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The radiation reaction force due to individual emitters of a homogeneously broadened gain sheet is calcu-
lated from the multimode quantized electromagnetic field. This force can be placed in the dipole moment
operator equation of motion, and takes a form similar to superradiance. A small correction factor in the laser
rate equations for an optical gain sheet placed in a large dimension cavity is derived. For small cavity systems,
such as the Fabry-Pe´rot microcavity, the correction factor may be increased.@S1050-2947~96!05709-5#

PACS number~s!: 42.50.Fx, 34.50.Rk, 42.50.Gy

The topic of superradiance from an emitter sheet, and in
particular when the sheet is contained in a Fabry-Pe´rot mi-
crocavity, has gained recent interest@1–7#. In this problem of
spontaneous emission a macroscopic polarization leads to
superradiance@1–4#, due in part to radiation reaction be-
tween the separate emitters, and a similar effect might be
expected for stimulated emission. Typically for laser prob-
lems or in the analysis of stimulated emission, however, the
individual emitters are treated as coupled independently to
the driving field even though the gain region is at the same
time treated as deriving a macroscopic polarization due to
the driving field @8,9#. For example, Lax@8# analyzes the
coupled equations of motion for a single-mode lasing field
and a resonant gain polarization using

dâ

dt
52~ iv01gc!â~ t !1Nmŝ~ t !1F̂ â ~1!

and

dŝ

dt
52~ iv01ga!ŝ~ t !1m~ŝa2ŝb!â~ t !1F̂a,b , ~2!

where â(t) and ŝ(t) are the annihilation operators of the
field and gain polarization,m is the dipole coupling strength
to the lasing mode@8#, gc is the cavity decay rate,ga is the
polarization decay rate due to emitter dephasing,N is the
emitter number, (ŝa2ŝb) is the population inversion opera-
tor, andF̂ â andF̂a,b are noise operators, which preserve the
commutator relations of the single-mode field and dipole
moment operators, respectively. The collective polarization
state in terms of the separate emitters is defined as

ŝ~ t !5
1

N (
n51

N

ŝn~ t !, ~3!

where the subscriptn labels the individual emitter polariza-
tions, with the summation resulting in the macroscopic po-
larization. The similar approach is presented in@9#. We note
that if Eq. ~3! is used to describe spontaneous emission and
does not average to zero, superradiance results.

In a large optical cavity a plane-wave mode expansion
can be used to describe the short-time propagation of a single

cavity quasimode. It is shown below that in such a case
radiation reaction forces lead to a small correction factor that
contains the square of the emitter density in the laser gain,
and is similar to superradiance in spontaneous emission. For
a microcavity system we believe that the same radiation re-
action force will be even larger due to the increased mode
coupling, as is also found for superradiance@5–7#. In this
regard we note that a similar treatment to that presented be-
low for open space should also be possible for the planar
Fabry-Pe´rot microcavity, since the complete and orthogonal
set of mode functions that satisfies the passive cavity bound-
ary conditions is known@7,10#.

Within the large cavity or open space, we consider an
optically thin emitter sheet that is excited by an incident
Gaussian mode~or standing wave!. For a steady-state driving
field yielding stimulated emission, incoherent pumping to
level ua& leads to an average value of population inversion,
and a macroscopic polarization evolves described by the
equations of motion of the individual dipole moments driven
by the same stimulating field. The Hamiltonian of the system
of N homogeneously broadened two-level emitters coupled
to the multimode quantized electromagnetic field, and a res-
ervoir leading to level dephasing, can be described in the
notation of@7# by

Ĥ5ĤA~ t !5ĤF~ t !1ĤR~ t !1ĤIAF~ t !1ĤIRA~ t !

5 (
n51

N
\v0

2
@ŝa,n~ t !2ŝb,n~ t !#1(

m

\vm

2
@ âm

† ~ t !âm~ t !

1âm~ t !âm
† ~ t !#1ĤR~ t !1q(

n51

N

(
m

@Em~rn!âm~ t !

1Em* ~rn!âm
† ~ t !#•@dnŝn~ t !1dn* ŝn

†~ t !#1ĤIRA~ t !, ~4!

where the emitter and field commutator relations are well
known for a two-level system coupled to a multimode field
with the terms defined in@7#, and the reservoirĤR(t) that
leads to emitter dephasing throughĤIRA(t) need not yet be
specified, except that it has finite bandwidth. The equations
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of motion for each optical field operator are derived from its
commutation relation with the Hamiltonian, and given by

dâm
dt

52 ivmâm~ t !2
iq

\ (
n

@dn•Em* ~rn!ŝn~ t !

