
Homodyne detection for the enhancement of antibunching

Reeta Vyas, Changxin Wang, and Surendra Singh
Physics Department, University of Arkansas, Fayetteville, AR 72701

~Received 15 February 1996; revised manuscript received 22 April 1996!

We propose a scheme based on homodyne detection for enhancing antibunching in second-harmonic gen-
eration and multiatom optical bistability. We show that depending on the reflectivity of the beam splitter,
relative field strengths, and relative phase it is possible to achieve perfect antibunching in the superposed field.
We also discuss other nonclassical effects exhibited by the superposed field and present curves to illustrate the
behavior.@S1050-2947~96!09008-7#

PACS number~s!: 42.50.Dv, 42.50.Ar, 42.65.Ky

I. INTRODUCTION

Squeezing@1#, antibunching, and sub-Possonian statistics
@2,3# are nonclassical features of the electromagnetic field.
These nonclassical features have been of considerable inter-
est as they provide testing grounds for the prediction of
quantum electrodynamics. Squeezing is related to the wave-
like character of the electromagnetic field. It is measured in
interference experiments. Antibunching and sub-Poissonian
statistics, however, reflect the particlelike behavior of the
field and are measured in photon counting experiments. As
discussed in Ref.@4# squeezing, antibunching, and sub-
Poissonian statistics are, in general, distinct nonclassical ef-
fects in the sense that an electromagnetic field may exhibit
one but not the other.

The antibunching effect has been predicted in intracavity
second-harmonic generation~ISHG! @5,6# and multiatom op-
tical bistability ~MAOB! @7,8#. However, the predicted size
of antibunching is small and would be difficult to detect
experimentally, as it occurs against a large coherent back-
ground. The predicted antibunching in these systems is in-
versely proportional to the saturation photon numberns ,
which is of the order of 1062108 for the ISHG, and
1032104 for the MAOB. Several schemes based on interfer-
ence @9# or passive filter cavities@10–12# have been pro-
posed to enhance the antibunching effect.

We propose a scheme based on homodyne detection
@13–15# for enhancing antibunching in these systems. Ho-
modyne detection experiments have been used for measuring
phase-sensitive properties of squeezed light@1#. It has been
shown that the light from a degenerate parametric oscillator,
which is highly bunched and super-Poissonian@16,17#, can
exhibit many nonclassical effects using a similar detection
scheme@13#. In the homodyne detection experiment we con-
sider the interference of the signal beam from the ISHG or
the MAOB with a coherent local oscillator~LO! at a lossless
beam splitter as shown in Fig. 1. A detector of efficiencyh is
placed at one of the output ports of the beam splitter. The
statistics measured at the detector is sensitive to the relative
phase between the signal and the LO. Thus particlelike prop-
erties~photon statistics! are intimately connected to wavelike
~phase! property of the field. Because of this phase depen-
dence, the homodyne field can exhibit enhanced antibunch-
ing and violation of various classical inequalities. Since in
this scheme one can readily adjust various parameters such

as the strength of the local oscillator, transmittance, and rela-
tive phase, this scheme may provide a better way of enhanc-
ing antibunching.

In Sec. II we briefly describe the homodyne detection
scheme. In Sec. III we apply this technique to the ISHG. In
Sec. IV we discuss the enhancement of antibunching for the
MAOB. Finally, a summary and main conclusions of the
paper are presented in Sec. V.

II. HOMODYNE DETECTION

Figure 1 shows a schematic diagram for the homodyne
detection experiment. For the ISHG, a nonlinear crystal is
placed inside the cavity, whereas for the MAOB,N two-level
atoms are placed inside the cavity. The light from the ISHG
or the MAOB is superimposed with the light from a LO at a
lossless beam splitter. The annihilation operatorsb̂1 and b̂2
at the output ports are related to those at the input ports by
@13,14#

S b̂1b̂2D 5S AT AR
2AR AT D S âsâl D ,

with

T1R51 .

