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The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed
fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly
driven three-level atoms inL, V, and cascade configurations in which one of the two one-photon transitions is
coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference
in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the
driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by
a degenerate parameter oscillator. Details are only given for theL configuration. The extension to the V and
cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the
transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of
sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the
central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the
fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the
two-photon transition between the ground and the most excited states and now generated by a nondegenerate
parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions,
all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-
atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields
modifies transition rates between the dressed states, which results in the selective phase dependence of the
spectral features.@S1050-2947~96!05908-2#

PACS number~s!: 42.50.Dv, 32.80.2t

I. INTRODUCTION

One of the more interesting developments in recent years
is the possibility of an experimental observation of
squeezing-induced modifications in the fluorescence light
emitted by three-level atoms. In particular, an experiment
has already been performed on squeezing-modified two-
photon absorption in atomic cesium@1#. Recent studies of
three-level atoms in the cascade configurations interacting
with a squeezed vacuum field@2–5# show that the correlated
pairs of photons characteristic of squeezed fields can lead to
the population of the upper level having a linear dependence
on intensity. This is in stark contrast to the usual quadratic
dependence for a two-photon process@6#. Other interesting
modifications of the radiative properties of atoms in the pres-
ence of a squeezed vacuum field have also been predicted
@7#. Examples include inhibition of the atomic decay process
@8#, level shifts@9–12#, squeezing-induced transparency@13#,
asymmetrics and dispersive profiles in the fluorescence spec-
trum @14#, selective population of the atomic levels@15–17#,
amplification without population inversion@18#, and probe
absorption spectra@19#.

The modifications of the dipole decay process in a two-
level atom can introduce significant changes in intensities
and linewidths of the fluorescence and absorption spectra. In
particular, it is now well known@20–22# that the linewidths
of the spectral features strongly depend on the relative phase
between the squeezed vacuum and a driving field, and can be
broadened or narrowed compared to that in the ordinary
vacuum. Similar features have been found for multiatom
resonance fluorescence@23–25# and for three-level atoms
coupled to two independent squeezed vacua@26,27#.

It has been pointed out, however, that these features could
be difficult to observe experimentally for the following rea-
sons. First, most of these calculations have been performed
assuming that the atoms interact with a broadband squeezed
vacuum. In the frequency domain, this assumption requires
the bandwidth of the squeezed vacuum to be much greater
than both Rabi frequencies of the driving fields and the natu-
ral linewidths of the atomic transitions. In practice, squeez-
ing bandwidths are far from broadband. Recent studies of the
effects of finite-bandwidth squeezed light on the fluorescence
and absorption spectra@28–30# show that the subnatural-
linewidth effects, seen in the broadband squeezed vacuum
case, are diminished and ultimately vanish when the band-
width of the squeezed vacuum field is comparable to the
natural linewidths of the atomic transitions.

The other important assumption in these calculations,
which would limit experimental realization, was that the at-
oms exclusively interact with the squeezed modes. This
could be difficult to realize experimentally, since it requires
squeezing all the modes of the electromagnetic field coupled
to the atoms. This situation would be realized in practice
using some type of waveguide or generation of a squeezed
perfect electric dipole wave@8#. In atomic spectroscopy,
however, the experiments usually use atomic-beam methods
@31#, or atoms trapped in a confined space@32#, where the
atoms interact with an incoming wave which is not a perfect
electric dipole. Schemes involving optical cavities with un-
squeezed windows have been proposed as a possibility to
avoid these difficulties@20,33,34#.

In this paper we propose another scheme which involves
three-level atoms strongly driven by two laser fields and
coupled to a finite-bandwidth squeezed vacuum whose band-
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width is much smaller than the difference in the allowed
atomic transition frequencies. This scheme retains the advan-
tage that the squeezed vacuum might be coupled to one of
the two possible transitions and the fluorescence could be
observed from the other transition whose frequency is well
outside the squeezing bandwidth. This system might be re-
garded as a somewhat more practical scheme for observing
the effects predicted in the fluorescence spectrum, as it does
not require the experimentally difficult separation of the
fluorescence field from the squeezed field.

We are particularly interested in the manner in which a
narrow-band squeezed vacuum field coupled to one of the
two atomic transitions affects the fluorescence field emitted
from the other transition. Using master-equation techniques,
we calculate the steady-state fluorescence spectra of the tran-
sition not coupled to the squeezed vacuum. We consider four
three-level configurations shown in Fig. 1, i.e., lambda~L!,
vee~V!, and cascade~J!, with the squeezed vacuum coupled
to the lower transition, and a cascade with the squeezed
vacuum coupled to the two-photon transition. We assume
that the driving fields of Rabi frequenciesV1 and V2 are
each coupled to one of the atomic transitions, and their fre-
quencies are exactly equal to the atomic transition frequen-
ciesv1 andv2, respectively. We find that in all these con-

figurations the fluorescence spectra are strongly influenced
by the squeezed vacuum field. In particular, for strongly
drivenL, V, and cascade systems with the squeezed vacuum
coupled only to the transition of the frequencyv1, the spec-
trum observed from the transition of frequencyv2 consists of
five lines with only those located atv2 andv26V dependent
on the squeezed vacuum phasews , whereV5~V1

21V2
2!1/2 is

the effective Rabi frequency of the driving fields. The lines
at v26

1
2V do not show any dependence onws . This is in

contrast to the two-level atom case, where all spectral lines
depend on the phase@20#. For a strongly driven cascade sys-
tem with the squeezed vacuum field resonant with the two-
photon transition between the ground and the most excited
levels, all spectral lines show the dependence on the phase.

