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We demonstrate that the reciprocal-space Hamiltonian method for quantizing the electromagnetic fields in a
dispersive dielectric medium leads to inconsistencies when applied to the cases of plasmon polaritons and
coupled phonon-plasmon polaritons. In particular, we show that the use of the standard expressions for the
dielectric functions in these two cases leads to the violation of the Huttner-Barnett velocity-ratio sum rule and,
hence, to the breakdown of the equal-time canonical field commutation relations. We show that correct
behavior is recoverable after the dielectric functions are appropriately regularized. Regularization effectively
leads in each case to the introduction of an additional transverse low-frequency polariton branch. This is
sufficient to rectify the theory and there is no need to invoke the presence of the longitudinal modes. The
theory is illustrated with reference to the coupled phonon-plasmon polaritons of Si-doped GaAs.
@S1050-2947~96!04409-5#

PACS number~s!: 42.50.2p, 03.70.1k

I. INTRODUCTION

Over the last decade or so considerable research effort has
been aimed at extending quantum optics theory to the realm
of continuous dielectric media@1–18#. Recent interest has
been fueled by advances in the detection of quantum optical
processes in media@19#. An essential first step in the study of
quantum processes in media is the development of an unam-
biguous field quantization program that can be implemented
straightforwardly, preferably in a manner analogous to the
case of nonrelativistic quantum electrodynamics in vacuum.
The issue of quantization has been complicated by the non-
local nature of most dielectric media in both space and time,
as reflected in the dependence of the dielectric function
e~v,k! on frequency and wave vector.

The problem is considered to have been solved for a cer-
tain class of linear media, namely, those characterized by a
single frequency-dependent dielectric functione~v!. The
procedure used follows the guidelines of classical electrody-
namics with the fields being expressed as linear combina-
tions of monochromatic components and with Maxwell’s
equations determining the spatial dependence. Quantization
is achieved by replacing the amplitudes with operators that
are made to obey boson commutation relations. The recent
work by Huttner and Barnett@16# provided justification from
a canonical perspective that for such media quantization can
proceed in this standard fashion. One of the main require-
ments of the general theory is that the momentum which is
canonically conjugate toA, the transverse vector potential of
light in the medium, is2D as is the case in earlier work on
microscopic molecular quantum electrodynamics@20#. Hutt-
ner and Barnett, however, based their work on model media;
they did not proceed to discuss application to a specific di-
electric medium nor did they consider the details of coupled
modes.

The formal procedure of quantizing the three-dimensional

polariton fields in a real medium characterized by a given
e~v! consists of writing down the Hamiltonian for each mode
and constructing the quantum-mechanical operator of the
vector potential that conforms with Maxwell’s equations, to-
gether with the boson commutation relations between the
mode annihilation and creation operators@21#. This enables
the equal-time canonical commutation relations between the
total field components to be evaluated. One of the character-
istic features of the transverse electromagnetic fields quan-
tized in this manner is their dependence on the group and
phase velocitiesv g

j andv p
j of the polariton branchesj . There

are two sum rules involving the velocities, both of which
have been derived by Huttner and Barnett@16#. The first is
the sum of products of the velocities in the form(jv g

j v p
j /

c̄ 251, wherec̄ 25~e0e`m0!
21 and the second is the sum of

the velocity ratios(jv g
j /v p

j 51. As we explain shortly, the
validity of the velocity-ratio sum rule is crucial for the iden-
tification of the electric displacement fieldD as the minus of
the momentum canonically conjugate to the transverse vector
potentialA. Because of its importance in the quantization
program, we shall refer to the velocity-ratio sum rule as the
Huttner-Barnett sum rule.

