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The creation and annihilation of pairs of optical vortices have been studied in transitions between patterns
produced in a photorefractive oscillator. Smooth metamorphosis between stable patterns occurs through pair
creation or annihilation but can be modeled using superposition of modes taking into account lifting of
degeneracy of helical modes by helical astigmatism of the resonator.@S1050-2947~96!04508-8#

PACS number~s!: 42.55.2f, 42.65.Hw

I. INTRODUCTION

It has been previously demonstrated that lasers and pho-
torefractive oscillators~PRO’s! can emit fields with vortices
that remain intact as they move along circular paths about
the optic axis@1#. The patterns containing the vortices can be
understood as simultaneous emission of helical fields with
high topological charge phase singularities together with ro-
tationally symmetric fields such as the fundamental Gaussian
mode. The number and distribution of vortices and the vor-
tex charges consequently depend upon which modes are con-
tributing to the total field pattern. The frequency difference
between modes gives rise to the dynamics of the patterns@1#.

We report here experiments on the transient dynamics that
occur when the cavity of a PRO is tuned between patterns
containing different numbers and charges of vortices. In Sec.
II, we present patterns for two resonator tuning positions; a
pattern with four circling vortices and a pattern with five
oppositely circling vortices of the same topological charge
with one additional oppositely charged vortex in the center.
The total topological charge of both patterns is the same
whereas the total number of vortices differs by two so that a
‘‘vortex pair’’ has been created during the transition between
the patterns.

In Sec. III, the number of vortices observed in the pat-
terns, their arrangement, topological charge, and also circling
direction are quantitatively simulated using a superposition
of passive cavity helical modes. Here the modes and their
respective amplitudes are chosen empirically. The dynamics
are produced by introducing time-varying phase factors be-
tween the modes, which corresponds to the frequency differ-
ences between modes.

In Sec. IV, the details of the vortex pair creation are
shown for situations where the tuning is changing~Sec.
IV A ! and when the tuning is fixed and the phase of the field
varies~Sec. IV B!. Furthermore, the detailed way in which a
pair of oppositely charged vortices is created or annihilated
is evident from the dynamics of the zero lines of the real and
imaginary parts of the field. This is again determined from
the passive cavity mode superposition for fixed amplitudes

of the cavity modes corresponding to fixed tuning.
The pattern with 5 vortices circling a central vortex of

opposite topological charge is obtained by a superposition of
charge minus 1 and charge plus 4 doughnut modes. How-
ever, since the helical modes plus 4 and minus 4 should be
frequency degenerate, a pattern corresponding to a superpo-
sition of plus 1 and plus 4 ought to be equally observable.
Since this was never observed, we conjecture that the plus
and minus charged helical modes of the same charge strength
are frequency nondegenerate.

We show, in Sec. V, the principle of removing the fre-
quency degeneracy of oppositely charged helical modes of
the same charge strength by the use of a nonplanar ring cav-
ity. This is experimentally verified by observation of the
change in sign of a charge 1 doughnut mode with tuning of
the cavity.

The setup is essentially the same as that of@1#. A unidi-
rectional ring resonator of perimeter 2 m is used with an
even number of mirrors to allow emission of fields with vor-
tices. The resonator consists of 4 plane mirrors~2 of which
are movable by piezo!, polarizing beam splitters~used for
active cavity length stabilization!, a BSO crystal as the active
photorefractive medium, two lenses to define the mode struc-
ture and select the number of transverse modes per free spec-
tral range, and an iris to control the losses of the modes. The
resonator length is actively stabilized with one piezo and
transverse mode selection is achieved by moving the mirror
with the second piezo. The lenses are placed such that the
transverse mode spacing is slightly more than a quarter of
the free spectral range. The transverse mode-selecting piezo
is manually controlled. The tuning can be changed between
desired positions on a time scale roughly comparable to the
characteristic circling time of the vortices. Thus the tuning is
quasistatic and not transient. For optical amplification in the
resonator the BSO crystal is pumped by an Ar1, 514 nm
single-mode laser whose irradiance is around 3 mW/cm2.
An electric field is applied to the crystal~10–11 kV/cm!
since BSO is a drift-type photorefractive material. Finally,
5% of the generated field is coupled out and recorded by a
charge-coupled device camera.

