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A complete set of cavity modes in planar dielectric microcavities is presented which naturally includes
guided modes. We show that most of these orthonormal fields can be derived from a coherent superposition of
plane waves incoming on the stack from the air and from the substrate. Spontaneous emission of a dipole
located inside the microcavity is analyzed, in terms of cavity modes. Derivation of the radiation pattern in the
air and in the substrate is presented. The power emitted into the guided modes is also determined. Finally, a
numerical analysis of the radiative properties of an erbium atom located in a Fabry-Pe´rot multilayer dielectric
microcavity is investigated. We show that a large amount of light is emitted into the guided modes of the
structure, in spite of the Fabry-Pe´rot resonance, which increases the spontaneous emission rate in a normal
direction.@S1050-2947~96!03908-X#

PACS number~s!: 42.50.2p, 42.50.Lc, 42.55.Sa

I. INTRODUCTION

It is now well known that spontaneous emission is not an
immutable property but can be altered by modifications of
the electromagnetic boundaries conditions surrounding the
atom@1,2#. Optical microcavities hold technological promise
for constructing efficient devices such as microlasers. The
desired effects depend on the degree to which spontaneous
emission may be altered by the presence of the cavity. How-
ever it has been an open question whether the cavity has to
confine the waves in all three dimensions, or if a much sim-
pler planar structure can suffice.

Spontaneous emission in a planar microcavity can be de-
scribed in both frameworks of classical electromagnetism or
quantum electrodynamics. The classical approach@3–6# ex-
plains the changes in the spontaneous emission in classical
terms of a self-driven dipole due to the radiation reaction of
the reflected field at the location of the dipole. The use of a
quantum-mechanical argument@7–15# leads us to describe
spontaneous emission as an emission stimulated by vacuum
field fluctuations. The vacuum fluctuation and the classical
radiation reaction have been shown to be the two equal con-
tributions to the spontaneous emission process@16#.

The work presented in this paper uses an orthonormal set
of cavity modal fields. The conventional way of obtaining
those modal fields inside a microcavity is to surround it with
a large perfect cavity and to solve the eigenmode problem in
the larger cavity@17#. As the dimension of the larger cavity
tends to infinity, the model will approach that of a microcav-
ity surrounded by infinitely thick material.

In case of a planar multilayer infinite microcavity, the
geometry of the system does not lend itself easily to such a
description. Furthermore, the construction and the normal-
ization of the modal fields inside the larger cavity is usually
a difficult and time consuming numerical problem, especially
for complicated multilayer structures. One has to face two
difficulties, which are

~a! the spectral continuity of modes, which present non-
vanishing fields far away from the cavity~the radiation
modes!, and

~b! the modal field normalization problem, which is usu-
ally solved by calculating the normalizing integration@18#.

Nevertheless it is possible to avoid these problems in pla-
nar dielectric structures by using a plane-wave description of
the vacuum field fluctuations@9#. In this framework, each
plane-wave incident from a semi-infinite uniform dielectric
medium outside the microcavity is associated with a vacuum
field. One can calculate the vacuum local electric field at any
location inside the cavity by a classical field-transfer matrix
method@19#. As mentioned above, the spontaneous emission
of an atom, viewed as stimulated by the vacuum field at its
location, can therefore be calculated. Thus, for every direc-
tion, one can determine whether the cavity enhances or de-
creases the spontaneous emission. This method has been
used with success to describe radiation and lifetime proper-
ties of GaAs quantum wells in microcavities@9,20#. Never-
theless since it uses running waves in the media outside the
microcavity, this method is unable to take into account
guided modes, which are not coupled to traveling waves in
the surrounding media.

The amount of power emitted by the atom in these guided
modes might not be negligible since those modes are reso-
nant in the stack. Furthermore, a multilayer stack can easily
support several guided modes for each polarization state.

Spontaneous emission in the guided modes can be taken
into account by using a complete orthogonal set of modes,
which have been introduced in integrated optics for propaga-
tion problems@21,22#. This set includes a continuous spec-
trum, which is composed of the radiation modes, and a dis-
crete spectrum, which is composed of the guided modes.
Furthermore, the normalization, the orthogonalization, and
the sampling of the continuous spectrum avoid all the nu-
merical problems associated with the traditional method
mentioned above. Those radiation modes have a plane-wave
representation and can be connected to the plane-wave
vacuum field description of@9#.