In order to explain these features, we apply the dressed-
atom model@35#. In the limit of well-separated spectral lines
~secular approximation!, the master equation leads to sepa-
rated equations for populations and coherences, which al-
lows us to derive analytical expressions for the linewidths of
the spectral features and their intensities. The dressed states
of the systems are identified and the spectral features are
explained in terms of transitions between these dressed
states.

The paper is organized as follows. In Sec. II we present
our model and discuss in detail the optical Bloch equations
for theL configuration only. Calculations of the fluorescence
spectra for all configurations are presented in Sec. III. The
dressed-atom model of the system is discussed and the ana-
lytical expressions for the spectral linewidths and their inten-
sities are derived in Sec. IV, again focusing only on theL
configuration in the interests of conciseness. Finally, in Sec.
V, we summarize our results.

II. THE MODEL

We consider three-level atoms with the nondegenerate
statesu1&, u2&, andu3& of energiesE1, E2, andE3 in the three
possible configurations~Fig. 1!

~1! E2.E1.E3 , L configuration
~2.1!

~2! E3.E1.E2 , V configuration

~3! E3.E2.E1 , J configuration.

The atoms interact with two single-mode coherent laser
fields and with the quantized multimode radiation field in
which a part of the modes is in a squeezed state. The first
laser, of the Rabi frequencyV1, is coupled to the atomic
transition u1&–u2& and has a frequencyv1L which is exactly
equal to the atomic transition frequencyv1, i.e., the one-
photon detuningD15v12v1L is zero. The second laser, of
the Rabi frequencyV2, is coupled to the atomic transition
u3&–u2& and has a frequencyv2L which is exactly equal to the
atomic transition frequencyv2, i.e., the one-photon detuning
D25v22v2L is zero. On the other hand, the frequencyv2L is
significantly different fromv1L, so that each laser is coupled
only to one of the two possible transitions in the three-level
systems. We assume that a part of the vacuum modes
coupled to the atom is in a multimode squeezed vacuum
state. The bandwidth of squeezing is assumed to be much
larger than the decay rates of the atomic transitions and the

FIG. 1. Energy-level schemes for the four atomic configura-
tions: ~a! theL configuration,~b! the V configuration,~c! the cas-
cade configuration with the squeezed vacuum coupled to the lower
transition, and~d! the cascade configuration with the squeezed
vacuum coupled to the two-photon transition.
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Rabi frequencies of the driving fields. This allows the appli-
cation of the Markoff approximation in terms of the free-
atom states when calculating the fluorescence spectra.

The time evolution of the atomic systems is described by
the master equation of the reduced density operatorr. In the
Schrödinger picture the master equation, based on the Born-
Markoff approximations, is given by@36#
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whereSi
1 ~Si

2) is the raising~lowering! atomic operator of
the i th transition~i51,2!, H0 is the Hamiltonian composed
of two terms

H05HAl1Wl , ~2.3!

whereHAl is the Hamiltonian of the atom in thel th configu-
ration ~l5L,V,J!, and

Wl5
1
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1exp~2 iv1t !1S1
2exp~ iv1t !#

1 1
2\V2@S2

1exp~2 iv2t !1S2
2exp~ iv2t !# ~2.4!

is the interaction between the atom and the driving laser
fields. In Eq.~2.4!, we have assumed that the Rabi frequen-
ciesV1 andV2 are real and, for simplicity, we have set the
laser phases to zero. The atomic operatorsSi

6 and the
HamiltonianH0 appearing in Eqs.~2.2!–~2.4! depend on the
configuration of the atomic levels.

The parametersGi i , which appear in Eq.~2.2!, are the
decay rates for thei th transition andGi j ( iÞ j ) are the co-
herence transfer rates. Explicit expressions are given in@36#.
The parametersN(v i) andM (v i)5uM (v i)uexp(iws) char-
acterize a squeezed vacuum field of carrier frequencyvs and
phasews . The explicit form of the squeezing parameters de-
pends on the specific process used in the generation of the
squeezed vacuum field. Present sources of squeezed light are
degenerate or nondegenerate parametric amplifiers. We first
consider a squeezed vacuum field which is the output of a
degenerate parametric amplifier~DPA!. In practice, this has
proved to be the most successful source of squeezed light
@37#. In this case@38#,
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with

bx5
1
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1
2g1uEu, ~2.7!

whereg is the DPA cavity damping rate andE is the effec-
tive pump intensity@38#. Maximum squeezing is achieved at
the threshold for parametric oscillation, i.e., asuEu→ 1

2g. The
parametersbx andby are referred to as the bandwidths of the
squeezed vacuum field.