II. EXPERIMENTALLY OBSERVED PATTERNS

Figures 1~a! and 1~b! show single frames of circling vor-
tex patterns obtained from the output of the PRO for two
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separate tuning positions of the cavity. The direction of cir-
cling is opposite between patterns~a! and ~b!.

Shown in Fig. 2 are the corresponding interferograms. It
can be seen that in Fig. 2~a! there are four vortices of the
same topological charge and in Fig. 2~b! there are five vor-
tices of the same charge as in Fig. 2~a! with an additional
vortex of opposite charge in the center. During the transition
from pattern~a! to ~b!, therefore, a vortex pair appears. Lo-
cally about each vortex, the phase of the optical field changes
by 2p but the phase change in the field around a vortex pair

is zero. Thus the addition of a vortex pair does not change
the total topological charge of the optical field.

The two cavity tuning positions for the above patterns are
represented diagrammatically in Fig. 3 where the response of
the cavity is shown as a function of frequency. Theoretically,
each mode exhibits a Lorentzian response with a width and
height dependent upon its losses, which we assume are
higher for higher order modes. Direct measurements of such
a curve were given in@1# and we have also verified that the
‘‘active’’ modes observed when the device is oscillating cor-

FIG. 1. Output patterns from the PRO for two different cavity tunings: Pattern~a! shows the presence of 4 optical vortices, which circle
anticlockwise as viewed, and pattern~b! shows 5 vortices circling a 6th central vortex clockwise.

FIG. 2. Interferograms of Fig. 1 showing topological charge of vortices. The 4 vortices in pattern~a! all have the same topological charge
as demonstrated by the interference fringe ‘‘forks’’ all pointing ‘‘up.’’ These are of the same charge as the 5 circling vortices in~b! and the
6th central vortex is oppositely charged.
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respond directly with those observed in such a ‘‘passive’’
measurement~see also@2#!.

The number of transverse modes per free spectral range
for the cavity configuration producing the patterns in Fig. 1
is slightly less than 4. This means that theq54 mode family
from the l5N21 longitudinal mode has a frequency be-
tween that of theq50 mode and theq51 mode family for
the l5N longitudinal mode, but close to theq50 mode. The
pattern of four circling vortices was experimentally obtained
at a tuning between theq54 charge 4 helical mode and the
q50 mode but close to theq54 mode, as indicated in Fig.
3. The pattern is therefore the result of simultaneous emis-
sion of these two mode fields. The patterns of five circling
vortices of ‘‘like’’ charge with a central vortex of opposite
charge was obtained at a tuning position between theq54
mode and theq51 mode, but toward theq51 mode so that
theq50 Gaussian mode is no longer significant. During the
tuning, theq54 mode continues to emit while the emission
of theq50 mode is replaced byq51 emission.

In both ~a! and~b! the vortices circle the optic axis. How-
ever, the direction of circling is opposite between~a! and~b!.
If two cavity modes have a constant difference in frequency,
then the relative phase difference between the modes will
constantly increase or decrease, depending upon which mode
is chosen as the reference. It can then be understood that
since theq54 mode family frequency is higher than the
q50 mode and lower than theq51 mode family, the phase
differences, relative to theq54 mode family, will corre-
spondingly decrease and increase respectively with time. For
a helical mode, a phase shift corresponds to a rotation. This
gives rise to the circling dynamics and accounts for the
change in circling direction observed between the two pat-
terns, as will be demonstrated in the next section. Because of
the extremely narrow gain linewidth of the PRO, massive
frequency pulling occurs@3,4#, reducing the rotation frequen-
cies to values in the sub-Hertz range but maintaining the
ratios of mode amplitudes@5#.

III. PASSIVE CAVITY HELICAL MODE ANALYSIS

The transverse electric field amplitude in an optical cavity
is described here as a simple superposition of the passive

cavity mode functions using polar coordinates:

c~r,w,t !5(
q,l

Cq,le
iDvq,l tAq,l~r,w!. ~1!

