest quantum states, the potential
Vlog(r)5(M /2)vscal

2 @ ln(r/r̄)#2 defined in Eq.~36! can be ex-
cellently estimated by the first nonvanishing term of its Tay-
lor expansion aroundr̄,

Vosc~r!:5
M

2
vscal
2 S r

r̄
21D 25M

2
vc
2~ r̄ !~r2 r̄ !2. ~55!

As an illustration, Fig. 3 shows the potentialVlog(r) in the
vicinity of r̄51cm for electrons and a currentI of 500 A.
To visualize their localization region the energies of the first
six excited states are also plotted. The difference between
Vlog(r) and Vosc(r) cannot be resolved graphically in the
depicted region.

As mentioned at the beginning of Sec. III, forr'r̄ the
centrifugal potential (\2/2M )(n61/2)2/r2 and W(r)
52ugIumP /cr @cf. Eq.~22!# are slowly varying functions of
r. Leaving them out in the radial equations~32! does not
alter the form of the wave functionsukznnr

(6) (r) significantly.

The difference between the new energy eigenvalues and the
exact ones is approximately equal to the sum ofW( r̄) and
the centrifugal potential atr̄. Therefore we suppose that the
Hamiltonian

Ĥ ~0!:52
\2

2M F d2dr2
2

n2

r̄2G1
M

2
vscal
2 S r2 r̄

r̄ D 22 ugIumP

cr̄
~56!

is a good approximation toĤ and henceĤP . Note that
Ĥ (0) can be derived fromĤ by taking into account only the
first nonvanishing terms in the Taylor expansions of
Vlog(r), W(r) and the centrifugal potential aroundr̄. The
Hamiltonian Ĥ (0) represents a harmonic oscillator of fre-
quency uvscalu/ r̄5uvc( r̄)u, whose center lies atr̄. The do-
mainD of the relative coordinater̃:5r2 r̄ is restricted to

FIG. 3. Quadratic logarithmic potentialVlog(r) for I5500 A
and r̄51 cm ~5 origin of the r axis! in the vicinity of r̄. The
energies of the first six excited electronic states are depicted addi-
tionally.
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@2 r̄,`). However, for not too large values of their quantum
number, the eigenstates ofĤ (0) are localized in a region
aroundr̄ whose magnitude can be estimated by the oscillator
length (e0 5 elementary charge!

aB :5@\/M uvc~ r̄ !u#1/25F5.74S r̄@cm#

I @A#

me

M

e0
uqu D

1/2G mm.

~57!

As aB is much smaller thanr̄, we can extendD to the whole
set of real numbers without great error. The Schro¨dinger
equation

Ĥ ~0!unnr

~0! ~r!5Ekznnr

~0! unnr

~0! ~r! ~58!

is then equivalent to the eigenvalue problem of a one-
dimensional harmonic oscillator with the solutions

unnr

~0! ~r!5
1

p1/4~b21/2r̄ !1/2A2nrnr!

3expF2
b

2 S r2 r̄

r̄ D 2GHnrS b1/2
r2 r̄

r̄ D ~59!

and corresponding energy eigenvalues

Ekznnr

~0! 5\uvc~ r̄ !u~nr11/2!2
ugIumP

cr̄
1

\2n2

2M r̄2
. ~60!

In ~59!, Hnr
denotes the Hermite polynomial of ordernr and

the parameterb is defined by

b:5S r̄

aB
D 25M uvscalur̄

\
. ~61!

Its numerical value isb53.043106uI ur̄, if I is given in A
and r̄ in cm. The exponential in the eigenfunctionsunnr

(0) (r)

only differs significantly from zero therefore in the immedi-
ate vicinity of r̄.

The differences between the exact radial wave functions
unnr

(6)(r) and the approximate solutionsunnr

(0) (r) cannot be

resolved graphically. Nevertheless, the expectation values of
v̂z change dramatically, ifunnr

(0) (r) is inserted in~35! instead

of unnr

(6)(r). This is a consequence of the symmetry of

unnr

(0) (r) with respect tor̄.

Deviations from this symmetry arise, if the next order
terms in the Taylor expansions ofVlog(r), W(r) and the
centrifugal potential are added toĤ (0). This results in a
Hamiltonian of the form

Ĥ ~0!1Ĥ ~1!, ~62!

with

Ĥ ~1!52
\2

2M r̄2
~bj31aj!, ~63!

where we have introduced the dimensionless variable

j:5
r

r̄
21 ~64!

and a parameter

a52n21
2M ugIumPr̄

\2c
. ~65!

Within the localization region of the lowest-lying states,uju
is much smaller than unity. Because of the small numerical
value of\2/2M r̄2, Ĥ (1) acts in this region as a small ‘‘per-
turbation’’ on Ĥ (0). Carrying out time-independent perturba-
tion theory, the corrections of the energy eigenvalues and
wave functions read in first approximation@20,25#

Ekznnr

~1! 5^nnruĤ ~1!unnr&, ~66!

unnr

~1! ~r!5( 8
mr

cmr

nr unmr

~0! ~r!, ~67!

with coefficients

cmr

nr 5
^nmruĤ ~1!unnr&

Enr

~0!2Emr

~0! ~68!

~the prime at the sum means that the term withmr5nr is
omitted!. Thus, to first order in the perturbation, the eigen-
functions ofĤ (0)1Ĥ (1) are given by

ũnnr
~r!:5@unnr

~0! ~r!1unnr

~1! ~r!#Nnr
, ~69!

with a normalization constant

Nnr
5SA11( 8

mr

ucnr1ku2D 21

. ~70!