We have outlined a quantum-mechanical analysis of the
field and the emitter to predict accurately spontaneous emis-
sion rates in microcavities. A classical description can give a
qualitative understanding of most of the phenomena, as well
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as quantitative predictions in comparing various structures.
We choose such a classical description throughout this paper.
Our work is devoted to present a modal analysis~including
guided modes! to calculate spontaneous emission of an atom,
considered as a dipole, and located in a planar dielectric
stack.

In Sec. II, we present a plane-wave field orthonormaliza-
tion in multilayer dielectric structures. A simple set of or-
thogonal fields is derived, which are fields resulting from a
single plane wave incoming on the stack from the air or from
the substrate. In Sec. III, we describe a complete set of or-
thogonal propagation modes, which includes radiation
modes, evanescent modes, and guided modes. A simple or-
thonormalization of these fields is presented, and a straight-
forward connection with the plane-wave fields presented in
Sec. II is given. In Sec. IV, we extend the modal fields or-
thonormalization to three dimensions. In Sec. V, we give a
classical description of the spontaneous emission in dielec-
tric multilayer microcavities in terms of cavity modes. We
derive the power emitted by the dipole in the various propa-
gation modal fields which leads to the radiation pattern in the
air and in the guided modes. Finally in Sec. VI we use the
theory previously presented to investigate numerically the
radiative properties of an erbium atom located in various
positions in a Fabry-Perot planar dielectric microcavity.

II. PLANE-WAVE ORTHONORMALIZATION
IN DIELECTRIC PLANAR

MULTILAYER STRUCTURES

This part of the paper is principally devoted to normaliz-
ing z-dependent parts of fields that are generated in the struc-
ture when illuminated by an incident plane wave. Consider
the stack of dielectric films schematically drawn in Fig. 1.
The surrounding media~air and substrate! are labeled as sub-
scriptsa ands. All the media are considered lossless, isotro-
pic, and homogeneous. Interfaces are plane and parallel. The
axes of a right-hand Cartesian coordinate frame have been
chosen so that the interfaces between neighboring media are
parallel to thexy plane. The plane of the drawing is thexz
plane, which corresponds to the plane of incidence. The sys-
tem is assumed to be infinite along thex and y directions.
With these specifications the equations for TE~electric field
E along ey! and TM ~magnetic fieldH along ey! polariza-
tions are independent.

We consider harmonic waves with an exp~2ivt! tempo-
ral dependence, which will be omitted in the following cal-
culations. For simplicity we will only consider here TE

waves, the analysis being quite similar for TM waves. All
the electric fields considered are thus along they axis, so we
will use a scalar notation for these fields. Most of the electric
fields appearing in this paper will have particular amplitude
distributions, in the formF(x,y,z)5E(z)exp(ibx).

Consider a plane wave~wave-vectorka , electric-field am-
plitude Aa! incoming on the stack from the air under inci-
denceua @Fig. 1~a!, whereAa51#. The incident field has an
amplitude in air given by

Aa exp~ ibx1 ixaz!, ~1!

where b5ka•ex52pna~sinua/l0! is the propagation con-
stant or the longitudinal spatial frequency, which has the
same value in all media. Similarly,

xa5ka•ez5~na
2k0

22b2!1/25nak0 cosua ~2!

is the transverse spatial frequency in air.
Because the plane of incidence is assumed here to always

be the planexz, each of the parametersxa andb can entirely
define the wave-vectorka , for a given wavelength. By mul-
tiple reflections, the incident plane wave of amplitudeAa in
air gives rise to the total electric-fieldFpwa in the structure,
of amplitude Epwa(z,xa)exp(ibx). Although this notation
could seem to be not well adapted because of the dependence
on the x component with the considered medium of the
stack, it will be necessary as soon we have to describe cor-
rectly the transverse cross powers of fields through the plane
xy.

The normalization of thez-dependent part of the field
Fpwa leads us to consider the following relation@21,22#:

b

2vm0
E

2`

1`

Epwa~z,xa!Epwa8~z,xa8!* dz5Pad~xa2xa8!,

~3!

wherePa is the cross power per unit surface in theyz plane
of the fieldFpwa . The asterisk indicates complex conjuga-
tion.

