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Effect of atom pairs on the vacuum trapping state in micromasers:
A Monte Carlo wave-function approach
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We calculate the lifetime of the vacuum trapping state in a micromaser, using both the Monte Carlo
wave-function method and an analytic approximation, and show it to be a rapidly changing function of the
average number of atoms in the cavity, when this number is much smaller than one. Our method leads to a
realistic simulation of experiments, allowing for different field profiles, temperatures, and atomic velocity
spreads[S1050-294{@6)09509-1

PACS numbes): 42.50—p, 42.55-f, 32.80~t

Cooperative atomic effects play a minor role in usual la-flux. In the present work, we address the question of the
serg[1]. The dynamic and quantum behavior of these devicestability of trapping states, calculating the lifetime of the
is well described by theories based on one-atom Hamiltovacuum state as a function of the average number of atoms in
nians, the cavity field being built by the incoherent sum ofthe cavity, for a Poissonian beam of resonant two-level at-
the individual atomic contribution®]. Three notable excep- oms, with a mean velocity chosen so that the vacuum is a
tions should be mentioned, however. Under some conditiongsapping state. Two methods are used to calculate this life-
it is possible to conceive a superradiant las#r Also, co-  time: the Monte Carlo wave-function approa@iCWF), as
operative effects seem to play an important role in a recenhiroduced by Dalibarcet al. [9], and an approximate ana-
microlaser experimer(i4], where laser oscillation has been |ytica| solution, motivated by that method. The agreement
demonstrated for a beam 6tBa atoms traversing a single- Janveen the two results is excellent, for a wide range of

mode cavity, with less than one atom on the average i_nSidgituations, which include different temperatures, atomic ve-
the resonator. Indeed, one-atom theories predict a field inten

, . . ocity dispersions, and field profiles in the cavity. We do not
sity appreciably smaller than the observed pfie This may i]nclude here the incoherent atomic relaxation due to stray

be accounted by the fact that the Poissonian distribution 0L |ectrostatic field§10], which may affect the lifetime of the

the atoms in the beam leads to a probability of 26% for acuum state in an important way. Even though this effect
having two atoms inside the resonator, when the averag P Y. gh .
can be treated by the Monte Carlo approach, its inclusion

number of atoms inside the cavity is equal to one. Finally, X | iderati h X | :
trapping states in micromasejs,6] are highly sensitive to requires gcarefu consideration of the prerlmenta configu-
ration, which is beyond the scope of this paper.

cooperative effectf7,8]. These states are predicted to occur ; ) i .
in a high-Q cavity crossed by a monokinetic beam of excited The MCV\.’.F_S'mUIa“onSf mv_olve two ste[ﬁg_]. In the first
two level atoms, resonant with a cavity mode. Whenever th&"€: the Schr_tdlnger equation is numencajly Integrat.ed from
number of photons in the cavity is such that a single aton 0 t+ét with the ef{ecuve non-Hermitian Hamiltonian
from the beam undergoes a full set of Rabi turns while crossteft=H(t) = (i2/2)2,Cr.Cry, whereH(t) is the interaction
ing the cavity, the field in the cavity will not evolve. Even Hamiltonian. We consider for simplicity that the atoms are
though trapping states are rendered unstable by dissipatiofSonant with a cavity mode, and neglect the atomic decay.
the vacuum state is weakly affected at low temperatures, sfSSuming that the atom can be approximated by a two-level
this state is a preferred candidate for the observation of thdyStém, and adopting the usual electric dipole and rotating
trapping effect(which will occur when the vacuum Rabi Wave approximations, it may be written as
angle developed by each atom is a multiple af)2 The H(D)=Zixi(t)%(as; +a'0;), wherex(t) is the coupling
presence of a second atom in the cavity would spoil thigonstant between atorin and the field,a and a’ are the
effect, however. This fact may actually preclude observatiorfreation and destruction operators for the cavity mode, and
of these states, for Poissonian atomic beams. o ando; are the Pauli spin-flip matrices corresponding to
It was shown in Ref[8] that collective effects may atomi. The number of atoms included in the Hamiltonian for
change dramatically the photon-number steady-state distrib@ach time intervabt is determined by random choice: before
tion, even when more than 99% of the atoms participate irihe integration of the Schdinger equation for each realiza-
one-atom events. From an experimental point of view, howtion, the arrival times of the successive atoms are drafted
ever, it would be important to know how much time it takes according to the distribution for time intervals corresponding
for the trapping state to leak, for a given value of the atomicto a Poissonian pumpir{gD(t)=ta’tlexp(—t/tat), wheret; is