The first-order correctionsEkznnr

(1) of the energy eigenval-

ues vanish due to the even parity of the squared wave func-
tions ~59!. Hence, to first order in perturbation theory, the
eigenenergies ofĤ (0)1Ĥ (1) are equal toEkznnr

(0) . The matrix

elementŝ nmruĤ (1)unnr& may easily be calculated. As a re-
sult, we obtain the following coefficientscmr

nr :

cmr

nr 50 , if: umr2nru.3 or mr,0, ~71!

cnr23
nr 52b21/2@nr~nr21!~nr22!/288#1/2, ~72!

cnr22
nr 50 , ~73!

cnr21
nr 52b21/2~nr/8!1/2~3nr/21a/b!, ~74!

cnr11
nr 5b21/2@~nr11!/8#1/2@3~nr11!/21a/b#, ~75!

cnr12
nr 50 , ~76!

cnr13
nr 5b21/2@~nr11!~nr12!~nr13!/288#1/2. ~77!
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Due to the small factorb21/2, their numerical values are
even for large quantum numbersnr much smaller than unity.
Therefore the first-order correctionunnr

(1) (r) modifies the

wave functions by only a small amount and the localization
region remains almost unchanged.

Using ũnnr
(r) as an approximation to the radial wave

functionsunnr

(6)(r), we now derive an analytic estimate for

the expectation value ofv̂z . According to ~35!, ~41!, and
unnr

(r)'ũnnr
(r), v̄z is approximately equal to

ṽz :5vscalE
0

`

druũnnr
~r!u2ln

r

r̄
. ~78!

As ũnnr
(r) is localized in the immediate vicinity ofr̄, we

expand the logarithm in the integral around this point

ln
r

r̄
5 ln~11j!5j2 1

2 j21 1
3 j31O~j4!, ~79!

where we used the variablej as defined in~64!. To be con-
sistent with the order in perturbation theory, we have to take
into account in the integral in~78! the first three terms of this
expansion. This leads to the following expression forṽz :

ṽz5vscalE
2`

`

dsS b21/2s2
1

2
b21s21

1

3
b23/2s3D

3exp~s2!F 1

2nrnr!Ap
Hnr

~s!

1 (
k523

3

cnr1k
nr

1

2nr1k~nr1k!!Ap
Hnr1k~s!G 2Nnr

2 ,

~80!

where the variable

s:5b1/2j ~81!

has been used.
The analytic solution of the integral on the right-hand side

of ~80!, together with Eqs.~70!, ~72!–~77!, yields ṽz as a
function of nr , a andb21. As b21 is a small quantity, a
power expansion ofṽz with respect tob21 suggests itself.
The leading-order term is

ṽz5
vscal
2Escal

FEkznnr

~0! 1
\2n2

2M r̄2
1

217

3072

\2

2M r̄2G . ~82!

Up to the small additional term (217/3072)\2/2M r̄2, this
expression coincides with formula~52! and hence with the
‘‘classical’’ result for the drift velocity parallel to the wire, if
Ekznnr

(0) is identified with the exact eigenenergyEkznnr
.

V. APPLICATION OF THE ADIABATIC EXPANSION OF
THE PATH INTEGRAL

The previous two sections confirmed the validity of the
assumption that the projection of the particle’s magnetic mo-
ment parallel to the magnetic field is a constant of motion.

Thus the wave functionsC̃kzn
(r,f,z) of Eq. ~43! represent

an excellent quantum-mechanical description of the elec-
tronic state. We now introduce the function

c̃n~r,z!:5 eikzz
1

Ar
wn~r!5 eikzzun~r!, ~83!

which, according to ~42! and ~29!, satisfies the two-
dimensional Schro¨dinger equation

Ĥ'c̃n~r,z!5Enc̃n~r,z!, ~84!

whereĤ' is given by

Ĥ' :52
\2

2M

]2

]r2
1

1

2M S \

i

]

]z
1
2Iq

\c2
ln

r

lc
D 21 \2n2

2Mr2

2
ugIumP

cr
. ~85!

The HamiltonianĤ' describes the motion of a charged
particle in the plane perpendicular to the magnetic field
B(x)5Bf(r)ef , if in addition a scalar potential

f0~r!:5
\2n2

2Mr2
2

ugIumP

cr
~86!

is present. Note that the effects of azimuthal motion are com-
pletely taken into account inĤ' by the centrifugal potential
\2n2/2Mr2.

As discussed in Sec. III, even for large quantum numbers,
the quantum-mechanical eigenenergies are much smaller
than the scaling energyEscal. Hence, for a classical descrip-
tion of the motion in the corresponding states, the guiding
center approximation can be applied. Quantum mechani-
cally, a separation of the slow guiding center motion from
the fast gyration can be achieved by applying the Born-
Oppenheimer method. However, since the position operators
of the guiding center in general do not commute with one
another@20#, a generalization of this method using the path-
integral approach must be employed. This is beautifully
handled in Ref.@19#, where the motion of a charged particle
in the plane perpendicular to a strong uniform magnetic field
is investigated, when an electrostatic field is simultaneously
present. The corresponding calculations are summarized in
Appendix B, to which we will refer in the remainder of this
section whenever necessary. One can show that the addi-
tional electric field causes a dependence of the energy spac-
ings of the Landau levels on the position of the guiding
center. The corresponding eigenfunctions contain the guiding
center coordinates as slowly varying parameters@see Eq.
~B13!#. An expansion of the particle propagator with respect
to these functions leads to a matrix of coefficients, which
depend only on the coordinates of the guiding center. If one
assumes that the quantum numbers of the Landau levels are
not affected by a slow variation of the guiding center posi-
tion ~adiabatic limit!, the off-diagonal elements of this matrix
vanish @cf. ~B15!–~B17!#. The remaining coefficients have
the form of path integrals over the guiding center motion for
a fixed quantum number of the gyration. The exponential
appearing in them represents the effective action of the slow
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variables@see~B19!#. Minimization of this action yields clas-
sical equations of motion for the guiding center, which take
into account the quantization of the gyration.

