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Resonance fluorescence spectra of three-level atoms in a squeezed vacuum
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The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed
fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly
driven three-level atoms i, V, and cascade configurations in which one of the two one-photon transitions is
coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference
in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the
driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by
a degenerate parameter oscillator. Details are only given foAthenfiguration. The extension to the V and
cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the
transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of
sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the
central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the
fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the
two-photon transition between the ground and the most excited states and now generated by a nondegenerate
parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions,
all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-
atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields
modifies transition rates between the dressed states, which results in the selective phase dependence of the
spectral feature§S1050-29476)05908-2

PACS numbsd(s): 42.50.Dv, 32.80-t

[. INTRODUCTION It has been pointed out, however, that these features could
be difficult to observe experimentally for the following rea-
One of the more interesting developments in recent yearsons. First, most of these calculations have been performed
is the possibility of an experimental observation of assuming that the atoms interact with a broadband squeezed
squeezing-induced modifications in the fluorescence lightacuum. In the frequency domain, this assumption requires
emitted by three-level atoms. In particular, an experimenthe bandwidth of the squeezed vacuum to be much greater
has already been performed on squeezing-modified twahan both Rabi frequencies of the driving fields and the natu-
photon absorption in atomic cesiufit]. Recent studies of ral linewidths of the atomic transitions. In practice, squeez-
three-level atoms in the cascade configurations interactinjg bandwidths are far from broadband. Recent studies of the
with a squeezed vacuum fig]@—5] show that the correlated effects of finite-bandwidth squeezed light on the fluorescence
pairs of photons characteristic of squeezed fields can lead ®nd absorption specti®28-30 show that the subnatural-
the population of the upper level having a linear dependencinewidth effects, seen in the broadband squeezed vacuum
on intensity. This is in stark contrast to the usual quadraticase, are diminished and ultimately vanish when the band-
dependence for a two-photon proc¢6% Other interesting width of the squeezed vacuum field is comparable to the
modifications of the radiative properties of atoms in the presnatural linewidths of the atomic transitions.
ence of a squeezed vacuum field have also been predicted The other important assumption in these calculations,
[7]. Examples include inhibition of the atomic decay processwhich would limit experimental realization, was that the at-
[8], level shifts[9—12], squeezing-induced transparent], oms exclusively interact with the squeezed modes. This
asymmetrics and dispersive profiles in the fluorescence speceuld be difficult to realize experimentally, since it requires
trum[14], selective population of the atomic levglkb—17,  squeezing all the modes of the electromagnetic field coupled
amplification without population inversiofl8], and probe to the atoms. This situation would be realized in practice
absorption spectrgl9]. using some type of waveguide or generation of a squeezed
The modifications of the dipole decay process in a two-erfect electric dipole wav¢8]. In atomic spectroscopy,
level atom can introduce significant changes in intensitiehiowever, the experiments usually use atomic-beam methods
and linewidths of the fluorescence and absorption spectra. [I81], or atoms trapped in a confined spd&&], where the
particular, it is now well knowrf20—27 that the linewidths atoms interact with an incoming wave which is not a perfect
of the spectral features strongly depend on the relative phasdectric dipole. Schemes involving optical cavities with un-
between the squeezed vacuum and a driving field, and can Isgueezed windows have been proposed as a possibility to
broadened or narrowed compared to that in the ordinaravoid these difficultie$20,33,34.
vacuum. Similar features have been found for multiatom In this paper we propose another scheme which involves
resonance fluorescen¢@3—-25 and for three-level atoms three-level atoms strongly driven by two laser fields and
coupled to two independent squeezed va@@&27]. coupled to a finite-bandwidth squeezed vacuum whose band-
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figurations the fluorescence spectra are strongly influenced
by the squeezed vacuum field. In particular, for strongly
driven A, V, and cascade systems with the squeezed vacuum
coupled only to the transition of the frequeney, the spec-
trum observed from the transition of frequensyconsists of

five lines with only those located at, and w,=() dependent

on the squeezed vacuum phase whereQ=(Q2+0%2is

the effective Rabi frequency of the driving fields. The lines
at w,*+3( do not show any dependence @g. This is in
contrast to the two-level atom case, where all spectral lines
depend on the pha$20]. For a strongly driven cascade sys-
tem with the squeezed vacuum field resonant with the two-
photon transition between the ground and the most excited
levels, all spectral lines show the dependence on the phase.

In order to explain these features, we apply the dressed-
atom mode[35]. In the limit of well-separated spectral lines
(secular approximation the master equation leads to sepa-
rated equations for populations and coherences, which al-
lows us to derive analytical expressions for the linewidths of
the spectral features and their intensities. The dressed states
of the systems are identified and the spectral features are
explained in terms of transitions between these dressed
states.

The paper is organized as follows. In Sec. Il we present
our model and discuss in detail the optical Bloch equations
for the A configuration only. Calculations of the fluorescence
spectra for all configurations are presented in Sec. lll. The
dressed-atom model of the system is discussed and the ana-
Iytical expressions for the spectral linewidths and their inten-
sities are derived in Sec. IV, again focusing only on the
(d) configuration in the interests of conciseness. Finally, in Sec.

