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Homodyne detection for the enhancement of antibunching
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We propose a scheme based on homodyne detection for enhancing antibunching in second-harmonic gen-
eration and multiatom optical bistability. We show that depending on the reflectivity of the beam splitter,
relative field strengths, and relative phase it is possible to achieve perfect antibunching in the superposed field.
We also discuss other nonclassical effects exhibited by the superposed field and present curves to illustrate the
behavior.[S1050-2946)09008-7

PACS numbegps): 42.50.Dv, 42.50.Ar, 42.65.Ky

I. INTRODUCTION as the strength of the local oscillator, transmittance, and rela-

Squeezind 1], antibunching, and sub-Possonian statisticgt:]\/ge;:t?suer’]émzjmeme may provide a better way of enhanc-

[2,3] are nonclassical features of the electromagnetic field. In Sec. Il we briefly describe the homodyne detection
These nonclassical features have been of considerable i”teééheme. In Sec. Il we apply this technique to the ISHG. In

est as they provide testing grounds for the prediction Oigec v we discuss the enhancement of antibunching for the
quantum electrodynamics. Squeezing is related to the wavga0B. Finally, a summary and main conclusions of the
like character of the electromagnetic field. It is measured irhaper are presented in Sec. V.

interference experiments. Antibunching and sub-Poissonian

statistics, however, reflect the particlelike behavior of the

field and are measured in photon counting experiments. As

discussed in Ref[4] squeezing, antibunching, and sub- Figure 1 shows a schematic diagram for the homodyne

Poissonian statistics are, in general, distinct nonclassical efletection experiment. For the ISHG, a nonlinear crystal is

fects in the sense that an electromagnetic field may exhibiplaced inside the cavity, whereas for the MAQB{wo-level

one but not the other. atoms are placed inside the cavity. The light from the ISHG
The antibunching effect has been predicted in intracavityor the MAOB is superimposed with the light from a LO at a

second-harmonic generati®i$HG) [5,6] and multiatom op- lossless beam splitter. The annihilation operatorsandb,

tical bistability (MAOB) [7,8]. However, the predicted size at the output ports are related to those at the input ports by

of antibunching is small and would be difficult to detect [13,14]

experimentally, as it occurs against a large coherent back-

Il. HOMODYNE DETECTION

grounld. The p;gdic’ie;j atrrlltibun:;hintg_] in t?]e?e systent:s is in- 61 VT JR\ [ &
versely proportional to the saturation photon numhber, ~ | = s,
which is of the order of 10-1C° for the ISHG, and b, | 7| —VR VT|| &

10°— 10* for the MAOB. Several schemes based on interfer-
ence[9] or passive filter cavitie§10-12 have been pro- i
posed to enhance the antibunching effect.
We propose a scheme based on homodyne detection T+R=1.
[13-15 for enhancing antibunching in these systems. Ho-
modyne detection experiments have been used for measuring
phase-sensitive properties of squeezed lght It has been
shown that the light from a degenerate parametric oscillator,
which is highly bunched and super-Poissonjaf,17], can

exhibit many nonclassical effects using a similar detection / NLC or N atoms \\ b, R
schemd13]. In the homodyne detection experiment we con- . ——] 1 a, b,

sider the interference of the signal beam from the ISHG or I— / @‘
the MAOB with a coherent local oscillatgkO) at a lossless / BS |

beam splitter as shown in Fig. 1. A detector of efficiencis @

placed at one of the output ports of the beam splitter. The

statistics measured at the detector is sensitive to the relative LO

phase between the signal and the LO. Thus particlelike prop-

erties(photon statistiosare intimately connected to wavelike  FiG. 1. System for homodyning the ISHG or MAOB field with
(phase property of the field. Because of this phase depenthe LO field. For the ISHG a nonlinear crystMLC) is placed
dence, the homodyne field can exhibit enhanced antibunchnside the cavity and for the MAOBI two-level atoms are placed