We will now show that the method described above can
also be applied, if a charged particle moves in the inhomo-
geneous magnetic field outside of a rectilinear current fila-
ment. For this purpose, we introduce for arbitrary, but fixed
azimuthal anglef a local Cartesian coordinate system,
whosez axis is parallel to the wire and whosex axis points
in the radial direction. The magnetic fieldB(x) is then ori-
ented in positivey direction,

B~x!5
2I

cx
ey5By~x!ey . ~87!

It can be derived from the vector potential

A~x!52
2I

c
ln
x

lc
ez5Az~x!ez ~88!

by the relationB(x)5“3A(x). Using the momentum op-
eratorsp̂x :5(\/ i )(]/]x), p̂z :5(\/ i )(]/]z) and Eqs.~86!
and ~88!, the HamiltonianĤ' reads in the new coordinate
system

Ĥ'5
p̂x
2

2M
1

1

2M S p̂z2 q

c
Az~x! D 21f0~x!. ~89!

The velocity operators inx- resp.z direction are related to
the corresponding momentum operators via

v̂x5
1

M
p̂x , v̂z5

1

M S p̂z2 q

c
Az~x! D . ~90!

Their commutator is different from zero,

@ v̂x ,v̂z#52 i
q\

M2c
By~x!, ~91!

which means that a charged particle cannot have simulta-
neously definite values of the velocity components. Using
v̂x and v̂z , the HamiltonianĤ' can be written in the form

Ĥ'5
M

2
~ v̂x

21 v̂z
2!1f0~x!. ~92!

We now introduce another velocity operator

v̂z
H :5

1

M S p̂z2 q

c
Az
H~x! D , ~93!

where AH(x)5Az
H(x)ez is chosen in such a way that the

corresponding magnetic field

BH5BHey :5 “3AH~x! ~94!

is homogeneous. The magnitude ofBH will be fixed later in
such a way that the absolute value of the difference

v̂z2 v̂z
H5

q

Mc
@Az

H~x!2Az~x!#5:f1~x! ~95!

remains small within the localization region of the particle
compared to its total velocity. The gauge principle implies
that velocity operators do not change under gauge transfor-
mations. Therefore,f1(x) is also gauge invariant. Setting
v̂z5 v̂z

H1f1(x) and making use of the relation
v̂z
Hf1(x)5f1(x) v̂z

H we obtain forĤ'

Ĥ'5
M

2
@ v̂x

21~ v̂z
H!2#1Mf1~x!v̂z

H1
M

2
f1
2~x!1f0~x!.

~96!

We now define the position operators

X̂:5x2
v̂z
H

vc
, Ẑ:5z1

v̂x
vc

, ~97!

where

vc :5
qBH

Mc
~98!

is the ~constant! cyclotron frequency in the magnetic field
BH. Up to negligible deviations,X̂ and Ẑ correspond to the
coordinates (X,Z) of the guiding center in thex-z plane. If
the guiding center approximation is valid,X and Z are
slowly varying functions of time compared to the compo-
nentsvx andvz of the particle velocity. Note that, owing to
the orientation of the coordinate system,X is equal to the
radial distancer X of the guiding center from thez axis.

Using position and momentum operators

q̂:5
v̂z
H

vc
, p̂:5M v̂x , ~99!

Q̂:5X̂, P̂:5MvcẐ, ~100!

which satisfy the canonical commutator relations

@ P̂,Q̂#5
\

i
, @ p̂,q̂#5

\

i
~101!

~all other commutators vanish!, we can writeĤ' in the form

Ĥ'5
p̂2

2M
1
Mvc

2

2
q̂21Mf1~Q̂1q̂!vcq̂1

M

2
f1
2~Q̂1q̂!

1f0~Q̂1q̂!. ~102!

The termsf0, f1 andf1
2 are independent ofP̂ due to the

symmetry of the magnetic field. A comparison with Eq.~B8!
shows thatĤ' is formally equivalent to the Hamiltonian
Ĥ( P̂,Q̂; p̂,q̂), which describes the dynamics of a charged
particle in the superposition of a uniform magnetic field and
an electrostatic field. Consequently, we can use the results of
Ref. @19# to derive equations of motion for the guiding center
in our field configuration.

According to the remarks at the beginning of Sec. III, the
potentialf0(r) defined in Eq.~86! is a slowly varying func-
tion of r in the localization region of the particle, which is
centered aroundr̄'rX5Q. By an appropriate choice of the
vector potentialAz

H , the same statement holds concerning
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f1. Therefore, in analogy with@19#, we expand the potential
terms in~102! around the guiding center coordinateQ. Up to
second order inq̂, Ĥ' then reads

Ĥ'5
p̂2

2M
1
Mvc

2

2
q̂21FM2 f1

2~Q!1f0~Q!G
1FMvcf1~Q!1

M

2
~f1

2!8~Q!1f08~Q!G q̂
1F2Mvcf18~Q!1

M

2
~f1

2!9~Q!1f09~Q!G q̂22 ,

~103!

where the primes at the potentials denote their derivatives
with respect toq. This expansion ofĤ is equal to that of
Ĥ( P̂,Q̂; p̂,q̂) given in ~B25!, if the potential terms occurring
in ~103! and ~B25! are identified in the following way:

f5
M

2
f1
21f0 , ~104!

fy5Mvcf11
M

2
~f1

2!81f08 , ~105!

fyy52Mvcf181
M

2
~f1

2!91f09 , ~106!

fx5fxy5fxx50 . ~107!

