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A theory is presented for multiple-harmonic generation from metal surfaces with the laser field polarized in
the plane of incidence. The theory is applied to the analysis of a recent experiment on a gold surface. It is
shown that the relatively slow decrease in the measured efficiency (10210210213) for the second, third, fourth,
and fifth harmonics is related to the stepwise nature of the excitation process. While for the second harmonic
the intensities of the coherent and the incoherent component are comparable, for the higher harmonics the
incoherent component dominates.@S1050-2947~96!04009-7#

PACS number~s!: 42.65.Ky, 42.50.Hz

I. INTRODUCTION

Optical second-harmonic generation~SHG! in reflection
from a metal surface was one of the first nonlinear optical
processes to be observed experimentally after the advent of
the laser@1–3#. The energy conversion efficiency for this
process is very small~less than 1029) because the thickness
of the surface layer that can be excited at optical frequencies
is only a few hundred angstroms. Despite this, SHG has im-
portant applications as a surface probe in laser studies of
metal and semiconductor surfaces@3–5#. Recently, Farkas
et al. reported the observation of multiple-~second-, third-,
fourth-, and fifth-! harmonic generation~MHG! from a gold
surface irradiated at a grazing angle with 35-psec, 5-GW/
cm2 pulses from a Nd:YAG~neodymium-doped yttrium alu-
minum garnet! laser@6#. The conversion efficiency for these
four harmonics decreased very slowly (10210210213) with
increasing harmonic order. It was suggested that this feature
is nonperturbative and similar to that observed in multiple
odd-harmonic generation from noble gases under the influ-
ence of very intense (;1015 W/cm2) laser fields, where in
the case of Ne the conversion efficiency exhibits a plateau
(1029210211) from the 25th to the 135th harmonic@7#.
However, the laser intensities used in the experiment on
MHG from a gold surface are below the limit for breakdown
of perturbation theory, and the measured dependence of the
intensity of the four harmonics on the laser intensity is that
predicted by perturbation theory. Hence, the two cases can-
not have similar explanations. A recent theoretical paper on
MHG from a metal surface based on the Sommerfeld model
of a metal gives theoretical values in reasonable agreement
with the experimental values for the relative efficiencies of
the four harmonics@8#. But, it does not give any values for
the absolute efficiencies, and does not account for energy
relaxation and dephasing of the electronic states, which is
essential for a correct description of the dynamics of any
resonant optical process. Moreover, it does not account for
reflection and refraction of the laser beam and the generated
harmonics at the metal surface, and the inclusion of the ap-
propriate harmonic-dependent Fresnel factors would change
the predicted relative efficiencies.

In this paper we use the Sommerfeld model of a metal,
extended to account phenomenologically for energy relax-
ation and dephasing of the electronic states due to electron-

phonon and electron-electron scattering, in order to study
MHG from metal surfaces. As has been shown experimen-
tally @6#, the bulk contribution to MHG is very small com-
pared to the surface contribution, and hence we can neglect it
in our theory. The extended Sommerfeld model was used
recently @9# to study the multiphoton surface photoelectric
effect and gave good agreement with experiment@10#. The
main finding in that work was that, due to the rapid dephas-
ing of the electronic states, the multiphoton excitation of
conduction electrons is a stepwise process. The stepwise na-
ture of the excitation explains the comparable current densi-
ties that were observed in the one- and four-photon photo-
electric effects on a gold surface at laser intensities of a few
GW/cm2. As shown here, it explains also the relatively slow
decrease in the intensity of the generated harmonics at the
same laser intensities. While in previous studies of SHG
from metal surfaces@1–3# the harmonic radiation is assumed
to be purely coherent, it is shown here that in MHG from
metal surfaces there are both coherent and incoherent com-
ponents in the radiation field. The coherent component~elas-
tic scattering! is associated with the average dipole of the
oscillating electrons at the different harmonics, while the in-
coherent~inelastic scattering! is associated with the quantum
fluctuations of these dipoles. For the second harmonic the
two components are comparable, but for the higher harmon-
ics the incoherent component dominates. In the case of a
gaseous or bulk medium the incoherent component of the
radiation would not be directional. As an example, consider
third-harmonic generation~THG! in a gaseous medium un-
der conditions of three-photon resonance and no intermediate
resonance with an ideal monochromatic laser@11#. In addi-
tion to coherent THG codirectionally with the laser beam,
there is also incoherent fluorescence from the three-photon
excited state to the ground state, having the familiar
doughnut-shaped radiation pattern of an oscillating electric
dipole. In the case of a surface, however, because of bound-
ary conditions for the fields, fluorescence from an
N-photon excited state to the ground state is allowed only in
the direction~within the limits of the uncertainty principle!
of the reflected fundamental beam and the coherent harmonic
radiation. The idea that narrow-band, incoherent harmonic
radiation from a metal surface is directional should not seem
strange. After all, white light from a flashlight retains its
quasidirectionality upon reflection from a mirror. This is be-
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cause the incident Gaussian stochastic field that is associated
with white light, the induced stochastic linear polarization of
the medium, and the reflected and refracted stochastic fields
satisfy joint boundary conditions that lead to Snell’s laws of
linear reflection and refraction for stochastic fields. Note that
in the case of MHG in reflection from a metal surface, the
nonlinear surface polarizations that now play the role of the
incident field are also Gaussian stochastic processes, because
of the quantum nature of the elementary dipoles and the
central limit theorem.