) _ V, we summarize our results.
FIG. 1. Energy-level schemes for the four atomic configura-

tions: (a) the A configuration,(b) the V configuration(c) the cas-
cade configuration with the squeezed vacuum coupled to the lower
transition, and(d) the cascade configuration with the squeezed e consider three-level atoms with the nondegenerate
vacuum coupled to the two-photon transition. stateg1), |2), and|3) of energiesE;, E,, andE; in the three

. . ) _ possible configurationg=ig. 1)
width is much smaller than the difference in the allowed

Il. THE MODEL

atomic transition frequencies. This scheme retains the advan- (1) E,>E;>Ej;, A configuration

tage that the squeezed vacuum might be coupled to one of (2.1)
the two possible transitions and the fluorescence could be (2) E3z>E;>E,, V configuration
observed from the other transition whose frequency is well

outside the squeezing bandwidth. This system might be re- (3) E3z>E,>E;, E configuration.

garded as a somewhat more practical scheme for observing
the effects predicted in the fluorescence spectrum, as it does The atoms interact with two single-mode coherent laser
not require the experimentally difficult separation of thefields and with the quantized multimode radiation field in
fluorescence field from the squeezed field. which a part of the modes is in a squeezed state. The first
We are particularly interested in the manner in which alaser, of the Rabi frequenc{,, is coupled to the atomic
narrow-band squeezed vacuum field coupled to one of th&ansition|1)—|2) and has a frequency;, which is exactly
two atomic transitions affects the fluorescence field emittecqual to the atomic transition frequeney, i.e., the one-
from the other transition. Using master-equation techniqueghoton detuning\,=w;—wy, is zero. The second laser, of
we calculate the steady-state fluorescence spectra of the trathe Rabi frequency),, is coupled to the atomic transition
sition not coupled to the squeezed vacuum. We consider foyB)—|2) and has a frequenay,, which is exactly equal to the
three-level configurations shown in Fig. 1, i.e., lamida, atomic transition frequency,, i.e., the one-photon detuning
vee(V), and cascadés), with the squeezed vacuum coupled A,=w,—w,, is zero. On the other hand, the frequengy is
to the lower transition, and a cascade with the squeezesignificantly different fromw,, , so that each laser is coupled
vacuum coupled to the two-photon transition. We assumenly to one of the two possible transitions in the three-level
that the driving fields of Rabi frequencid€3, and (), are  systems. We assume that a part of the vacuum modes
each coupled to one of the atomic transitions, and their freeoupled to the atom is in a multimode squeezed vacuum
guencies are exactly equal to the atomic transition frequerstate. The bandwidth of squeezing is assumed to be much
cies w; and w,, respectively. We find that in all these con- larger than the decay rates of the atomic transitions and the
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Rabi frequencies of the driving fields. This allows the appli-with

cation of the Markoff approximation in terms of the free-

atom states when calculating the fluorescence spectra. be=3y—&, by=3y+|&l, 2.7
The time evolution of the atomic systems is described by

the master equation of the reduced density opegaton the ~ Wherey is the DPA cavity damping rate artllis the effec-

Schralinger picture the master equation, based on the Borrive pump intensity38]. Maximum squeezing is achieved at

Markoff approximations, is given bj36] the threshold for parametric oscillation, i.e., |§b—>.%'y. The
parameterd, andb, are referred to as the bandwidths of the

ap [ 1 e e squeezed vacuum field.
St~ 7lHopl—3 ; Lij[N(0j) +1](S" S p+pS' S It is seen from Eqs(2.5 and (2.6) that the squeezing
parameters depend on the detuning between the carrier fre-
R | - - guency of the squeezed field and the atomic transition fre-
—25pS)-3 Z TiiN(0) (S S p+pS S quencies. For the squeezed-field frequeagycentered on
J the atomic transition frequenay; , the squeezing parameters

PR ¢ - o take the form
-2/ pS >—§§ LM (0)(SS p+pS'S,

bj—bZ (1 1
o1 Nlw)==7" 15z pz) =™
—28/pSHe =5 X TM* (@)(S7S] p x
! 2 2
—o — oy eliog y (1 1
+pS § —25 pS e, (2.2 IM(wy)|= =+ =2 =IM|,
4 02702
whereS;" (S;) is the raising(lowering atomic operator of , 2.9
theith transition(i=1,2), H, is the Hamiltonian composed Nl ws) by—by| 1 1
of two terms L b2 AZ+Dp2)’
HOZHA|+W|, (23) " - bi_bi 1 N 1
whereH 4, is the Hamiltonian of the atom in tHeh configu- M(w2)|=—3 A%+bf - A%+bg|

ration (I=A,V,E), and
) . . - . where A=w;—w, is the frequency difference between the
W =3704[S; exp(—iwit) +S; expliost)] two atomic transitions. Whem is much larger than the
. _ . bandwidth of the squeezed vacuu>b, ,b,), the transi-
1 + _ x1 Py
T2 O[S exp—iwat) + Sy expliont)] (2.4 o, |2)—|3) is decoupled from the squeezed vacuum field. In
is the interaction between the atom and the driving Iasefhis case it is possible to observe the fluorescence field on the
fields. In Eqg.(2.4), we have assumed that the Rabi frequen-,[2>_h!ﬁ> tranS|tf|on W'trc,)[iunt a?ﬁly'gg (:xpenrr]nentf:i:llll)(/j df':f'fnu“th
cies(); and (), are real and, for simplicity, we have set the ec qugs 0 sep? ?d g the Tluorescence fie 0 €
laser phases to zero. The atomic operatBfs and the squeezed vacuum held.