HereAq,l are the Gauss-Laguerre modes chosen to represent
the observed field andCq,l are their respective amplitudes.
Dvq,l is the frequency difference between the (q,l ) mode
and some chosen reference mode~here theA0,0mode! so that
the exponential term describes the time varying phases be-
tween the modes.ucu2 is proportional to the intensity. The
Gauss-Laguerre modes have the form

Aq,l~r,w!5S 2q!
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~2!
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Given the situation illustrated in Fig. 3, the modes chosen
are the Gaussian mode,A0,0, and the plus-minus charge 1
and 4 helical modes,A0,61 andA0,64 , respectively:

A0,0~r,w!5A05A2/pe2r2,

A0,61~r,w!5A1
65A1/p2re6 iwe2r2, ~4!

A0,64~r,w!5A4
65A1/12p4r4e64iwe2r2.

Figure 4 shows the calculated transverse intensity patterns
for the following superpositions:

ca5A01eiDv4tA4
1 ,

~5!

cb5eiDv1tA1
21eiDv4tA4

1 ,

whereucau2 anducbu2 correspond to the intensity of the pat-
terns in Figs. 4~a! and 4~b!. Dv4 andDv1 are the difference

FIG. 3. Relationship between cavity modes and circling vortex patterns. The transmission of transverse modes of the passive cavity as a
function of frequency is shown schematically. The frequency difference between TEM00 and TEM01 is about 40 MHz. Theq54 mode
family from thel5N21 longitudinal mode falls between that of theq50 mode and theq51 mode family for thel5N longitudinal mode
but is closer to theq50 mode. The dotted lines represent the two cavity tuning positions corresponding to the patterns of Fig. 1.
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FIG. 4. ~a! Calculated intensity patterns for the superposition ofA0 andA4
1 . ~b! Superposition ofA1

2 andA4
1 . ~c!,~d! Real ~solid! and

imaginary~dotted! zeros of the field corresponding to~a! and~b!, respectively. The position where a real and an imaginary zero line cross
indicates a zero in the field.~e!,~f! The transverse component of the gradient of phase of the field corresponding to~a! and~b!, respectively,
demonstrating the presence of a vortex at the zero points of the field.~e! has 4 anticlockwise vortices and~f! has 5 anticlockwise vortices
circling a central clockwise vortex.
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frequencies between theq54 andq50 modes and between
the q51 and q50 modes, respectively, where theq50
mode is chosen as the reference frequency. We have
Dv1.Dv4.0 so as to correspond to the situation of Fig. 3,
where the frequency of theq54 mode family lies between
theq50 mode and theq51 mode family. The superposition
of ~5! gives the correct intensity distribution of the vortices
corresponding to the observed patterns of Fig. 1. The pat-
terns also rotate about the origin in opposite directions when
the phases,Dv4t andDv1t, change with the time, in agree-
ment with the experimental observations. Figures 4~c! and
4~d! show the zero lines of the real and imaginary parts of
the field, Re$c% and Im$c%. Vortices are found at the zero
points in the field, where the real and imaginary loci inter-
sect. Thus in Fig. 4~c! there are four zeros and in 4~d! there
are six. To demonstrate the vortex nature of the zeros of the
field and also to show the sign of the topological charge of
the vortices, the gradient of the phase function of the field,
¹F, is plotted in Figs. 4~e! and 4~f! ~the phase function is
defined byc5CeiF(r,w,t) @6#!. The direction of circulation
of the optical phase gives the sign of the topological charge
of the vortex, as marked in the figures. It can been seen that
~e! contains 4 anticlockwise vortices and~f! has 5 anticlock-
wise vortices arranged around the central clockwise vortex.
These figures are in agreement with the experimental obser-
vations in Fig. 2.

Of course, the actual direction of phase circulation and
hence ‘‘charge’’ or ‘‘handedness’’ of the vortices cannot be
seen in the interferograms of Fig. 2. What can be directly
observed is that the pattern of Fig. 2~a! has 4 vortices with
interference fringe ‘‘forks’’ pointing ‘‘up’’ and are hence all
of a particular charge. Figure 2~b! has 5 vortices of the same
charge as in~a! and 1 of opposite charge. The choice of the
A4

1 andA0
2 modes in the superposition of Eq.~5! assumes

that the ‘‘up’’ interference fringe ‘‘forks’’ correspond to
positive topological charge and anticlockwise circulation of
the optical phase. If the converse charge superposition is
chosen (A4

2 andA0
1 modes! then the only difference is that

the ‘‘up’’ interference fringe ‘‘forks’’ would correspond to
negative charge and clockwise circulation of the optical
phase. The qualitative agreement to the experimental obser-
vations is unaffected.

