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We propose schemes for measuring the joint quantum state of a two-mode optical field using balanced
homodyne detection, thereby generalizing earlier single-mode schemes. We distinguish between two cases—
the case where the two modes are spatially separable and the case where they are nonseparable. For each case
we present a generalization of the direct sampling method of state reconstruction and point out that its
advantages over inverse Radon methods are even greater here than in the single-mode case. In the case of two
modes that cannot be separated we propose a scheme in which a single balanced homodyne detector is used for
data collection.@S1050-2947~96!00309-5#

PACS number~s!: 42.50.Ar, 03.65.Bz

One of the essential concepts in physics is that of the state
of a system, whether particle or field. Recently quantum
states, describable as arbitrary superpositions of eigenstates,
have become accessible to measurement in simple systems—
the angular state of an electron in an hydrogen atom;@1# the
vibrational state of a molecular wave packet;@2# or the state
of a single mode of an optical field@3#. In the optical and
molecular cases, which correspond to continuous degrees of
freedom~DOF!, only a single DOF was measured. A set of
variables relating to the DOF was identified, having the
property that the set of their separately measured probability
densities provides sufficient information to enable the full
reconstruction of the quantum state for this DOF. Because
the algorithm for reconstruction is analogous to classical to-
mography~inverse Radon transform! @3–5#, we refer to such
a set of variables as ‘‘tomographically complete’’@6#.

One of the important applications of state measurement of
an optical field is the determination of photon-number statis-
tics. In this case balanced homodyne detection~BHD! is
used to measure a set of tomographically complete variables.
Because the photodetectors used in this measurement tech-
nique can have high quantum efficiency~.99% @7#!, the
photon statistics can be measured without the degradation
that occurs when using standard photomultiplers and conven-
tional photon counting. Recently the oscillations of photon
number probabilityp(n) in a squeezed vacuum state have
been measured using optical homodyne tomography, a result
which could not be obtained by conventional means@8#. An-
other powerful feature of homodyne detection is that it is
mode selective. Only the signal light that is in the space-time
mode defined by the LO field contributes to the measurement
@9#. Using this concept, Munroeet al. have time resolved
photon statistics with subpicosecond sampling time, two or-
ders of magnitude better than possible with conventional
methods@10#.

In this paper we propose schemes for measuring the joint
quantum state of a pair of optical modes, thereby generaliz-
ing earlier single-mode schemes. The modes are defined by

the measuring apparatus~balanced homodyne detector! and
are ~nonmonochromatic! spatial-temporal modes, defined
with a particular spatial, temporal, and spectral form. The
reconstruction schemes distinguish between two possible
cases—the case where the two modes are spatially separable
@11# and the case where they are nonseparable. An important
application of two-mode state reconstruction using balanced
homodyne detection is the determination of two-time
photon-number correlations on ultrafast time scales.

The case in which the two modes of interest are separable
is straightforward to handle—simply send the two separated
modes into two separate BHDs and measure the joint statis-
tics of their outputs. In a BHD setup, the signal field and a
reference~LO! field are mixed coherently on a 50/50 beam
splitter and detected by high-quantum-efficiency photo-
diodes, the outputs of which are time integrated and sub-
tracted. The two BHDs give tomographically complete mea-
surements for determining the Wigner function for the two-
mode field, as first discussed in Ref.@5# and generalized by
Kuhn, Welsch, and Vogel@12#. The signal field is repre-
sented by a photon-flux amplitudeF̂S

(1)~r ,t! which, for a
quasimonochromatic field, equals the electric-field operator
Ê S

(1)~r ,t! scaled by (c/2p\v̄)21/2, where v̄ is the center
frequency of the field. For each BHD we use an independent
LO beam, each an intense coherent-state field with amplitude
at the surface of the respective detectors given by
F Li

(1)~x,t!5iaLin i~x,t!, for i51,2, whereaLi is the coherent-
state amplitude for the normalized spatial-temporal mode
ni~x,t! of the LO beam used in thei th BHD and x is the
two-dimensional transverse spatial variable. The difference
signal from each BHD can be normalized to yield the mea-
sured values of the two~generalized! quadrature-amplitude
operators of the signalq̂1u5(â1e

2 iu1â1
†eiu)/21/2 and q̂2b

5(â2e
2 ib1â2

†eib)/21/2, whereâi is the photon annihilation
operator for the portion of the signal field projected onto the
i th LO mode

âi52 i E
0

T

dtE
Det
d2xn i* ~x,t !F̂s

~1 !~x,t ! ~ i51,2!. ~1!