In this paper we examine the implications of applying the
reciprocal-space quantization methods to two important ex-
amples of polariton fields in real media, namely, plasmon
polaritons and coupled phonon-plasmon polaritons. Plasmon
polaritons are well characterized modes of light in bulk met-
als and in suitably doped semiconductors. If the semiconduc-
tor is a polar material the plasmons can couple strongly with
transverse-optical phonons leading to coupled phonon-
plasmon modes. These modes have been studied extensively
by both theory and experiment and are now considered to be
well understood. However, as we show below, the quantum
optics theory of such polaritons is beset by undesirable fea-
tures that need to be rectified before the theory can be used to
study associated quantum optical processes.

In Sec. II we give a brief outline of the general formalism
involving the quantization of polaritons with a given dielec-
tric function e~v!. In Sec. III we discuss plasmon polaritons
using analytical methods to exhibit the breakdown of the
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Huttner-Barnett velocity sum rule and the conflicting identi-
fication of canonical field variables for this particular case. In
Sec. IV we analyze the case of coupled modes and, using
typical parameters for doped GaAs, we display the behavior
of the phase and group velocities for the various polariton
branches and the associated sum rules. We thus demonstrate
both analytically and numerically the breakdown of the
quantization scheme for this case, too. In Sec. V we show
how the discrepancies that are inherent in the plasmon and
coupled phonon-plasmon dielectric functions can be rem-
edied by regularization. Section VI contains our comments
and final conclusions.

II. QUANTIZED POLARITONS

For simplicity, we confine our attention to transverse
fields within dielectric media characterized by real dielectric
functions. The assumption of the existence of a dielectric
function is central to the reciprocal-space Hamiltonian
method of field quantization in continuous media. A homo-
geneous nonmagnetic medium characterized by a single
frequency-dependent dielectric functione~v! has a discrete
polariton Hamiltonian which, in the radiation gauge, can be
written in terms of a transverse vector potential in the fol-
lowing form:

Hjl~kn!5
1

2
e0E

L3
dVF S ]~ve!

]v D
j

Ȧ jl
2 ~r ,t,kn!

1c2$“3A jl~r ,t,kn!%
2G . ~1!

This is the familiar general polariton field Hamiltonian@22#,
written here in terms of the vector potential. It is well known
that this Hamiltonian embodies both the electromagnetic
field energy and the mechanical energy of the medium. We
have verified by explicit calculations that for polar optical
phonons, plasmons, and coupled modes the Hamiltonian can
be derived from a Lagrangian starting point@23# or from the
requirement of conservation of energy flow@24#. In these
cases the results can be cast in the general form given in Eq.
~1! once the dielectric function has been identified.

The system of fields is assumed to be confined in a cubic
cavity of volumeL3 subject to periodic boundary conditions.
The fields appearing in Eq.~1! are associated with a well-
defined mode labeled byj , l, andkn wheren[(nx ,ny ,nz).
The complete fields arise by the superposition of such inde-
pendent modes. The modes of frequencyvj ~kn!, wavevector
kn , polarizationl51,2, in general, belong to one of several
possible branchesj satisfying the polariton dispersion rela-
tion

k25
v2e

c2
. ~2!

The notation is such that the presence of the labelj indicates
that an expression should be evaluated at frequencyvj . The
quantization is done mode by mode and begins by writing
for the vector potential associated with the discrete polariton

A jl~r ,t,kn!5Ã jl~r ,t,kn!1Ã jl
† ~r ,t,kn!. ~3!

Superposition gives rise to the complete transverse vector
potential in the form

A~r ,t !5(
j ,l

(
n

$Ã jl~r ,t,kn!1Ã jl
† ~r ,t,kn!%. ~4!

In the three-dimensional bulk, in the limitL→`, the explicit
form of Ã jl can easily be specified in terms of transverse
plane waves withk a continuous variable. The remaining
requirement is that the polariton Hamiltonian Eq.~1! reduces
to the canonical form. The complete transverse vector poten-
tial operator can then be written in the form

A~r ,t !5(
j ,l

E d3kH \

2~2p!3v je0e j
S vgjvpj D J

1/2

3$êj~k,l!aj~k,l!eik•r2 iv j ~k!t1H.c.%, ~5!

where H.c. denotes Hermitian conjugate andê j ~k,l! are unit
polarization vectors satisfying@25,26#

(
l51,2

êa
j ~k,l!êb

j 8~k,l!5d j j 8Fdab2
kakb

k2 G . ~6!

