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Quantum optics of plasmon polaritons and velocity sum rules
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We demonstrate that the reciprocal-space Hamiltonian method for quantizing the electromagnetic fields in a
dispersive dielectric medium leads to inconsistencies when applied to the cases of plasmon polaritons and
coupled phonon-plasmon polaritons. In particular, we show that the use of the standard expressions for the
dielectric functions in these two cases leads to the violation of the Huttner-Barnett velocity-ratio sum rule and,
hence, to the breakdown of the equal-time canonical field commutation relations. We show that correct
behavior is recoverable after the dielectric functions are appropriately regularized. Regularization effectively
leads in each case to the introduction of an additional transverse low-frequency polariton branch. This is
sufficient to rectify the theory and there is no need to invoke the presence of the longitudinal modes. The
theory is illustrated with reference to the coupled phonon-plasmon polaritons of Si-doped GaAs.
[S1050-294{P6)04409-3
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[. INTRODUCTION polariton fields in a real medium characterized by a given
e(w) consists of writing down the Hamiltonian for each mode
Over the last decade or so considerable research effort hasnd constructing the quantum-mechanical operator of the
been aimed at extending quantum optics theory to the realmector potential that conforms with Maxwell’s equations, to-
of continuous dielectric medifl—18. Recent interest has gether with the boson commutation relations between the
been fueled by advances in the detection of quantum opticahode annihilation and creation operatp24]. This enables
processes in med[d9]. An essential first step in the study of the equal-time canonical commutation relations between the
guantum processes in media is the development of an unanwetal field components to be evaluated. One of the character-
biguous field quantization program that can be implementedstic features of the transverse electromagnetic fields quan-
straightforwardly, preferably in a manner analogous to thdized in this manner is their dependence on the group and
case of nonrelativistic quantum electrodynamics in vacuumphase velocities |, andv }, of the polariton branches There
The issue of quantization has been complicated by the norare two sum rules involving the velocities, both of which
local nature of most dielectric media in both space and timehave been derived by Huttner and Barriéf]. The first is
as reflected in the dependence of the dielectric functionhe sum of products of the velocities in the fornz;v {v 1/
e(wk) on frequency and wave vector. ¢ %=1, wherec *=(eye..up) ' and the second is the sum of
The problem is considered to have been solved for a cetthe velocity ratiosZ;v /v ,=1. As we explain shortly, the
tain class of linear media, namely, those characterized by walidity of the velocity-ratio sum rule is crucial for the iden-
single frequency-dependent dielectric functietw). The tification of the electric displacement fieldl as the minus of
procedure used follows the guidelines of classical electrodythe momentum canonically conjugate to the transverse vector
namics with the fields being expressed as linear combingsotential A. Because of its importance in the quantization
tions of monochromatic components and with Maxwell's program, we shall refer to the velocity-ratio sum rule as the
equations determining the spatial dependence. Quantizatidduttner-Barnett sum rule.
is achieved by replacing the amplitudes with operators that In this paper we examine the implications of applying the
are made to obey boson commutation relations. The recemgciprocal-space guantization methods to two important ex-
work by Huttner and Barneffl6] provided justification from amples of polariton fields in real media, namely, plasmon
a canonical perspective that for such media quantization capolaritons and coupled phonon-plasmon polaritons. Plasmon
proceed in this standard fashion. One of the main requirepolaritons are well characterized modes of light in bulk met-
ments of the general theory is that the momentum which isls and in suitably doped semiconductors. If the semiconduc-
canonically conjugate t8,, the transverse vector potential of tor is a polar material the plasmons can couple strongly with
light in the medium, is—D as is the case in earlier work on transverse-optical phonons leading to coupled phonon-
microscopic molecular quantum electrodynanii28]. Hutt-  plasmon modes. These modes have been studied extensively
ner and Barnett, however, based their work on model medigyy both theory and experiment and are now considered to be
they did not proceed to discuss application to a specific diwell understood. However, as we show below, the quantum
electric medium nor did they consider the details of couplecbptics theory of such polaritons is beset by undesirable fea-
modes. tures that need to be rectified before the theory can be used to
The formal procedure of quantizing the three-dimensionaktudy associated quantum optical processes.
In Sec. Il we give a brief outline of the general formalism
involving the quantization of polaritons with a given dielec-
*Permanent address: Physics Department, King Saudi Universitfric function e(w). In Sec. Il we discuss plasmon polaritons
Riyadh 11451, Saudi Arabia. using analytical methods to exhibit the breakdown of the
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Huttner-Barnett velocity sum rule and the conflicting identi- Superposition gives rise to the complete transverse vector
fication of canonical field variables for this particular case. Inpotential in the form