Here we left out the argumentQ on the right-hand sides.
Inserting~104!–~107! into Eqs.~B27!, ~B28! for the local

Landau levelsEn(P,Q), we obtain Landau levels which are
independent ofP. Therefore, the equation of motion~B23!
for the coordinateQ yields

Q̇}
]En

]P
50 . ~108!

This means that the distanceQ5rX of the gyration center
from thez axis remains constant, in agreement with the re-
sults from classical mechanics~cf. Appendix A!.

The fact that thex coordinate of the guiding center is time
independent implies that the strengthBy(X) of the magnetic
field stays constant at this point. If we choose the homoge-
neous magnetic fieldBH(x) defined in~94! to be equal to the
magnetic field at the guiding center position,

BH5By~X!ey5
2I

cX
ey , ~109!

the corresponding vector potentialAH5Az
H(x)ez is given by

AH~x!52
2I

cX
x e z1Cez . ~110!

The constantC is determined by the requirement that the
differencef1(x)}Az(x)2Az

H(x) should become as small as
possible within the localization region of the particle. This is
achieved, if

C52
2I

c S lnXlc
21D , ~111!

because then

f1~x!5
q

Mc
@Az

H~x!2Az~x!#5
2Iq

Mc2 S lnxX2
x

X
11D

5vscalS lnxX2
x

X
11D ~112!

is equal to the difference between the logarithm ln(x/X) and
the first two terms of its Taylor expansion aroundX.

Evaluatingf0 and f1 at the pointQ5X leads to the
following result forf:

f5
\2n2

2MX2 2
ugIumP

cX
. ~113!

Note that this formula contains no terms originating from
f1, becausef1 andf18 vanish atX.

To write down the equation of motion for the coordinate
Z5(1/Mvc)P explicitly, we have to transcribe several
quantities defined in Appendix B to our case. First note that,
according to~102!, Ĥ' does not depend onP̂. Taking into
account Eqs.~B20!–~B22!, the variablesP andQ turn out to
be canonical. This is a direct consequence of the symmetry
of the magnetic fieldB(x). The time development ofP is
determined by@cf. ~B24!#

Ṗ52
]En

]Q
, ~114!

where, according to~B26!, the energyEn can be written in
the form

En~Q!5\V~Q!~n1 1
2 !1E0~Q!, ~115!

with V andE0 given by ~B27! and ~B28!. Using ~113! we
obtain forV andE0

V5
uvscalu
X F11

2e3/2~X!

Mvscal
2 G1/25V~X!, ~116!

E05e1/2~X!2
1

2Mvscal
2 e1

2~X!F11
2e3/2~X!

Mvscal
2 G21

5E0~X!,

~117!

where the functionea(X) is defined by

ea~x!:5a
\2n2

2Mx2
2

ugIumP

cx
, aPR. ~118!

Note that by the definitions~22! and ~49!, ea(x) is equal to
the sum ofW(x) anda times the centrifugal potential. As a
result of~114!–~118!, the equation of motion for thez coor-
dinate of the guiding center reads
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Ż5
1

Mvc
Ṗ52

1

Mvc

]En

]Q

5
\V~X!~n11/2!

Mvscal
F11

e3~X!

Mvscal
2 S 11

2e3/2~X!

Mvscal
2 D 21G

1
e1~X!

Mvscal
H 11F e2~X!

Mvscal
2 1

e3~X!

Mvscal
2 S 11

2e3/2~X!

Mvscal
2 D 21G

3S 11
2e3/2~X!

Mvscal
2 D 21J . ~119!

SinceX remains constant, the right-hand side of~119! is
time independent. Thus the guiding center motion parallel to
the wire is uniform. The drift velocityŻ depends not only on
the quantum numbersn and n, but also onkz . This is so
because the radial coordinateX5rX of the guiding center is
approximately equal tor̄ ~cf. Sec. III!, which is related to
kz via Eq. ~29!.

The basic assumption of the preceding calculations was
that the total energy of the charged particle is small com-
pared toEscal. In particular, this implies that the centrifugal
energy and the potential energy of the magnetic dipole mo-
ment are much smaller thanEscal within the localization re-
gion of the particle, especially at the position of the guiding
center. From Eq.~118!, we therefore conclude that the esti-
mation

Ua ea~X!

Mvscal
2 U!1 ~120!

is valid for not too large values of the parametersa anda.
Hence we expand all terms of the form

S 11
aea~X!

Mvscal
2 D b, bPZ ~121!

appearing on the right-hand side of~119! in power series
with respect toea(X)/Mvscal

2 Considering in addition the
special form ofV(X) given in ~116!, the leading order term
of this expansion reads

Ż5
vscal
2

\uvcu~n11/2!2ugIumP /cX1\2n2/MX2

Escal
.

~122!

Up to small deviations, which can be neglected in guiding
center approximation, the sum of the quantized gyration en-

ergy \uvcu(n1 1
2) and\2n2/2MX22ugIumP /cX is equal to

the total energyEkznn
of the particle. Using again the iden-

tification ~51! of Sec. III, one can show that~122! is equiva-
lent to the ‘‘classical’’ formula~50! for the drift velocity.