II. THEORY

Figure 1 shows the basic processes of multiphoton ab-
sorption, nonradiative decay, photoelectron emission, and
MHG that take place when a metal surface is irradiated with
an intense laser beam. It is assumed that the laser intensity is
below the critical value (;10 GW/cm2 for picosecond
pulses incident on a gold surface!, above which thermionic
emission and plasma formation at the surface become the
dominant processes. The relative scaling for the photon en-
ergy and the work function of the metal corresponds to that
in the recent experiment on a gold surface using a Nd:YAG
laser @6#. The starting point of our theory for MHG is the
familiar unperturbed energy eigenstates of an electron in a
one-dimensional step potential,V(z)52V0, z,0, and
V(z)50, z.0 ~outside the metal!, which can be written in
the form @8,9#

f~z!5
1

ALz
3H @eikzz1re2 ikzz#, z,0

~11r !eiqzz, z.0
~1!

where Lz is a normalization length, andkz ,qz
5(kz

222mV0 /\
2)1/2 are thez components of the wave vec-

tor for the electron inside and outside the metal, respectively.
The latter becomes purely imaginary (qz5 iqz9) for negative
electron energies. The parameterr5(kz2qz)/(kz1qz) is
the amplitude reflection coefficient. In thex-y plane the elec-
tron is a free particle and its transverse momentum cannot
change from the interaction with a laser field. Hence, in this

model, the laser-surface interaction reduces to a one-
dimensional problem. The trouble with the plane-wave en-
ergy eigenstates given above is that they are not realistic for
describing the motion of conduction electrons in the pres-
ence of electron-phonon and electron-electron scattering.
Measurements of the transient reflectivity of a gold surface
show that the energy relaxation rate for electrons 2 eV above
the Fermi level isg.331011 sec21 @12#. The dephasing~or
momentum relaxation! rate accounts for both elastic and in-
elastic scattering, and is much greater than the energy relax-
ation rate. In the case of gold, matching the measured com-
plex index of refraction@13# with the index of refraction for
a free-electron gas with damping gives a momentum relax-
ation rateG.5.531015 sec21, for photon energies in the
range 2–10 eV. As a result of the dephasing, the energy
eigenstates acquire an energy width equal to\G, and this
causes overlapping and mixing of the states within this en-
ergy range. Therefore, we consider normalized mixed states
~wave packets! @9#

F i~z!5
1

ANi
(
a51

Ni
ALi ,afa~z!, ~2!

where Li ,a5(G i /2)
2/@Dva

21(G i /2)
2# are Lorentzian

weights with Dva being the frequency separation of the
ua& state from the center frequencyv i , Ni5pg(v i)G i /2 is
the effective number of states within a Lorentzian line shape
of width G i , and g(v)5Lzm/2p\kz the one-dimensional
density of states for each spin state. The excitation of an
electron by a laser beam proceeds resonantly through such
mixed states, and the matrix element of the interaction
HamiltonianH8 between two such states is

Hi j8 [^F i uH8uF j&.
p

2
Ag~v i !g~v j !G iG j H8ab , ~3!

whereH8ab is the average matrix element over theNiNj
pairs of unmixed states. It should be added that even during
spontaneous emission an electron makes a transition between
two mixed states.