Sec. IV we analyze the case of coupled modes and, using

typical parameters for doped GaAs, we display the behavior _ X N

of the phase and group velocities for the various polariton A(r,t)—% ; ALk FARNLKY - (4)
branches and the associated sum rules. We thus demonstrate

both analytically and numerically the breakdown of thelIn the three-dimensional bulk, in the limit—, the explicit
quantization scheme for this case, too. In Sec. V we shoform of A;, can easily be specified in terms of transverse
how the discrepancies that are inherent in the plasmon an@ane waves withk a continuous variable. The remaining
coupled phonon-plasmon dielectric functions can be remrequirement is that the polariton Hamiltonian Et). reduces
edied by regularization. Section VI contains our commentg0 the canonical form. The complete transverse vector poten-

and final conclusions. tial operator can then be written in the form
7 vl )12

Il. QUANTIZED POLARITONS A = f 3l —— | 2

(r,t) LE)\ d 2(277)3(1)1'6051' U{)

For simplicity, we confine our attention to transverse
fields within dielectric media characterized by real dielectric x{&(k,\)al(k, ek rietiygel  (5)
functions. The assumption of the existence of a dielectric » ) . )
function is central to the reciprocal-space HamiltonianWhere H.c. denotes Hermitian conjugate &gk \) are unit
method of field quantization in continuous media. A homo-Polarization vectors satisfyin5,26
geneous nonmagnetic medium characterized by a single

frequency-dependent dielectric functiefw) has a discrete > éia(k,)\)éjﬁ'(k,)\): 8j [ Sap— ka_lgﬁ _ (6)
polariton Hamiltonian which, in the radiation gauge, can be A=12 k

written in terms of a transverse vector potential in the fol- . .

lowing form: For each allowed polariton branghthe phase and group

velocities arev b= (w/K); and v=(dw/dk);. Their ratio

1 we)| -, satisfies the identity27]
ij(kn): E EoJ'Lst ( (90) )ij(r,t,kn) UJ " (96
| =15 50 - ™
vy 2€ dw)

+CH VXA Kk . (1)

There are two other important identities involving the group
and phase velocities in sums over contributions arising from

This is the familiar general polariton field Hamiltonig22],  the allowable polariton branches. The first is the velocity-
written here in terms of the vector potential. It is well known product sum in the form

that this Hamiltonian embodies both the electromagnetic 1
field energy and the mechanical energy of the medium. We i 0 Jw) J 2
have verified by explicit calculations that for polar optical 2 U]Pvlg_z ( ) "2k ok 2 @i 8)
phonons, plasmons, and coupled modes the Hamiltonian can
be derived from a Lagrangian starting pdi8] or from the  and the second is the velocity-ratio sum in the form
requirement of conservation of energy fld&4]. In these J. » L
cases the results can be cast in the general form given in Eq. Ug| A 2
(1) once the dielectric function has been identified. 2 (_J;) =2 (Z W) T2 k ok [In ITj(«f)],  (9)

The system of fields is assumed to be confined in a cubic !
cavity of volumeL® subject to periodic boundary conditions. where IT;() stands for the product of). The above two
The fields appearing in Eq1) are associated with a well- identities become sum rules when the right-hand sides are
defined mode labeled by A, andk, wheren=(n,,n,,n,). evaluated. ‘
The complete fields arise by the superposition of such inde- The operators! (k,\) in Eqg. (5) are boson operators sat-
pendent modes. The modes of frequeagik,), wavevector isfying the commutation relations
k,, polarizationn=1,2, in general, belong to one of several

\v ]

possible brancheg satisfying the polariton dispersion rela- [aj(k,x),aj'T(k’,)\’)]=5“-,5M,5(k—k’) (10
tion
and the complete polariton Hamiltonian has the canonical
w’e form
kzz?. (2)

The notation is such that the presence of the Iahedicates B
that an expression should be evaluated at frequencyrhe it i j it
guantization is done mode by mode and begins by writing X[a(kpaltkon) Faltkali(ko ] (1)
for the vector potential associated with the discrete polaritorrhe complete electric field operatBrand the complete elec-
~ ~ tric displacement field operatd corresponding to Eq5)
At kn) = A (rtka) AL EK). (3 are obtainable in the forms