In each of the cases studied, we have been able to match
the observed patterns and their dynamics by simple superpo-
sitions of modes. Although we are not able to independently
predict the amplitudes of the modes in the experiment as
they depend upon unknown loss and gain distributions, the
amplitudes chosen are plausible in the circumstances. In fact
a hyperbolic tangent function~see Fig. 6 and 7! was used to
generate smooth increases and decreases of the mode ampli-
tudes in the instances where tuning between modes occurs
and the mode amplitudes consequently vary. This empirical
model leads to approximately correct values for the radii at
which the singularities circles, which is sufficient for the
current qualitative analysis.

IV. VORTEX-PAIR CREATION

The sequence of frames in Fig. 5 shows the transition
from the pattern of Fig. 1~a! to 1~b!. The creation of a vortex
pair can be observed, for example, in Fig. 5~ii ! where three
vortices can be separated into a single vortex and a vortex
pair. We have presented the detail of this pair creation in two
ways. Firstly, the resonator tuning is varied between the dot-
ted lines of Fig. 3 so that the mode amplitudes vary. How-
ever, frames are taken in a stroboscopic manner where the
phase of the pattern is the same. That is, the location of the

FIG. 5. Sequence of frames~selected from a continuous recording! showing the evolution of the pattern of Fig. 1~a! to that of 1~b!. The
piezo voltage has been changed so as to tune the cavity between the positions indicated by the two dotted lines in Fig. 3 over a period of
2 s.
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vortex-pair creation~annihilation! rotates around to the same
position between the stroboscopically sampled frames. Sec-
ondly, the resonator is fixed at some tuning value somewhere
between the dotted lines so that the mode amplitudes remain
constant. In this case the periodic creation and annihilation
of a vortex pair can be followed as the relative phase differ-
ences between the modes evolve.

A. Stroboscopic frames with varying tuning

Figure 6 shows the experimental interferograms~a! and
the real and imaginary zero loci of the field~b!. The dark
spot marked by the rectangle in Fig. 6 rotates once around
the center of the pattern between each of the frames~a!~i!,
~a!~ii !, and ~a!~iii !. These frames are taken when the dark
area, where vortex-pair creation takes place, is at the same
angular position. However, the amplitude ratios between
constituent modes,C0 /C1 /C4 , are changed as a result of
resonator tuning. In terms of mode superposition this can be
represented using the mode functions already defined as

c5C0A01C1e
iDv1tA1

21C4e
iDv4tA4

1 . ~6!

Since we haveDv4,Dv1 , and given that the circling dy-
namics of the outer vortices is related toDv4 , @1# the outer
vortices do not move very much during 2p phase change of
Dv1t. This is evident in Figs. 6~a!~i!–6~a!~iii !. For this rea-
son, in the calculation we can neglectDv4t and the motion
of the dark area can be determined byDv1t. Hence the
condition Dv1t5w012pn (w05const, n integer! corre-
sponds to the dark area being in the same angular position
between different strobe frames,n50, 1, 2 for Figs.
6~a!~i!–6~a!~iii !.

In the experiment, the time for tuning between desired
tuning positions is roughly comparable to the characteristic
circling time of the vortices. Thus as the tuning is varied, the
relative proportions of the modes simultaneously present will
be in quasiequilibrium with the cavity tuning position. Of
course, a dynamical analysis of the current system would
provide a more accurate and representative determination of
the variation of the mode amplitudes and indeed, the descrip-
tion of the cavity modes themselves. However, since the
PRO is operated close to threshold, the system behaves as a
class-A laser@7# and, as will be subsequently demonstrated,