Consider a laser beam of frequencyv and electric field
amplitudeE incident at a grazing angleq i on a metal surface
with the electric field linearly polarized in the plane of inci-
dence (x-z plane!. In the plane-wave approximation, thez
component of the electric field is

Ez~x,z,t !5H E @eikzz1%e2 ikzz#sinq ie
i ~vt2kxx!1c.c., z.0

tEz0e~ iktz8 z1ktz9 z!ei ~vt2kxx!1c.c., z,0,
~4!

where%5(ncosqi2cosqt)/(ncosqi1cosqt) is the amplitude
reflection coefficient, withn being the complex index of re-
fraction of the metal, andq t the complex angle of refraction.
Ez05E(11%)sinqi is the amplitude at z501 , and
t5e0 /e(v) the ratio of the dielectric functions for the
vacuum and the metal.kx5(v/c)sinqi , kz5(v/c)cosqi are
the components of the incident wave vector, and
ktz5ktz8 2 iktz9 5(v/c)@e(v)/e02sin2qi#

1/2 the complex z
component of the wave vector in the metal. For the relative
dielectric functione r(v)5e(v)/e0 of the metal we use that

FIG. 1. Schematic diagram of the step potential at a metal sur-
face and the processes that take place during laser-surface interac-
tion.
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of a free-electron gas with damping,e r(v)512vp
2/

v(v2 iG), with vp being the plasma frequency. In the Cou-
lomb gauge the interaction Hamiltonian is

H852
e

2m
@Azpz1pzAz#

52
e\

mv
Ez0F f ~z!

d

dz
1
1

2

d f~z!

dz Gei ~vt2kxx!1c.c., ~5!

wherepz is thez component of the momentum operator, and
Az52*Ezdt the z component of the vector potential. Note
that, since the excitation process is one-photon stepwise, we
have neglected in the interaction Hamiltonian the term
(e2/2m)A2, which is associated with two-photon absorption.
The functionf (z) gives thez dependence of the field, which
in the interaction region can be approximated as

f ~z!5H 1, z.0

te~ iktz8 z1ktz9 z!, z,0
~6!

where outside the metal we use the justifiable dipole approxi-
mation (e6 ikzz.1) for optical wavelengths, while inside we
use the prescribed variation of the field. By allowing for
variation of the vector potential inside the metal, the interac-
tion Hamiltonian accounts not only for electric dipole but for
higher-order multipoles as well.

The equation of motion for the slowly varying part,
s i ,i11(t), of the off-diagonal density matrix element
r i ,i115s i ,i11(t)e

i (vt2kxx) is @3,14#

F ddt1 G i ,i11

2 Gs i ,i115
i

2
V i ,i11@s i11,i112s i i #, ~7!

wheres i i is the fractional population of the electrons that
have absorbedi photons, and on the right-hand side we have
neglected higher-order terms associated with coupling to
other mixed states.G i ,i115G i1G i11 is the transverse relax-
ation rate, andV i ,i1152\21m̃ i ,i11Ez0 is the Rabi~interac-
tion! frequency, with

m̃ i ,i115
e\

mv K F iU f ~z!
d

dz
1
1

2

d f~z!

dz UF i11L ~8!

being a transition matrix element that accounts for electric
dipole and higher-order multipoles of the surface states. In
evaluating this matrix element, the second term, which is
proportional to thez derivative of the field, can be neglected
in comparison with the first term forzÞ0, because the Fermi
wave vector is much greater than the optical wave vector. At
z50, the second term has a singularity due to the disconti-
nuity of the normal field component at the surface, and this is
taken into account in the calculations. Our calculations show
that, in the case of the abrupt step surface potential model,
the dominant contribution to the matrix elements ofm̃ comes
from the first term in Eq.~8! and the part of the wave func-
tion inside the metal. We should point out here that, if we
neglect the second term in Eq.~8!, the matrix elements of
m̃ are equal to those of the effective electric dipole that was
used in Ref.@9#, where am–E interaction Hamiltonian was
used with the electric field having anf (z) variation. For

times t@1/G i ,i11 the derivative in Eq.~7! can be neglected,
and the equation becomess i ,i115 iV i ,i11(s i11,i112s i i )/
G i ,i11. Using this relation we obtain the following rate equa-
tions for the populationss i i ,i50,1, . . . ,N, in the case of
N-photon excitation:

d

dt
s005R01~s112s00!1g18s111g28s221 •••1gN8 sNN ,

~9!

d

dt
s i i5Ri21,i~s i21,i212s i i !1Ri ,i11~s i11,i112s i i !