The detection integration timeT is assumed to be long com-
pared to the pulse durations, and the spatial integrals are over
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the detectors’ surfaces. The phase-shiftsu,b are determined
by the phases of the two independent LO beams, whose am-
plitudes can be written asaL15uaL1uexp(iu) and
aL25uaL2uexp(ib). The signal-field annihilation operators
obey the Bose commutation relation@ âi ,â j

†#5d i j ~in the
paraxial-beam approximation!. They can be represented in
terms of two Hermitean quadrature operators,q̂i5(âi
1âi

†)/21/2 and p̂i5(âi2âi
†)/ i21/2, which obey the commuta-

tor for a pair of conjugate variables, [q̂i ,p̂ j ]5 id i j . The mea-
sured variablesq̂1u,q̂2b can be thought of as resulting from a
phase-space rotation of the quadrature variables

S q̂iup̂iu
D5S cosu

2sin u
sin u
cosu D S q̂ip̂i D , ~2!

where the conjugate variablesp̂1u,p̂2b are similarly defined.
Let us briefly consider the output of only one of the BHDs

which gives a measurement ofq̂1u. The now-standard way to
reconstruct the state of the single-mode field entering this
detector is to measure the value ofq1u many times and build
up a histogram~probability density! Pu(q1u). This is re-
peated for many discrete values of the phase-shiftu. Then
apply the inverse Radon transform to the set of probabilities
to obtain the Wigner functionW(x1 ,p1) corresponding to
the state of the measured mode@3–5#. The physical basis for
this reconstruction theorem is that the measured distributions
Pu(q1u) are related to the Wigner function by line-projection
integrals in whichq1u is held constant. It should be noted
that the kernel for the inverse Radon transform is unbounded
and requires appropriate regularization for numerical imple-
mentation. The commonly used filtered back-projection algo-
rithm accomplishes this by imposing a frequency cutoff
which acts as a smoothing filter in the reconstruction process
@13#.

An alternative which is in some cases superior to the stan-
dard Radon method is the direct sampling method of state
reconstruction, introduced by D’Ariano, Machiavello, and
Paris@14#, and developed significantly since@15#. This more
powerful approach is to reconstruct the density matrix in the
photon-number basisrnm5^nurum& by direct averaging:
rnm5^Fnm(q1u ,u)&q1u ,u

, where ^ &q1u,u
represents an en-

semble average over the experimentally measured variables
q1u,u. The sampling functions are given by
Fnm(q1u,u)5 f nm(q1u)exp@i (n2m)u# in which the so-called
pattern functions are@15# f nm(q)5]qcn(q)wm(q), for
n<m, and f nm(q)5 f mn(q) otherwise. Herecn(q) and
wm(q) are, respectively, the~real! wave functions of the
regular and irregular eigenstates of the number operator
~harmonic-oscillator energy operator! and ]q represents the
derivative with respect toq. No smoothing of phase-space
densities is required here because the sampling function in
the number basis is bounded. In this rigorous sense it is
preferred to measure the density matrixrnm directly rather
than going through the Wigner function. In a practical sense
it is also preferred because it is no longer necessary to store
large amounts of data—the reconstruction is done inreal
time.

Now for the two-mode case consider the output of both
BHDs with which we measureq1u and q2b many times to
build up the joint probability densityPub(q1u,q2b). This is
repeated varying the two phase-shiftsu,b discretely and in-

dependently.Pub(q1u,q2b) is formally the projection of the
four-dimensional Wigner function for the two-mode state
W(q1 ,p1 ,q2 ,p2) onto the plane (q1u,q2b) @5#. We can think
of this as a first projection in the (q1 ,p1) plane to give
Pu(q1u;q2 ,p2) followed by a second projection in the
(q2 ,p2) plane to obtainPub(q1u,q2b). These projections are
identical to the Radon transform for which the inversion is
known. Thus we can tomographically reconstruct the Wigner
function using the inverse Radon transform by first inverting
Pub(q1u,q2b) once for each combination ofu, q1u —to yield
Pu(q1u;q2 ,p2). Then the resulting distributions are inverted,
once for each combination ofq2 ,p2 values to finally obtain
W(q1 ,p1 ,q2 ,p2). While a single inversion is needed for the
single-mode case, two-mode reconstruction requires on the
order of 10 000 such inversions and therefore much greater
computer memory size@5#.