V. SUMMARY AND DISCUSSION

In this paper we presented the quantum-mechanical de-
scription of electrons~or more generally of pointlike charged
particles with spin12! in the magnetic field of a rectilinear
current. The assumption of a rectilinear current of lengthL
represents at the same time a good approximation for a cir-
cular current whenever the macroscopic lengthL exceeds by

far the extension of the wave functions in perpendicular di-
rection to the current.

As one can guess from the macroscopic dimension of the
field producing current, the classical approximation for the
motion of the charged particle is found to be very good, even
for low values of the quantum numbers. This is particularly
true for the motion of the guiding center. If one treats the
gyration quantum mechanically assuming that the quantum
numbers of the gyration are adiabatic invariants, one can
justify this statement.

The macroscopic dimension of the field producing current
implies necessarily that the problem has many similarities
with the one of a plasma in an external magnetic field.
Therefore, we could use an ingenious method developed in
plasma physics@14–18# to take into account the presence of
two time scales in the problem, separating the rapid gyration
from the slow motion of the guiding center.

When trying to apply this method in the quantum-
mechanical theory, one faces the difficulty that the variables
of the gyration motion are not canonical—physically no sur-
prise in view of the fact that the gyration center does not
correspond to a particle. Here the results of a paper by En-
telis and Levit@19# were useful for us. This work is based on
the path-integral formalism and designed to treat the dynam-
ics of a charged particle in a superposition of a homogeneous
magnetic field and a~small! electric field. The same formal-
ism could also be used for our case of a charged particle in
an inhomogeneous magnetic field.

The quantum features of our problem become more pro-
nounced as the lengthL of the current filament is decreased.
Since any natural application will be based on a circular
current, one should in principle solve the quantum-
mechanical problem for the magnetic field produced by a
circular current. We note, however, that for not too small
lengthL of the circumference, one can use local curvilinear
coordinates and treat the deviations from the rectilinear case
as a perturbation.

The most important open questions concern eventual ap-
plications of the system we have studied. Is it purely aca-
demic or can it be used?

Here we mention some ideas for application, hoping, at
the same time, that this list will be extended by the imagina-
tion of the reader.

~i! In Ref. @26# we investigated the effect of gravity on an
antiproton moving in the magnetic field of a vertical current.
This could possibly be used to determine the gravitational
mass of the antiproton. Only the classical features of the
system would enter this application.

~ii ! So far we have only investigated the case where the
overlap of the wave functions with the material of the wire
are negligible. It is, however, clear that there are also bound
states where this overlap is not negligible. Then the particle
feels the interaction with the solid, especially its surface, in
addition to the magnetic field of the current. If, for instance,
these interactions lead to a trapping of the particle in the
surface, this could be seen by looking at the electromagnetic
transitions.

We note at this point that the rate for spontaneous elec-
tromagnetic transitions between the bound states is negligi-
bly small. On the other hand, transitions could probably be
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induced in very much the same way as in atomic beam ex-
periments.

~iii ! A very different aspect is the possibility to generate
chaotic motion of the bound charged particle by subjecting it
to the field of a time-dependent electric current. We investi-
gated this classically for the case of an alternating current
@26#. In this case, essentially no transition to chaotic motion
was observed. Chaotic motion would, however, certainly be
produced if the strength and/or the direction of the current
changed in a random way. The crucial question is how the
dynamical state of the charged particle is observed. Again
this could, in principle, be done by inducing transitions.

~iv! An open problem, which we have not yet investigated
is that the current contains~statistical and quantum! fluctua-
tions and that the temperature of the wire is finite and cannot
be made zero exactly. If the quantum numbers of the particle
are such that no overlap occurs with the interior of the wire,
these effects are negligible. In the opposite case, they are
likely to play an important role. Thus they will have the
consequence that the charged particle is never in a pure
quantum state but in a mixture of such states. It might even
be ejected from the bound states into the continuum by the
interactions with the fluctuations of the wire. We note in
passing that this problem is also present, and in even more
acute form, for neutral particles which are only bound by the
coupling of their magnetic moment with the magnetic field.

~v! In applications it is important to know the upper limit
of the electronic density which can be reached without losing
the electrons on account of their Coulomb repulsion. For
this, one has to compare the repulsive Coulomb potential
acting on an electron due to the interaction with all the other
bound electrons outside of the~neutral! wire with the height
of the barrier of the magnetic potential. For a straight wire of
lengthL, this barrier height is given by~A14!

Vbar5
M

2
vscal
2 arsinh2S L2r̄ D .

The repulsive Coulomb potential has the form

VCb5e2E d3x8
r~x8!

ux2x8u
, ~123!

wherer(x8) is the density of the bound particles. As a rough
estimate forVCb, we replacer(x8) by a constant charge
density in a sphere of radiusR around the wire. The outcome
of this is that one can attain charge densities of about
331010(electrons/cm3) for large currents ofI5500 A. The
critical charge density is, of course, a function of the strength
of the current. For comparison, the charge density in electron
lasers is about 1010(electrons/cm3).

The question of whether stimulated laserlike transitions
could be produced suggests itself. We cannot judge whether
this is realistic. The interest could be that the lifetime of
excited states is not reduced too much by thermal effects as
compared to laser transitions in solids at low transition ener-
gies.