1050-2947/96/5¢)/25104)/$10.00 54 2510 © 1996 The American Physical Society



54 BRIEF REPORTS 2511

L L L T L L L 0 I L L L

L b n m d “ ” ] FIG. 1. Single realization of a Poissonian-
3 — i pumped micromaser with collective effects. The
L N * 'c " ] initial state of the field is the vacuum, which is a
L trapping state. The temperature and the velocity

dispersion are zero, the field profile is constant,

and the incoming atoms are excited and resonant
with the cavity mode. The dashed lines corre-

spond to quantum jumps. Hehlé,,=10 and the

] average number of atoms in the cavity is
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the average time interval between successive atoiit®e  wheret;, is the atomic transit time through the cavity. The
interaction time between each atom and the cavity modeglectric field profile is taken to be constant along the cavity
which depends on the atomic velocity, is also determined band Ng,=t.,,/t,= 10. The field starts in the vacuum, which
random choice, previously to the integration of the Sehrois g trapping statext;,,= 7). Between atoms, the field is in
dinger equation. In the present work, we consider up to twg Fock state, so in this case the figure displays the actual
atoms inside the cavity. This restriction is implemented innumber of photons in the cavity, while when one or more
the following way: whenever the random choice leads toatoms are in the cavity, the expected number of photons is
three atoms inside the cavityhis will happen when the ar-  shown. The atoms are measured right after leaving the reso-
rival times of the first and third atoms differ by a time less nator. During the transit time of one atom a rapid oscillation
than the transit time of the first atom inside the cavithe  of the expected number of phototes’a) can be observed. If
third one is delayed. In order not to change the averagguring this time there is only one atom in the cavity, the
atomic flux, this delay is compensated by advancing one ogtom emerges completely inverted, since the vacuum is a
more of the following atoms in the sequence, in such a wayrapping state. For this simulation the leaking of the photon-
as to avoid the occupation of the cavity by three or morenymber distribution occurs around tine: 2.6, (eventa),
atoms. One should note, however, that three-atom events agge to a collective event of two atoms. ¢ 7t (eventb) a
very rare, for the small atomic fluxes considered in thephoton dissipation occurs while one atom is crossing the
present work. The operato®;, are obtained from the master cavity. Between times$=8t,, andt=9t,, two free-decaying
equation for the reduced density matgixcorresponding to  events can be observéeventsc). At time t~10.2,, a sec-
the subsystem atoms-field mo@ibtained by tracing out the ond trapping state is reached, corresponding to a Rabi angle
reservoir variables for b_oth the atoms and the fieldritten  of 4+ (eventd).
in Lindblad’s form[11]: p=—(i/A)[H,p]+ = CrpCl— Figure 2 shows the steady-state normalized variance and
HClCmp+pClCm)]. The interaction of the field in the mean photon number versus the mean number of albins
cavity with the reservoir is taken into account by the operathe cavity, for zero temperature, witiN.,=10 and
tors C,;=[['(1+n)]*%a and C,=[I'n]"Za’, where «t;,=m. We compare our resultébtained by averaging
=1k, is the decay rate of the field mode andis the  over 2000 realizationswith those obtained in Ref8] (con-
average number of thermal photons in the mode, given by
Planck’s formula. 25 T
In the second step, the subsystem is subjected to quantum
jumps[9] in each intervalét, according to the probability
OP=310pm, Where 8p,=St(W(t)|CIC|W(t)). If there
is no jump, we have only to normalize the wave function,
since the time evolution withl .; is not unitary. If a quantum
jump occurs betweehandt+ 8t, the wave function is pro-
jected according to|W(t+ 6t))=C|W¥(t))/(Spm/ t)*2
The operatoiC, to be used in this equation is chosen ac- e
cording to the probabilitydp,,/6P. This procedure is re- 002 004 008 008 0.1
peatedt ./ 5t times fromt=0 tot=t,,,,. The expectation ' N
value of any operator may be calculated for a single realiza-
tion at eac_h t|me_|ntervad9t, Wh'le the mean value over an FIG. 2. Steady-state normalized variancand average number
ensemble is obtained by making an average over many real; photons as a function of the average number of atoms in the
Izations. _ _cavity, o=[((a'a)?)/(a'a)—(a'a)]¥2 Atomic vacuum Rabi
Figure 1 shows the evolution of the number of photons ingngle is equal to 2 and Ng,=10. The Monte Carlo result&lots
the cavity for a single realization of the micromaser, as are compared with those from Ré8], for a constant field profile
function of time, for a beam of Poissonian-pumped excitedwith «=m/t;, (full curve). For a sinusoidal field profile, with
two-level atoms crossing a cavity at zero temperature. The(t) = (w?/2t;,)sin(at/t,,), our results match a scaled version of the
mean number of atoms in the cavity N=t;,/t;=0.1, same curvédashed curve
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300 T T by a collective event, andpy is the probability that the
\ vacuum state is destroyed by a single-atom event, due to the
dispersion in velocities.
We calculate in the following each of the above contribu-
tions, up to first order in the average number of atoms in the