2g i8s i i for i,N, ~10!

d

dt
sNN5RN21,N~sN21,N212sNN!2gN8 sNN , ~11!

where Ri ,i115uV i ,i11u2/G i ,i11 is the rate for the
u i &↔u i11& transition andg i85g i1gee,i the sum of the non-
radiative energy decay rate and the electron emission rate
from stateu i &. The spontaneous decay rate of the excited
mixed states (;106 sec21) is many orders of magnitude
smaller than the nonradiative decay rate, and so we can ne-
glect it in the calculation of the level populations. From the
definitions of the probability current and the probability
transmission coefficient it can be shown that the electron
emission rate from stateu i & is given by

gee,i5
2

pEv th

` kzqz
~kz1qz!

2Li~v!dv, ~12!

where\v th5V0 is the threshold energy for electron emis-
sion, andLi(v) the Lorentzian weight distribution that en-
ters in Eq.~2!. The electron emission rate from an above-
threshold excited state increases rapidly with the number of
photons absorbed above threshold, and the population of
these states drops very rapidly. In numerical calculations the
system of rate equations~9!–~11! can be truncated after the
value ofN for which the population of theN-photon excited
state is negligible compared to that of the (N21)-photon
excited state. Note that since in the experiment the emitted
electrons are replenished by the power supply of the circuit
used to monitor electron emission simultaneously with
MHG, in the rate equation fors00 the emitted electrons are
taken to return to the ground state.

In order to calculate theNth-order nonlinear surface po-
larization we need to know the off-diagonal density matrix
element@3,14# r0N5s0N(t)e

iN(vt2kxx). For timest@1/G0N
the slowly varying part is given by

s0N~ t !52 i
1

G0N
@s0,N21VN21,N2V01s1N#. ~13!

In the case ofN52 andN53 the equation above gives

s02~ t !52
V01V12

4G2 @s0022s111s22#, ~14!

and
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s03~ t !5 i
V01V12V23

8G3 @s0023s1113s222s33#, ~15!

where in order to simplify the two expressions we have set
all the G i j ’s appearing in them equal to 2G. From the last
two equations we see thats0N}(V/G)N, where (V/G)!1
for laser intensities below the damage limit of the surface.
Hence, the off-diagonal density matrix elements are much
smaller than the diagonal ones, and they decrease rapidly
with increasingN. This shows that the multiphoton excita-
tion of conduction electrons is incoherent.

A. Nonlinear surface polarizations

Since the thickness of the surface layer that is excited by
the laser field is much less than the wavelength of the har-
monics that it generates, we can treat the polarized layer as a
polarization sheet atz50. The quantum operator for the
nonlinear surface polarization at theNth harmonic can then
be written as

P̂Nsz5P̂Nsz~ t !eiN~vt2kxx!1H.c., ~16!

where

P̂Nsz~ t !5
d

V(
i

ŝ0N,i~ t !m̃N0,i ~17!

is the quantum amplitude of the surface polarization, with
d51/ktz9 being the optical skin depth of the metal, andV the
volume of the excited surface layer. The sum is over the
initial electron states, and it is used here symbolically instead
of the more complicated integral over the Fermi sphere,
which we use in the final results below. The operatorŝ0N
and its Hermitian conjugateŝN0 are electron lowering and
raising operators, respectively, and their expectation values
are the density matrix elementss0N and sN0, which are
given by Eq.~13! and its complex conjugate. The expression
for the nonlinear surface polarization is consistent with the
interaction Hamiltonian, and represents a generalized electric
polarization that accounts for electric dipole and higher-order
multipoles. Unlike previous theories of SHG from metal sur-
faces@2,3#, where the nonlinear polarization is described in
terms of a constant susceptibility, with the implicit weak-
field assumption that the populations of the excited elec-
tronic states are zero, the present theory can account for
strong electron excitation as in the case of the recent experi-
ment on MHG@6#. Our calculations for this case show that at
a laser intensity of 5 GW/cm2 about 20% of the electrons
with initial energy near the Fermi energy are in excited
states. In this respect, MHG from metal surfaces has some
common aspects with resonant harmonic generation from
metal vapors under strong laser fields, which also cannot be
described in terms of a constant nonlinear susceptibility@14#.