~vi! A final remark concerns the question of how electrons
or other charged particles can be trapped in the magnetic
potential. If the particles are ions, i.e., composite, this could
be achieved by laser cooling@27#. If the particles to be

trapped have no intrinsic excitations, as for the case of elec-
trons, this mechanism does not work. We believe that in this
case trapping could be achieved by directing a well colli-
mated low-energy beam of the charged particles tangentially
to the wire. The energy must be in the range of the energies
of the bound states, i.e., it depends on the strength of the
magnetic field which is present.
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APPENDIX A

In this appendix, we briefly review the classical dynamics
of a charged particle with spin12 in the magnetic field outside
of a thin rectilinear current, as investigated in@13#.

The classical Hamiltonian of this system has the form

Hclass5
1

2M S p2
q

c
A~x! D 22m•B~x!, ~A1!

whereq denotes the charge of the particle,M its mass, and
m its intrinsic magnetic moment.

In order to describe the interaction between the particle’s
magnetic momentm and the external magnetic field classi-
cally, we assume that the projection ofm along the field lines
is a constant of motion. As shown in@13# and confirmed by
the calculations in Sec. III of the present paper, this approxi-
mation is valid in the energy range relevant for a comparison
between classical and quantum mechanics. In this case, the
potentialm–B(x) takes the simple form

m•B~x!52m iuB~x!u, ~A2!

wherem i.0 denotes the~time-independent! component of
m, which points in the direction of the magnetic field. If the
latter is produced by a filamentary current, the corresponding
force“(m iuB(x)u) attracts the particle to the wire.

Inserting the special forms~6! and~7! for vector potential
and magnetic field into~A1!, we get for the Hamiltonian

Hclass~r;pr ,pf ,pz!5
1

2M Fpr
21

pf
2

r2
1S pz1 2Iq

c2
ln

r

lc
D 2G

2
2uI um i

cr
. ~A3!

The corresponding Hamiltonian equations of motion read

ṙ5
]Hclass

]pr
5
pr

M
, ~A4!

ḟ5
]Hclass

]pf
5

pf

Mr2
, ~A5!

ż5
]Hclass

]pz
5

1

M S pz1 2Iq

c2
ln

r

lc
D , ~A6!
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ṗr52
]Hclass

]r
52

2Iq

c2r
ż1

pf
2

Mr3
2
2uI um i

cr2
, ~A7!

ṗf52
]Hclass

]f
50⇒pf5const5:Lz , ~A8!

ṗz52
]Hclass

]z
50⇒pz5const5:Pz . ~A9!

Due to the symmetry of the magnetic field, the canonical
momentapf andpz are conserved quantities. According to
~A6!, the velocity inz direction, however, is not constant. It
vanishes, if the particle is at a distance

r̄5lcexpS 2
Pzc

2

2Iq D ~A10!

from thez axis.
Using the scaling velocityvscal52Iq/Mc2 defined in~33!

and taking into account~A8!–~A10! we obtain for the
Hamiltonian

Hclass~r;pr!5
pr
2

2M
1

Lz
2

2Mr2
1
M

2
vscal
2 S lnr

r̄ D 222uI um i

cr
.

~A11!

Equations~A11! and ~A4!, together with the fact that the
energy of the system is conserved,Hclass(r;pr ,pf ,pz)
5E5const, lead to the following relation betweenṙ and
r:

ṙ56
1

M F 2ME2
Lz
2

r2
2M2vscal

2 S lnr

r̄ D 214M uI um i

cr G1/2

:56
1

M
AD~r!. ~A12!

To learn something about the classically allowed region in
radial direction, the functionD(r) must be analyzed. As a
result, one finds that in the field configuration given by~6!
charged particles cannot move arbitrarily far away from the
wire.

If the conditionr!L is no longer valid, the expression
~4! for the vector potential has to be used instead of~6!.
Except for a modification of the magnetic field, which is
negligible for the determination of the classically allowed
region, the quadratically logarithmic potential
(M /2)vscal

2 @ ln(r/r̄)#2 in ~A11! has to be replaced by

M

2
vscal
2 F arsinhS L2r̄ D2 arsinhS L2r D G2. ~A13!

This potential approaches a finite boundary value for
r→`,

Vbar:5
M

2
vscal
2 arsinh2S L2r̄ D . ~A14!

Consequently, the motion in radial direction is no longer
bound, if the total energy of the particle exceedsVbar.

Note that in the vicinity ofr̄, where the lowest quantum
states are localized, (M /2)vscal

2 @ ln(r/r̄)#2 and the expression
~A13! coincide. Therefore, the simpler form~6! of the vector
potential was taken as a basis for the quantum-mechanical
calculations of this paper.

If the total energy of the particle is small compared to
Escal5(M /2)vscal

2 , one can show that the motion consists of a
rapid gyration around the magnetic field lines and a drift of
the guiding center parallel to the wire. In this case, the time
integration of Eqs.~A12! and ~A6! can be carried out ana-
lytically. As a result, one gets the following formula for the
drift velocity vD in z direction:

vD5
vscal
2

E1Lz
2/2Mr0

2

Escal
, ~A15!

wherer0 denotes the radial coordinate of the particle at the
beginning of the motion.

Equation~A15! is in agreement with general results for
the guiding center motion, which are derived, e.g., in@16–
18#. Especially, one can show~see @26#! that up to small
deviations, which can be neglected in guiding center ap-
proximation, the radial coordinaterX of the guiding center is
equal to r̄.

APPENDIX B

For a charged particle moving in a strong homogeneous
magnetic field in the presence of an electrostatic potential a
separation of the slow guiding center motion from the fast
gyration was carried out quantum mechanically by Entelis
and Levit @19#. As we make direct use of their method in
Sec. V of the present paper, the relevant calculations of Ref.
@19# are summarized in this appendix.