H=>, fd?’k ij(k)zéjz)\ jd3k fw;(K)
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Ty i) Y2 response of an electron gas in metals and in doped semicon-
E(r,t)=i2 d3k{ W (—,9 J ductors in both the homogeneous and inhomogeneous cases
BN (2m) €0€j \Uyp [28-31].
x{&(k,N)al (kN ek ety el (12 The quantization procedure outlined in Sec. Il can now be
applied to the plasmon polariton case by simply substituting
and from Eq. (18). We see immediately that we have a single
1 polariton branch and the evaluation of the velocity ratio in
B 5 | loj€oe; (vé) Eq. (7) gives at once
D(r,t) % fd k[ 2277 | o] .
x{&(k,\)al(k,n)elk oty el (13) v, c(w)/e, (19

Equations(5) and (13) allow the explicit evaluation of the Which cqnflicts with the_ Huttne_:r-Barnett sum rule. On sub-
equal-time commutator between Cartesian components stituting in Eq.(15 we immediately conclude that the de-
and g of these fields. With the use of Eq4.0) and(6), we  Sired commutation relations do not hold and it is not valid to

obtain, after some algebra, interpret—D as the momentum canonically conjugateAto
On the other hand, we can easily show that the commutation

[ALr,t),=Dg(r',t)]=ifl 45(r,r'), (14 relation between components Afand those of-¢)E for the

plasmon polariton cadelefined by Eqs(18) and(19)] does

where reduce exactly to the canonical form. From E@8.and(12)

we obtain, in a manner analogous to that leading to(E4),

<

eik-(r—r’)

A9 This immediately suggests that itise,E and not—D that is
The above theory is general in the sense that it applies to ari)e momentum canonically conjugate #o Paradoxically,
dielectric functione(w). Clearly bothv ; andv, are, in gen-  the velocity-product sum rule
eral,k dependent and we cannot W|thout further information

' Kok
Lap(ror) = 533 E fd k(;,i){ kzﬁ [AL(r.t),— €Ep(r' )]=ihdLy(r—r").  (20)

I

proceed to evaluate thk integral in Eq.(15); the sum YgUp _
Zjv 4/v}, must be obtained first. ; 1 @D

In the most trivial case of a frequency-independent egal
we deduce at once from E(R) that there is only one branch is valid for this case. This can be checked explicitly for the
j=1 and, from Eq(7), that the raua;'/ulp is unity for all k. one- plasmon polariton branch using E¢8) and (18) and
The integral in Eq.15) can be evaluated and written in a with ¢ € 2=1U(poepE.)-

closed form and Eq(14) then becomes The conclusion based on EqO) incorrectly leads to
doubts about the validity of the quantization program and of
[AL(r,t),=Dg(r’,t)]=ifl gzr,r')= |h6ﬂ3(r—r ), the Huttner-Barnett sum rule. As we show later, both the

(16)  quantization program and the Huttner-Barnett sum rule are
valid, but it is the model dielectric function commonly used

|
where 5,4(r —r') is the transverse Dirag function[25,26.  for the plasmons that is the cause of the inconsistencies.
Thus we have shown that the general quantization pro-

gram applied to this simple case yields the expected result of

microscopic theory, namely, thatD is the momentum ca-

nonically conjugate té\. For the desired result E¢L6) to be In doped polar semiconductor materials the coupled

true, in general the Huttner-Barnett sum rule phonon-plasmon polaritons are characterized by the dielec-
tric function

IV. COUPLED PHONON-PLASMON POLARITONS

]
2 =1 (17 (0P-0?) o

(wF-o?) ) 2

e(w)=¢€,

must be valid in general.
wherew, andwy are the longitudinal- and transverse-optical
IIl. PLASMON POLARITONS frequencies of the material and, is the plasma frequency
due to conduction electrons. This dielectric function also has
Plasmon polaritons have the well-known dielectric func-an excellent record in the theory and experiment of coupled

tion phonon-
2 plasmong28—31]. The dispersion relation for the polari-
e(w)= Ew< 1— %) (18) tons is given by Eq(2) with Eq. (22). We obtain

0*— 0 kC*+ ol + 0]+ 0 k%P + 02]=0. (23
wheree, is the high-frequency dielectric constant of the ma-
terial andw, is the plasma frequency. This dielectric func- There are two branchgs=(+) andj=(—) and the dispersion
tion has an excellent record in the study of the transverseurves have the forms shown in Fig. 1. The validity of the
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02 o ] FIG. 2. (a) Variations with wave vector of the phase and group
0 velocitiesv ] andv (in units of the velocity of lightc) of the =
0 05 1 15 2 25 3 35 4 9 p y orlg
' ’ k/ko ’ ' branches of Fig. 1(b) Variations with wave vector of the ratio
ng/va for j=(*) branches and the sum of this ratio over the two
branches.