For each allowed polariton branchj the phase and group
velocities arev p

j 5(v/k) j and v g
j 5(]v/]k) j . Their ratio

satisfies the identity@27#

vp
j

vg
j [11S v

2e

]e

]v D
j

. ~7!

There are two other important identities involving the group
and phase velocities in sums over contributions arising from
the allowable polariton branches. The first is the velocity-
product sum in the form

(
j
vp
j vg

j 5(
j

S v

k

]v

]k D
j

5
1

2k

]

]k (
j

v j
2 ~8!

and the second is the velocity-ratio sum in the form

(
j

S vgjvpj D 5(
j

S kv ]v

]k D
j

5
1

2
k

]

]k
@ ln P j~v j

2!#, ~9!

wherePj ~ ! stands for the product of~ !. The above two
identities become sum rules when the right-hand sides are
evaluated.

The operatorsaj ~k,l! in Eq. ~5! are boson operators sat-
isfying the commutation relations

@aj~k,l!,aj 8
†
~k8,l8!#5d j j 8dll8d~k2k8! ~10!

and the complete polariton Hamiltonian has the canonical
form

H5(
j ,l

E d3k Hjl~k!5 1
2(
jl

E d3k \v j~k!

3@aj†~k,l!aj~k,l!1aj~k,l!aj†~k,l!#. ~11!

The complete electric field operatorE and the complete elec-
tric displacement field operatorD corresponding to Eq.~5!
are obtainable in the forms
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E~r ,t !5 i(
j ,l

E d3kH \v j

2~2p!3e0e j
S vgjvpj D J

1/2

3$êj~k,l!aj~k,l!eik•r2 iv j ~k!t2H.c.% ~12!

and

D~r ,t !5 i(
j ,l

E d3kH \v je0e j
2~2p!3 S vgjvpj D J

1/2

3$êj~k,l!aj~k,l!eik•r2 iv j ~k!t2H.c.%. ~13!

Equations~5! and ~13! allow the explicit evaluation of the
equal-time commutator between Cartesian componentsa
andb of these fields. With the use of Eqs.~10! and ~6!, we
obtain, after some algebra,

@Aa~r ,t !,2Db~r 8,t !#5 i\Iab~r ,r 8!, ~14!

where

I ab~r ,r 8!5
1

~2p!3 (
j
E d3kS vgjvpj D Fdab2

kakb

k2 Geik•~r2r8!.

~15!

The above theory is general in the sense that it applies to any
dielectric functione~v!. Clearly bothv g

j andv p
j are, in gen-

eral,k dependent and we cannot without further information
proceed to evaluate thek integral in Eq. ~15!; the sum
( jv g

j /v p
j must be obtained first.

In the most trivial case of a frequency-independent reale,
we deduce at once from Eq.~2! that there is only one branch
j51 and, from Eq.~7!, that the ratiov g

j /v p
j is unity for all k.

The integral in Eq.~15! can be evaluated and written in a
closed form and Eq.~14! then becomes

@Aa~r ,t !,2Db~r 8,t !#5 i\Iab~r ,r 8!5 i\dab
' ~r2r 8!,

~16!

wheredab
' ~r2r 8! is the transverse Diracd function @25,26#.

Thus we have shown that the general quantization pro-
gram applied to this simple case yields the expected result of
microscopic theory, namely, that2D is the momentum ca-
nonically conjugate toA. For the desired result Eq.~16! to be
true, in general the Huttner-Barnett sum rule

(
j

vg
j

vp
j 51 ~17!

must be valid in general.

