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Two-mode quantum-optical state measurement: Sampling the joint density matrix
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We propose schemes for measuring the joint quantum state of a two-mode optical field using balanced
homodyne detection, thereby generalizing earlier single-mode schemes. We distinguish between two cases—
the case where the two modes are spatially separable and the case where they are nonseparable. For each case
we present a generalization of the direct sampling method of state reconstruction and point out that its
advantages over inverse Radon methods are even greater here than in the single-mode case. In the case of two
modes that cannot be separated we propose a scheme in which a single balanced homodyne detector is used for
data collection[S1050-29476)00309-3

PACS numbd(s): 42.50.Ar, 03.65.Bz

One of the essential concepts in physics is that of the statthe measuring apparatisalanced homodyne detect@nd
of a system, whether particle or field. Recently quantumare (nonmonochromatjc spatial-temporal modes, defined
states, describable as arbitrary superpositions of eigenstatewth a particular spatial, temporal, and spectral form. The
have become accessible to measurement in simple systemsreconstruction schemes distinguish between two possible
the angular state of an electron in an hydrogen afdjthe  cases—the case where the two modes are spatially separable
vibrational state of a molecular wave packél} or the state [11] and the case where they are nonseparable. An important
of a single mode of an optical fiel8]. In the optical and application of two-mode state reconstruction using balanced
molecular cases, which correspond to continuous degrees pmodyne detection is the determination of two-time
freedom(DOP), only a single DOF was measured. A set of photon-number correlations on ultrafast time scales.
variables relating to the DOF was identified, having the The case in which the two modes of interest are separable
property that the set of their separately measured probabilitis straightforward to handle—simply send the two separated
densities provides sufficient information to enable the fullmodes into two separate BHDs and measure the joint statis-
reconstruction of the quantum state for this DOF. Becaus#&cs of their outputs. In a BHD setup, the signal field and a
the algorithm for reconstruction is analogous to classical tofeference(LO) field are mixed coherently on a 50/50 beam
mography(inverse Radon transforni3—5], we refer to such  splitter and detected by high-quantum-efficiency photo-
a set of variables as “tomographically completgs]. diodes, the outputs of which are time integrated and sub-
One of the important applications of state measurement dfracted. The two BHDs give tomographically complete mea-
an optical field is the determination of photon-number statissurements for determining the Wigner function for the two-
tics. In this case balanced homodyne detectiBriD) is  mode field, as first discussed in RE3] and generalized by
used to measure a set of tomographically complete variable§uhn, Welsch, and Vogel12]. The signal field is repre-
Because the photodetectors used in this measurement tedignted by a photon-flux amplitude§™)(r,t) which, for a
nique can have high quantum efficien€y99% [7]), the  guasimonochromatic field, equals the electric-field operator
e . = (+) ~1/2 —
photon statistics can be measured without the degradatidns ’(r.t) scaled by ¢/2nfiw)”~% where o is the center
that occurs when using standard photomultiplers and convertequency of the field. For each BHD we use an independent
tional photon counting. Recently the oscillations of photonLO beam, each an intense coherent-state field with amplitude
number probabilityp(n) in a squeezed vacuum state haveat the surface of the respective detectors given by
been measured using optical homodyne tomography, a resdR{1’ (x.t)=iay;vi(xt), fori=1,2, wherea; is the coherent-
which could not be obtained by conventional mef8is An- state amplitude for the normalized spatial-temporal mode
other powerful feature of homodyne detection is that it is¥i(X,t) of the LO beam used in thith BHD andx is the
mode selective. Only the signal light that is in the space-timdwo-dimensional transverse spatial variable. The difference
mode defined by the LO field contributes to the measuremeritignal from each BHD can be normalized to yield the mea-
[9]. Using this concept, Munroet al. have time resolved sured values of the twegeneralizefl quadrature-amplitude
photon statistics with subpicosecond sampling time, two oroperators of the signalj;,=(a,e~"*+ale'?)/2Y2 and g4
ders of magnitude better than possible with conventional (a,e”'#+ale'?)/212, whered, is the photon annihilation
methodg 10]. operator for the portion of the signal field projected onto the
In this paper we propose schemes for measuring the joirith LO mode
guantum state of a pair of optical modes, thereby generaliz-
ing earlier single-mode schemes. The modes are defined by fT
3 i| dt f
0 De

a=—i d2xv (x,HDL (X1 (i=1,2. (1)