The nonlinear surface polarization atNv gives rise to
reflected and transmitted harmonic waves with electric field
operators

ÊNr~x,z,t !5ÊNr~ t !exp@ i ~Nvt2kNrxx2kNrzz!#1H.c.,
~18!

ÊNt~x,z,t !5ÊNt~ t !exp@ i ~Nvt2kNtxx1kNtzz!#1H.c.,
~19!

where kNrx5(Nv/c)sinqr , kNrz5(Nv/c)cosqr are the
wave-vector components of the reflected harmonic wave,
and kNtx , kNtz5kNtz8 2 ikNtz9 those of the transmitted wave.
Note that our treatment of the harmonic fields as quantum
operators has to do with the quantum properties of the elec-
tronic polarization, and not with quantization of the field
energy. The latter is not necessary in the theoretical treat-
ment of this problem. In the case of az-polarized dipole
sheet atz50, the reflected and transmitted waves must sat-
isfy the boundary conditions@3,15#

ÊNrx2ÊNtx5
1

e~Nv!

] P̂Nsz

]x
, ~20!

and

kNr3ÊNr5kNt3ÊNt . ~21!

In order for the two conditions to be satisfied for everyx, the
fast varying propagation factors in the expressions for the
nonlinear polarization and the two fields must be equal, and
hence it follows thatkNrx5kNtx5Nkx . Therefore, in the
plane-wave approximation, the angle of reflection for the
harmonic wave is equal to the angle of incidence of the fun-
damental wave. This is true for both the coherent and the
incoherent components of the reflected harmonic fields.
From Eqs.~20! and~21!, we can then show that the quantum
operator for the amplitude of the electric field of the reflected
Nth harmonic is given by

ÊNr5 i
NvF

ce~Nv!
P̂Nsz, ~22!

whereF5nNvsinqi /(nNvcosqi1cosqNt) is a Fresnel coeffi-
cient for theNth harmonic, withnNv5@e r(Nv)#1/2 being the
index of refraction of the metal atNv, andqNt the angle of
refraction for the transmittedNth harmonic. The reflected
harmonic fields are polarized in the plane of incidence, and
have the same polarization as the reflected fundamental field,
in agreement with experimental observations@6#. It should
be noted that the coherent component of theNth harmonic
field, which is given by the expectation value of Eq.~22!,
follows the phase of theNth power of the incident field
amplitude sincê P̂Nsz&}s0N}EN @see Eqs.~14! and ~15!#.
The incoherent component d ÊNr5( ÊNr2^ÊNr&)
}(ŝ0N2s0N), however, does not follow the phase of the
incident field because of quantum fluctuations, which in a
Langevin approach are accounted for by an additive noise
source term in the equation of motion forŝ0N @16#.

B. Intensity of coherent and incoherent harmonic radiation

The intensity of the coherent~elastic! component of the
reflectedNth harmonic is given by
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I coh~Nv!52ce0
~Nv!2uFu2

c2ue~Nv!u2
u^P̂Nsz&u2, ~23!

where

^P̂Nsz&5d
1

4p3E dVk iE ~s0Nm̃N0!k i ,u i
PFD~k i !k i

2dk i

~24!

is the expectation value of the surface polarization. The in-
tegration is over the Fermi sphere, withk i ,u i being the initial
electron wave number and angle from thez axis.PFD(k i) is
the Fermi-Dirac probability distribution, and the two spin
states are taken into account. It should be pointed out here
that, in nonlinear optics@3#, the general rule is to consider
only the coherent radiation that is emitted by the average
polarization. However, in MHG from metal surfaces we must
also consider the incoherent radiation that is emitted by the
fluctuations in the polarization,dP̂Nsz5P̂Nsz2^P̂Nsz&, and
which turns out to be more intense than the coherent radia-
tion. To our knowledge, the treatment of the incoherent ra-
diation in MHG from metal surfaces that is presented below
is the first such treatment.