e Lo For the A configuration with the energies of the atomic
HamiltonianH appearing in Eq92.2—(2.4) depend on the - -
configuration of the atomic levels. levels related a&,>E;>E;, the atomic operatorS;~ are

The parameter$’; , which appear in Eq(2.2), are the given by
decay rates for theth transition and’; (i#]) are the co- sf=(sp)t=]2)(1]
herence transfer rates. Explicit expressions are giv¢aah 1 1 '
The parameterdl(w;) and M (w;)=|M(w;)|expi¢) char- N it 2.9
acterize a squeezed vacuum field of carrier frequencand $; =($;)'=12)(3,

phaseyp;. The explicit form of the squeezing parameters de- — .

pends on the specific process used in the generation of tfd the HamiltoniarH,, for the A-type three-level atom is

squeezed vacuum field. Present sources of squeezed light &¥€n by

degenerate or nondegenerate parametric amplifiers. We first B

consider a squeezed vacuum field which is the output of a Han=1il0]2)(2] + (0o - 0p)[1)(1]]. (210

dgerrl prtic TP s DTS e e ety
The dynamics of theA-type atom interacting with a

[37]. In this case 38], squeezed vacuum field and driven by two coherent laser
fields is governed by the optical Bloch equations for the
density matrix elements. In order to study the spectral prop-
erties of the fluorescence field not superimposed on the
(2.9 squeezed vacuum field, we suppose that the carrier frequency
of the squeezed fieldss=w, and A>b, ,b,. The master
equation(2.2) with (2.3), (2.4), (2.9), (2.10, and the squeez-

ing parameterg2.8) leads to the following optical Bloch
(2.6 equations for the density matrix elements:

1 1
(ws— )2 +b%  (ws—w)?+b]

bs—bg
4

N(wj)=

2 2

IM ()] = = ! !

X
+
(ws— )2 +b;  (ws—w)?+b]

4
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p11=— Ny p1t (N+ 1) yipost 3£ (D1t D21, For well-separated atomic transition frequencigs>T7),
the spectrum(3.1) can be written as a sum of two indepen-
p22=—[(N+1)y1+ ¥2Ip2ot Nyip1i— 761(p1ot+p20) dent terms:

+ 3 &,(PpagtPad), » ~ o~

22l part pa2) S(w)=Ref dr{lim[(S (1)S] (t+ 7))
~ o ~ ~ ~ 0 N
p12=(p20)* =—2[(2N+ 1) y1+ ¥21p10—~ M* y1p21— 3 €2p13 t

L (Fu=T), (2.11 —(SF())(ST (t+ 7)) ]exdi(0— w1 ) 7]

pa32=(p29* = —2[(N+ 1) y1+ y2lpar— 21pa +IIT1[<32 (1, (t+ )= (S (OXS; (t+7)]

+3&(p1t2p20) — 365, X exi(w—wy) 7]}, (3.2
p13=(p3D* =~ 3Ny1p1at 36p10+ 3 €103, where
where the overdot denotes differentiation with respect to S (=S (hexpFiwyt), i=1,2 (3.3
(T + T,
_ _ are the slowly varying parts of the atomic operators.
p12=(p21)* =ip1XP —iwst), The first term on the right-hand side ¢8.2) will differ
significantly from zero only for those frequencieswhich
Pa3=(Pra)* =ipaexp —iwst), are near the laser frequeney, . Similarly, the second term
differs significantly from zero only for those frequencies
P13=(P3)* = preexf —i(w;— wo)t] (2.1  which are near the laser frequeney, . Therefore, the inco-

herent spectrum of the fluorescence field emitted with fre-
are the slowly varying parts of the off-diagonal matrix ele- quenciesw near the frequencys, of the |2)-|3) transition

ments, and driven by the laser of frequenay,, is given by
Iy Iy Jw (0
= =Re | dre®7@2)7G(r), 3.4
n TR ) Fp+lo Sal) 0o (n 34
) Q (2.13
&= L , = 2 where
[+ T [+ T

G(7)=lim[($F (1)S; (t+ 7))~ (S5 (O))(S; (t+m)].

are dimensionless parameters for the atomic decay rgtes tos
and vy, in the normal vacuumI[;=I";/(N=0)], and the (3.5
Rabi frequencieg; and &, of the driving fields.