FIG. 1. Dispersion curves versusk for phonon-plasmon po-
laritons in doped bulk GaAs. The modes satisfy the dispersion re-
lation Eq.(2) with € given by Eq.(22). The frequencyw is in units
of w —the longitudinal-optical frequency of GaAkw ~36 me\).

We choose a typical doping densitp such that
w,=0.5w . The dispersion curves for this case are displayed
The doping is such that,=0.5», . The wave vector is in units of in Fig. 1 and they have the typical polariton resonance dis-
ko= (w,/C) where c?= cg/sx with €,=10.89 the high-frequency cussed by Huttner and BarnéﬂG]. The modes, however,
dielectric constant of GaAs. The branches are labeledy-) and ~ C&Y both plasmon anq optical ph(_)non charactgrs, depend-
i=(-). ing on the value ok. In Fig. 2a) we display the variations of
the velocitiesv ; andv,, for each of the two branches and in
Huttner-Barnett velocity-product sum rule can be shown afig. 2b) we display the corresponding variations of their
once using Eq(23). We have, using Eq8), ratio v y/v },, together with the sum of this quantity over the
. two branches. As we inferred from the analytical results, Fig.
g 1 9 5, 2(b) confirms that the surilv y/v}, is not equal to unity for
; Z "ok gk Lot tet]=1 (24 all values ofk. In fact the sum deviates drastically from the
== value unity across a range of wave vectors and shows a ten-
On the other hand, the velocity-ratio sum rule is obtaineddency to attain the asymptotic value of unity at lakgeThe

using Eq.(9) as follows: discrepancy of the ratio sum is a demonstration of an appar-
_ ent breakdown of the Huttner-Barnett sum rule and through
vy 1 9 , kZc? it follows the breakdown of the quantization scheme for the

P ;1;2 7 kop Infel )= KoTr ol (25  phonon-plasmon polaritons.

The consequences of the result in E2p) for the canoni-
The manifestk dependence of the result of summing thec?‘l cpmmutation relations can be seen at once by direct sub-
velocity ratios indicates that the corresponding Huttner-Stitution in Egs.(14) and(15). We have
Barnett sum rule does not hold in this case. Clearly-ase
the right-hand side approaches unity and the sum rule applies  [A (r,t),— Dy(r',t)]= iﬁaﬁﬁ(r —r')—
in this largek limit. However, strong deviations from unity
occur at smallk. To clarify this point further we need to w2
examine the dependence kwf the velocities) }, andv |, for xj d3k( ” P

i
(27)

p —
each branch. These are obtained in the form 2c?+ w,2J
K.Kg| -
; C _ B ik (r—r")
UJp: (26) X 5a,3 I e . (28
\/(E)j

This differs from the expected result in E{.6) by the ad-
ditional integral on the right-hand side. The integral may be
20 2 2\, 2 2v_ 2. 2 2\2 evaluated by choosing Cartesian componentand B, but
i e 2(w . (1)|_2)((1) . wTZ) wa(wz sz) _ for brevity, the results will not be presented here. The mere
Pl 0 (0~ o)) (0" - 07) + o' (0~ wT) J- presence of this additional integral in E@8) serves to fur-
(27 ther highlight the breakdown of the quantization scheme. As

) ) ] we show in Sec. V this breakdown is not a consequence of
Consider a real system in which the coupled modes argye invalidity of the Huttner-Barnett sum rule, but is symp-

known to have been characterized by both theory and experjpmatic of the model embodied in the functional form of the
ment, namely, Si-doped GaAs. Using typical parameters fogjig|ectric functione(w) Eq. (22).