ing and violation of various classical inequalities. Since ininside the cavity. BS denotes a beam splitter &ndenotes a de-
this scheme one can readily adjust various parameters sueéctor.
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Herea, anda, are annihilation operators for the signal and both the fundamental and the second-harmonic frequencies.
the local oscillator, respectively; is the transmissivity, and The fundamental mode of the cavity is excited by an injected
R is the reflectivity of the beam splitter. F@=1 only the classical signal of normalized amplitudie which has been
light from the signal is detected, and @0 only the light chosen to be real by an appropriate definition of phases. This
from the LO is detected. Here we assume that the fieldsource is known to produce an antibunched photon sequence
suffer no phase shifts due to the beam splitter. We will refef5,6].
the superposed field as HISHG when the signal is from the In the positiveP representatiofl8] the equations of mo-
ISHG and as HMAOB when the signal is from the MAOB. tion for the complex-field amplitudess and s, associated
The annihilation and creation operators at the “sum” out-with the annihilation and creation operat¢€s10,11 of the

put port61 can be written as fundamental mode can be written as
b,=2,/7T+3,R, bi=al\|T+al|R. 1 : k? k?
mANTHAAR, DI=ATHE) @ b=~ Y@ E) - 5 anad iz ak (0
Results for the “difference” porb, can be obtained by re-
placing 7 by — R and R by 7. _ S
In the photoelectric counting measurements we are deal- @sx =~ Y(as, —E)— o Fsx astl o Csx &x
ing with normally ordered operator expectation values. We )

can therefore use the positiVe+epresentation to describe

the nonclassical fields generated in the ISHG or the MAOBHere v, =y and y, are the cavity linewidths at the funda-
In the positiveP representat|0r1[18] complex -field ampli- mental and its second-harmonic frequencies, knid the
tudesB; and B, corresponding td; andb can be written mode-coupling constant. Noise souréesnd¢, are two real

as Gaussian white-noise processes with zero mean and unit
strength[21,22. These equations of motion are derived by
Blzas\/?+|a/|ei¢\/ﬁ, (2 adiabatically eliminating the second harmonic mode
(v2>>7v). By linearizing a5 and ag, around the steady-
1= as T+ |a,le R, (3)  state valuen and introducing new variablas, andu, by
Here|a, | is the field amplitude for the LO fieldp is the LO as=n[Vn+i(ug+uy)]l, 8
phase relative to the signal; andas, are the complex-field
amplitudes corresponding &, anda/ for the signal field. e, =N [VN+i(u;—uy)], 9)

Note that in the positivé? representatiofs and e, arenot . ' _
complex conjugates of each other. The mean photon numb#ye can show thaii; andu, satisfy the following stochastic
measured at the detector is proportional to differential equations:

_ 2 "
(B1xB1)=T{as, as)+ Rl a,| | | U= — N U+ ,£Qi =12 (10)
+VRVTa/|((ase +(as )e'?), (4 ©

and the two-time intensity correlation function can be written
as

Here the threshold photon number=2yy,/k?; the aver-

age photon numban in the fundamental mode is given by

the equation (#n)?nn,=E? q;=(&+&,)/V2 and

(B14(0)B1,(T) B1(T) B1(0)) qu(f—g*)/ﬁ are two real independent Gaussian white-
(B (0)B2(0))2 (5) noise processes with zero mean and unit strength. The equa-

tion for n has only one physical root. The decay constants
Once the correlations propertiesaf anda., are knownwe M1 a@ndi; are given by

can calculate the two-time intensity correlation function. In

the literature, antibunching is defing2-4,19,2Q either as a

. . - . 2 . .
violation  of inequality g®*)(0)=1 or inequality It follows from Eq.(10) thatu; andu, are real Gaussian

2 2 . . .
9®(0)=g®)(T). As discussed in Re{13] we consider a random variables with meafu;)=0 and correlations given
photon sequence antibunched if the probability of detectmg)

two photons in coincidence is smaller than that for coherent
light; that is,g‘®(0)< 1.