This added complexity motivates the generalization of the
direct sampling method of state reconstruction to the case of
two modes. A straightforward generalization of the sampling
method for reconstructingrnm jk51^nu2^ j ur̂uk&2um&1 is given
by

rnm jk5^Snm
jk ~q1u ,u,q2b ,b!&q1u ,u,q2b ,b

5E
2`

` E
0

pE
2`

` E
0

p

Pub~q1u ,q2b!Snm
jk ~q1u ,u,q2b ,b!

3dq1udu dq2bdb, ~3!

i.e., the density matrix in the photon-number basis is ob-
tained by averaging a sampling functionSnm

jk (q1u,u,q2b,b)
for which a valid choice is easily shown to be a simple prod-
uct of single-mode sampling functions,
Snm
jk (q1u,u,q2b,b)5Fnm(q1u,u)F jk(q2b,b). This is not sur-

prising given that the two modes are independently measur-
able DOFs of the optical field. To evaluate Eq.~3! from
experiment we measure the variablesq1u and q2b many
times, while the phasesu,b are independently and uniformly
varied over ap interval.

In the case of two modes that cannot be separated it is not
possible to measure the quadratures independently of each
other, as was necessary in the reconstruction method pre-
sented above. If a simple 50-50 beam splitter were used to
produce two beams for measurement by a pair of BHDs, then
the extra noise added by the beam splitter would degrade the
precision of the state measurement@16#. Here we show that it
is possible to reconstruct the joint state of a nonseparable
two-mode field without the use of a beam splitter. For this
we use a single four-port BHD in which the LO field is in a
linear superposition of the two modes of interest

FL
~1 !~x,t !5 i uaLuexp~ iu!@n1~x,t !cosa1n2~x,t !e

ig sin a#,
~4!

wherea and g are parameters that can be varied and the
mode functionsn1~x,t!,n2~x,t! are orthonormal in~x,t!. The
quadrature measured from the output of the BHD in this case
is Q̂5(âe2 iu1â†eiu)/21/2 whereâ is the annihilation opera-
tor for the portion of the signal field projected onto the LO
mode,

2398 54M. G. RAYMER, D. F. McALISTER, AND U. LEONHARDT



â52 i E
0

T

dtE
Det
d2xF̂S

~1 !~x,t !@n1* ~x,t !cosa

1n2* ~x,t !e2 ig sin a#. ~5!

Using âi5(q̂i1 i p̂ i)/2
1/2 we can write the measured quadra-

ture as

Q̂5cos~a!@ q̂1 cosu1 p̂1 sin u#

1sin~a!@ q̂2 cos~u2g!1 p̂2 sin~u2g!#. ~6!

If we defineu2g5b then the bracketed terms are recognized
as the generalized quadratures in Eq.~2! so that we can write
Q̂5q̂1u cosa1q̂2b sina. The measured quadrature is
equivalent to a linear combination of the generalized quadra-
tures associated with the individual space-time modes that
make up the LO.

From the joint probability density for the two quadratures
Pub(q1u,q2b) the probability density for the linear combina-
tion Q̂ is

Pub
a ~Q!5E E d~Q2q1u cosa2q2b sin a!

3Pub~q1u ,q2b!dq1u dq2b , ~7!

which is parametrized by three adjustable quantities—two
optical phasesu andb, anda which determines the relative
amplitudes of the two modes that make up the LO. Equation

~7! is a projection integral for which we know the inversion
~the inverse Radon transform!. Using the BHD to measure
P ub

a (Q) for many values ofa, the joint distribution
Pub(q1u,q2b) can be tomographically reconstructed via the
inverse Radon transform@17#. For convenience we write this
here as

Pub~q1u ,q2b!5
1

p2 E
2`

`

dQE
0

p

da Pub
a ~Q!

3K~Q2q1u cosa2q2b sin a!, ~8!

whereK(x) is the unbounded kernel defined in Eqs.~1! and
~2! in Ref. @18#. This inversion must be performed once for
each combination ofu,b values. FromPub(q1u,q2b) we can
determine the two-mode Wigner function,W(q1 ,p1 ,q2 ,p2),
by performing a set of successive inversions. This third level
of tomographic inversion further complicates the data stor-
age and processing requirements, as discussed earlier.

Is it possible to extend the direct sampling method so that
rnm jk is obtained by directly averaging some new sampling
function over the setQ,a,u,b? To see that this can be done
we use Eqs.~3! and ~8! to write

rnm jk5^Rnm
jk ~Q,a,u,b!&Q,a,u,b

5E
2`

` E
0

pE
0

pE
0

p

Pub
a ~Q!Rnm

jk ~Q,a,u,b!