t

*Also at the Arbeitsgruppe “Nichtklassische Strahlung” der
Max-Plank-Gessellschaft an der Humboldt-Univeétsita Berlin,  The detection integration time is assumed to be long com-
Rudower Chasusee 5, 12484 Berlin, Germany. pared to the pulse durations, and the spatial integrals are over
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the detectors’ surfaces. The phase-shifi are determined dependentlyP ,5(q,4,0,) is formally the projection of the
by the phases of the two independent LO beams, whose anfbur-dimensional Wigner function for the two-mode state
plitudes can be written asa,,;=|a .lexp(d) and W(q,,p;,d,,p,) Onto the planed 5,d,4) [5]. We can think
a,=|a,lexp@B). The signal-field annihilation operators of this as a first projection in theq(,p,) plane to give
obey the Bose commutation relati({lﬁti,é;r]zéij (in the  Py(d14:d2,p,) followed by a second projection in the
paraxial-beam approximatianThey can be represented in (d2,p,) plane to obtairP 45(d;4,0,4). These projections are

cosfd siné
—sin® cosé

terms of two Hermitean quadrature operatocg=(a; identical to the Radon transform for which the inversion is
+ ai’f)/zl/Z andp;=(a— éi’f)/i 2%2 which obey the commuta- known. Thus we can tomographically reconstruct the Wigner
tor for a pair of conjugate variablegj[,p;] =i 8;; . The mea- function using the inverse Radon_trar_lsform by first inverting
sured variable§; 5,0, can be thought of as resulting from a Ps(d14,924) once for each combination & q,,—to yield
phase-space rotation of the quadrature variables P4(d14:92,P2). Then the resulting distributions are inverted,
once for each combination af,,p, values to finally obtain
Qo ai W(q1,p1,92,P2). While a single inversion is needed for the
(ﬁm (ﬁi ) 2 single-mode case, two-mode reconstruction requires on the
order of 10 000 such inversions and therefore much greater
where the conjugate variabl@g,p,; are similarly defined. ~computer memory sizg5]. o
Let us briefly consider the output of only one of the BHDs  This added complexity motivates the generalization of the
which gives a measurement @f,. The now-standard way to direct sampling method of state reconstruction to the case of
reconstruct the state of the single-mode field entering thi§wo modes. A straightforward generalization of the sampling
detector is to measure the valuegaf, many times and build Method for reconstructing, mji= 1(N[2(i|p|K)2| M) is given
up a histogram(probability density P,(q,,). This is re- by
peated for many discrete values of the phase-ghifthen
apply the inverse Radon transform to the set of probabilities L =/(slk
to obtain the Wigner functioW(x,,p;) corresponding to Pnmik <Sjnm(qw70’qzﬁ"B»q”ﬁ'qzﬁ’ﬁ

the state of the measured md@e-5|. The physical basis for o fa (o [ "

this reconstruction theorem is that the measured distributions = J_OJO f_wJO Pp(016,025) Sim(d16,0,025.8)
P,(q.,) are related to the Wigner function by line-projection

integrals in whichq,, is held constant. It should be noted X ddy,d6 dgydB, 3

that the kernel for the inverse Radon transform is unbounded
and requires appropriate regularization for numerical imple-

mentation. The commonly used filtered back-projection algol'e" the density matrix in the photon-number basis is ob-

. . . . k
rithm accomplishes this by imposing a frequency cutofftamed by averaging a sampling functi@i(d1. 6,2, 5)

which acts as a smoothing filter in the reconstruction rocesfor which a valid choice is easily shown to be a simple prod-
9 P Get of single-mode sampling functions,

[13]. ik .
e which is i . S(019,0,025,8) = F A1, O)F (G5, B) - This i not sur-
An alternative which is in some cases superior to the stan-rising given that the two modes are independently measur-

dard Radon method is the direct sampling method of statgbIe DOFs of the optical field. To evaluate E@) from
reconstruction, introduced by D’Ariano, Machiavello, and experiment we meagure the \'/ariablqg) and g,; many
2B

Paris[14], and developed significantly sing&5]. This more . : : .
. . L times, while the phase$g are independently and uniformly
powerful approach is to reconstruct the density matrix in thg/arie d over ar interval.