To this end, consider a particle with massM and charge
q, confined to thex-y plane, which is exposed to a homoge-
neous magnetic fieldB5Bez and an electrostatic potential
f(x,y). The two-dimensional Hamiltonian of this system is
given by

Ĥ5
1

2M F S p̂x2 q

c
Ax~x,y! D 21S p̂y2 q

c
Ay~x,y! D 2G1f~x,y!,

~B1!

where A(x,y)5Ax(x,y)ex1Ay(x,y)ey denotes the vector
potential.

Introducing the velocity operators

v̂x5
1

M S p̂x2 q

c
AxD , v̂y5

1

M S p̂y2 q

c
AyD ~B2!

and the operators of the guiding center coordinates~cf. @20#!

X̂5x1
v̂y
vc

, Ŷ5y2
v̂x
vc

, ~B3!

one can writeĤ in the form

Ĥ5
M

2
~ v̂x

21 v̂y
2!1fS X̂2

v̂y
vc

,Ŷ1
v̂x
vc

D . ~B4!
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If the magnetic fieldB is strong compared to the electric
field E(x,y)52“f(x,y), the classical guiding center ap-
proximation is valid. This implies that the velocity of the
particle changes rapidly in time compared to the position of
the gyration center. The HamiltonianĤ thus contains mo-
tions on two different time scales via the operatorsv̂x , v̂y
~fast! andX̂, Ŷ ~slow!. Therefore, an application of the Born-
Oppenheimer method to describe the dynamics of the par-
ticle suggests itself. As, however,X̂ and Ŷ do not commute
with one another, the guiding center coordinates cannot be
specified simultaneously and a generalization of the Born-
Oppenheimer method is needed. It can be obtained by apply-
ing the path-integral formalism@28,29#.

To cast the corresponding formulas into a conventional
form, the operators

q̂:5
v̂x
vc

, p̂:5M v̂x , ~B5!

Q̂:5Ŷ, P̂:5MvcX̂ ~B6!

are defined, which satisfy the commutation relations

@ P̂,Q̂#5
\

i
, @ p̂,q̂#5

\

i
. ~B7!

As all other commutators vanish,q̂, p̂ and Q̂, P̂ can be
considered as canonically conjugate position and momentum
operators. Using~B4!–~B6!, the HamiltonianĤ reads

Ĥ~ P̂,Q̂; p̂,q̂!5
p̂2

2M
1
Mvc

2q̂2

2
1fF 1

Mvc
~ P̂2 p̂!,Q̂1q̂G .

~B8!

According to~B7! and~B8!, the classical variablesq and
Q can be interpreted as~generalized! coordinates. Quantum
mechanically, their time development is determined by the
propagator

^Qf ,qf ,t f uQi ,qi ,t i&:5^Qfqf u e2 iĤ ~ t f2t i !uQiqi&5E
~Qi ,qi !

~Qf ,qf !
DQ~ t !Dq~ t !expF i\Et i

t f
L~Q,q;Q̇,q̇!dtG , ~B9!

where the indices ‘‘i ’’ resp. ‘‘ f ’’ denote the values of the variables at the beginning resp. end of the time interval under
consideration. In the path integral, the coordinatesQ(t), q(t) are time-dependent functions and the LagrangianL is given by

L~Q,q;Q̇,q̇!5PQ̇1pq̇2H~P,Q;p,q!, ~B10!

wherep resp.P are classical momenta conjugate toq resp.Q. Due to the definitions~B5! and~B6!, the variablesP andQ are
slowly varying in time compared top andq.

In analogy with the ansatz for the total wave function in the Born-Oppenheimer method, we now split up the path integral
in the following way:

^Qf ,qf ,tfuQi ,qi ,ti&5E
Qi

Qf
DP~t!DQ~t!expS i\Eti

tf
PQ̇dtDE

qi

qf
Dp~t!Dq~t!expF i\Eti

tf
@pq̇2H~P,Q;p,q!#dtG, ~B11!

which means that we carry out first the path integration over the fast variables at fixed trajectory$P(t),Q(t)% and then
integrate over all paths of the guiding center motion. Formally,~B11! is equal to@30#

^Qf ,qf ,t f uQi ,qi ,t i&5E
Qi

Qf
DP~ t !DQ~ t !expS i\Et i

t f
PQ̇dtD K qfUTexpH 2

i

\Et i
t f
Ĥ8@P~ t !,Q~ t !; p̂,q̂#dtJ Uqi L . ~B12!

The HamiltonianĤ8 appearing in the time-ordered exponential has the same form asĤ, but contains the variablesP and
Q as slowly varying functions of time and not as operators.

We will now derive an explicit expression for the propagator of the fast variables using the complete set of eigenstates of
Ĥ8 for fixed parametersP andQ, which we denote byun(P,Q)&. The corresponding wave functionscn(q;P,Q) are according
to ~B8! solutions of the stationary Schro¨dinger equation

H 1

2M

]2

]q2
1
Mvc

2q2

2
1f@~P1 i\]/]q!/Mvc ,Q1q#J c~q;P,Q!5En~P,Q!c~q;P,Q!, ~B13!
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where the energy eigenvaluesEn(P,Q) can be interpreted as local Landau levels, whose distance depends on the position of
the guiding center. An expansion of the second factor in the path integral~B12! with regard to the eigenstatesun(P,Q)& at the
parameter valuesPi , Qi andPf , Qf yields

K qfUTexpH 2
i

\Et i
t f
Ĥ8@P~ t !,Q~ t !; p̂,q̂#dtJ Uqi L

5(
n,m

cn* ~qf ;Pf ,Qf !^n~Pf ,Qf !uTexpH 2
i

\Et i
t f
Ĥ8@P~ t !,Q~ t !; p̂,q̂#dtJ um~Pi ,Qi !&cm~qi ;Qi ,Qf !