FIG. 1. System for homodyning the ISHG or MAOB field with
the LO field. For the ISHG a nonlinear crystal~NLC! is placed
inside the cavity and for the MAOBN two-level atoms are placed
inside the cavity. BS denotes a beam splitter andD denotes a de-
tector.
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Here âs and âl are annihilation operators for the signal and
the local oscillator, respectively,T is the transmissivity, and
R is the reflectivity of the beam splitter. ForT51 only the
light from the signal is detected, and forT50 only the light
from the LO is detected. Here we assume that the fields
suffer no phase shifts due to the beam splitter. We will refer
the superposed field as HISHG when the signal is from the
ISHG and as HMAOB when the signal is from the MAOB.

The annihilation and creation operators at the ‘‘sum’’ out-
put port b̂1 can be written as

b̂15âsAT1âl AR, b̂1
†5âs

†AT1âl
†AR. ~1!

Results for the ‘‘difference’’ portb̂2 can be obtained by re-
placingAT by 2AR andAR by AT.

In the photoelectric counting measurements we are deal-
ing with normally ordered operator expectation values. We
can therefore use the positive-P representation to describe
the nonclassical fields generated in the ISHG or the MAOB.
In the positive-P representation@18#, complex-field ampli-
tudesb1 andb1* corresponding tob̂1 andb̂1

† can be written
as

b15asAT1ua l ueifAR, ~2!

b1*5as*
AT1ua l ue2 ifAR. ~3!

Hereua l u is the field amplitude for the LO field;f is the LO
phase relative to the signal;as andas* are the complex-field
amplitudes corresponding toâs and âs

† for the signal field.
Note that in the positive-P representationas andas* arenot
complex conjugates of each other. The mean photon number
measured at the detector is proportional to

^b1*b1&5T ^as*as&1Rua l u2

1ARAT ua l u~^as&e
2 if1^as* &eif!, ~4!

and the two-time intensity correlation function can be written
as

g~2!~T!5
^b1* ~0!b1* ~T!b1~T!b1~0!&

^b1* ~0!b1~0!&2
. ~5!

Once the correlations properties ofas andas* are known we
can calculate the two-time intensity correlation function. In
the literature, antibunching is defined@2–4,19,20# either as a
violation of inequality g(2)(0)> 1 or inequality
g(2)(0)>g(2)(T). As discussed in Ref.@13# we consider a
photon sequence antibunched if the probability of detecting
two photons in coincidence is smaller than that for coherent
light; that is,g(2)(0), 1.

III. INTRACAVITY SECOND-HARMONIC GENERATION

First consider the light from the ISHG. In the process of
second-harmonic generation two photons at the fundamental
frequencyv combine to give a single photon at the second-
harmonic frequency 2v inside a nonlinear crystal. The gen-
eration of second-harmonic light is enhanced by placing the
nonlinear crystal inside an optical cavity that is resonant at

both the fundamental and the second-harmonic frequencies.
The fundamental mode of the cavity is excited by an injected
classical signal of normalized amplitudeE, which has been
chosen to be real by an appropriate definition of phases. This
source is known to produce an antibunched photon sequence
@5,6#.

In the positive-P representation@18# the equations of mo-
tion for the complex-field amplitudesas andas* associated
with the annihilation and creation operators@6,10,11# of the
fundamental mode can be written as

ȧs52g~as2E!2
k2

2g2
as*as

21 iA k2

2g2
asj, ~6!

ȧs*52g~as*2E!2
k2

2g2
as*

2as1 iA k2

2g2
as* j* .

~7!

Here g15g and g2 are the cavity linewidths at the funda-
mental and its second-harmonic frequencies, andk is the
mode-coupling constant. Noise sourcesj andj* are two real
Gaussian white-noise processes with zero mean and unit
strength@21,22#. These equations of motion are derived by
adiabatically eliminating the second harmonic mode
(g2..g). By linearizing as and as* around the steady-
state valuen̄ and introducing new variablesu1 andu2 by

as5Ans@An̄1 i ~u11u2!#, ~8!

as*5Ans@An̄1 i ~u12u2!#, ~9!

we can show thatu1 andu2 satisfy the following stochastic
differential equations:

u̇i52l iui1A gn̄

2ns

qi , i51,2. ~10!

Here the threshold photon numberns52gg2 /k
2; the aver-

age photon numbern̄ in the fundamental mode is given by
the equation (11n̄)2n̄ ns5E2; q15(j1j* )/

A2 and
q25(j2j* )/

A2 are two real independent Gaussian white-
noise processes with zero mean and unit strength. The equa-
tion for n̄ has only one physical root. The decay constants
l1 andl2 are given by

l15g~113n̄ !, l25g~11n̄ !. ~11!