1dn* •Em* ~rn!ŝn
†~ t !#, ~5!

while the equation of motion for each dipole moment opera-
tor is given by

dŝn

dt
52 iv0ŝn~ t !1

iq

\
@ŝa,n~ t !2ŝb,n~ t !#

3(
m

@dn* •Em~rn!âm~ t !1dn* •Em* ~rn!âm
† ~ t !#

1
i

\
@ĤIRA8~ t !,ŝn~ t !#. ~6!

The reservoir interaction with the dipole moment leads to an
exponential decay of the emitter dephasing on a time scale
that is long compared to the actual emitter dephasing time
@9#. Equation~5! can be integrated over a short-time interval
Dt to find the multimode influence of any emitter on any
other emitter making up the gain sheet through the coupled
equation ~6!. Using the normalized, traveling plane-wave
mode basis of open space satisfying orthogonality over large
periodic boundary conditions, the result becomes

(
m

Em~rn!âm~ t1Dt !

'(
m

Em~rn!âm~ t !e2 ivmDt

2
iq

16p3e0
(
s51

2 E d3kvas~k!(
n8

eik•~rn2rn8!

3Fdn8•as~k!ŝn8~ t !e
2 iv0Dt

12e2 i ~v2v0!Dt

i ~v2v0!

1dn8
*
•as~k!ŝn8

†
~ t !eiv0Dt

12e2 i ~v1v0!Dt

i ~v1v0!
G , ~7!

whereas~k! is the field polarization of modek. The summa-
tion over the emitter positions given byn8 restricts the an-
gular range of modes included in the radiated field. In open
space the mode interference is such that constructive inter-
ference occurs only over a resonant wavelength squared area.
Therefore, when the emitter sheet has a much larger area
than this, it is a very good approximation in changing the
summation overn8 to a two-dimensional integral to normal-
ize by the emitter densityn0, so that the emitter area can be
extended to infinity. The summation over the angular range
of modes then becomes a single integration over frequency.
We take the position at the center of the gain sheet as~0,0,0!,

and calculate the radiation field at that point. Adding Eq.~7!
to its adjoint to find the total field at timet1Dt and taking
the dipole moments as aligned in thex direction gives

Ê~0,0,0,t1Dt !'(
m

@Em~0,0,0!âm~ t !e2 ivmDt

1Em* ~0,0,0!âm
† ~ t !eivmDt#

2
iaxqn0
2pe0c

Fdŝ~ t !e2 iv0Dt

3E
2`

`

dv~v81v0!
12e2 iv8Dt

iv8

2d* ŝ†~ t !eiv0Dt

3E
2`

`

dv~v81v0!
12eiv8Dt

2 iv8 G , ~8!

where the dipole operators refer to an emitter at the center of
the gain sheet. Now we make an important point regarding
the mathematical form of Eq.~8!. The real part of the inte-
grals are independent ofDt and yieldp. The imaginary part
of the integrals contain leading terms that follow (Dt)2. If we
rewrite a differential equation for the total field from the
emitter sheet from Eq.~8! by dividing byDt in the limit of
Dt→0, we find that the real parts of the integrals diverge due
to division by zero, while the imaginary parts of the integrals
go to zero. The radiation reaction field between the emitters,
therefore, acts instantaneously with a finite force, and should
properly be placed within the dipole moment equation of
motion. The instantaneous action is due to the transverse
extent of the approximate plane wave radiated mode selected
by the emitter geometry. For a single-point source emitter,
the same analysis shows that the radiation reaction force ap-
pears instantaneously only at the position of the emitter. We
emphasize that the result is independent of the dipole ap-
proximation, as we can as well work within the electronic
wave functions of the emitters that will exhibit the collective
motion of the dipole sheet.

Letting Dt→0, the field within the gain sheet becomes

Ê~0,0,0,t !5Ê~0,0,0,t !2
iaxqv0n0dŝ~ t !

2e0c

1
iaxqv0n0d* ŝ†~ t !