It is seen from Eqs.~2.5! and ~2.6! that the squeezing
parameters depend on the detuning between the carrier fre-
quency of the squeezed field and the atomic transition fre-
quencies. For the squeezed-field frequencyvs centered on
the atomic transition frequencyv1, the squeezing parameters
take the form

N~v1!5
by
22bx

2

4 S 1bx22 1

by
2D 5N,

uM ~v1!u5
by
22bx

2

4 S 1bx2 1
1

by
2D 5uM u,

~2.8!

N~v2!5
by
22bx

2

4 F 1

D21bx
22

1

D21by
2G ,

uM ~v2!u5
by
22bx

2

4 F 1

D21bx
2 1

1

D21by
2G ,

whereD5v12v2 is the frequency difference between the
two atomic transitions. WhenD is much larger than the
bandwidth of the squeezed vacuum~D@bx ,by!, the transi-
tion u2&2u3& is decoupled from the squeezed vacuum field. In
this case it is possible to observe the fluorescence field on the
u2&2u3& transition without applying experimentally difficult
techniques of separating the fluorescence field from the
squeezed vacuum field.

For theL configuration, with the energies of the atomic
levels related asE2.E1.E3 , the atomic operatorsSi

6 are
given by

S1
15~S1

2!†5u2&^1u,
~2.9!

S2
15~S2

2!†5u2&^3u,

and the HamiltonianHAL for theL-type three-level atom is
given by

HAL5\@v2u2&^2u1~v22v1!u1&^1u#. ~2.10!

where we have assumed thatE350.
The dynamics of theL-type atom interacting with a

squeezed vacuum field and driven by two coherent laser
fields is governed by the optical Bloch equations for the
density matrix elements. In order to study the spectral prop-
erties of the fluorescence field not superimposed on the
squeezed vacuum field, we suppose that the carrier frequency
of the squeezed fieldvs5v1 and D@bx ,by . The master
equation~2.2! with ~2.3!, ~2.4!, ~2.9!, ~2.10!, and the squeez-
ing parameters~2.8! leads to the following optical Bloch
equations for the density matrix elements:
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where the overdot denotes differentiation with respect to
~G111G22!t,
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r̃ 325~ r̃23!*5 ir32exp~2 iv2t !,
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are the slowly varying parts of the off-diagonal matrix ele-
ments, and
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G11
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G111G22
,
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G22

G111G22
,

j25
V2

G111G22
,

~2.13!

are dimensionless parameters for the atomic decay ratesg1
and g2 in the normal vacuum [G i i[G i i

1(N50)], and the
Rabi frequenciesj1 andj2 of the driving fields.

The derivation of the optical Bloch equations for the V
and cascade systems follows the same procedure as that used
for the L system. For theL and V systems the coherence
transfer ratesGi j ( iÞ j ) do not appear as the time depen-
dence of the terms with which they are associated includes
an oscillation at the frequency differenceD. For the cascade
system, however, the coherence transfer rates do make an
appearance when the atom is coupled to a nondegenerate
parametric amplifier whose output properties are given in
@39#.

In the next section, the optical Bloch equations such as
~2.11! will be used in our calculations of the spectral prop-
erties of the fluorescence field emitted from the transition
u2&-u3& of theL, V, and cascade systems.

III. FLUORESCENCE SPECTRA

The incoherent steady-state spectrum of the fluorescence
field emitted from a three-level atom is defined as the Fourier
transform of the two-time correlation function of the atomic
dipole operators:

S~v!5Re(
i51
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0
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1~ t !Sj
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1~ t !&

3^Sj
2~ t1t!&#. ~3.1!

For well-separated atomic transition frequencies~D@Gi j !,
the spectrum~3.1! can be written as a sum of two indepen-
dent terms:
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where

S̃i
6~ t !5Si

6~ t !exp~7 iv iL t !, i51,2 ~3.3!

are the slowly varying parts of the atomic operators.
The first term on the right-hand side of~3.2! will differ

significantly from zero only for those frequenciesv which
are near the laser frequencyv1L. Similarly, the second term
differs significantly from zero only for those frequenciesv
which are near the laser frequencyv2L. Therefore, the inco-
herent spectrum of the fluorescence field emitted with fre-
quenciesv near the frequencyv2 of the u2&-u3& transition
driven by the laser of frequencyv2L is given by

S2~v!5Re E
0

`

dt ei ~v2v2L!tG~t!, ~3.4!

where

G~t!5 lim
t→`

@^S̃2
1~ t !S̃2

2~ t1t!&2^S̃2
1~ t !&^S̃2

2~ t1t!&#.

~3.5!