<00 cavity. The probability 3p, can be approximated by
= op,~I'nédt(1+(a'a)). Note that there is a double average
~ over the photon number in this equation. The brackets refer
-

to the average number of photons betweandt + 6t, while

the bar stands for the time average of this quaritiyte that
even when the field is in the vacuum state between atoms,
the average photon number is different from zero while an
atom crosses the cavjtyFor an average number of atoms in
T the cavityN<1 and a constant electric field profile along the

0
0 0.02 0.04 006 008 0.1 resonator,
N

100

—_— 1 (tint )
(aTa)=—| " sir(mt/tj)dt=N/2,
FIG. 3. Lifetime of the vacuum trapping state as a function of tar) o
the average number of atoms inside the cavity. Atomic vacuum
Rabi angle is equal to 2 and N,,=100. Dashed lines correspond Where sifi(rt/t,) is the probability that one atom gets deex-
to sinusoidal field profile(one antinodg while continuous lines Cited at timet after it enters the cavity, if there is no other
stand for constant field profiléa) and(b) denote zero temperature, atom in the resonator. Therefore, one may write
monokinetic atomic bearr(r) and (d) denoten=0.5, monokinetic o
beam;(e) and (f) denoten=0.5, and velocities uniformly distrib- op;,=T'nét(1+N/2). (2
uted between(1— «) andv(1+ «), with «=0.06.
Our calculation ofép, includes only two-atom collective

tinuous liney, where the collective effects are represented byevents. It is given by the following expression:
letting pairs of atoms enter and leave the resonator simulta- -
neously, the decay of the photon field during the passage of 8pe=(St/ta)(f1]91]>+f2]gal?). (€)
the atom pair is neglected, and the field profile is assumed to
be constant. Our Monte Carlo results are represented by dot§he factorét/t, represents the probability to have one atom
and correspond to both a constant and a sinusoidal field préeaving the cavity during the time intervat. The factorf,
file (with just one antinode The dashed lines correspond to (f2) represents the probability that this emerging atom is the
the results of Ref[8] but with the interaction time replaced first (second one of a two-atom event, whilg, | stands for
by an effective time t,— 2t;;/7), while still keeping the average probability to have the first of the two atoms of
ktiw=1r, SO as to simulate the sinusoidal profile. For thea pair emerging from the cavity in the lower resonant state.
range of parameters here considered, the agreement betweBne quantity|g,|? is the average conditional probability that
the two results is excellent. the second atom emerges from the cavity in the lower reso-