The derivation of the optical Bloch equations for the V  Introducing the Laplace transform, we express the inco-
and cascade systems follows the same procedure as that ugwfent fluorescence spectrum in the form
for the A system. For the\ and V systems the coherence
transfer rated; (i#j) do not appear as the time depen- Sin(@)=ReG(2)|,= i, (3.6
dence of the terms with which they are associated 'nCIUde\%/here v=(0—wy )Ty +T,), and G(z) denotes the

2”5?633IIar;{govce?/tetrheﬂf;eggﬁgfgnifi:gﬂgﬁefigzgg g?)sﬁglfe Laplace transform of the atomic correlation functi®iy). In
y ’ ' . Pder to calculate the incoherent fluorescence spectrum we
appearance when the atom is coupled to a nondegene( &ve to compute the Laplace transfofBfz) of the atomic

F;;]ametnc amplifier whose output properties are given "orrelation functionG(7). From the quantum regression

In the next section, the optical Bloch equations such atheorem[flO], iLis well known that for7>0 the two-time

+ = o .
(2.12) will be used in our calculations of the spectral prop- verageS; (1)S, (t+ 7)) satisfies the same equation of mo

erties of the fluorescence field emitted from the transitiontlon as the one-time averags, (v)). On the other hand, the

i average(S; (7)) satisfies the same equation of motion as the
[2-13) of the A, V, and cascade systems. density matrix elemeni,s(7). The Laplace transforms of the
density matrix elements are readily obtained from the Bloch
IIl. FLUORESCENCE SPECTRA equations of motion, such 42.11).

The incoherent steady-state spectrum of the fluorescence From the optical Bloch equatiori@.11), we find that the
field emitted from a three-level atom is defined as the Fouriep®t Of equations for the Laplace transforms of the two-time
transform of the two-time correlation function of the atomic correlation functions can be written in a matrix form as

dipole operators: - -
Pole op L(2)X(2)=X(0), 37
2 -
S(w)zReZ dr €“7lim[(S*()S (t+7)—(S (1)) where X(z) is a column vector composed of the Laplace
i=1 Jo o J ' transforms of the steady-state values of the atomic correla-
tion functions X(0) is a column vector of the initial values of

X(Sy (t+7)]. (3.1 the transformed atomic correlation functions, dr(d) is an
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FIG. 3. The incoherent fluorescence spectrum forAtmnfigu-
[ ration with y;=7%,=0.5, £=&=10 squeezed vacuum coupled to
° the |2)-|1) transition, and different phaseg;=0 (solid line) and
¢s=7 (dashed ling The squeezing parameters ah=0.4,

—20 IM[2=N(N+1).
(w=w,) /(44 +720)
differing intensities and widths. In fact, the central line and
the outer sidebands depend on the phase of the squeezed
ordinary vacuum ll=|M|=0), (b) thermal vacuum fieldN=0.4, vacuum, whereas the i”r.‘e'f sidebands are completely inde-
IM|=0), and (c) squeezed vacuuniN=0.4, |M[2=N(N+1), pendent of the phase. This is shown in Fig. 3, where we plot
©=0]. the spectrum for the same parameters as in Ko, But for
different phasesp;. It is evident from Fig. 3 that only the

8% 8 matrix obtained from the coefficients appearing in thecentral line and the outer sidebands depend on the phase,
optical Bloch equations of the density matrix elements. whereas the inner sidebands are completely independent of

The incoherent fluorescence spectrum is shown in Fig. 2he phase. We explain these features in terms of the dressed-
for &=¢6=10, v;=v,=0.5, and different vacua. For the or- atom model of the system, which will be discussed in Sec.
dinary vacuumN=|M|=0, and the spectrum vanishggg. IV.
2(a)], indicating that there is no fluorescence emitted from The same procedure as the above is used to calculate the
the A system. The lack of fluorescence is due to the cohererftuorescence spectrum for thesystemin Fig. 4 we plot the
population trapping effedi41-43, which prevents fluores- fluorescence spectrum for the V configuration with
cence from the\ system when the driving fields are on the ¢=¢&,=10, y;=7%,=0.5, and different vacua. For the ordi-
two-photon resonance with the atomic transitions. For a themary vacuumN=|M|=0) the spectrum exhibits three lines,
mal vacuum field Fig. 2b)], N#0, [M|=0, and a nonzero the central line located ab=w, and two sidebands at
spectrum appears composed of five lines, one located at the=w,*=(). The spectrum is similar to the well-known Mol-
central frequencys=w, and two pairs of sidebands located low triplet [44] of a two-level atom driven by a strong laser
at w=w,*30 and w=w,*Q, whereQ=(Q2+0%Y?is the field. When the transitio2)-|1) is coupled to a thermal
effective Rabi frequency of the two driving fields. The ap-vacuum field[Fig. 4(b)], additional sidebands appear in the
pearance of the fluorescence field in a thermal vacuum fieldpectrum located ai=w,* 3(). The lack of these lines in the
results from thermal fluctuations which destroy the coherenordinary vacuum results from the trapping of the atomic
population trapping effedB86]. When the transitiof2)-|1) is  population in a linear superposition of the upper levels and
coupled to a squeezed vacuum fiffidg. 2(c)], the spectrum the ground2) level, which effectively reduces the system to
shows five lines which have the same positions as their couriwo levels[45,46. The thermal fluctuations destroy this trap-
terparts in the thermal field, but some of them have widelyping and additional sidebands appear in the spectrum. When