Introducing the Laplace transform, we express the inco-
herent fluorescence spectrum in the form

Sin~v!5ReG~z!uz52 in , ~3.6!

where n5(v2v2L)/~G111G22!, and G(z) denotes the
Laplace transform of the atomic correlation functionG~t!. In
order to calculate the incoherent fluorescence spectrum we
have to compute the Laplace transformG(z) of the atomic
correlation functionG~t!. From the quantum regression
theorem@40#, it is well known that fort.0 the two-time
averagê S̃2

1(t)S̃2
2(t1t)& satisfies the same equation of mo-

tion as the one-time average^S̃2
2~t!&. On the other hand, the

averagê S̃2
2~t!& satisfies the same equation of motion as the

density matrix elementr̃23~t!. The Laplace transforms of the
density matrix elements are readily obtained from the Bloch
equations of motion, such as~2.11!.

From the optical Bloch equations~2.11!, we find that the
set of equations for the Laplace transforms of the two-time
correlation functions can be written in a matrix form as

L~z!XW ~z!5XW ~0!, ~3.7!

whereXW (z) is a column vector composed of the Laplace
transforms of the steady-state values of the atomic correla-
tion functions,XW ~0! is a column vector of the initial values of
the transformed atomic correlation functions, andL(z) is an
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838 matrix obtained from the coefficients appearing in the
optical Bloch equations of the density matrix elements.

The incoherent fluorescence spectrum is shown in Fig. 2
for j15j2510, g15g250.5, and different vacua. For the or-
dinary vacuum,N5uM u50, and the spectrum vanishes@Fig.
2~a!#, indicating that there is no fluorescence emitted from
theL system. The lack of fluorescence is due to the coherent
population trapping effect@41–43#, which prevents fluores-
cence from theL system when the driving fields are on the
two-photon resonance with the atomic transitions. For a ther-
mal vacuum field@Fig. 2~b!#, NÞ0, uM u50, and a nonzero
spectrum appears composed of five lines, one located at the
central frequencyv5v2 and two pairs of sidebands located
at v5v26

1
2V andv5v26V, whereV5~V1

21V2
2!1/2 is the

effective Rabi frequency of the two driving fields. The ap-
pearance of the fluorescence field in a thermal vacuum field
results from thermal fluctuations which destroy the coherent
population trapping effect@36#. When the transitionu2&-u1& is
coupled to a squeezed vacuum field@Fig. 2~c!#, the spectrum
shows five lines which have the same positions as their coun-
terparts in the thermal field, but some of them have widely

differing intensities and widths. In fact, the central line and
the outer sidebands depend on the phase of the squeezed
vacuum, whereas the inner sidebands are completely inde-
pendent of the phase. This is shown in Fig. 3, where we plot
the spectrum for the same parameters as in Fig. 2~c!, but for
different phasesws . It is evident from Fig. 3 that only the
central line and the outer sidebands depend on the phase,
whereas the inner sidebands are completely independent of
the phase. We explain these features in terms of the dressed-
atom model of the system, which will be discussed in Sec.
IV.

The same procedure as the above is used to calculate the
fluorescence spectrum for the Vsystem. In Fig. 4 we plot the
fluorescence spectrum for the V configuration with
j15j2510, g15g250.5, and different vacua. For the ordi-
nary vacuum~N5uM u50! the spectrum exhibits three lines,
the central line located atv5v2 and two sidebands at
v5v26V. The spectrum is similar to the well-known Mol-
low triplet @44# of a two-level atom driven by a strong laser
field. When the transitionu2&-u1& is coupled to a thermal
vacuum field@Fig. 4~b!#, additional sidebands appear in the
spectrum located atv5v26

1
2V. The lack of these lines in the

ordinary vacuum results from the trapping of the atomic
population in a linear superposition of the upper levels and
the groundu2& level, which effectively reduces the system to
two levels@45,46#. The thermal fluctuations destroy this trap-
ping and additional sidebands appear in the spectrum. When

FIG. 2. The incoherent fluorescence spectra for theL configu-
ration with g15g250.5, j15j2510, and different vacua:~a! the
ordinary vacuum (N5uM u50), ~b! thermal vacuum field~N50.4,
uM u50!, and ~c! squeezed vacuum@N50.4, uM u25N(N11),
ws50#.

FIG. 3. The incoherent fluorescence spectrum for theL configu-
ration with g15g250.5, j15j2510 squeezed vacuum coupled to
the u2&-u1& transition, and different phases:ws50 ~solid line! and
ws5p ~dashed line!. The squeezing parameters areN50.4,
uM u25N(N11).
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the u2&-u1& transition is coupled to a squeezed vacuum field
@Fig. 4~c!#, the spectrum shows five lines but their intensities
and widths differ from those found in the thermal field. In
Fig. 5, we plot the spectrum for the same parameters as in
Fig. 4~c!, but for different phases. We see that the spectrum,
similar to that of theL configuration, exhibits five lines with
only the central line and the outer sidebands dependent on
the squeezing phase.