phot_on-number basig,m=(n|p|m) by direct averaging: In the case of two modes that cannot be separated it is not
pﬂm_<F”m(q10'0)>qleﬂ' where(. >q1(9,9 represents an eh- possible to measure the quadratures independently of each
semble average over the experimentally measured variablgher, as was necessary in the reconstruction method pre-
Qi00. The sampling functions are given by sented above. If a simple 50-50 beam splitter were used to
Fnm(d1g, ) = f (A1) €xdi (n—m) 6] in which the so-called  produce two beams for measurement by a pair of BHDs, then
pattern functions are[15] f,n(a)=dq¥n(a)em(d). for  the extra noise added by the beam splitter would degrade the
n=m, and f,.(q)=fy,(q) otherwise. Hereyn(q) and  precision of the state measuremgif]. Here we show that it
¢m(Q) are, respectively, thérea) wave functions of the s possible to reconstruct the joint state of a nonseparable
regular and irregular eigenstates of the number operatq{yo-mode field without the use of a beam splitter. For this
(harmonic-oscillator energy operataand d, represents the \ye use a single four-port BHD in which the LO field is in a

derivative with respect t@. No smoothing of phase-space |inear superposition of the two modes of interest
densities is required here because the sampling function in

the number basis is bounded. In this rigorous sense it is (+) . . iy o

preferred to measure the density maisiy, directly rather Pt (x,t)=ifa|exp(i O)[v1(Xx,t)cos a+ vy(x,)e'” sin a],

than going through the Wigner function. In a practical sense (4)

it is also preferred because it is no longer necessary to store

large amounts of data—the reconstruction is doneeial =~ where « and y are parameters that can be varied and the

time mode functionsy;(x,t),v,(x,t) are orthonormal ifx,t). The
Now for the two-mode case consider the output of bothquadrature measured from the output of the BHD in this case

BHDs with which we measure;;, and q,; many times to  is Q=(ae™'?+a'e'?)/2"? wherea is the annihilation opera-

build up the joint probability density ,5(d14,0,5). This is  tor for the portion of the signal field projected onto the LO

repeated varying the two phase-shiftg@ discretely and in- mode,
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(7) is a projection integral for which we know the inversion
(the inverse Radon transfojmUsing the BHD to measure
P4s(Q) for many values ofa, the joint distribution
Pys(d16:025) can be tomographically reconstructed via the
inverse Radon transforfil7]. For convenience we write this
here as

\ I ‘
\\\\
i
\\\\\\\,//II:'“\\\\\\\\ W
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'“‘ ‘t‘\\\\\ ':,, “\\

\
‘ Z i

1 o T
Pog(d10,025) = 2 Jlmdeo da PL;B(Q)

XK(Q—0yp COS@—0yg Sina), (8)

whereK(x) is the unbounded kernel defined in E{k). and
(2) in Ref.[18]. This inversion must be performed once for
each combination of, 8 values. FronP ,5(d;4,0,5) We can

b)
determine the two-mode Wigner function(q;,p1,92,P>),
0.4 1 by performing a set of successive inversions. This third level
of tomographic inversion further complicates the data stor-
3 0.21 i age and processing requirements, as discussed earlier.
SEPPS “‘\\‘ v },,‘,,?zg‘tg}‘\%‘ Is it possible to extend the direct sampling method so that
R g il Pnmijk IS Obtained by directly averaging some new sampling
N0.21 function over the seQ,«,6,8? To see that this can be done
0.4 we use Eqs(3) and(8) to write
anjk:<RLkm(Qva’aaﬁ»Q,a,f),B
FIG. 1. Two-mode pattern functions. f f f f Q)Rl (Q,,6,B)
T -
é\=—iJ dtJ' d2x DS (x,1)[ v% (x,1)COS @ XdQ da d6 dg, ©)
0 Det
. i i ik
+ v (x,)e 17 sin a]. 5) where the sampling function is Ry(Q,«,6,8)

=r X (Q,a)exp[i(n—m)6+i(j —k)B], with

Using ;= (q; +ip;)/2*2 we can write the measured quadra-
ture as

. 1 1
jk J——
Fm(Q. @) 272 f j P(Q_Che COSa—(sg sin )