FIG. 2. The incoherent fluorescence spectra for Aheonfigu-
ration with y;=7,=0.5, £=§=10, and different vacuafa) the
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tered on the transition frequencies and w,. In both cases,

FIG. 4. The incoherent fluorescence spectrum for the V configuf"€ Spectrum can be calculated via the same procedure as
ration with y,=7,=0.5, &=£=10, and different vacuata) the  used for theA system.

ordinary vacuum il=|M|=0), (b) thermal vacuum fieldN=0.4, In the first case, the spe.ctrum is plotted in Fig. 6 for
IM|=0), and (c) squeezed vacuuniN=0.4, [M|?>=N(N+1), &=&=10, »,=7%,=0.5, and different vacua. In all cases the
¢s=0]. spectrum exhibits five lines located @t w,,w,* 3, andw,

+(), in agreement with the fluorescent spectrum obtained by

the |2)-|1) transition is coupled to a squeezed vacuum fieldwhitley and Stroud47]. Their intensities and widths, how-
[Fig. 4(c)], the spectrum shows five lines but their intensitiesever, depend on the squeezed paramé&teardM, with only
and widths differ from those found in the thermal field. In the central component and the outer sidebands dependent on
Fig. 5, we plot the spectrum for the same parameters as ithe phasep;. This is shown in Fig. 7, where we plot the
Fig. 4(c), but for different phases. We see that the spectrumfluorescence spectrum for the same parameters as in Fig.
similar to that of theA configuration, exhibits five lines with  6(c), but for different phases. The phase dependence is simi-
only the central line and the outer sidebands dependent dar to that found for the\ and V configurations with only the
the squeezing phase. central line and the outer sidebands dependent on the squeez-

For thecascade configuratigrwe consider first the inco- ing phase. A similar phase dependence of the spectral fea-
herent spectrum of the fluorescence field emitted ori3ke tures has been found by Jagatap, Lawande, and Lawande
|2) transition with the carrier frequency of the squeezed26], who calculated the fluorescence spectrum for a cascade
vacuum equal to the frequency of the low@¥|1) transition,  three-level atom coupled to two independent squeezed
and the squeezed vacuum field taken to be the output of @acua.
degenerate parametric amplifier. In this case, we assume that In the second case we take into account the coupling of a
the squeezing bandwidth is much smaller than the frequencyondegenerate parametric amplifier to the cascade atom,
difference A, so that the squeezed vacuum is exclusivelywhich alters the form of the optical Bloch equations in a
coupled to thg2)-|1) transition. In the second case, the car-fashion described at the end of Sec. Il. We plot the spectrum
rier frequency of the squeezed vacuum is made equal to the Fig. 8 for &=&=10, y=%=7.=0.5, N=0.4,
average frequency of the two atomic transitions, and we agM|?>=N(N+ 1), and different phases,. Figure 8 demon-
sume that the squeezed vacuum is the output of a nondegesirates the important feature that now all spectral lines de-
erate parametric amplifier with the two spectral peaks cenpend on the squeezing phase, with the central line and the
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FIG. 7. The incoherent fluorescence spectrum for the cascade

P configuration with y;=7%,=0.5, &=§,=10 squeezed vacuum
3 coupled to thg2)-|1) transition, and different phaseg;=0 (solid
o} line) and ;=7 (dashed ling The squeezing parameters are

of

N=0.4,|M|>=N(N+1).

The method is essentially based on the original master equa-
D ST ) tion (2.2 though with the unperturbed HamiltoniaH,
(@=00)/(Fyy+T22) m_odifieq to include the free_-fielq Hami!tonian for the laser
driving fields and the atom-field interacti¢®.4) replaced by

FIG. 6. The incoherent fluorescence spectrum for the cascad@ fully quantum coupling. The original Markovign rel_ax_ation
configuration withy,=y,=0.5, £,=£,=10, and different vacuga)  terms in(2.2) based on free-atom states are still valid in the
the ordinary vacuumN=|M|=0), (b) thermal vacuum fieldN  Present finite-bandwidth squeezed-vacuum case, since the
=O4’ | M | =0), and(c) squeezed vacuum Coupled to tp|l> tran- Squeezed'vacuum bandWIdIﬂ\’lﬂﬂCh determ'ne the reservoir
sition [N=0.4,|M|?=N(N+1), ¢s=0]. correlation time are large compared to the Rabi frequency.
Master equations for the system density matrix elements in a

outer sidebands exhibiting the same variation between nafiressed-atom basis can be obtam_ed via the unitary matrix
rowing and broadening. A nonzero value for the coherenc%‘at relates the dressed-atom basis states to the uncoupled