@M=

(ui( ‘”i't‘”, i=12. (12

IJ 4
IIl. INTRACAVITY SECOND-HARMONIC GENERATION
Substitutinges andas, given by Egs(8) and(9) in Egs.(2)

First consider the light from the ISHG. In the process ofand(3) we get the complex-field amplitudes for the HISHG
second-harmonic generation two photons at the fundamentab
frequencyw combine to give a single photon at the second- ,
harmonic frequency @ inside a nonlinear crystal. The gen- Bi=n,[Vn+i(u+u) T+ |a, e VR, (13
eration of second-harmonic light is enhanced by placing the
nonlinear crystal inside an optical cavity that is resonant at Bix = VN, [Vn+i(u;—uy) ]NT+| e, le ¢YR. (14
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Using the correlation properties of, and u, given in Eg.

1.6 T T T

(12) we obtain the mean for the HISHG as : '

i
14 1

<,31*Bl>:[<as* a’S>T+|a/|2'R,], i i
yn yn 2 f L 7

= + - .

Mol A T( 4noh; (4"‘07\1)] 19 E l!

= _ I
N ~ . | o
The two-time intensity correlation function for the ° \ ! l (\
HISHG is similarly given by 08 o i
\l' [ T-0.40

n \2 0\ 2 6 ‘ ! |

o2 ¥n e 2MT m o 20,7 oo | !f

4NN, an.\, 1

g?(T)= 1+ — — 72 : ‘
vNn vNn 0.19 0.193 0.202
+ J—
A T{ 4no)\2) (4no7\l)]
_c? yn e MT4D2 yn o T FIG. 2. Normalized second-order intensity correlation function
4n N, 4n .\, g®(0) for the HISHG as a function ofn, for various

o o 2 ' parametersi=0.2,n,=10°, ¢$=180°, and two different values of
A+T( —( )] transmisthyT=0.49 (dash-dot curveand 7=0.5 (solid curve.
4nch; 4nchy Note thatn, is the strength of the LO in units af,. For these

(16)  parameterg®(0) for the ISHG is indistinguishable from unity.

ton sequence is highly bunched. Thus antibunching is only
enhanced wheA is small but not zero.

This behavior of antibunching for the HISHG is shown in
Fig. 2, whereg®(0) is plotted as a function af, for two
different values of transmissivity. Other parameters are

where

A=nT+n,R+ 2ynVn T\YRcog¢),  (17)

C=2[VnT+Jn VTR cog ¢)], (18)  n,=10°, N=0.2, andé=180°. Note thah,, is the strength
of the LO in units ofn,. Starting from very low values
D=2 n, VTR sin(¢). (190  of n,, g®¥(0) decreases as, increases, reaching a mini-

mum where antibunching is maximum. With further increase

For the sake of simplicity we have chosen to express thén n, Wejnd_thatg(z)(O) becomes very large, exhibiting a
mean photon number for the LO also in unitsmofby writ-  peak forn,=n7/ R. This peak corresponds =0 and for
ing |a,/|?=n,n,. this figure the peak value is about 51. As we increage

Notice thatg®(T) is independent of the efficiency of furtherg®(0) decreases, reaching a minimum before reach-
detection. This means that it can be measured in countin?‘g the value unity. Thug®(0) shows two minima as a
experiments even when the efficiency of detection is lowfunction . o o
For7=1 our results agree with those obtained for the ISHGOf n,, where antibunching is enhanced significantly. At

[10]. For ISHG well below thresholdy is small andn_ is  these minima the coherent component is partially eliminated
very large. In this Iimitg(z)(0)~(1—1,/21 )2, which iSO al- by destructive interference at the beam splitter. It is interest-
: o)

most unity[10,11] ing to note that for an antibunched photon sequence a small
The expres'sior.1 fog®(T) shows that antibunching arises coherent background is essential. A complete removal of the
due to the negative term with coefficieBt. It is easy to see coherent component results in a highly bunched photon se-

hat thi ; e, becad N . duence.
that this term is zero or negative, becadss n, n,, an Figure 3 showgy®?(0) as a function of transmissivity

A, are all real and positive. Whenever this term is negativg,, yyo different values oh, . Other parameters chosen for
enough to compensate for the positive terms antibunching,is figure are the same as those for Fig. 2. This figure also

results. From Eq(16) the condition for antibunching can be gnows two minima irg®(0) asTis varied and other param-
written as eters are kept constant. At these minima the underlying pho-
o ton sequence exhibits enhanced antibunching compared to
c2=D2 A Lop| N Ay the photon sequence for the ISHG alone. _
= A, an, As mentioned earlier, enhancement of antibunching can
also be achieved by using a passive caify,11]. However,