It follows from Eq. ~10! thatu1 andu2 are real Gaussian
random variables with mean̂ui&50 and correlations given
by

^ui~ t !uj~ t8!&5d i j
gn̄

4nsl i
e2l i ut2t8u, i51,2. ~12!

Substitutingas andas* given by Eqs.~8! and~9! in Eqs.~2!
and ~3! we get the complex-field amplitudes for the HISHG
as

b15Ans @An̄1 i ~u11u2!#AT1ua l ueifAR, ~13!

b1*5Ans @An̄1 i ~u12u2!#AT1ua l ue2 ifAR. ~14!
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Using the correlation properties ofu1 and u2 given in Eq.
~12! we obtain the mean for the HISHG as

^b1*b1&5@^as*as&T1ua l u2R#,

5nsFA1TH S gn̄

4nsl2
D2S gn̄

4nsl1
D J G . ~15!

The two-time intensity correlation function for the
HISHG is similarly given by

g~2!~T!5 11

F2T 2H S gn̄

4nsl1
D 2e22l1T1S gn̄

4nsl2
D 2e22l2TJ G

FA1TH S gn̄

4nsl2
D2S gn̄

4nsl1
D J G2

1

F2C2S gn̄

4nsl1
De2l1T1D2S gn̄

4nsl2
De2l2TG

FA1TH S gn̄

4nsl2
D2S gn̄

4nsl1
D J G2 ,

~16!

where

A5n̄ T1n̄l R1 2An̄An̄l ATARcos~f!, ~17!

C52@An̄ T1An̄l ATAR cos~f!#, ~18!

D52An̄l ATAR sin~f!. ~19!

For the sake of simplicity we have chosen to express the
mean photon number for the LO also in units ofns by writ-
ing ua l u25n̄l ns .

Notice thatg(2)(T) is independent of the efficiency of
detection. This means that it can be measured in counting
experiments even when the efficiency of detection is low.
For T51 our results agree with those obtained for the ISHG
@10#. For ISHG well below threshold,n̄ is small andns is
very large. In this limitg(2)(0)'(121/2ns)

2, which is al-
most unity@10,11#.

The expression forg(2)(T) shows that antibunching arises
due to the negative term with coefficientC2. It is easy to see
that this term is zero or negative, becauseC2, n̄, ns , and
l1 are all real and positive. Whenever this term is negative
enough to compensate for the positive terms antibunching
results. From Eq.~16! the condition for antibunching can be
written as

C2>D2S l1

l2
D 12T2S gn̄ l1

4ns

D S l1
21l2

2

l1
2l1

2 D . ~20!

We find that maximum antibunching occurs forf5180° for
which the coherent componentA reduces to
(An̄AT2An̄l AR)2. With a proper choice of the strength of
the LO (n̄l ns5ua l u2) and transmissivity (5T ) we can re-
duce the coherent componentA considerably, leading to a
significant enhancement of antibunching for the HISHG
compared to that for the ISHG. In the absence of the coher-
ent component (A50), we findC50 and the resulting pho-

ton sequence is highly bunched. Thus antibunching is only
enhanced whenA is small but not zero.

This behavior of antibunching for the HISHG is shown in
Fig. 2, whereg(2)(0) is plotted as a function ofn̄l for two
different values of transmissivityT. Other parameters are
ns5106, n̄50.2, andf5180°. Note thatn̄l is the strength
of the LO in units ofns . Starting from very low values
of n̄l , g

(2)(0) decreases asn̄l increases, reaching a mini-
mum where antibunching is maximum. With further increase
in n̄l we find thatg(2)(0) becomes very large, exhibiting a
peak forn̄l 5n̄T/R. This peak corresponds toA50 and for
this figure the peak value is about 51. As we increasen̄l
furtherg(2)(0) decreases, reaching a minimum before reach-
ing the value unity. Thusg(2)(0) shows two minima as a
function
of n̄l , where antibunching is enhanced significantly. At
these minima the coherent component is partially eliminated
by destructive interference at the beam splitter. It is interest-
ing to note that for an antibunched photon sequence a small
coherent background is essential. A complete removal of the
coherent component results in a highly bunched photon se-
quence.