5:(
n,m

cn* ~qf ;Pf ,Qf !Knm~ t f ;t i !cm~qi ;Qi ,Qf !. ~B14!

If one assumes that the quantum numbers of the eigen-
states ofĤ8 are not affected by a slow time variation of the
parametersP andQ ~adiabatic approximation!, the matrix
elementsKnm(t f ;t i) are of the form@31#

Knm~ t f ;t i !5dnmexpH i

\Et i
t f
dt@ f n~P,Q!Q̇1gn~P,Q!Ṗ

2En~P,Q!#J , ~B15!

with the functions

f n~P,Q!:5 i\^n~P,Q!u]/]Qun~P,Q!&, ~B16!

gn~P,Q!:5 i\^n~P,Q!u]/]Pun~P,Q!&. ~B17!

As a result, the adiabatic expansion of the total particle
propagator~B9! is given by

^Qfqf t f uQiqi t i&.(
n
E DP~ t !DQ~ t !cn* ~qf ;Pf ,Qf !cn~qi ;Pi ,Qi !

3expH i

\Et i
t f
dt@PQ̇1 f n~P,Q!Q̇1gn~P,Q!Ṗ2En~P,Q!#J . ~B18!

The integral in the exponential can be interpreted as the ef-
fective action of the guiding center motion for fixed quantum
numbern of the Landau level,

Sn
eff~Pf ,Qf ;Pi ,Qi !:5E

t i

t f
dt@ f n~P,Q!Q̇1gn~P,Q!Ṗ

2En~P,Q!#. ~B19!

Here,En(P,Q) plays the role of a Hamiltonian and the
Berry phase termf nQ̇1gnṖ modifies the structure of the
(P,Q) phase space: the Poisson bracket of the originally
canonical variablesQ andP are changed into

$P,Q%5
1

Rn~P,Q!
, ~B20!

where the functionRn(P,Q) takes the form

Rn~P,Q!511
] f n
]P

~P,Q!2
]gn
]Q

~P,Q!. ~B21!

Note that according to general results in connection with the
Berry phase@32#, the difference] f n /]P2]gn /]Q can be
calculated using the formula

] f n
]P

~P,Q!2
]gn
]Q

~P,Q!5\ ImH (
mÞn

K nU ]Ĥ8

]P
UmL KmU ]Ĥ8

]Q
UnL 2K nU ]Ĥ8

]Q
UmL KmU ]Ĥ8

]P
UnL

@En~P,Q!2Em~P,Q!#2
J . ~B22!
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Minimization of the effective actionSn
eff yields the classi-

cal equations of motion

Q̇5
1

Rn

]En

]P
, ~B23!

Ṗ52
1

Rn

]En

]Q
~B24!

for the guiding center coordinatesX5P/Mvc and Y5Q.
They can be written down in closed form, whenever the de-
pendence of the local Landau levelsEn(P,Q) on the vari-
ablesP and Q is explicitly known. For this purpose, an
analytic solution of the Schro¨dinger equation~B13! is
needed, which in general cannot be given.

If, however, the potentialf(x,y) is slowly varying within
the localization region of the particle, which can be esti-
mated by the quantum-mechanical oscillator length
aB5(\/M uvcu)1/2 ~vc5qB/Mc denotes the cyclotron fre-
quency corresponding to the uniform magnetic fieldB), an
expansion off(x,y) around the guiding center position
(X,Y) is possible. Up to second order in the operators
p̂/Mvc and q̂, the HamiltonianĤ8(P,Q; p̂,q̂) reads

Ĥ8~P,Q; p̂,q̂!.
p̂2

2M
1
Mvc

2q̂2

2
1f2fx

p̂

Mvc
1fyq̂

1
fxx

2~Mvc!
2 p̂

22
fxy

2Mvc
~ q̂p̂1 p̂q̂!

1
1

2
fyyq̂

2, ~B25!

where the indices ‘‘x’’ and ‘‘ y’’ denote partial derivatives of
f(x,y) with respect to the corresponding variables. The
functions f, fx , etc., have to be evaluated at the point
(X,Y)5(P/Mvc ,Q).

After an elimination of the term2(fxy/2Mvc)(q̂p̂
1q̂p̂) in ~163! by a Bogoliubov transformation, the eigenen-
ergies ofĤ8 take the form

En~P,Q!5\uV~P,Q!u~n11/2!1E0~P,Q!, ~B26!

with an oscillator frequency

V5vcS 11
1

Mvc
2 ~fxx1fyy!1

1

M2vc
4 ~fxxfyy2fxy

2 ! D 1/2
~B27!

and an energy constant

E05f2fx
2
11fyy /Mvc

2

2MV2 2fy
2
11fxx /Mvc

2

2MV2

1fxfy

fxy

M2vc
2V2 . ~B28!

Starting from ~B26!–~B28!, an analytic expression for the
guiding center equations~B23! and ~B24! can be derived if,
in addition, the approximation

] f n
]P

~P,Q!2
]gn
]Q

~P,Q!'
fxy
2 2fxxfyy

~MvcV!2
~B29!

is used. The latter is obtained by neglecting in~B22! all
matrix elements but the ones withm5n61 and inserting the
expansion~B25! for Ĥ8.
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