For thecascade configuration, we consider first the inco-
herent spectrum of the fluorescence field emitted on theu3&-
u2& transition with the carrier frequency of the squeezed
vacuum equal to the frequency of the loweru2&-u1& transition,
and the squeezed vacuum field taken to be the output of a
degenerate parametric amplifier. In this case, we assume that
the squeezing bandwidth is much smaller than the frequency
differenceD, so that the squeezed vacuum is exclusively
coupled to theu2&-u1& transition. In the second case, the car-
rier frequency of the squeezed vacuum is made equal to the
average frequency of the two atomic transitions, and we as-
sume that the squeezed vacuum is the output of a nondegen-
erate parametric amplifier with the two spectral peaks cen-

tered on the transition frequenciesv1 andv2. In both cases,
the spectrum can be calculated via the same procedure as
used for theL system.

In the first case, the spectrum is plotted in Fig. 6 for
j15j2510, g15g250.5, and different vacua. In all cases the
spectrum exhibits five lines located atv5v2,v26

1
2V, andv2

6V, in agreement with the fluorescent spectrum obtained by
Whitley and Stroud@47#. Their intensities and widths, how-
ever, depend on the squeezed parametersN andM , with only
the central component and the outer sidebands dependent on
the phasews . This is shown in Fig. 7, where we plot the
fluorescence spectrum for the same parameters as in Fig.
6~c!, but for different phases. The phase dependence is simi-
lar to that found for theL and V configurations with only the
central line and the outer sidebands dependent on the squeez-
ing phase. A similar phase dependence of the spectral fea-
tures has been found by Jagatap, Lawande, and Lawande
@26#, who calculated the fluorescence spectrum for a cascade
three-level atom coupled to two independent squeezed
vacua.

In the second case we take into account the coupling of a
nondegenerate parametric amplifier to the cascade atom,
which alters the form of the optical Bloch equations in a
fashion described at the end of Sec. II. We plot the spectrum
in Fig. 8 for j15j2510, g15g25gc50.5, N50.4,
uM u25N(N11), and different phasesws . Figure 8 demon-
strates the important feature that now all spectral lines de-
pend on the squeezing phase, with the central line and the

FIG. 4. The incoherent fluorescence spectrum for the V configu-
ration with g15g250.5, j15j2510, and different vacua:~a! the
ordinary vacuum (N5uM u50), ~b! thermal vacuum field~N50.4,
uM u50!, and ~c! squeezed vacuum@N50.4, uM u25N(N11),
ws50#.

FIG. 5. The incoherent fluorescence spectrum for the V configu-
ration with g15g250.5, j15j2510 squeezed vacuum coupled to
the u2&-u1& transition, and different phases:ws50 ~solid line! and
ws5p ~dashed line!. The squeezing parameters areN50.4,
uM u25N(N11).
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outer sidebands exhibiting the same variation between nar-
rowing and broadening. A nonzero value for the coherence
transfer rategc5G12/~G111G22! is essential in observing the
phase dependence of the spectral features.

IV. DRESSED-ATOM MODEL EXPLANATION
OF THE SPECTRAL FEATURES

In Sec. III graphical results for the incoherent fluores-
cence spectra for the three possible configurations of a three-
level system were presented. Here, we give a dressed-atom
model explanation of the spectral features in terms of the
energy levels of the dressed states and transitions among
these states. We perform the calculations using the dressed-
atom technique developed by Cohen-Tannoudji and Reynaud
@35#. In this model the driving laser fields are treated quan-
tum mechanically and the eigenstates of the combined atom
and driving-field system are found and used as the basis for
further calculations. We consider only theL configuration as
the V and cascade configurations follow the same method.

The method is essentially based on the original master equa-
tion ~2.2! though with the unperturbed HamiltonianH0
modified to include the free-field Hamiltonian for the laser
driving fields and the atom-field interaction~2.4! replaced by
a fully quantum coupling. The original Markovian relaxation
terms in~2.2! based on free-atom states are still valid in the
present finite-bandwidth squeezed-vacuum case, since the
squeezed-vacuum bandwidths~which determine the reservoir
correlation time! are large compared to the Rabi frequency.
Master equations for the system density matrix elements in a
dressed-atom basis can be obtained via the unitary matrix
that relates the dressed-atom basis states to the uncoupled
basis states. For convenience, we will writen5n11n2 as the
total number of photons in the laser fields andq5n12n2 as
the photon-number difference. The uncoupled stateu i ,n1 ,n2&
is given byu i & ^ un1& ^ un2&. The dressed-atom states will be
designatedu i ,n,q&. To determine the fluorescence field asso-
ciated with theu2&-u3& transition we will require the popula-
tions Pinq of the dressed states and the coherencesr i j ,nq

(1)

between dressed statesu i ,n,q& and u j ,n21,q11&. In terms
of density matrix elements these are given by

Pinq5^ i ,n,quru i ,n,q&, ~4.1!

r i j ,nq
~1 ! 5^ i ,n,quru j ,n21,q11&. ~4.2!

The Hamiltonian for the atom in aL configurationand
interacting with the quantized driving fields may be written
as

H5HAF1WL
8 , ~4.3!