III. PLASMON POLARITONS

Plasmon polaritons have the well-known dielectric func-
tion

e~v!5e`S 12
vp
2

v2D , ~18!

wheree` is the high-frequency dielectric constant of the ma-
terial andvp is the plasma frequency. This dielectric func-
tion has an excellent record in the study of the transverse

response of an electron gas in metals and in doped semicon-
ductors in both the homogeneous and inhomogeneous cases
@28–31#.

The quantization procedure outlined in Sec. II can now be
applied to the plasmon polariton case by simply substituting
from Eq. ~18!. We see immediately that we have a single
polariton branch and the evaluation of the velocity ratio in
Eq. ~7! gives at once

vg
vp

5e~v!/e` , ~19!

which conflicts with the Huttner-Barnett sum rule. On sub-
stituting in Eq. ~15! we immediately conclude that the de-
sired commutation relations do not hold and it is not valid to
interpret2D as the momentum canonically conjugate toA.
On the other hand, we can easily show that the commutation
relation between components ofA and those of2e0E for the
plasmon polariton case@defined by Eqs.~18! and~19!# does
reduce exactly to the canonical form. From Eqs.~5! and~12!
we obtain, in a manner analogous to that leading to Eq.~14!,

@Aa~r ,t !,2e0Eb~r 8,t !#5 i\dab
' ~r2r 8!. ~20!

This immediately suggests that it is2e0E and not2D that is
the momentum canonically conjugate toA. Paradoxically,
the velocity-product sum rule

(
j

vg
j vp

j

c̄2
51 ~21!

is valid for this case. This can be checked explicitly for the
one-plasmon polariton branch using Eqs.~2! and ~18! and
with c̄ 251/~m0e0e`!.

The conclusion based on Eq.~20! incorrectly leads to
doubts about the validity of the quantization program and of
the Huttner-Barnett sum rule. As we show later, both the
quantization program and the Huttner-Barnett sum rule are
valid, but it is the model dielectric function commonly used
for the plasmons that is the cause of the inconsistencies.

IV. COUPLED PHONON-PLASMON POLARITONS

In doped polar semiconductor materials the coupled
phonon-plasmon polaritons are characterized by the dielec-
tric function

e~v!5e`F ~vL
22v2!

~vT
22v2!

2
vp
2

v2G , ~22!

wherevL andvT are the longitudinal- and transverse-optical
frequencies of the material andvp is the plasma frequency
due to conduction electrons. This dielectric function also has
an excellent record in the theory and experiment of coupled
phonon-

plasmons@28–31#. The dispersion relation for the polari-
tons is given by Eq.~2! with Eq. ~22!. We obtain

v42v2@k2c̄21vL
21vp

2#1vT
2@k2c̄21vp

2#50. ~23!

There are two branchesj5~1! and j5~2! and the dispersion
curves have the forms shown in Fig. 1. The validity of the
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Huttner-Barnett velocity-product sum rule can be shown at
once using Eq.~23!. We have, using Eq.~8!,

(
j56

vp
j vg

j

c̄2
5

1

2kc̄2
]

]k
@v1

2 1v2
2 #51. ~24!

On the other hand, the velocity-ratio sum rule is obtained
using Eq.~9! as follows:

(
j56

vg
j

vp
j 5

1

2
k

]

]k
ln$v1

2 v2
2 %5

k2c̄2

k2c̄21vp
2 . ~25!

The manifestk dependence of the result of summing the
velocity ratios indicates that the corresponding Huttner-
Barnett sum rule does not hold in this case. Clearly, ask→`
the right-hand side approaches unity and the sum rule applies
in this largek limit. However, strong deviations from unity
occur at smallk. To clarify this point further we need to
examine the dependence onk of the velocitiesv p

j andv g
j for

each branchj . These are obtained in the form

vp
j 5

c

A~e! j
~26!

and

vg
j 5vp

j H v2~v22vL
2!~v22vT

2!2vp
2~v22vT

2!2

v2~v22vL
2!~v22vT

2!1v4~vL
22vT

2! J
j

.