; o ; is states. For convenience, we will write n; +n, as the
transfer ratey,=T';J/(I';;+T,,) is essential in observing the P3SISS ence, ; 172
phase dependence of the spectral features. total number of photqns in the laser fields andn_l—nz as
the photon-number difference. The uncoupled dfiatg ,n,)

is given by|i)®|n;)®|n,). The dressed-atom states will be
IV. DRESSED-ATOM MODEL EXPLANATION designatedi,n,q). To determine the fluorescence field asso-
OF THE SPECTRAL FEATURES ciated with the|2)-|3) transition we will require the popula-
tions P, of the dressed states and the coherens§g,

In Sec. Il graphical results for the incoherent fluores-penyeen dressed statdsn,q) and|j,n—1,+1). In terms
cence spectra for the three possible configurations of a thregg density matrix elements these are given by

level system were presented. Here, we give a dressed-atom

model explanation of the spectral features in terms of the Ping=(i.n,qlpli,n,a), 4.9
energy levels of the dressed states and transitions among
these states. We perform the calculations using the dressed- pi(jfgq=<i ,n,qlplj,n—19+1). 4.2

atom technique developed by Cohen-Tannoudji and Reynaud

[35]. In this model the driving laser fields are treated quan- The Hamiltonian for the atom in & configurationand
tum mechanically and the eigenstates of the combined atoffiteracting with the quantized driving fields may be written
and driving-field system are found and used as the basis fé#S

further calculations. We consider only theconfiguration as ,

the V and cascade configurations follow the same method. H=Har+W_, (4.3
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FIG. 8. The incoherent fluorescence spectrum for the cascade
configuration withy;=vy,=7v.=0.5, &=¢§=10 squeezed vacuum

coupled to the two-photon transitidB)-|1), and different phases: 2,n,q>
¢s=0 (solid line) and ¢;=m (dashed ling The squeezing param- (n,q) | t,nqg>
eters areN=0.4 and/M|>=N(N+1). 13,n,q>

where

Har=7%[ 0,]2)(2] + (wp— 01)|1)(1] ]+ hwalay

{n-1,q+1)
+ﬁw2a;a2 (44)
. . . . . (n-1,g-1) / \,
is the unperturbednoninteracting Hamiltonian of the atom — Vs AN
plus driving laser fields of frequencies and w,, and //’ \\ >
4 N\,
! . — . — ¢ N,
Wi =3i%g:(S] a1~ ajS; ) +3i%gx(S; a,~alS;) )
4.

is the interaction Hamiltonian for the atom and the driving
fields. In Egs.(4.4) and (4.5), a; (a,) and a{ (a;) are the FIG. 9. Energy-level diagrams of the undressed Hamiltoféan

annihilation and creation operators for the driving field of2nd the dressed systei). The manifold (,q) is separated from
frequencyw, (w,) andg, andg, are the coupling constants the mamfolds 0+1,9=1) by the frequencyw,, and from the
between the atom and the driving fields. We assume that tHganifolds @=1q=1) by the frequency,
driving fields of frequencies,; andw, are single-mode laser ) ) . )
fields in the coherent statés;) and|a), respectively, where When we include the interactioW; , the degeneracy is
n_1=|a1|2>1 is the mean number of photons in the mode OfIn‘ted, resul_tmg in an energy-level scheme consisting of trip-
frequencyw, , while n,=|ay/?>1 is the mean number of pho- lets [see Fig. ®)]. The dressed states in the satd) are
tons in the mode of frequenay,. The phases ofy anda,  9\V€N by
are taken to be zero in accordance with the theory of Sec. II. 1
Such coherent states have associated classical fields which
correspond to the semiclassical couplii2gd). |1n,0)= ﬁ(_92|1’n1+ Lng)+Q4[3ny,ny+ 1)),

The eigenstatesundressed state®f the noninteracting
HamiltonianH 5 form manifolds[see Fig. @a)] composed 1
of threefold-degenerate staté&n;,n,), |1,n;+1,n,), and _ - :
130,.n,+ 1) of energy [2,n,q) 70 (Q4]1,n1+ 1) +iQ]2,n1,n5)

Eng=fi[No1+ (N + 1) w,]. (4.6) +Q,|3n1,n,+1)), 4.7
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1 . Y11= ¥12= ¥13=0,
|3,n,q9)= E (Q4]1n1+1n)—iQ|2,n1,Nn5)

v 103 S 02 I
+Q,|3n;,n,+1)), Y22= Y237 Y32~ Y337 1 )2 22+Z—Qz 1, (4.12
with energies 10?2 103
Ya=va~5 gz L2t 5 g2 M
Elnq: Enqa

and the total transition rates from the stafies,q) are
Eong=Enqt 374, 4.9 3

Ying= 21 71i=0,
E3nq: Enq_ %ﬁQ,

3

where Q=(Q3+03"? with Q,=g;(n))"? and Q, Yong= 2, Vai=3T2o+ 3111, (4.13
=g,(n,)'’?, and we have assumed the driving fields to be =1
sufficiently intense that the variation ofphoton Rabi fre- 3