FIG. 6. The incoherent fluorescence spectrum for the cascade
configuration withg15g250.5,j15j2510, and different vacua:~a!
the ordinary vacuum (N5uM u50), ~b! thermal vacuum field~N
50.4, uM u50!, and~c! squeezed vacuum coupled to theu2&-u1& tran-
sition @N50.4, uM u25N(N11), ws50#.

FIG. 7. The incoherent fluorescence spectrum for the cascade
configuration with g15g250.5, j15j2510 squeezed vacuum
coupled to theu2&-u1& transition, and different phases:ws50 ~solid
line! and ws5p ~dashed line!. The squeezing parameters are
N50.4, uM u25N(N11).
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where

HAF5\@v2u2&^2u1~v22v1!u1&^1u#1\v1a1
†a1

1\v2a2
†a2 ~4.4!

is the unperturbed~noninteracting! Hamiltonian of the atom
plus driving laser fields of frequenciesv1 andv2, and

WL
8 5 1

2 i\g1~S1
1a12a1

†S1
2!1 1

2 i\g2~S2
1a22a2

†S2
2!

~4.5!

is the interaction Hamiltonian for the atom and the driving
fields. In Eqs.~4.4! and ~4.5!, a1 ~a2! and a1

† (a2
†! are the

annihilation and creation operators for the driving field of
frequencyv1 ~v2! andg1 andg2 are the coupling constants
between the atom and the driving fields. We assume that the
driving fields of frequenciesv1 andv2 are single-mode laser
fields in the coherent statesua1& andua2&, respectively, where
n̄15ua1u

2@1 is the mean number of photons in the mode of
frequencyv1, while n̄25ua2u

2@1 is the mean number of pho-
tons in the mode of frequencyv2. The phases ofa1 anda2
are taken to be zero in accordance with the theory of Sec. II.
Such coherent states have associated classical fields which
correspond to the semiclassical coupling~2.4!.

The eigenstates~undressed states! of the noninteracting
HamiltonianHAF form manifolds@see Fig. 9~a!# composed
of threefold-degenerate statesu2,n1 ,n2&, u1,n111,n2&, and
u3,n1 ,n211& of energy

Enq5\@n1v11~n211!v2#. ~4.6!

When we include the interactionWL8 , the degeneracy is
lifted, resulting in an energy-level scheme consisting of trip-
lets @see Fig. 9~b!#. The dressed states in the set (n,q) are
given by

u1,n,q&5
1

V
~2V2u1,n111,n2&1V1u3,n1 ,n211&),

u2,n,q&5
1

&V
~V1u1,n111,n2&1 iVu2,n1 ,n2&

1V2u3,n1 ,n211&), ~4.7!

FIG. 8. The incoherent fluorescence spectrum for the cascade
configuration withg15g25gc50.5, j15j2510 squeezed vacuum
coupled to the two-photon transitionu3&-u1&, and different phases:
ws50 ~solid line! andws5p ~dashed line!. The squeezing param-
eters areN50.4 anduM u25N(N11).

FIG. 9. Energy-level diagrams of the undressed Hamiltonian~a!
and the dressed system~b!. The manifold (n,q) is separated from
the manifolds (n71,q61) by the frequencyv2, and from the
manifolds (n61,q61) by the frequencyv1.
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u3,n,q&5
1

&V
~V1u1,n111,n2&2 iVu2,n1 ,n2&

1V2u3,n1 ,n211&),

with energies

E1nq5Enq ,

E2nq5Enq1
1
2\V, ~4.8!

E3nq5Enq2
1
2\V,

where V5~V1
21V2

2!1/2 with V15g1(n1)
1/2 and V2

5g2(n2)
1/2, and we have assumed the driving fields to be

sufficiently intense that the variation ofn-photon Rabi fre-
quencies withn1 andn2 has been neglected and the photon
numbers replaced by the average numbers of photonsn1 and
n2 in the laser modes.

Having available the dressed states of the system, we can
set up master equations for the populations of the dressed
states u i ,n,q& and for coherences between dressed-atom
states in theu i ,n,q& and u i ,n21,q11& sets. Coherences be-
tweenu i ,n,q& and u i ,n21,q11& are not required, since we
are interested in the spectral properties of the fluorescence
field emitted at theu2&-u3& transition, thereby limiting our
calculations to the transitions between the dressed states of
two neighboring manifolds separated by the frequencyv2.

Considering only the energy diagram, Fig. 9~b!, it is ap-
parent that the possibility of fluorescence exists at five dif-
ferent frequencies,

v i j5\21~Einq2Ejn21q11!, ~4.9!

given by

v115v225v335v2 ,

v125v315v22
1
2V,

v215v135v21
1
2V, ~4.10!

v235v21V,

v325v22V.

These frequencies exactly correspond to the frequencies of
the spectral lines presented in Fig. 2.

Transitions from the manifold (n,q) to the manifolds
(n21,q21) and (n21,q11) occur with probabilities given
via the Fermi golden rule from first-order perturbation theory
as

g i j5G11z^ i ,n,quS1
1u j ,n21,q21& z2

1G22z^ i ,n,quS2
1u j ,n21,q11& z2. ~4.11!