We find that maximum antibunching occurs e 180° for for the system under consideration here, one has full control
which the coherent componentA reduces to OVer the strength of the LO, transmittance of the beam split-

7= JnoJR)2. With a proper choice of the strenath of t€f» and _relative p_hase. Hence t_his scheme provi_des more
'Ehe \IQ) (n_/n/ —|a,|2) and Franpsmissivity(:T) we cangre— freedom in accessing the interesting regimes experimentally.
/10 /

duce the coherent componeftconsiderably, leading to a
significant enhancement of antibunching for the HISHG
compared to that for the ISHG. In the absence of the coher- Next we consider the enhancement of antibunching in the
ent componentA=0), we findC=0 and the resulting pho- MAOB, in which N two-level atoms are placed inside a

2,32
NITAS

(20
AL

IV. MULTIATOM OPTICAL BISTABILITY
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FIG. 4. Normalized second-order intensity correlation function
FIG. 3. Normalized second-order intensity correlation functiong®(0) for the HMAOB as a function ofn, for various
g?(0) for the HISHG as a function of transmissivifyfor various ~ parametersi=1, n,=10°, C=50, ¢=180°, and two different val-
parametersn=0.2, n,=10°, ¢=180°, and two different values ues of transmissivity=0.49(dash-dot curveand7= 0.5 (dash-dot
of n, =0.198 (dash-dot curveand =0.2 (solid curve. For these  curve. For these paramete®(0) for the MAOB is indistin-
parameterg®(0) for the ISHG is indistinguishable from unity.  guishable from unity.

high-Q cavity. The cavity is driven by a strong coherent field (25) and (26) one can show thabas and S, have zero
of amplitudeE which again can be chosen to be real by anmean and correlation functions given by
appropriate definition of phases. In the positReepresen- —

tation the relevant quantum operators can be mapped onto (Say(t) Sagt'))= Le—x|t7t'|:<5a (1) Sarg, (1))
five stochastic variables: three describing atomic dynamics s s 2ng S e
and two describing cavity-field dynami¢$1]: In the good 27

cavity limit atomic variables decay much faster than the field by
variables. They can therefore be eliminated adiabatically. In (Sag, () dag(t"))= 0, (28)
this limit cavity-field variables satisfy the following differen- with ng=n_(1+20)/(2C).

tial equationd 11]: Substituting @s and «ag, into Egs. (2) and (3) we get

complex-field amplitudes for the HMAOB as
. e Bi=\n [\n+isa]VT+|ale*VR, (29
g =~ Y(as, —E)—2Cyag, +iV2Cyag, &, , (22

=Jn,[Vn+ié T+|a,le”'*yR. (30
Here y is the cavity decay rate¢=(Ny,)/(n,y) is the Bra = na [N i Sats, VT e VR. (30

atomic cooperativity parameten,=(2y, yH)/(4g2) is the  Using the correlation properties &fxs and Sa, we obtain
saturation photon numbey, is the atomic dipole dephasing the following expressions for the mean and the two-time
rate; y, is the population decay ratg;is the atom-field cou- intensity correlation function:

pling constant¢ and ¢, are two real Gaussian white-noise

as=—y(as—E)—2Cyagt+i2Cyast, (21

processes with zero mean and unit strength. Linearizing (B1x B1) =No[A] 31
and ag, around the steady-state values 2 (WPe 27— dan.TFe ]
rg= I [V 8a], @3 gom =1+ ZRAR . @
g, =\, [Vn+idas, ], (24) whereA is given by Eq.(17), andF is given by
one can show thaba, and dag, satisfy the following dif- F=nT+n,Rcos24)+ 2Vnin, VTVRcod ). (33)