quencies withn; andn, has been neglected and the photon
numbers replaced by the average numbers of phatorsid
n, in the laser modes. . " .
Having available the dressed states of the system, we cdhls seen that the tot_al transition rate frdfn,n_,q)_ IS zero,
set up master equations for the populations of the dressdfdicating that there is no spontaneous emission from this
states|i,n,q) and for coherences between dressed-atonjiate: Since there is spontaneous emission to the|tate))
states in thei,n,q) and|i,n—1,+1) sets. Coherences be- oM the manifolds above, the population in the sfate,q)
tween|i,n,q) and|i,n—1,g+1) are not required, since we Ncreasesin time and for long times all population will be in
are interested in the spectral properties of the fluorescenddiS state. This effect stops the fluorescence from/theys-
field emitted at the|2)-[3) transition, thereby limiting our €M and is called the coherent population trapping effect
calculations to the transitions between the dressed states K142 In order to show this more quantitatively we calcu-
two neighboring manifolds separated by the frequengy late the populations of the dressed states. For s!mphcny, we
Considering only the energy diagram, Figbp it is ap-  aSsume thaf%lzl“zzzl“. From the quantum version of the
parent that the possibility of fluorescence exists at five dif. MaSter equation based ¢2.2), we obtain a set of coupled

Y3ng= ;1 y3i=30 0t 3T 13-

ferent frequencies equations for the populatior;,, of the dressed states. In
' obtaining these coupled equations the approximafi®s
- that dressed-atom populations are independerq ahd n
0ij =1 N Eing= Ejn—1q+1). (4.9 popuiat indep .

[apart from the factof(n,n,|a; a»))?], together with the secu-
lar approximation, is used.

given by The nq is thus droppedP;=(Pj,q)nq is the average of
Pinq Overn,q and then the equations of motion are
W11~ W= W33= W3,
By = — L NP+~ (N+2)(Py+ P
©15= 031= 0p— 10, 1=~ 5 NP1+ 2( )(P2+P3),
— e 1 . r
©21= 015= 02 28, (4.10 P,= NP1~ 7 (2N+3+|M|cosp,) P,
Wo3= w2+Q, r
+Z(N+1+|M|coapS)P3, (4.19
W3z0= a)z_Q.
. . . T r
These frequencies exactly correspond to the frequencies of P3:Z NP, + 7 (N+1+|M|cosps) P,
the spectral lines presented in Fig. 2.
Transitions from the manifoldn,q) to the manifolds r
(n—1,0—1) and —1,+ 1) occur with probabilities given -7 (2N+3+[M|cosp;)Ps.
via the Fermi golden rule from first-order perturbation theory
as The steady-state solution of Eqd.14) is easily found to be
yii=T1l(i,n,alS/[j,n—19-1)]? _ N+2 —p -
Pi=3nrz P Psmanie 4.19

+20(i,n,0lS; [j.n— 1,9+ 1) (4.11
It is evident from(4.15 that for the ordinary vacuurfN=0)
Using EQs.(4.7) the probabilitieg4.11) are given by the atomic population is trapped in the stgien,q). When
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the atomic transition|2)-|1) is coupled to a thermal or The detailed coherences corresponding to the left side-
squeezed vacuum field the stimulated absorption and emidand atw,—3() can be calculated analogously. Like the right
sion processes appear between the stajesnd |2) with the  sideband atu,+3(), the left sideband has the width given in
rateNI';;. These processes modify the quantum fluctuation&g. (4.20.

about the frequency, . Since the dressed stai@s?7) contain Finally, we consider the central component @&. We

the superpositions of the stat@ and|1) the quantum fluc- project the master equation ontbn—1,g+1) on the right
tuations atw, are transferred into the dressed states, whicrand{1,n,q| on the left and average oven. This results in
leads to modifications of the transition rates between théhe equation of motion for the coherenpél It is easily
dressed states. As a consequence, all transition fgt@se  verified that the coherenceé” and p(+) oscillate with the
different from zero, which results in the population of all same frequency, asp!}’, and therefore have coupled equa-

dressed states. tions of motion. These are readily shown to have the form
According to Cohen-Tannoudji and Reynd&b] the po-

sitions of the spectral lines and their widths are determined p11'= — (i@, +3NI)pi7 + 3 (N+2)T[phs) + pl5 ],

by the off-diagonal elements of the density operaiﬁ;r ]
First we consider the sidebandsa@g+(). Projecting the  pb'=—liwy+ H(2N+3+|M|cospI'Ips + INTpi})

quantum version of master equatid2.2) onto |3,n—1,
g+ 1) on the right and2,n,q) on the left, we find that the

coherences are given b .
given by PS5 = — [yt 2(2N+3+|M|cose) I']pls) + ENTpi)

+1(N+1+|M|cospe)TpSs’ (4.21

5= —[i(wp+ Q)+ 2(4N+5—|M]|cospg) T'Tps3 ),

4.16 +#(N+1+[M|cosp)T'pb5
where thenq has been dropped, since the solutions are mdeand the eigenvalues of E1.21) are

pendent ofn and g [apart from the factor related to

=—iw,,
(NN, aqa2))?], and wherep5t)=(p 5% nq)nq is the average & 2
overng of p§5hq. 7= —iwy—2(3N+2)T, (4.22
Similarly, prOJectlng the master equation ondn—1,
g+ 1) on the right and(3,n,q| on the left, and then averag- 3= —iwy— 5(3N+4+2|M|cosp )T .

ing overng, we obtain
The eigenvaluey, corresponds to the elastic component of
pfo,;): —[i(w— Q)+ %(4N+5—|M|cos<ps)l“]p<3§). the spectrum, while the other eigenvalues correspond to the
(4.17 inelastic central components at frequeney and widths
_ 3(BN+2)I" and 3(3N+4+2|M|cosp ). Clearly, the line-
The coherence@t.16 and(4.17) correspond to spectral lines idth of the central component depends on the squeezing
at frequenciess,= (). The widths of these lines are phasep, in agreement with the numerical calculation in Fig.