3dQ da du db, ~9!

where the sampling function is Rnm
jk (Q,a,u,b)

5r nm
jk (Q,a)exp[i (n2m)u1 i ( j2k)b], with

r nm
jk ~Q,a!52

1

2p2 E E P
1

~Q2q1u cosa2q2b sin a!2

3 f nm~q1u! f jk~q2b!dq1udq2b . ~10!

We have made use ofFmn(q,f)5 f mn(q)exp@i ~m2n!f# and
have also chosen a convenient regularization of the kernel
K(x)52(1/2)Px22 @18#, where P indicates Cauchy’s prin-
ciple value. Usingf nm(q1u)5]q1u

cn(q1u)wm(q1u) ~assum-
ing n<m! and performing theq1u integral by parts Eq.~10!
can be written as

r nm
jk ~Q,a!52

1

2p2 E f jk~y!
]2

]Q2

3E P
cn~x!wm~x!

~Q2y sin a!/cosa2x
dx dy.

~11!

We have also replacedq1u and q2b with x and y, respec-
tively. Using the Hilbert transform and the theory of analytic
signals one can prove@16# that forn<m

FIG. 1. Two-mode pattern functions.

54 2399TWO-MODE QUANTUM-OPTICAL STATE . . .



2
1

p E P
cn~x!wm~x!

j2x
dx5cn~j!cm~j!, ~12!

while for n.m Eq. ~12! is valid under the exchangen↔m.
Using this in Eq.~11! gives the final result

r nm
jk ~Q,a!5

1

2p E f jk~y!
]2

]Q2 cnSQ2y cosa

sin a D
3cmSQ2y cosa

sin a Ddy, ~13!

for n<m, while for n.m we can use
r nm
jk (Q,a)5r mn

jk (Q,a). Note that all evidence of the regu-
larization has vanished. Thus the evaluation of Eq.~9! is not
subject to smoothing and is completely analogous to the
sampling methods developed previously. This result signifi-
cantly simplifies the state reconstruction of a two-mode field
over the multiple inversions required in the Radon method.
In Fig. 1 we show some examples ofr nm

jk (Q,a) which we
refer to as two-mode pattern functions. Note that in Fig. 1~a!
the full sampling function is also shown since
Rnn

j j (Q,a,u,b)5r nn
j j (Q,a). It is easily shown from Eq.~13!

that r nm
jk (Q,a)→0 as cosa→0 or sina→0.

In order to test this reconstruction method we have per-
formed numerical simulations of Eq.~9! using analytically
calculated histograms treated as~noiseless! experimental
data. We simulated several Fock states of the formuc&
5uJ&uN& and in each case obtained the density matrix
rnm jk5dnNdmNd jJdkJ , accurate to within 1025.

In the case that only the two-mode joint photon-number
statistics are desired, a random-phase technique@10# can be
used—randomize bothu and b and replace Eq.~9! by an
integral overQ and a only, with P ub

a (Q) replaced by its

phase-random versionPa(Q), and the sampling function
Rnm

jk replaced byr nn
j j (Q,a).

In conclusion we have proposed two schemes for measur-
ing the joint quantum state of a two-mode optical field. This
generalizes earlier single-mode schemes and allows one to
measure quantum correlations, such as photon-number cor-
relations, between two space-time modes of the optical field.
One important application is when the spatial modes are
identical and the two temporal modes are chosen as localized
pulses separated by a variable~nonzero! delay. In this way
the two-time correlations of a field, or of two fields, can be
measured on ultrafast time scales. The first scheme makes
use of a pair of BHDs and is appropriate when the two
modes of interest can be spatially separated such as by
propagation direction, polarization, wavelength, or by very
large spatial or temporal separation. The second reconstruc-
tion scheme applies when the two modes cannot be spatially
separated and uses a single BHD for data collection. In both
cases we showed that with proper data analysis involving the
inverse Radon transform one can tomographically recon-
struct the Wigner function describing the two-mode state.
Furthermore, we derived alternative direct sampling methods
in which the joint density matrix can be obtained in the Fock
basis by directly averaging over the experimentally deter-
mined quadrature histograms.

Note added in proof.Our attention has recently been
drawn to work by Opatrny, Welsch, and Vogel@19#, who
have proposed much the same scheme as ours in the special
case of two temporal modes~having the same spatial prop-
erties!. Their data-analysis method yields the two-mode den-
sity matrix represented in the quadrature basis. For this basis
there are no unbounded sampling functions, in contrast to the
case of the Fock basis, which we discuss here@18#.
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