~27!

Consider a real system in which the coupled modes are
known to have been characterized by both theory and experi-
ment, namely, Si-doped GaAs. Using typical parameters for
this system it is possible to illustrate the variations of the
phase and group velocities with wave vector for each polar-
iton branchj and then examine the variations of their prod-
uct and ratio withk. In this manner we can examine the
validity of the sum rules numerically.

We choose a typical doping densityn such that
vp50.5vL . The dispersion curves for this case are displayed
in Fig. 1 and they have the typical polariton resonance dis-
cussed by Huttner and Barnett@16#. The modes, however,
carry both plasmon and optical phonon characters, depend-
ing on the value ofk. In Fig. 2~a! we display the variations of
the velocitiesvg andvp for each of the two branches and in
Fig. 2~b! we display the corresponding variations of their
ratio v g

j /v p
j , together with the sum of this quantity over the

two branches. As we inferred from the analytical results, Fig.
2~b! confirms that the sum(v g

j /v p
j is not equal to unity for

all values ofk. In fact the sum deviates drastically from the
value unity across a range of wave vectors and shows a ten-
dency to attain the asymptotic value of unity at largek. The
discrepancy of the ratio sum is a demonstration of an appar-
ent breakdown of the Huttner-Barnett sum rule and through
it follows the breakdown of the quantization scheme for the
phonon-plasmon polaritons.

The consequences of the result in Eq.~25! for the canoni-
cal commutation relations can be seen at once by direct sub-
stitution in Eqs.~14! and ~15!. We have

@Aa~r ,t !,2Db~r 8,t !#5 i\dab
' ~r2r 8!2

i\

~2p!3

3E d3kS vp
2

k2c̄21vp
2D

3Fdab2
kakb

k2 Geik•~r2r8!. ~28!

This differs from the expected result in Eq.~16! by the ad-
ditional integral on the right-hand side. The integral may be
evaluated by choosing Cartesian componentsa and b, but
for brevity, the results will not be presented here. The mere
presence of this additional integral in Eq.~28! serves to fur-
ther highlight the breakdown of the quantization scheme. As
we show in Sec. V this breakdown is not a consequence of
the invalidity of the Huttner-Barnett sum rule, but is symp-
tomatic of the model embodied in the functional form of the
dielectric functione~v! Eq. ~22!.

V. REGULARIZATION

The results for the pure plasmon polariton given in Sec.
III, specifically Eqs.~19! and ~20!, conflict with those ex-

FIG. 1. Dispersion curvesv versusk for phonon-plasmon po-
laritons in doped bulk GaAs. The modes satisfy the dispersion re-
lation Eq.~2! with e given by Eq.~22!. The frequencyv is in units
of vL—the longitudinal-optical frequency of GaAs~\vL'36 meV!.
The doping is such thatvp50.5vL . The wave vector is in units of
k05(vL/ c̄) where c̄25c2/e` with e`510.89 the high-frequency
dielectric constant of GaAs. The branches are labeled byj5~1! and
j5~2!.

FIG. 2. ~a! Variations with wave vector of the phase and group
velocitiesv g

j andv p
j ~in units of the velocity of lightc! of the6

branches of Fig. 1.~b! Variations with wave vector of the ratio
v g
j /v p

j for j5~6! branches and the sum of this ratio over the two
branches.
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pected from the reciprocal-space quantization scheme in that
they lead to the assertion that2e0E is the momentum ca-
nonically conjugate to the vector potential, not2D. More-
over, we have seen in Sec. IV that the coupled phonon plas-
mons deviate strongly from the expected behavior over a
range of wave vectors and have shown explicitly the conse-
quences of this on the canonical commutation relations. The
theory of polaritons involves only transverse fields for which
e~v!Þ0. It could be argued that the longitudinal modes sat-
isfying e~v!50, which we have not considered, may have a
role in the breakdown of the quantization scheme of plasmon
polaritons and phonon-plasmon polaritons. However, it is
easy to show that in the infinite bulk the longitudinal modes
are quantizable separately@32# and are completely indepen-
dent of the transverse polaritons.