The total average intensity of the reflectedNth harmonic,
I tot(Nv)5I coh(Nv)1I inc(Nv), with I inc(Nv) being the av-
erage intensity of the incoherent component, is given, as in
the case of resonance fluorescence@16#, by

I tot~Nv!52ce0
~Nv!2uFu2

c2ue~Nv!u2 ^P̂Nsz† P̂Nsz&, ~25!

where

^P̂Nsz† P̂Nsz&5
d2

V2(
i , f

^ŝN0,i ŝ0N, f&m̃0N,im̃N0,f

5
d

A F 1V(
i

sNN,iUm̃N0,iU2G , ~26!

with A5V/d being the excited surface area. If we now ex-
pressum̃N0,i u2 in terms of the spontaneous decay rate of state
uN&,

gsp,N5
~Nv!3um̃N0,i u2

8p2e0c
3\

DVk , ~27!

whereDVk is the small solid angle of the spontaneous emis-
sion cone with axis a classical reflected ray, Eq.~25! be-
comes

I tot~Nv!5Rd
uFu2

ue r~Nv!u2
\Nv^gsp,NsNN&, ~28!

where

^gsp,NsNN&5
1

4p3E dVk iE ~gsp,NsNN!k i ,u i

3@12PFD~k i !#PFD~k i !k i
2dk i ~29!

is the average number of harmonic photons emitted per unit
volume per unit time. The factor@12PFD(k i)# is the prob-

ability that the final state is not occupied. The parameter
R5(4lN

2 /A)/DVk , with lN being the wavelength of the
Nth harmonic, is the ratio of the diffraction solid angle in the
case of a rectangular aperture of areaA and the spontaneous
emission solid angleDVk . In this work, it is assumed that
spontaneous emission at a metal surface is diffraction lim-
ited, andR is set equal to unity. The final expression for
I tot(Nv), which is derived using the quantum properties of
the nonlinear polarization, is exactly what one would have
obtained on the basis of a simple energy analysis. That is,
I tot(Nv) is equal to the number of electrons per unit volume
that have absorbedN photons, times the spontaneous decay
rate, times the photon energy, times the fraction
uF/e r(Nv)u2 that is emitted from the surface layer to the
vacuum, times the thickness of the layer. Before closing this
section, it should be emphasized that harmonic generation is
a spontaneous process with respect to the emitted harmonic
photons, and the main difference between the coherent and
the incoherent components is in the spectrum and the photon
statistics. For a monochromatic laser field, the coherent com-
ponent of the generated harmonics is monochromatic and has
Poisson photon statistics. The incoherent component, on the
other hand, has a spectral width of the order of 4kBT.0.1
eV at room temperature@8#, while its photon statistics are
Gaussian. It should be mentioned here that the authors of
Ref. @8# treat MHG as a spontaneous process and calculate
the emission rates for the harmonic photons using Fermi’s
golden rule, instead of the nonlinear polarizations as we do
here. In their treatment they do not distinguish between co-
herent and incoherent components of the generated harmon-
ics, and do not account for the directional properties of MHG
from metal surfaces.

III. DISCUSSION OF NUMERICAL RESULTS

Calculations have been carried out using parameters cor-
responding to those in the recent experiment on MHG from a
gold surface with a Nd:YAG laser of wavelengthl 5 1.06
mm. The parameters that have been used for gold are as
follows: Fermi energy5 5.51 eV,V0 5 10.19 eV ~work
function of 4.68 eV! @6,10#, vp51.3731016 rad/sec,
g5331011 sec21, andG55.531015 sec21. The tempera-
ture in the Fermi-Dirac distribution was set equal to 300 K.
In the calculations for this case, the system of rate equations
~9!–~11! was truncated afterN56, as the calculated inten-
sity of the sixth harmonic is four orders of magnitude lower
than that of the fifth harmonic, and the former was not de-
tected in the experiment.