As reported in@23#, this integration can be performed
with some care to identify thed function. It can be shown
that all the finite terms, which result from the integration in
the multilayer, cancel with each other. The infinite terms
result only from the integration with infinite boundaries in
the air and in the substrate, and are simply the cross power
through the planeyz of the incident plane wave. This power
can be simply related to the amplitudeAa of the incident
plane wave by@23#:

FIG. 1. Schematic view of the structure and
normalized total fields resulting from plane
waves incoming on the stack from the air~a!, or
from the substrate~b! and ~c!.
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b

2vm0
E

2`

1`

Epwa~z,xa!Epwa8~z,xa8!* dz

5pAaAa8* S b

vm0
D d~xa2xa8!, ~4!

which leads to:

E
2`

1`

Epwa~z,xa!Epwa8~z,xa8!* dz52pAaAa8* d~xa2xa8!.

~5!

Equation ~5! establishes not only the normalization of the
z-dependent parts of the fieldsFpwa , but also their orthogo-
nality ~Kogelnik @24# gives a derivation of the orthogonality
relations, which makes apparent their connection with power
conservation and reciprocity!.

A similar analysis holds if we now consider a second
plane wave incoming on the stack from the substrate, with an
amplitudeAs @Fig. 1~b! whereAs5(xa/xs)

1/2#. By multiple
reflections, this incident plane wave gives rise to the total
electric-fieldFpws , of amplitudeEpws(z,xs)exp(ibx), and is
assumed to have the same propagation constantb as the
wave previously considered@Fig. 1~a!#. We get the relation:

E
2`

1`

Epws~z,xs!Epws8 ~z,xs8!* dz52pAsAs8* d~xs2xs8!,

~6!

wherexs5(n s
2k 0

22b2)1/2 is the transverse spatial frequency
in the substrate. Let us assume that both these incident plane
waves of amplitudesAa andAs have opposite cross powers
through the planexy. This implies

xsuAsu25xauAau2. ~7!

By choosing

uAau51 and thereforeuAsu5~xa /xs!
1/2, ~8!

and since@23#

xad~xs2xs8!5xsd~xa2xa8!, ~9!

we get orthonormalization relations for both the fieldsFpwa
andFpws associated to the same propagation constantb @see
Figs. 1~a! and 1~b!#. This can be written as

E
2`

1`

Epwa~z,xa!Epwa8~z,xa8!* dz52pd~xa2xa8!,

~10a!

E
2`

1`

Epws~z,xs!Epws8~z,xs8!* dz52p
xa

xs
d~xs2xs8!,

~10b!

where both right-hand sides are equal.
This normalization is based on the constant amplitudes

~uAau51 and uAsu5(xa/xs)
1/2! of the incident plane waves

that give rise to the fieldsFpwa andFpws . For a given propa-
gation constantb, the cross powers per unit surface through
the yz plane of both these fields are identical, and the cross
powers per unit surface through thexy plane are opposite.

Such properties of these normalized fields will be of great
interest in Sec. III, when applied to modal field calculations.

By the way, we have considered only waves running both
in the air and in the substrate. We have to also consider plane
waves incoming from the substrate with a propagation con-
stant greater thanb52pna/l0, i.e., waves running in the
substrate and evanescent in the air@Fig. 1~c!#. Such a plane
wave of amplitudeAs gives rise to an electric-fieldFsr of
amplitudeEsr(z,xs)exp(ibx). It has been shown@23# that
this field verifies Eq. ~6!, so its normalization can be
achieved as previously seen.

Taking uAsu51, we get the following orthonormalization
relation, similar to Eq.~10!:

E
2`

1`

Esr~z,xs!Esr8 ~z,xs8!* dz52pd~xs2xs8!. ~11!

Let us now briefly comment on how these sets of orthogonal
fields can be used to study spontaneous emission from a
quantum point of view.

Since the fieldsFpwa result from plane waves incoming
from the air with the same amplitude~uAau51! but with dif-
ferent incidences, it is straightforward to associate each of
these fields with a vacuum field. Because of multiple reflec-
tions in the stack, the vacuum field inside the cavity is then
enhanced or decreased, compared to the outside unitary
vacuum field. Spontaneous emission, viewed as stimulated
by this vacuum field, is thus also enhanced or decreased.
Although this picture seems quite simple and has been
widely used to treat spontaneous emission problems, its com-
plete justification requires a rigorous quantum analysis,
which faces the difficult problem of the quantization into
multilayer dielectric structures@17#. We will see further how
to also use this simple set of orthogonal fields to classically
study the spontaneous emission process.