ferential equations: Heren, is the mean photon number for the LO in units of

_ 20y n,. For 7=1, the results for the HMAOB reduce to those
Sag=—NSagt \| ——0y, (25)  for the MAOB. For the MAOBg(?(0)=(1—1/2n)?, which
No is almost 1 for a large value af; [11].
_ The behavior ofy?)(T) for the HMAOB is similar to that
Se. = — NS 4 /207nq 26) for the HISHG. As in the case of HISHG we find that maxi-
S S n, 2’ mum antibunching for the HMAOB occurs gt=180° and
antibunching is enhanced by reducing the coherent back-
with A =y(1+2C). Heren is average photon number in the groundA by adjusting the parameters- and 7.
fundamental mode given byn,(1+2C)?=E?2. Using Egs. Figure 4 showsy®(0) as a function oh, for two dif-
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andn,=14.34 have a positive slope @t=0, this positive
slope does not reflect a new violation of inequality, because
g®(0)< 1 implies thatg®(0)<g®(T).

An interesting case is shown by the curve
for n,=15.46. In this case we find thaf®(0)(=1.29) is

| - ; greater than unity. This corresponds to a bunched photon
S - K Ay =136 sequence. We note thgt?)(0) is also greater thag®(T).
& /4\ 7y = 1434 1 This curve shows an interesting violation of the classical
0.6 T4 c S e =145 inequality[19,13
! A 7, = 15.46
AN g?(0)-1=|g?(T)-1]. (34
02T \\ // +
R ; . . From this inequality it follows that if &g(®(0)< 2, then
0 . ) . ) . g®)(T) cannot fall below2—g‘®(0)](=0.71) for a classi-

3
AT

FIG. 5. Normalized second-order intensity correlation function

g@(T) for the HMAOB as a function of \T for
parametersi=5, n,=10%, C=50, 7=0.75, and¢$=180°. Curves
are plotted for different values af, : 13.6 (dash-dot curvg 14.34
(dotted curvg 14.5 (dashed curve and 15.46 ---—---—).

cal field. Sinceg®(T) falls below this value this classical
inequality is violated. A similar feature appears in the light
transmitted from a driven two-level atojh9] and homodyne
detection of degenerate parametric oscillgfid]. It is inter-
esting to note that the minimum in thg?)(T) occurs at a
time of the order of ) ~*. This means that for these param-
eters, the probability of detecting two photons separated by

These dash-dot curves show enhancement of antibunching and vid-T 1S negligible.

lation of the classical inequalityg®(0)=1. The curve for
n,=15.46 shows violation of the classical inequality
[9?(0)—1]=|g®(T)—1|. The solid curve for the MAOB is in-
distinguishable from unity for all values &fT.

V. SUMMARY AND CONCLUSIONS

We have discussed enhancement of antibunching in the
ISHG and the MAOB. The scheme presented here is based

ferent values of parametérand ¢=180°. Once again, as a on homodyne detection in which a signal from the ISHG or
function ofn,, we findg‘®(0) shows two minima where it the MAOB is mixed with a coherent local oscillator at a
approaches zero. At these two minima the underlying photofbssless beam spilitter.
sequence exhibits maximum antibunching. This enhance- \We have shown that by choosing the strength of the LO,
ment in antibunching occurs due to destructive interferencéransmittance of the beam splitter, and relative phase be-
at the beam splitter. tween the signal and the LO we can enhance antibunching of
Figure 5 showgg®)(T) as a function of scaled timeT  the homodyne field significantly. The enhancement of anti-
for 7=3/4, $=180°, and several different values of .  bunching is due to theartial removal of coherent back-
Depending on the value of, we find that the photon se- ground by destructive interference at the beam splitter. For
quence at the output port is bunchggf?)(0)>1] or anti-  an antibunched photon sequence a small coherent component
bunched [g®(0)< 1]. For n,=13.6 (dash-dot is essential, and in the absence of a coherent component a
curve, n,=14.34 (dotted curvg, and n,=14.5 (dashed highly bunched photon sequence is generated. We also find
curve antibunching is enhanced. For the dash-dot curvehat the homodyne field may be bunched but it can exhibit a

g®(T) monotonically increases to unity ab increases, violaton of the classical inequality g®(0)—1
whereas the dashed curve shows a minimum at a nonzees|g®®)(T) - 1.

time. Forn,=14.34 (dotted curveé g(0) is nearly zero,

indicating perfect antibunching. The curves fop=13.6 ACKNOWLEDGMENT

andn, = 14.34 have a positive slope at tinfe=0, whereas
those forn,=14.5 andn,=15.46 have a negative slope at
time T=0. Even though the curvesn,=13.6

This work was supported in part by the National Science
Foundation.