Using Eqs.~4.7! the probabilities~4.11! are given by

g115g125g1350,

g225g235g325g335
1

4

V2
2

V2 G221
1

4

V1
2

V2 G11, ~4.12!

g215g315
1

2

V1
2

V2 G221
1

2

V2
2

V2 G11,

and the total transition rates from the statesu i ,n,q& are

g1nq5(
i51

3

g1i50,

g2nq5(
i51

3

g2i5
1
2G221

1
2G11, ~4.13!

g3nq5(
i51

3

g3i5
1
2G221

1
2G11.

It is seen that the total transition rate fromu1,n,q& is zero,
indicating that there is no spontaneous emission from this
state. Since there is spontaneous emission to the stateu1,n,q&
from the manifolds above, the population in the stateu1,n,q&
increases in time and for long times all population will be in
this state. This effect stops the fluorescence from theL sys-
tem and is called the coherent population trapping effect
@41,42#. In order to show this more quantitatively we calcu-
late the populations of the dressed states. For simplicity, we
assume thatG115G225G. From the quantum version of the
master equation based on~2.2!, we obtain a set of coupled
equations for the populationsPinq of the dressed states. In
obtaining these coupled equations the approximation@35#
that dressed-atom populations are independent ofq and n
@apart from the factor~^n1n2ua1a2&!

2#, together with the secu-
lar approximation, is used.

The nq is thus dropped;Pi5^Pinq&nq is the average of
Pinq overn,q and then the equations of motion are

Ṗ152
G

2
NP11

G

4
~N12!~P21P3!,

Ṗ25
G

4
NP12

G

4
~2N131uM ucosws!P2

1
G

4
~N111uM ucosws!P3 , ~4.14!

Ṗ35
G

4
NP11

G

4
~N111uM ucosws!P2

2
G

4
~2N131uM ucosw2!P3 .

The steady-state solution of Eqs.~4.14! is easily found to be

P15
N12

3N12
, P25P35

N

3N12
. ~4.15!

It is evident from~4.15! that for the ordinary vacuum~N50!
the atomic population is trapped in the stateu1,n,q&. When
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the atomic transitionu2&-u1& is coupled to a thermal or
squeezed vacuum field the stimulated absorption and emis-
sion processes appear between the statesu1& and u2& with the
rateNG11. These processes modify the quantum fluctuations
about the frequencyv1. Since the dressed states~4.7! contain
the superpositions of the statesu2& and u1& the quantum fluc-
tuations atv1 are transferred into the dressed states, which
leads to modifications of the transition rates between the
dressed states. As a consequence, all transition ratesgi j are
different from zero, which results in the population of all
dressed states.

According to Cohen-Tannoudji and Reynaud@35# the po-
sitions of the spectral lines and their widths are determined
by the off-diagonal elements of the density operatorr i j ,nq

(1) .
First we consider the sidebands atv26V. Projecting the

quantum version of master equation~2.2! onto u3,n21,
q11& on the right andu2,n,q& on the left, we find that the
coherences are given by

ṙ23
~1 !52@ i ~v21V!1 1

4 ~4N152uM ucosws!G#r23
~1 ! ,

~4.16!

where thenq has been dropped, since the solutions are inde-
pendent of n and q @apart from the factor related to
~^n1n2ua1a2&!

2#, and wherer23
~1!5^r 23,nq

(1) &nq is the average
overnq of r 23,nq

(1) .
Similarly, projecting the master equation ontou2,n21,

q11& on the right and̂ 3,n,qu on the left, and then averag-
ing overnq, we obtain

ṙ32
~1 !52@ i ~v22V!1 1

4 ~4N152uM ucosws!G#r32
~1 ! .

~4.17!

The coherences~4.16! and~4.17! correspond to spectral lines
at frequenciesv26V. The widths of these lines are

l6V5 1
4 ~4N152uM ucosws!G. ~4.18!

The analytical linewidthsl6V show that the spectral lines at
v26V depend on the squeezing phasews , which agrees with
the numerical results of Sec. III.

For the inner sidebands atv26
1
2V, we project the quan-

tum version of the master equation~2.2! onto u1,n21,q11&
on the right and̂ 2,n,qu on the left, and average overnq.
This results in two coupled equations:

ṙ21
~1 !52@ i ~v21

1
2V!1 1

8 ~5N14!G#r21
~1 !1 1

4MGr13
~1 ! ,
~4.19!

ṙ13
~1 !52@ i ~v21

1
2V!1 1

8 ~5N14!G#r13
~1 !1 1

4M*Gr21
~1 ! .

In order to discuss linewidths and frequencies of the spectral
components it is enough to find eigenvalues of Eq.~4.19!. It
is easy to show that the eigenvalues of Eq.~4.19! are

l15
1
8 ~5N1412uM u!,

~4.20!
l25

1
8 ~5N1422uM u!.

It is seen from~4.20! that the width of the spectral line at
v21

1
2V depends on the squeezing parametersN anduM u, but

is independent of the squeezing phasews . This is in agree-
ment with the numerical results of Sec. III.