The clue to the resolution of the problem stems from the
fact that the quantization scheme works well for the pure
optical phonon modes@21#, obtainable from the dielectric
function in Eq.~22! by settingvp50. Furthermore, we have
seen in Sec. II that the use of the pure plasmon dielectric
function Eq.~18! @obtainable from Eq.~22! by setting both
vL andvT to zero# has undesirable consequences. The dis-
crepancy must then be attributed to the plasmon part of the
dielectric function and it is the low wave-vector limit of the
dispersion curve that appears to be the source of the problem.
This suggests a modification of the dielectric function Eq.
~18! to read

e~v!5e`S 11
vp
2

v0
22v2D , ~29!

wherev0!vp is a small frequency whose sole purpose is to
regularize the quantization program. With the use of the
regularized plasmon dielectric function Eq.~29! the disper-
sion relation Eq.~2! yields for this case

v42v2~vp
21v0

21k2c̄2!1k2c̄2v0
250. ~30!

The solution of this equation leads to two branches labeled
~6! with the new branch labeled~2! in the low-frequency
region. The validity of the Huttner-Barnett velocity-ratio
sum rule can be checked analytically for the two branches
~6! satisfying Eq.~30!. We obtain

(
j56

S vgjvpj D 5
1

2
k

]

]k
ln~v1

2 v2
2 !5

1

2
k

]

]k
ln~k2v0

2c̄2!51.

~31!

This proves that the Huttner-Barnett velocity-ratio sum rule
is valid for the regularized plasmon polaritons and that this
conclusion holds irrespective of the value ofv0, although the
physical situation demands thatv0→0. It is also easy to
check that ask→0 the frequency of the new branchv2→0.
In this limit the group- and phase-velocities both vanish
~v g

2→0 andv p
2→0!, but in such a manner that their ratio

v g
2/v p

2 approaches unity. Clearly for small but finitek, the
discrepancy in the contribution of the~1! branch is exactly
compensated by that from the new branch. The validity of
the Huttner-Barnett sum rule for the regularized plasmon po-
laritons immediately leads us to correctly identify the mo-
mentum canonically conjugate to the vector potential as2D.
This ~correct! identification should be contrasted with the

~incorrect! identification made in Sec. II arising from the
conventional form of the dielectric function.

Consider next the case of coupled modes. By analogy we
modify Eq. ~22! to read

eR~v!5e`F ~vL
22v2!

~vT
22v2!

1
vp
2

~v0
22v2!G . ~32!

With the use of the regularized dielectric function Eq.~32!
the dispersion relation acquires a new polariton branch la-
beled~0! in the low-frequency region. This is shown in Fig.
3 for the same parameters as in Fig. 1 except thatv050.1vp .
There are corresponding velocity variations as shown in Fig.
4~a! with the ratio variations shown in Fig. 4~b!. The sum of
velocity ratios is seen in Fig. 4~b! to give unity for all values
of k. This result can fortunately be verified analytically. It is
easy to check that the dispersion relation is cubic inv2 and
has three distinct solutionsv~1!, v~2!, andv~0! for any
givenk and that the product of the three solutions is given by
thev-independent term. The analogue of Eq.~31! is

FIG. 3. Dispersion curvesv versusk for regularized phonon-
plasmon polaritons in doped bulk GaAs. The modes satisfy the
dispersion relation Eq.~2! with e5eR as given by Eq.~32! and with
v050.1vp . All other parameters are the same as those in Fig. 1.
There are three branches here: two are analogues of the~6!
branches in Fig. 1 and the third is a low-frequency branch labeled
~0! arising from the regularization procedure.