Figure 3 showsg(2)(0) as a function of transmissivityT
for two different values ofn̄l . Other parameters chosen for
this figure are the same as those for Fig. 2. This figure also
shows two minima ing(2)(0) asT is varied and other param-
eters are kept constant. At these minima the underlying pho-
ton sequence exhibits enhanced antibunching compared to
the photon sequence for the ISHG alone.

As mentioned earlier, enhancement of antibunching can
also be achieved by using a passive cavity@10,11#. However,
for the system under consideration here, one has full control
over the strength of the LO, transmittance of the beam split-
ter, and relative phase. Hence this scheme provides more
freedom in accessing the interesting regimes experimentally.

IV. MULTIATOM OPTICAL BISTABILITY

Next we consider the enhancement of antibunching in the
MAOB, in which N two-level atoms are placed inside a

FIG. 2. Normalized second-order intensity correlation function
g(2)(0) for the HISHG as a function ofn̄l for various
parametersn̄50.2,ns5106, f5180°, and two different values of
transmissivityT50.49 ~dash-dot curve! and T50.5 ~solid curve!.
Note thatn̄l is the strength of the LO in units ofns . For these
parametersg(2)(0) for the ISHG is indistinguishable from unity.
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high-Q cavity. The cavity is driven by a strong coherent field
of amplitudeE which again can be chosen to be real by an
appropriate definition of phases. In the positive-P represen-
tation the relevant quantum operators can be mapped onto
five stochastic variables: three describing atomic dynamics
and two describing cavity-field dynamics@11#: In the good
cavity limit atomic variables decay much faster than the field
variables. They can therefore be eliminated adiabatically. In
this limit cavity-field variables satisfy the following differen-
tial equations@11#:

ȧs52g~as2E!22Cgas1 iA2Cgasj, ~21!

ȧs*52g~as*2E!22Cgas*1 iA2Cgas* j* , ~22!

Here g is the cavity decay rate;C5(Ng')/(nsg) is the
atomic cooperativity parameter;ns5(2g'g i)/(4g

2) is the
saturation photon number;g' is the atomic dipole dephasing
rate;g i is the population decay rate;g is the atom-field cou-
pling constant;j and j* are two real Gaussian white-noise
processes with zero mean and unit strength. Linearizingas
andas* around the steady-state values

as5Ans @An̄1 idas#, ~23!

as*5Ans @An̄1 idas* #, ~24!

one can show thatdas and das* satisfy the following dif-
ferential equations:

ḋas52ldas1A2Cgn̄
ns

q1 , ~25!

ḋas*52ldas*1A2Cgn̄
ns

q2 , ~26!

with l5g(112C). Heren̄ is average photon number in the
fundamental mode given byn̄ns(112C)25E2. Using Eqs.

~25! and ~26! one can show thatdas and das* have zero
mean and correlation functions given by

^das~ t !das~ t8!&5
n̄

2ns
e2lut2t8u5^das* ~ t !das* ~ t8!&,

~27!

^das* ~ t !das~ t8!&5 0, ~28!

with ns5ns(112C)/(2C).
Substitutingas and as* into Eqs. ~2! and ~3! we get

complex-field amplitudes for the HMAOB as

b15Ans @An̄1 idas#AT1ua l ueifAR, ~29!

b1*5Ans @An̄1 idas* #AT1ua l ue2 ifAR. ~30!

Using the correlation properties ofdas anddas* we obtain
the following expressions for the mean and the two-time
intensity correlation function:

^b1*b1&5ns@A#, ~31!

g~2!~T!5 11
@ n̄2T2e22lT2 4n̄nsTFe2lT#

@2nsA#2
, ~32!

whereA is given by Eq.~17!, andF is given by

F5n̄ T1n̄l R cos~2f!1 2An̄An̄l ATARcos~f!. ~33!

Here n̄l is the mean photon number for the LO in units of
ns . For T51, the results for the HMAOB reduce to those
for the MAOB. For the MAOBg(2)(0)5(121/2ns)

2, which
is almost 1 for a large value ofns @11#.