this system it is possible to illustrate the variations of the
phase and group velocities with wave vector for each polar-
iton branchj and then examine the variations of their prod-

uct and ratio withk. In this manner we can examine the  The results for the pure plasmon polariton given in Sec.
validity of the sum rules numerically. I, specifically Egs.(19) and (20), conflict with those ex-

| =
Ug v

V. REGULARIZATION
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pected from the reciprocal-space quantization scheme in that
they lead to the assertion thateE is the momentum ca-
nonically conjugate to the vector potential, neD. More-
over, we have seen in Sec. |V that the coupled phonon plas-
mons deviate strongly from the expected behavior over a
range of wave vectors and have shown explicitly the conse-
guences of this on the canonical commutation relations. The
theory of polaritons involves only transverse fields for which
e(w)#0. It could be argued that the longitudinal modes sat-
isfying e(w)=0, which we have not considered, may have a
role in the breakdown of the quantization scheme of plasmon
polaritons and phonon-plasmon polaritons. However, it is
easy to show that in the infinite bulk the longitudinal modes
are quantizable separatdl$2] and are completely indepen-
dent of the transverse polaritons. FIG. 3. Di . K f larized oh

The clue to the resolution of the problem stems from the 3. LISPErSION CUVE: VErSUISK o reguianzed pnonon-

R plasmon polaritons in doped bulk GaAs. The modes satisfy the

fact that the quantization scheme works well for the pur

e,. . . . . .
. . . - dispersion relation Eq2) with e=eg as given by Eq(32) and with
optical phonon mode$21], obtainable from the dielectric wy=0.1w, . All other parameters are the same as those in Fig. 1.

function in Eq.(22) by settingw,=0. Furthermore, we have there are three branches here: two are analogues of the
seen in Sec. Il that the use of the pure plasmon dielectrigranches in Fig. 1 and the third is a low-frequency branch labeled
function Eq.(18) [obtainable from Eq(22) by setting both (o) arising from the regularization procedure.

o, and ot to zerd has undesirable consequences. The dis-

crepancy must then be attributed to the plasmon part of th@ncorrecy identification made in Sec. Il arising from the
dielectric function and it is the low wave-vector limit of the conventional form of the dielectric function.

dispersion curve that appears to be the source of the problem. Consider next the case of coupled modes. By analogy we
This suggests a modification of the dielectric function Ed.modify Eq.(22) to read
(18) to read

0 05 1 15 2 25 3 35 4
k/k()

clo)e “w?—p_w)’ @9 RO (2=0?) " (@3—D)|

wherewy<aw, is a small frequency whose sole purpose is to/Vith the use of the regularized dielectric function E82)
regularize the quantization program. With the use of the€ dispersion relation acquires a new polariton branch la-
regularized plasmon dielectric function EQ9) the disper- 2€led(0) in the low-frequency region. This is shown in Fig.

sion relation Eq(2) yields for this case 3 for the same parameters as in Fig. 1 exceptdiyat0. 1wy, .
There are corresponding velocity variations as shown in Fig.
w*— wZ(wng w3+k%c?) +k?cPwi=0. (30)  4(a) with the ratio variations shown in Fig(d). The sum of

velocity ratios is seen in Fig.(8) to give unity for all values
The solution of this equation leads to two branches labeledf k. This result can fortunately be verified analytically. It is
(=) with the new branch labele@-) in the low-frequency easy to check that the dispersion relation is cubiefrand
region. The validity of the Huttner-Barnett velocity-ratio has three distinct solutions(+), w(—), and w(0) for any
sum rule can be checked analytically for the two branchegjivenk and that the product of the three solutions is given by

(*) satisfying Eq.(30). We obtain the w-independent term. The analogue of E8{l) is
vl 1 4 1 9
J;i (i):ikw|n(wiw2):§k%|n(k2wgaz):]_ OZ: ; v:_w T T T ;(E‘

(3D om

0.3
This proves that the Huttner-Barnett velocity-ratio sum rule 025 ,
is valid for the regularized plasmon polaritons and that this 02’2 / o4 (4)
conclusion holds irrespective of the valuewy, although the 01/ o2t/
physical situation demands that,—O0. It is also easy to  *®fuxe. oo o . oA T
check that ak&—0 the frequency of the new braneh —0. 005 1 152 25 3 35 4 005 1 152 25 3 35 4

L. e . k/ko k/ko
In this limit the group- and phase-velocities both vanish

(U_g —0 andv , —0), but in such a manner that their ratio g5 4, (a) Variations of the phase and group velocities of the
vg/vp approaches unity. Clearly for small but finke the e polariton branchds-), (—), (0) with wave vector. The curves
discrepancy in the contribution of the-) branch is exactly  ¢orresponding to the new polariton branch are in the low-velocity
compensated by that from the new branch. The validity Ofegion and for convenience we have chosen to label only the upper
the Huttner-Barnett sum rule for the regularized plasmon pocurvev J/c. Both curves have the same valuekat0, but thev J/c
laritons immediately leads us to correctly identify the mo-curve lies below the 5/c curve.(b) Variations with wave vector of
mentum canonically conjugate to the vector potential-&s the ratiov {'q/u Jp for the three branchgs=(+), (—), (0) and the sum

This (correc} identification should be contrasted with the of the ratio over the three branches.