3.
N+q=3(4N+5—|M|cospy)T . (4.18 The dressed-model analysis of the results presented in
Figs. 4-8 for the V and cascade configurations is similar.
The frequencies and intensities of the spectral features and
their dependence on the squeezing phase can be explained in
a similar way as the above for the system.

The analytical linewidtha..., show that the spectral lines at
w,*() depend on the squeezing phase which agrees with
the numerical results of Sec. IIl.

For the inner sidebands ab=*3(), we project the quan-
tum version of the master equati¢22) onto|1,n—1,+1)

on the right and(2,n,q| on the left, and average ovem. V. SUMMARY
This results in two coupled equations: In this paper we have studied the phase properties of the
4 L L ()11 +) fluorescence spectrum of a three-level atom driven by two
p21 = —[i(w2+3Q)+5(5N+4)"]p5 "+ zMT'pi3”, coherent laser fields and damped by a narrow-band squeezed
(4.19  vacuum field. We have calculated and presented graphically
piE = —[i(wo+ 20)+ L(BN+MHT]pE + 1M*T S5 . the fluorescence spectra for all possible configurations of the

atomic levels, i.e., thé\, V, and cascade configurations. A

In order to discuss linewidths and frequencies of the spectrdthase-dependent spectrum is found when the thermal field is
Components itis enough to find e|genva|ue5 of qug) It replaced by a Squeezed vacuum field whose bandwidth is

is easy to show that the eigenvalues of 4419 are much smaller than the difference in allowed atomic transi-
tion frequencies, but much larger than atomic decay rates
N1=3(5N+4+2|M|)), and Rabi frequencies of the driving fields.
(4.20 In particular, we have shown that for th& system
Ao,=3(5N+4—-2|M|). damped by the ordinary vacuum, coherent population trap-

ping takes place which removes the fluorescence entirely.
It is seen from(4.20 that the width of the spectral line at This is in agreement with earlier resuft41-43. When a
w,+ 30 depends on the squeezing paramekeend|M|, but  narrow-band thermal field is applied to one of the two atomic
is independent of the squeezing phase This is in agree- transitions, the coherent trapping effect is destroyed and the
ment with the numerical results of Sec. Ill. fluorescence spectrum observed on the other transition ex-
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hibits five lines, one central and two pairs of sidebands. Irerate parametric amplifier produces more extensive effects.
the case of a squeezed vacuum field, however, only the cen- In order to explain the spectral features, we have applied
tral component and the outer sidebands exhibit a dependengge dressed-atom model of the system. The dressed states of
on the squeezing phase. the systems have been identified, and the spectral features
In the V configuration driven by two resonant laser fieldsexplained in terms of transitions between these dressed
and damped by the ordinary vacuum, the fluorescence spestates. We have shown that the unusual phase properties of
trum associated with the atomic transition of frequemgy  the fluorescence spectra arise from the coherent mixing of
exhibits three lines, a central feature at frequeagyand two  the atomic states by the intense driving fields, which modi-
sidebands ab,*(), where() is the effective Rabi frequency fies transition rates between the dressed states.
of the two driVing fields. In the case when the other transi- Fina”y, we wish to point out that the schemes discussed
tion atw, is damped by a thermal or squeezed vacuum fieldy this paper, which involve three-level atoms coupled to a
additional sidebands appear in the spectrumegt3().  nparrow-band squeezed vacuum whose bandwidth is much
Again, only the central line and the outer sidebands exhibit &maller than the difference in the atomic transitions frequen-
dependence on the squeezing phase. cies, are more practical for observing the phase properties of
For a strongly driven cascade system and a squeezefle fluorescence spectrum, as they do not require the experi-
vacuum coupled to one of the two one-photon transitionsnentally difficult separation of the fluorescence field from
(such as the field generated by a degenerate parametric afpe squeezed vacuum field. Moreover, they involve a

plifier) the fluorescence spectrum reveals a phase depefarrow-band squeezed vacuum field, which is now available
dence similar to that found in th& and V systems. How- jn the laboratory.

ever, when the squeezed vacuum is resonant to the two-
photon transition between the ground and the upper excited
states and coupled to both one-photon transitions @lisoh

as the field generated by a non-degenerate parametric ampli-
fier), all spectral lines show dependence on the squeezing We would like to thank Dr. S. Swain for useful discus-
phase. Thus for the cascade case a squeezed vacuum fisidns. One of ugZ.F.) acknowledges the support of the Aus-
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