Q=cog @)[{; cos O+ P, sin 6]
_ 1A ' o X fam(010) Fik(d25)d01,d 004 (10
+sin(a)[q; cog0—y)+p;y sin(6—y)].  (6)
) . We have made use & ,,(q,¢)=",,(q)exdi(u—v)¢] and
If we defined—y= then the bracketed terms are recognizedy e aiso chosen a convenient regularization of the kernel
as the generahzed quadratures in E2).s0 that we can write K(x)=— (1/2)Px "2 [18], where P indicates Cauchy's prin-
Q Q1 COSa+q2,,3 sina. The measured quadrature is ciple value. Usingf, (o) = ﬁqwl//n(%e)@m(%e) (assum-

equivalent to a linear combination of the generalized quadra- d erf th it b s Eq(10
tures associated with the individual space-time modes thdt'9 n<m) and performing the,, integral by parts Eq(10)

make up the LO can be written as
From the joint probability density for the two quadratures
Ps(d16:02) the probability density for the linear combina-

2
tion Q is er m(Q, a)—— ! J fi(y) j_Qz

Xf = n(X) em(X) x dy.

(Q—vy sin @)/cosa—X

P 'B(Q):f f 3(Q—0yy COS¥— g SiN @)

X Pgp(10,025) 0014 d0zg, (7) 1D

which is parametrized by three adjustable quantities—twdVe have also replaced,, and g, with x andy, respec-
optical phase® and 8, and a which determines the relative tively. Using the Hilbert transform and the theory of analytic
amplitudes of the two modes that make up the LO. Equatiorsignals one can prod 6] that forn<m
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1 Un(X) @m(X) phase-random versioP“(Q), and the sampling function
2 [ PP gk yrpme, G2 RE, replaced by 1(Q.a)
In conclusion we have proposed two schemes for measur-

ing the joint quantum state of a two-mode optical field. This
generalizes earlier single-mode schemes and allows one to
measure quantum correlations, such as photon-number cor-
relations, between two space-time modes of the optical field.

One important application is when the spatial modes are
) identical and the two temporal modes are chosen as localized

pulses separated by a varialileonzerg delay. In this way

the two-time correlations of a field, or of two fields, can be
dy, (13 measured on ultrafast time scales. The first scheme makes

use of a pair of BHDs and is appropriate when the two
, modes of interest can be spatially separated such as by
fc])L n=m, ik while  for n>m we can US€ ronagation direction, polarization, wavelength, or by very
Fm(Q, @) =1 mn(Q, ). Note that all evidence of the regu- |arge spatial or temporal separation. The second reconstruc-
Iarlz_atlon has vanls_hed. Thu_s the evaluation of @jis not tion scheme applies when the two modes cannot be spatially
subject to smoothing and is completely analogous to th@eparated and uses a single BHD for data collection. In both
sampling methods developed previously. This result significages we showed that with proper data analysis involving the
cantly simplifies the state reconstruction of a two-mode fielderse Radon transform one can tomographically recon-
over the multiple inversions required in the Radon methodgryct the Wigner function describing the two-mode state.
In Fig. 1 we show some examples ofi(Q, ) which we  £\thermore, we derived alternative direct sampling methods
refer to as two-mode pattern functions. Note thatin Fi@ 1 i, which the joint density matrix can be obtained in the Fock
the full sampling function is also shown since pagis by directly averaging over the experimentally deter-
RHn(Qiéa,B,,B)ern(Q,a). Itis easily shown from Eq13)  ineq quadrature histograms.
thatr 1:(Q,a) —0 as cosx—0 or sina—0. Note added in proofOur attention has recently been
In order to test this reconstruction method we have pergrawn to work by Opatrny, Welsch, and Vogdl9], who

formed numerical simulations of E@9) using analytically 5e proposed much the same scheme as ours in the special
calculated histograms treated @soiselesy experimental 556 of two temporal modébaving the same spatial prop-
data. We simulated several Fock states of the fogn ertie9. Their data-analysis method yields the two-mode den-
=|J)IN) and in each case obtained the density matrixsi, matrix represented in the quadrature basis. For this basis
Pamik= Sandmnd}s 8y, accurate to within 10°. there are no unbounded sampling functions, in contrast to the

In the case that only the two-mode joint photon-number.se of the Fock basis. which we discuss Has.
statistics are desired, a random-phase technijdecan be ’

used—randomize botld and 8 and replace Eq(9) by an This research is supported by NSF Grant No. PHY-
integral overQ and a only, with P5,(Q) replaced by its 9224779.

while for n>m Eq. (12) is valid under the exchange—m.
Using this in Eq.(11) gives the final result

. 1 52 Q-y cosa
jk = : R - -
rnm(Qra) 20 J f]k(y) 0—,Q2 ‘/"n( sin a
Q—ycosa
sin a
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