0.8 ' /v0

PN AT DU T TR | B T . =3
o ™
P —
FARNS T
L
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v\ 1 g commutation relations between field variables. Since quan-
_ (—?) =3 k K In{w(+)%2w(—)?w(0)?} tum processes rely on these, their validity is important. The
j=+.010p evaluation of the commutation relations has led us to the
1 9 investigation of the validity of the Huttner-Barnett sum rule
=_K— |n{k2w$ngZ}=1. (33 involving the ratio of the group and phase velocities of the
2 ok polariton. It is the smalk behavior of this ratio for the po-

. . lariton branches that is responsible for the discrepancies. It
We conclude that the Huttner-Barnett velocity-ratio sum rule;iows that any effects invglving this region ckfwiFI)I in

@s valid for this case, too. As a result, the regula_rized polar- rinciple, be prone to mishandling using the conventional
iton theory for coupled phonon-plasmon modes is amenablg,eqry, while the corresponding effects based on the regular-
to. quantization in reciprocal space with conqlusmns in lingjzeq theory should be free from such difficulties. The regu-
with those demanded by the general polariton theory depyyization introduces a paramete whose precise value is
scribed in Sec. II. unimportant provided it is much smaller than the plasma
frequency. Clearly, a finite but small, helps to soften the

VI. COMMENTS AND CONCLUSIONS singularity at w=0 through the involvement of a low-
I_frequency polariton branch.
Throughout this paper we have assumed that we are deal-
g with homogeneous unbounded media. There has been

This paper has examined the validity of the reciproca
space quantization program for two important cases of elec-

tromagnetic fields in media, namely, plasmon polaritons an : )
g Y. P P urther effort recently to extend quantum optics theory in

coupled phonon-plasmon polaritons. The functional forms od. lectri dia t the inh o
these dielectric functions have been widely applied in the Ielectric media to encompass the Inhomogeneous N

study of solid-state plasmas in metals, semimetals, and iﬁnd the theory could accommodate the case of media that

doped semiconductors, both in light scattering and in electri<§hOW both.dlspe.rsmn a‘?d loss, i.e., those characterized by
transport. We have shown that the use of these dielectrigomplex d'8|e.Ctr'C funct|ons_. In the inhomogeneous case
functions in the context of the reciprocal-space quantizatioﬁlec'[r(.)magnet'C a_nd matter fields are mad_e to obey bo_undary
program is not justified. For the pure plasma case the resul onditions at the interfaces between media characterized by

are misleading in that the momentum canonically conjugat ifferent dielectric functions. One of the important features
to the vector potential is proportional to the electric field of tdhe mhg'mrc])geneoustc%s? IS _thgf.appt?ar?m;ﬁ of mtetrface
vector, rather than the displacement vector. This is a peculié}no €s, whic ci‘a_n con T' l.Jte sgnélcarll ytho € qu?{: um
feature of the theory, leading as it does to a definite analytiprocesses involving -polari ong32,34. rurtnérmore, ‘the

cal result, emphasizing a wrong identification of the canonif’r¢3€nce of interfaces can lead to hybrid modes that possess

cal field variables. In the coupled phonon-plasmon case gidinear combinations of transverse and longitudinal fields. It
cussed in Sec. IV we have obtained an analytical result fofaM: therefor_e, be suggested that. the re.C|procaI space quanti-
zation techniques should be applied to interface problems to

the sum of the velocity ratios and explored the effect of this h larized th Id modify the details of
on the commutation relations. Numerical results have clearl¢>S€SS NOW a regularize eory would modify the details o

exhibited the breakdown of the corresponding Huttner—he interaction of quantum systems in th_e vici_nity_of inter-
Barnett sum rule for the practical situation of coupled pho_faces. Th.ese matters are currently under investigation and the
non plasmons in Si-doped GaAs. We have also shown hO\XFSUItS will be reported in due course.
the regularized forms of the dielectric function stemming
from Eq. (32) are free from the problems inherent in the
conventional forms. The authors would like to thank Professor Rodney Lou-
The manifestations of the inconsistencies of the dielectricdlon FRS and Dr. Steven Barnett FRSE for useful discus-
functions were established by direct consideration of thesions.
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