FIG. 6. Sequence of experimental frames~a! and the calculated real and imaginary zero loci~b! detailing vortex-pair creation with
varying tuning observed at a chosen phase of the field. These frames are taken when the dark area, where vortex-pair creation takes place,
is at the same angular position. The time between frames is roughly half a second.~a!~i! There are four dislocations present in the
interference pattern corresponding to four zero points in the field where vortices are present. There is a fifth dark spot~indicated! but no
dislocation.~a!~ii ! After the tuning is changed, a vortex pair is now present as two opposite ‘‘forks’’ in the interference pattern.~a!~iii ! The
vortex pair is now clearly separated into two vortices of opposite topological charge.~b!~i! The vortex pair is close to being created where
the real and imaginary loci are close together~indicated by the arrow!. This is observed as a dark region in the field.~b!~ii ! The real and
imaginary loci have evolved so that they now intersect to form two extra vortices.~b!~iii ! The intersection points are now clearly distinct.
The real and imaginary loci are calculated from Eq.~6! using mode amplitudes,C0 ,C1 ,C4 , given by C0512tanh@p(j/N21/2)#,
C1511tanh@p(j/N21/2)#, C451, whereN540 andj521, 23, 26,~b!~i!, ~b!~ii !, and~b!~iii !, respectively.
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the qualitative agreement between the observed patterns and
those predicted from a passive cavity mode description is
very good. The patterns can be well described without inclu-
sion of such factors as cavity loss, gain saturation, and the
effect of frequency pulling, which are not considered here.

The point at which the vortex pair is created can be seen
from these figures. In Fig. 6~a!~i!, there is a fifth dark spot in
the field~indicated by the box! where there is no dislocation
present and hence no vortex. In the corresponding diagram
showing the real and imaginary zero loci, 6~b!~i!, the dark
spot corresponds to the position where the loci are closely
spaced. In Fig. 6~a!~ii !, the dark spot now has two oppositely
directed dislocation forks demonstrating the presence of a
vortex pair. This corresponds to the situation in Fig. 6~b!~ii !
where the real and imaginary zero loci cross and vortices are
found at the intersection points, as indicated. By further tun-
ing, the vortex pair is now clearly separated so that there are
five like-charge vortices arranged around the central oppo-
sitely charged vortex. Hence the creation-annihilation of a
vortex pair can be understood in terms of the real and imagi-
nary loci crossing and uncrossing.

B. Fixed tuning with phase evolution

Figure 7 shows interferograms and zero loci of the field
under the condition that the resonator length is approxi-

mately constant. In this case, the amplitudes,C0 /C1 /C4 , of
the constituent modes are effectively constant while the rela-
tive phase differences continue to evolve. It can be seen from
the interferogram in Fig. 7~a!~i! there is once again a fifth
dark region without a dislocation in the field. The real and
imaginary zero loci, Fig. 7~b!~i!, do not intersect but are
almost tangential. When the phase has evolved by an
amount, Fig. 7~a!~ii !, the dark region now has a vortex of the
same charge as the other vortices and a second vortex is also
created, which is roughly central with opposite charge. The
boxed vortex in Fig. 7~a!~ii ! corresponds to the indicated
innermost intersection of real and imaginary zero loci in Fig.
7~b!~ii !. Further evolution of the phase shows that the central
vortex is no longer present and one of the outer vortices is
now annihilated with only the dark region indicated being
present. In this manner, a vortex pair is created, one vortex of
which remains on the circle trajectory and the other moves
inward. The inner vortex moves around and then annihilates
with one of the other outer vortices so that for a fixed reso-
nator tuning, a vortex pair is created and annihilated periodi-
cally, as the phase evolves.

V. FREQUENCY NONDEGENERACY OF HELICAL
MODES IN A NONPLANAR RING RESONATOR

The observed circling vortex patterns have been described
using a superposition of passive cavity modes,A0 , A1