The detailed coherences corresponding to the left side-
band atv22

1
2V can be calculated analogously. Like the right

sideband atv21
1
2V, the left sideband has the width given in

Eq. ~4.20!.
Finally, we consider the central component atv2. We

project the master equation ontou1,n21,q11& on the right
and ^1,n,qu on the left and average overnq. This results in
the equation of motion for the coherencer11

~1! . It is easily
verified that the coherencesr22

~1! and r33
~1! oscillate with the

same frequencyv2 asr11
~1! , and therefore have coupled equa-

tions of motion. These are readily shown to have the form

ṙ11
~1 !52~ iv21

1
2NG!r11

~1 !1 1
4 ~N12!G@r22

~1 !1r33
~1 !#,

ṙ22
~1 !52@ iv21

1
4 ~2N131uM ucosws!G#r22

~1 !1 1
4NGr11

~1 !

1 1
4 ~N111uM ucosws!Gr33

~1 ! , ~4.21!

ṙ33
~1 !52@ iv21

1
4 ~2N131uM ucosws!G#r33

~1 !1 1
4NGr11

~1 !

1 1
4 ~N111uM ucosws!Gr22

~1 ! ,

and the eigenvalues of Eq.~4.21! are

h152 iv2 ,

h252 iv22
1
4 ~3N12!G, ~4.22!

h352 iv22
1
4 ~3N1412uM ucosws!G.

The eigenvalueh1 corresponds to the elastic component of
the spectrum, while the other eigenvalues correspond to the
inelastic central components at frequencyv2 and widths
1
4~3N12!G and 1

4~3N1412uM ucosws!G. Clearly, the line-
width of the central component depends on the squeezing
phasews , in agreement with the numerical calculation in Fig.
3.

The dressed-model analysis of the results presented in
Figs. 4–8 for the V and cascade configurations is similar.
The frequencies and intensities of the spectral features and
their dependence on the squeezing phase can be explained in
a similar way as the above for theL system.

V. SUMMARY

In this paper we have studied the phase properties of the
fluorescence spectrum of a three-level atom driven by two
coherent laser fields and damped by a narrow-band squeezed
vacuum field. We have calculated and presented graphically
the fluorescence spectra for all possible configurations of the
atomic levels, i.e., theL, V, and cascade configurations. A
phase-dependent spectrum is found when the thermal field is
replaced by a squeezed vacuum field whose bandwidth is
much smaller than the difference in allowed atomic transi-
tion frequencies, but much larger than atomic decay rates
and Rabi frequencies of the driving fields.

In particular, we have shown that for theL system
damped by the ordinary vacuum, coherent population trap-
ping takes place which removes the fluorescence entirely.
This is in agreement with earlier results@41–43#. When a
narrow-band thermal field is applied to one of the two atomic
transitions, the coherent trapping effect is destroyed and the
fluorescence spectrum observed on the other transition ex-
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hibits five lines, one central and two pairs of sidebands. In
the case of a squeezed vacuum field, however, only the cen-
tral component and the outer sidebands exhibit a dependence
on the squeezing phase.

In the V configuration driven by two resonant laser fields
and damped by the ordinary vacuum, the fluorescence spec-
trum associated with the atomic transition of frequencyv2
exhibits three lines, a central feature at frequencyv2 and two
sidebands atv26V, whereV is the effective Rabi frequency
of the two driving fields. In the case when the other transi-
tion atv1 is damped by a thermal or squeezed vacuum field,
additional sidebands appear in the spectrum atv26

1
2V.

Again, only the central line and the outer sidebands exhibit a
dependence on the squeezing phase.

For a strongly driven cascade system and a squeezed
vacuum coupled to one of the two one-photon transitions
~such as the field generated by a degenerate parametric am-
plifier! the fluorescence spectrum reveals a phase depen-
dence similar to that found in theL and V systems. How-
ever, when the squeezed vacuum is resonant to the two-
photon transition between the ground and the upper excited
states and coupled to both one-photon transitions also~such
as the field generated by a non-degenerate parametric ampli-
fier!, all spectral lines show dependence on the squeezing
phase. Thus for the cascade case a squeezed vacuum field
which is the output of a nondegenerate rather than a degen-

erate parametric amplifier produces more extensive effects.
In order to explain the spectral features, we have applied

the dressed-atom model of the system. The dressed states of
the systems have been identified, and the spectral features
explained in terms of transitions between these dressed
states. We have shown that the unusual phase properties of
the fluorescence spectra arise from the coherent mixing of
the atomic states by the intense driving fields, which modi-
fies transition rates between the dressed states.

Finally, we wish to point out that the schemes discussed
in this paper, which involve three-level atoms coupled to a
narrow-band squeezed vacuum whose bandwidth is much
smaller than the difference in the atomic transitions frequen-
cies, are more practical for observing the phase properties of
the fluorescence spectrum, as they do not require the experi-
mentally difficult separation of the fluorescence field from
the squeezed vacuum field. Moreover, they involve a
narrow-band squeezed vacuum field, which is now available
in the laboratory.
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