The behavior ofg(2)(T) for the HMAOB is similar to that
for the HISHG. As in the case of HISHG we find that maxi-
mum antibunching for the HMAOB occurs atf5180° and
antibunching is enhanced by reducing the coherent back-
groundA by adjusting the parametersn̄l andT.

Figure 4 showsg(2)(0) as a function ofn̄l for two dif-

FIG. 3. Normalized second-order intensity correlation function
g(2)(0) for the HISHG as a function of transmissivityT for various
parametersn̄50.2, ns5106, f5180°, and two different values
of n̄l 50.198 ~dash-dot curve! and50.2 ~solid curve!. For these
parametersg(2)(0) for the ISHG is indistinguishable from unity.

FIG. 4. Normalized second-order intensity correlation function
g(2)(0) for the HMAOB as a function of n̄l for various
parametersn̄51, ns5103, C550,f5180°, and two different val-
ues of transmissivityT50.49~dash-dot curve! andT50.5 ~dash-dot
curve!. For these parametersg(2)(0) for the MAOB is indistin-
guishable from unity.
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ferent values of parameterT andf5180°. Once again, as a
function of n̄l , we findg

(2)(0) shows two minima where it
approaches zero. At these two minima the underlying photon
sequence exhibits maximum antibunching. This enhance-
ment in antibunching occurs due to destructive interference
at the beam splitter.

Figure 5 showsg(2)(T) as a function of scaled timelT
for T53/4, f5180°, and several different values ofn̄l .
Depending on the value ofn̄l we find that the photon se-
quence at the output port is bunched@g(2)(0).1# or anti-
bunched @g(2)(0), 1#. For n̄l 513.6 ~dash-dot
curve!, n̄l 514.34 ~dotted curve!, and n̄l 514.5 ~dashed
curve! antibunching is enhanced. For the dash-dot curve
g(2)(T) monotonically increases to unity asT increases,
whereas the dashed curve shows a minimum at a nonzero
time. For n̄l 514.34 ~dotted curve! g(2)(0) is nearly zero,
indicating perfect antibunching. The curves forn̄l 513.6
and n̄l 514.34 have a positive slope at timeT50, whereas
those forn̄l 514.5 andn̄l 515.46 have a negative slope at
time T50. Even though the curves n̄l 513.6

and n̄l 514.34 have a positive slope atT50, this positive
slope does not reflect a new violation of inequality, because
g(2)(0), 1 implies thatg(2)(0),g(2)(T).

An interesting case is shown by the curve
for n̄l 515.46. In this case we find thatg(2)(0)(51.29) is
greater than unity. This corresponds to a bunched photon
sequence. We note thatg(2)(0) is also greater thang(2)(T).
This curve shows an interesting violation of the classical
inequality @19,13#

g~2!~0!21>ug~2!~T!21u. ~34!

From this inequality it follows that if 1<g(2)(0)< 2, then
g(2)(T) cannot fall below@22g(2)(0)#(50.71) for a classi-
cal field. Sinceg(2)(T) falls below this value this classical
inequality is violated. A similar feature appears in the light
transmitted from a driven two-level atom@19# and homodyne
detection of degenerate parametric oscillator@13#. It is inter-
esting to note that the minimum in theg(2)(T) occurs at a
time of the order of (l)21. This means that for these param-
eters, the probability of detecting two photons separated by
lT is negligible.

V. SUMMARY AND CONCLUSIONS

We have discussed enhancement of antibunching in the
ISHG and the MAOB. The scheme presented here is based
on homodyne detection in which a signal from the ISHG or
the MAOB is mixed with a coherent local oscillator at a
lossless beam splitter.

We have shown that by choosing the strength of the LO,
transmittance of the beam splitter, and relative phase be-
tween the signal and the LO we can enhance antibunching of
the homodyne field significantly. The enhancement of anti-
bunching is due to thepartial removal of coherent back-
ground by destructive interference at the beam splitter. For
an antibunched photon sequence a small coherent component
is essential, and in the absence of a coherent component a
highly bunched photon sequence is generated. We also find
that the homodyne field may be bunched but it can exhibit a
violation of the classical inequality g(2)(0)21
>ug(2)(T)21u.
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