2 , and

FIG. 7. Sequence of experimental frames~a! and the real and imaginary zero loci~b! detailing vortex-pair creation with a fixed cavity
tuning: ~a!~i! As in Fig. 6 a fifth dark spot is present but has no dislocation.~a!~ii ! After the phase has evolved a small amount, a vortex pair
is now present, with the innermost vortex being of opposite charge to the outer circling vortices.~a!~iii ! Further evolution of the phase shows
that the inner vortex has annihilated with one of the outer vortices and the vortex pair no longer exists. This whole process occurs over a time
scale of about one-quarter to one-half second.~b!~i! The vortex pair is close to being created where the real and imaginary loci are close
together.~b!~ii ! The real and imaginary loci have evolved so that they now intersect to form two extra vortices.~b!~iii ! The loci no longer
intersect and the vortex pair is annihilated. The real and imaginary loci are calculated from Eq.~6! using the specific values given by
c50.35A010.65ei8p j /NA1

21ei4p j /NA4
1 , whereN520 andj53, 5, 7 for ~b!~i!, ~b!~ii !, and~b!~iii !, respectively.
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A4
1 . Since each of these is from different transverse mode

families (q50,1,4, respectively! the corresponding cavity
frequencies are different. However, the opposite topologi-
cally charged modesA1

1 andA4
2 are frequency degenerate

with A1
2 andA4

1 , respectively, the only difference being the
sense of change of the phase about the optic axis with dis-
tance along this axis. Thus the following combinations of

modes ought to be equally well observable:

A01A4
1; A01A4

2 ,

~7!

A1
21A4

1 ; A1
11A4

2 ; A1
11A4

1 ; A1
21A4

2 .

FIG. 8. Relationship between cavity modes and circling vortex patterns as in Fig. 3 but assuming frequency nondegenerate doughnut
modes. The situation depicted is consistent with the observed number, distribution, and charge of vortices observed in the patterns investi-
gated.

FIG. 9. ~a! Schematic representation of the effect of astigmatic cavity image rotation upon a helical mode, which is otherwise resonant
with the cavity. The image rotation corresponds to a phase shift causing the phase of the wave returning after a single pass to no longer be
the same as the starting phase.~b!,~c! Frequency nondegeneracy of oppositely charged helical waves in such a cavity. The solid square plane
represents the resonant length of the cavity without astigmatism. For the clockwise wave~b!, the dotted plane is the position to which the
cavity must be tuned so that the phase is the same after one round trip~dotted phase line!. The anticlockwise wave~c! requires a lengthening
of the cavity in order to be resonant.
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The first two superpositions listed above both result in 4
circling vortices. The 4 vortices all have identical topological
charge in one superposition and the opposite for the other
superposition. Thus the difference in the observed pattern
would only be apparent in the interferograms. The superpo-
sitions ofA1

21A4
1 andA1

11A4
2 again differ only by a re-

versal of topological sign of all vortices between patterns.
The number and distribution of vortices are the same in both
superpositions. The reversal of vortex charge was not ob-
served in any of the interferograms for switches between
circling vortex patterns. Furthermore, the superpositions
A1

11A4
1 and A1

21A4
2 have 3 vortices circling a central

fourth vortex. These patterns were also never observed, in-
dicating that the superposition of the same helical modes,
A1

21A4
1 , was always observed.

This can be explained if oppositely charged helical modes
are frequency nondegenerate~we will demonstrate this be-
low!. In this case, Fig. 3 is then more accurately replaced by
Fig. 8 where, to avoid clutter, just the center frequencies of
the now nondegenerate resonances are shown by vertical
lines. Oppositely charged doughnut modesA1

2 andA1
1 and

alsoA4
2 and 4

1 are represented as having different frequen-
cies. Given the arrangement of Fig. 8, it can be seen that for
the tuning position between theq54 andq51 mode fami-
lies, only theA1

21A4
1 superposition is expected. It may be

argued that when tuning is changed to between theq51 and
q50 modes, the superposition should involve theA4

2 rather
than theA4

1 helical mode. If this were so, then as the tuning
is changed between positions, the sign of the outer circling
vortices should reverse. This is not observed, as shown in
Fig. 2. The reason is that there is a certain amount of hyster-
esis between competing modes@1,7# so that once the pattern
based onA4