2e0c
, ~9!

but where the second term requires the presence of the emit-
ter sheet in the superposition state. If we consider again the
case of superradiance, an emitter at the center of the sheet
has a level decay given from the Hamiltonian byd^ĤA&/dt
5 iqv0^Ê(0,0,0,t)@dŝ(t)2d* ŝ†(t)#&, and inserting the di-
pole part of the field of Eq.~9! leads to a spontaneous decay
of (d^ĤA&/dt)RR52(q2v0

2n0udu2/2e0c)^ŝa(t)1ŝb(t)&,
where the RR subscript designates radiation reaction. Analy-
sis of the broadband vacuum fluctuations contained in the
first field term of Eq.~9! leads to an additional decay rate of
(d^ĤA&/dt)VF52(q2v0

2n0udu2/2e0c)^ŝa(t)2ŝb(t)&, or a
superradiance decay rate of (3l 0

2n0)/~4p2tsp! wherel0 is the
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emission wavelength andtsp is the single isolated emitter
spontaneous decay rate. This is the typical result for a per-
turbation analysis of superradiance from an emitter sheet@1#,
and note that the analysis yields the result that 50% of the
emission rate arises from radiation reaction while 50% arises
from vacuum fluctuations, and where the vacuum fluctua-
tions yield a stable ground state for the emitters coupled to
the radiation field@11,12#. Inserting the radiation reaction
field of Eq. ~9! into Eq. ~6!, the new equation of motion for
the dipole moment operator, including the radiation reaction
force, becomes

dŝ

dt
52H iv02

v0q
2udu2n0@ŝa~ t !2ŝb~ t !#

2\e0c
J ŝ~ t !

1
iq

\
@ŝa,n~ t !2ŝb,n~ t !#(

m
@dn* •Em~rn!âm~ t !

1dn* •Em* ~rn!âm
† ~ t !#1

i

\
@ĤIRA~ t !,ŝ~ t !#, ~10!

where the coupling to the dipole adjoint operator is neglected
based on the rotating wave approximation.

We can estimate the size of the radiation reaction force on
the stimulated emission rate in a large cavity laser system if
the gain in fact arises from such an emitter sheet. Assuming
that Eq.~10! holds in the long-time approximation leading to
an exponential dipole dephasing rate@9#, the dipole moment
operator can be adiabatically eliminated from Eq.~1! to yield
the standard form for the lasing quasimode field operator.
Taking the commutator between the dipole moment operator
and the dephasing reservoir as yielding a dipole dephasing
rate ofga plus a noise operator, the result is

dâ

dt
52~ iv01gc!â~ t !1

v0q
2udu2n0@ŝa~ t !2ŝb~ t !#

\e0ga8L
â~ t !

1F̂a,b8 , ~11!

whereL is the cavity length, the new dipole noise operator
F̂a,b8 has been placed in the lasing field equation of motion,
and now

1

ga8
5

1

ga2v0q
2udu2n0@ŝa~ t !2ŝb~ t !#/2\e0c

'
1

ga
H 11

v0q
2udu2n0@ŝa~ t !2ŝb~ t !#

2\e0cga
J , ~12!

where the approximation holds for the typical case of dipole
dephasing dominating any radiation reaction effects. Insert-
ing Eq. ~12! into Eq. ~11! then gives

dâ

dt
52~ iv01gc!â~ t !1H v0q

2udu2n0@ŝa~ t !2ŝb~ t !#

\e0gaL

1
v0
2q4udu4n0

2@ŝa~ t !2ŝb~ t !#
2

2\2e0
2cga

2L J â~ t !1F̂a,b8 . ~13!

The size of the term depending on the square of the emitter
density can be estimated from the threshold condition in the
large cavity Fabry-Pe´rot laser, and for steady-state lasing we
have

v0q
2udu2n0@ŝa~ t !2ŝb~ t !#

2\e0cga
'
Lgc

2c
5
1

2
lnS 1RD , ~14!

whereR is the intensity reflectivity of the mirrors. For high
reflectivity the radiation reaction force therefore yields an
increase in the stimulated emission rate of at most a few
percent~1% forR50.98!. For transient effects, such as gain
switching, the emitter density can exceed its threshold value
and increase the radiation reaction force.

The strong similarity between the square dependence term
for stimulated emission in Eq.~13! and that expected for
superradiance from the same sheet also has an analogous
description given from classical field interference. The gain
sheet is driven by a stimulating field that can be given at an
emission time byESt~r ,t!, and results in an induced field
from each dipole emitter given byEn~r ,t!. The resulting field
energy is then found in the standard way by a volume inte-
gration of the square of the summed fields, and can be ex-
pressed by

E d3r uESt~r ,t !1(
n

En~r ,t !u2

5E d3r uESt~r ,t !u212 ReE d3r ESt* ~r ,t !•(
n

En~r ,t !

1E d3r(
n

(
n8

En* ~r ,t !•En8~r ,t !. ~15!

When the overlap integrals between the dipole fields and
stimulating field are zero, due to a temporally short stimulat-
ing pulse, the field interference between the dipole fields in
Eq. ~15! yields a classical description of superradiance. For
steady-state excitation, if the emitter distribution closely
matches the field distribution, as for a well-designed laser,
the extra stimulated emission is radiated into the lasing
mode.
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