[1] See the special issue @gueezed States of the Electromag- [3] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett.
netic Field edited by H. J. Kimble and D. F. Walls, JOSAB 38, 691(1977; G. Rempe, F. Schmidt-Kaler, and H. Walther,
(10), (1987; L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. ibid. 64, 2783(1990.

Rev. Lett.57, 2520(1986; P. W. Milonni and S. Singh, in [4] L. Mandel, Phys. Rev. Let#9, 136 (1982.

Advances in Atomic, Molecular, and Optical Physieslited [5] R. Loudon, Rep. Prog. Phyd43, 913 (1980; H. Paul, Rev.
by D. Bateman and B. Bedersdicademic, Orlando, FL, Mod. Phys.54, 1061(1982.

1991, Vol. 28, p. 75. [6] P. D. Drumond, K. J. McNeil, and D. F. Walls, Opt. A4,

[2] H. J. Carmichael and D. F. Walls, J. Phys9R .43 (1976; H. 321(1980; 28, 211(1981).

J. Kimble and L. Mandel, Phys. Rev. 23, 2123(1976. [7] P. D. Drumond and D. F. Walls, J. Phys.18, 725(1980; H.



2396 REETA VYAS, CHANGXIN WANG, AND SURENDRA SINGH 54

J. Carmichael, D. F. Walls, P. D. Drumond, and S. S. Hassan,16] Reeta Vyas and S. Singh, Phys. Rev38 2423(1988; Opt.

Phys. Rev. A27, 3112(1983. Lett. 14, 1110(1989; Phys. Rev. A40, 5147(1989; R. Vyas
[8] H. J. Carmichael, Phys. Rev. Lef5, 2790(1985; Phys. Rev. and A. L. DeBrito,ibid. 42, 592 (1990.
A 33, 3262(1989; H. J. Carmichael, J. S. Satchell, and S. [17] G. S. Agarwal and G. Adam, Phys. Rev.39, 6259(1989;
Sarker,ibid. 34, 3166(1986. M. J. Wolinsky and H. J. Carmichael, @oherence and Quan-
[9] A. Bandilla and H. H. Ritze, Opt. CommuB8, 126(1979; H. tum Optics V] edited by J. H. Eberly, L. Mandel, and E. Wolf
H. Ritze and A. Bandillajbid. 28, 241 (1979. (Plenum, New York, 1989 C. Zhu and C. M. Caves, Phys.
[10] G. S. Holliday and Surendra Singh, @oherence and Quan- Rev. A42 6794(1990.
tum Optics V| edited by J. H. Eberly, L. Mandel, and E. Wolf [18] P. D. Drummond and C. W. Gardiner, J. Phys.18 2353
(Plenum, New York, 1990 p. 509. (1980.
[11] Y. Qu, M. Xiao, G. S. Holliday, S. Singh, and H. J. Kimble, [19] P. Rice and H. J. Carmichael, IEEE J. Quantum Electron.
Phys. Rev. A45, 4932(1992, and references therein. JQE-24, 1351(1988.
[12] M. Xiao and H. J. Kimble, J. Opt. Soc. Am. 3, 46 (1986. [20] R. Loudon, The Quantum Theory of LigHOxford Science
[13] A. B. Dodson and Reeta Vyas, Phys. Rev4A 3396(1993. Publications, Oxford, 1983
[14] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A[21] C. W. Gardiner,Handbook of Stochastic MethodSpringer-
40, 1371(1989. Verlag, Berlin, 1983

[15] S. L. Braunstein, Phys. Rev. A2, 474 (1990; S. L. Braun-  [22] H. Risken, The Fokker-Planck Equatior{Springer-Verlag,
stein and C. M. Cave<i2, 4115(1990. Berlin, 1984.