1 is set up, it persists with further tuning.
Such a frequency difference between oppositely charged

helical modes of the same charge strength can be explained
by image rotation in the cavity. The effect is illustrated in
Fig. 9 using a charge 1 helical mode. As mentioned earlier,
rotation of a helical mode corresponds to a phase shift. If the
cavity is resonant for a particular mode then after one round
trip, the phase of the field returns to the starting value and the
mode is supported by the cavity. By introducing ‘‘astigma-
tism’’ such that an image is rotated after one round trip, Fig.
9~a!, the phase of a helical field will no longer be the same as
the starting value. In the figure, the phase of the helical mode
has advanced too far. However, if the cavity length is short-
ened, it can be ‘‘tuned’’ to the length where the phase is the
same as the starting value, as illustrated in Fig. 9~b!. Figure
9~c! shows that for an oppositely charged mode, the cavity
length has to be lengthened to allow the phase to return to
the starting value after a round trip. Thus for the sense of
image rotation given in the figures, the ‘‘clockwise’’ mode
has a higher frequency than the anticlockwise mode. This
situation is reversed if the sense of rotation of the image with
propagation of the optical mode is opposite to that depicted.

The physical mechanism of image rotation is due to a
nonplanar arrangement of the optic axis of the cavity@8#. A
misplacement of the beam height of 0.5 mm on one mirror,
for example, yields a 0.6° image rotation. Equating the per-
centage image rotation to a percentage phase change for two
oppositely charged helical modes gives a frequency differ-

FIG. 10. Output patterns of the PRO for three tuning positions
near the charge 1 doughnut mode using a significantly nonplanar
cavity. ~a! Doughnut mode with interference fringe ‘‘fork’’ point
‘‘up.’’ ~b! TEM01 mode, which is the superposition of a plus 1 and
minus 1 doughnut mode.~c! Doughnut mode with interference
fringe ‘‘fork’’ point ‘‘down.’’
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ence~compared to that of the nonrotated, frequency degen-
erate modes in a planar cavity! of 60.15% of a free spectral
range~f.s.r.! and hence a separation of 0.3% f.s.r. between
oppositely charged modes. This is significant enough to cre-
ate the situation depicted in Fig. 8.

To exaggerate the effect of a nonplanar cavity, the experi-
mental system was realigned so as to deliberately misplace
the beam height at one of the ring cavity mirrors by approxi-
mately 5 mm. This translates to a frequency separation be-
tween oppositely charged doughnut modes of 3.2% f.s.r.,
which is large enough to allow a piezo controlled tuning
through the nondegenerate modes. Figure 10 shows the in-
terferograms of observed patterns when tuning near a charge
1 doughnut mode using a nonplanar cavity. For the change in
frequency tuning between~a! and ~c!, the change in sign of
the topological charge of the doughnut mode is apparent.
Figure 10~b! is the superposition of the two oppositely
charged modes, which, interestingly, appear not to compete
here. In general this superposition rotates as the two constitu-
ent modes are emitted at different frequencies. We have re-
ported such a rotation in@5#.

VI. CONCLUSION

We have shown an experimental instance where a smooth
metamorphosis between two different transverse patterns of
a PRO occurs through the creation or annihilation of an
optical-vortex pair. The pair is created for a transition be-
tween circling vortex patterns where the number of vortices
between patterns changes by two and the total topological
charge between these patterns remains the same. The vortex-

pair creation and subsequent annihilation has been shown for
a stroboscopically sampled angular position of the location
of pair creation as the resonator is tuned. Also shown is pair
creation for a fixed resonator tuning for which the phase of
the optical field continues to evolve. The number of vortices,
their arrangement, topological charge, circling direction, and
transition dynamics can be well represented by a linear su-
perposition of empty cavity helical modes with variable
phases between the mode fields thus validating the assump-
tion that the observed modes are in quasiequilibrium with the
particular tuning position of the cavity. The creation~annihi-
lation! of the vortex pair is observed in the superposition
calculation showing the intersections of the zeros of the real
and imaginary parts of the field.

We have also demonstrated that otherwise frequency de-
generate helical modes of the same charge magnitude but
opposite sign become nondegenerate when an image-rotation
astigmatism is introduced into the optical resonator~as a
consequence on a nonplanar cavity!. This is the reason that
the observed patterns are always composed of helical modes
of one particular topological charge when the oppositely
charged modes are equally well expected. The effect of fre-
quency splitting of these helical modes was deliberately ex-
aggerated and experimentally measured for the charge 1
doughnut mode.
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