Figure 2 shows the theoretical dependence of the total
intensity of the second, third, fourth, and fifth harmonic, and
the intensity of the coherent component of the second and
third harmonic on the laser intensity in the range between
108 and 63109 W/cm2, with the angle of incidence equal to
70°. For higher laser intensities, experiments show that tem-
perature effects, thermionic emission, and plasma formation
become important@10#, and then our theoretical analysis is
not valid. The first thing we note is that for laser intensities
below 1 GW/cm2, the intensity of the harmonics varies as
I (Nv)}I N(v), in agreement with perturbation theory and
the experiment. For higher laser intensities, the slope of the
curves decreases slowly due to strong electron emission,
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which competes with harmonic generation. In the case of the
second harmonic, the intensity of the coherent component is
about 1/3 of the total intensity, while in the case of the third
harmonic the corresponding fraction is only 1025. For the
higher harmonics the intensity of the coherent component
relative to the total intensity is even more negligible. As we
pointed out earlier, this is due to the rapid dephasing and the
vanishing coherence of the excited states of conduction elec-
trons. The absolute conversion efficiency for the second har-
monic at 5 GW/cm2 is about two orders of magnitude
smaller than the experimental value of;10210 @6#. This
must be attributed to the fact that, as has been shown by
calculations of SHG from metal surfaces using the density-
functional approach@17#, the abrupt step surface potential
model underestimates the nonlinear polarizability of real
metal surfaces. Despite this shortcoming, the Sommerfeld
model of a metal surface allows us to examine other impor-
tant aspects of the nonlinear optical process of MHG from
metal surfaces. The calculated ratios of the relative efficien-
ciesI tot(Nv)/I tot(2v), for N52,...5 at 5 GW/cm2 are equal
to 1, 6.331021, 3.631023, and 0.431025. For the first
three harmonics these values agree very well with the experi-
mental values, 1, 531021, 531023, and 131023. The
slow decrease in the intensity of the first three harmonics
reflects the slow decrease in the electron populations that
have absorbed 2, 3, and 4 photons, respectively. The latter is
due to the stepwise nature of the excitation of conduction
electrons@9#. For the fifth harmonic the theoretical value for
the relative efficiency is about two orders of magnitude
lower than the experimental value. In the context of our in-
dependent particle theory of MHG, which accounts only for
single-particle excitation, the low efficiency for the fifth har-

monic is caused by the competing process of above-
threshold electron emission~see Fig. 1!. The experimental
observation that the fifth harmonic isonly five times weaker
than the fourth,while the fourth harmonic is 100 times
weaker than the third, must be attributed to an enhancement
from a collective excitation of the conduction electrons,
which is not accounted for in the present theory. Such an
enhancement has been predicted in the case of SHG in cal-
culations using the density-functional approach for 2v near
0.8vp , and is due to excitation of electron-hole pairs in the
surface region@17#. We should also note that the energy of
the fifth-harmonic photons (5\v55.85 eV! is close to the
energy of surface plasmons in gold (\vp /A256.36 eV!, and
it is possible that this plays a role in the case of the fifth
harmonic.

Figure 3 shows the theoretical dependence of the total
intensity of the first four harmonics on the angle of incidence
q i , at a laser intensity of 5 GW/cm2. The four angle tuning
curves are similar, and the main difference is that the angle at
which the intensity is maximum decreases from about 73°, in
the case of the second harmonic, to about 65°, in the case of
the fifth harmonic. While the experiment did not examine
this detail, the theoretical prediction for maximum efficiency
in the neighborhood ofq i570° is in good agreement with
the experiment. The full width at half maximum of the angle
tuning curves decreases from about 26°, in the case of the
second harmonic, to about 23°, in the case of the fifth har-
monic.

In conclusion, we have presented a theory of MHG from
metal surfaces based on an extension of the Sommerfeld
model for conduction electrons. We have explained the basic
physics of this nonlinear optical process, and pointed out the
incoherent nature of the higher harmonics. Since MHG
probes more and higher excited states of conduction elec-
trons than SHG by itself, the theoretical and experimental
study of this multiple process can provide more information
about surface states and electron dynamics than SHG.

FIG. 2. Plot of the total intensity of the reflected second~solid
line!, third ~dashed line!, fourth ~dot-dash line!, and fifth ~dotted
line! harmonic vs the laser intensity with the angle of incidence
equal to 70°. Also plotted is the intensity of the coherent compo-
nent of the second~solid line with points! and the third~dashed line
with points! harmonic.

FIG. 3. Plot of the total intensity of the reflected second~solid
line!, third ~dashed line!, fourth ~dot-dash line!, and fifth ~dotted
line! harmonic vs the angle of incidence~in degrees! at a laser
intensity of 5 GW/cm2.
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