FIG. 4. ~a! Variations of the phase and group velocities of the
three polariton branches~1!, ~2!, ~0! with wave vector. The curves
corresponding to the new polariton branch are in the low-velocity
region and for convenience we have chosen to label only the upper
curvev p

0/c. Both curves have the same value atk50, but thev g
0/c

curve lies below thev p
0/c curve.~b! Variations with wave vector of

the ratiov g
j /v p

j for the three branchesj5~1!, ~2!, ~0! and the sum
of the ratio over the three branches.
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(
j56,0

S vgjvpj D 5
1

2
k

]

]k
ln$v~1 !2v~2 !2v~0!2%

5
1

2
k

]

]k
ln$k2vT

2v0
2c̄2%51. ~33!

We conclude that the Huttner-Barnett velocity-ratio sum rule
is valid for this case, too. As a result, the regularized polar-
iton theory for coupled phonon-plasmon modes is amenable
to quantization in reciprocal space with conclusions in line
with those demanded by the general polariton theory de-
scribed in Sec. II.

VI. COMMENTS AND CONCLUSIONS

This paper has examined the validity of the reciprocal-
space quantization program for two important cases of elec-
tromagnetic fields in media, namely, plasmon polaritons and
coupled phonon-plasmon polaritons. The functional forms of
these dielectric functions have been widely applied in the
study of solid-state plasmas in metals, semimetals, and in
doped semiconductors, both in light scattering and in electric
transport. We have shown that the use of these dielectric
functions in the context of the reciprocal-space quantization
program is not justified. For the pure plasma case the results
are misleading in that the momentum canonically conjugate
to the vector potential is proportional to the electric field
vector, rather than the displacement vector. This is a peculiar
feature of the theory, leading as it does to a definite analyti-
cal result, emphasizing a wrong identification of the canoni-
cal field variables. In the coupled phonon-plasmon case dis-
cussed in Sec. IV we have obtained an analytical result for
the sum of the velocity ratios and explored the effect of this
on the commutation relations. Numerical results have clearly
exhibited the breakdown of the corresponding Huttner-
Barnett sum rule for the practical situation of coupled pho-
non plasmons in Si-doped GaAs. We have also shown how
the regularized forms of the dielectric function stemming
from Eq. ~32! are free from the problems inherent in the
conventional forms.

The manifestations of the inconsistencies of the dielectric
functions were established by direct consideration of the

commutation relations between field variables. Since quan-
tum processes rely on these, their validity is important. The
evaluation of the commutation relations has led us to the
investigation of the validity of the Huttner-Barnett sum rule
involving the ratio of the group and phase velocities of the
polariton. It is the small-k behavior of this ratio for the po-
lariton branches that is responsible for the discrepancies. It
follows that any effects involving this region ofk will, in
principle, be prone to mishandling using the conventional
theory, while the corresponding effects based on the regular-
ized theory should be free from such difficulties. The regu-
larization introduces a parameterv0 whose precise value is
unimportant provided it is much smaller than the plasma
frequency. Clearly, a finite but smallv0 helps to soften the
singularity at v50 through the involvement of a low-
frequency polariton branch.

Throughout this paper we have assumed that we are deal-
ing with homogeneous unbounded media. There has been
further effort recently to extend quantum optics theory in
dielectric media to encompass the inhomogeneous case@33#
and the theory could accommodate the case of media that
show both dispersion and loss, i.e., those characterized by
complex dielectric functions. In the inhomogeneous case
electromagnetic and matter fields are made to obey boundary
conditions at the interfaces between media characterized by
different dielectric functions. One of the important features
of the inhomogeneous case is the appearance of interface
modes, which can contribute significantly to the quantum
processes involving polaritons@32,34#. Furthermore, the
presence of interfaces can lead to hybrid modes that possess
linear combinations of transverse and longitudinal fields. It
can, therefore, be suggested that the reciprocal space quanti-
zation techniques should be applied to interface problems to
assess how a regularized theory would modify the details of
the interaction of quantum systems in the vicinity of inter-
faces. These matters are currently under investigation and the
results will be reported in due course.
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