The dots in Fig. 3 display the results obtained for thenant state, if the first one was detected in the upper state.
lifetime of the trapping states versus the mean number otherefore, Eq(3) expresses the fact that the trapping state
atomsN using the MCWF method. The one-atom vacuum-will leak if one of the two atoms is found in the lower state
Rabi angle is again taken asr2This lifetime is obtained by after exiting the cavity. The probabilitifs andf, are given
taking the average of the leaking times over 2000 realizahy [8]: f,=f,=(e” N—e N =f. The probabilities|g1|2
tions, starting from the same initial conditions. The continu-and|g,|? are calculated, for a constant field profile, accord-
ous lines in the same figure correspond to an analytical aing to the following procedure. The first atom of the pair
proximation, inspired by the MCWF method, and describedenters the cavity at time and leaves it at time+t;. The
in the following. The agreement between the two results issecond atom enters the cavity at time 7 and leaves it at

excellent. time t+ r+t;,,. For a collective event to occur, one must

The analytical approximation is based on the probabilityp,5ye 0<r<t,,. The Hamiltonian evolution of the atoms-

op of having a field transition from the zero-photon statefig|q state(valid for T't,<1) is first calculated front to

|0) to |1) or[2) during a small time intervabt, which can {1t At this time the probabilityg,(7)|? of finding the

be written assp= ét/ty, wherety is the lifetime of the trap-  irst atom in the lower state is calculated, and the wave func-

ping state. This pr(_)bablllty is calculated by writing it as thejgon is projected onto the subspace corresponding to atom

sum of three contributions: one in the upper state, and normalized. This wave function is
then evolved fromt+t;, to t+ r+t;,; and the probability

op= Otlty=6p,+ Sp.~+ dpy (1) |g,(7)|? of finding the second atom in the lower state is

calculated. The mean probabilig/=|g,|%+|g,|? is given by

where 8p, is the probability to have a photon excitation in

the cavity due to the interaction with the reservdip, ex- B=[(1—e Mt r]_lftim[|91(7)|2+ 1g,(7)[2]e” "tad 7.
presses the probability that the trapping stéeis destroyed @ 0
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In zeroth order inN, we find 8=0.27. agreement with the results obtained using the MCWF
Finally, the probabilityspy, associated with deviations method is excellent. Figure 3 shows that the lifetime is very
from the ideal single-atom trapping-state atomic velocity, issensitive with respect to the average number of atoms in the
written as the product of the probabiliit/t, that one atom resonator. For an average number of atoms in the cavity
is leaving the cavity during the time intervat by the prob-  equal toN=0.1, with n=0, «=0, and a sinusoidal field
ability |g|? that the emerging atom be found in the lower profile, the lifetime corresponds to the passage of about 76
resonant state when leaving the cavity, averaged over th&toms through the cavity. This value may decrease to about
velocity distribution. We assume that the atoms have a nams4 atoms, if the number of thermal photonsnis-0.5 and
row distribution of velocities around the trapping velocity N =100.

vT, so that we may take the velocity distribution as constant | conclusion, our results show that the lifetime of the

betweenv _=vt—avt andv . =vt+ avyt, with a<1. For
an atom with velocity, the probability of leaving the cavity
in the lower state i$g|2=sir’(wv1/v). The average value is

thus [g[?=(L/2vra) " sirf(mvrlv)dv=(7?3)a?+ O(a®),

S0 that Spg=~ (St/ty)(m?/3)e®. From this result and from
(1), (2), and (3), one getsét/tt=(8t/t)[tal n(1+N/2)
+fB+ (m?13)a?], and therefore

ty N 2

e (LN + (e M- N B o

4
tr Ne @

This expression is plotted in Fig(8ontinuous curvesusing
that, for a constant field profileg3=0.27. For a sinusoidal
field profile, we choose the value Bfso as to fit the curves
to the dots[the best value is3=0.27(2fr)~0.17]. The

vacuum trapping state is strongly dependent on atomic col-
lective effects. The application of the Monte Carlo wave-
function method in this case allows a realistic simulation of
the experimental situation, since it is easy to include effects
such as the field profile in the cavity, the atomic velocity
distribution, the temperature of the cavity environment, the
decay of the field while the atoms are in the cavity, and the
atomic decay. Furthermore, we have derived an analytical
expression for the lifetime which includes collective effects,
and also takes into account finite temperatures and the
atomic velocity spread. This expression is in excellent agree-
ment with the Monte Carlo results.
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