As mentioned before, the fieldsFpwa , Fpws , andFsr are
composed of waves running in at least one of the media
outside the microcavity. They are thus unable to take natu-
rally into account guided waves. This leads us to now present
a complete set of modes, which includes guided propagation
inside the stack. This set of modal fields has been originally
proposed by Marcuse@21# to solve propagation problems in
planar integrated optics structures. Most of these modes will
be defined from the fieldsFpwa , Fpws , andFsr .

III. ORTHOGONAL MODES OF A PLANAR MULTILAYER
DIELECTRIC STRUCTURE

The complete set of modes of a lossless multilayer dielec-
tric structure includes an infinite number of radiation modes
and evanescent modes, as well as a finite number of guided
modes. The evanescent modes are neglected in this analysis
since they do not carry power far away from the guide.

Because of their modal properties, the fields of the radia-
tion modes must correspond to standing waves in the direc-
tion normal to the layers. They thus vary only by a phase
factor when they propagate along thex direction. These
fields can be described by a superposition of two
z-contrapropagative plane waves, which have the same cross
powers through thexy plane. These two waves are incoming
towards the stack from the air and from the substrate, respec-
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tively, so each outgoing power is a superposition of
the corresponding incoming power reflected by the stack
and of the incoming power transmitted across the stack
from the opposite side@Fig. 2~a!#. Two types of radiation
modes are usually distinguished. The full radiation modes
~0,b,2pna/l0! radiate both in the air and in the
substrate, whereas the substrate radiation modes
(2pna/l0,b,2pns/l0) radiate only in the substrate. Fig-
ures 2~a! and 2~b! give schematic views of these modes.
Figure 2~c! shows a guided mode, for which
(2pns/l0,b,2pnH/l0), wherenH is the highest refrac-
tive index of the stack.

Using some recent works@25,26#, we will now present a
normalization for the radiation modes, which leads to the
same relation as the one derived in Sec. II@Eqs. ~10! and
~11!# for the plane-wave analysis. Consider a plane-wave
incident on the stack from the air with a propagation constant
b, whose electric-field complex amplitude isAa/& ~this
choice will be clarified further!. Therefore the outgoing fields
in the air and in the substrate have the complex amplitudes
r aAa/& and taAa/&, respectively, wherer a and ta are the
reflection and transmission coefficients in amplitude of the
stack for an incident plane wave incoming from the air@see
Fig. 1~a!#.

For a standing wave to be ensured, the outgoing power
must equal the incoming power both in the air and in the
substrate. Because we consider here a lossless structure, this
can be achieved if we consider at the same time a second
plane wave with complex amplitudeAs/& incident on the
stack from the substrate, which carries the same power
through thexy plane. This is satisfied if we have

xsuAsu25xauAau2. ~12!

Although we have clarified the intensity relationship between
the two plane waves incoming on the stack from the air and
from the substrate, we have not yet fixed their phase relation-
ship @26#.

Since there is no power flow perpendicular to the stack,

uAau25ur aAa1tsAsu2, ~13!

where ts is the amplitude transmission coefficient of the
stack for an incident plane wave incoming from the substrate
@see Fig. 1~b!#. Expanding Eq.~13! leads to

uAau25ur au2uAau21utsu2uAsu212ur auutsuuAauuAsu

3cos~fAa2fAs1f ra2f ts!, ~14!

where eachf represents the phase of the complex constant
designated by its subscripts. Using Eq.~12!, this can be writ-
ten

uAau25uAau2~Ra1Ts!12ur auutsuuAauuAsu

3cos~fAa2fAs1f ra2f ts!, ~15!

whereRa5r ar a* is the reflectivity of the stack from the air
andTs5(xa /xs)tsts* is its transmissivity from the substrate.
Since we have in any caseTs5Ta @19# implying Ra1Ts51,
this requires

fAa2fAs1f ra2f ts56p/2. ~16!

Equation~16! allows us to define a particular set of radiation
modes, by fixing the phase relationship between the incident
plane waves of amplitudesAa/& andAs/&. Using the fact
that the phasefta of the transmission coefficient for the
wave incoming from the air equals the phasefts of the trans-
mission coefficient for the wave incoming from the substrate
@27#, Eq. ~16! becomes

fAs5fAa1f ra2f ta6p/2. ~17!

We now choosefAa50. Equation~17! implies that there are
two possibilities to definefAs . Such a result is due to the
fact that radiation modes having the same propagation con-
stantb constitute generally a bidimensional vectorial space
@25,28#. So, for a given value ofb, there are two full radia-
tion modesF f r2 and F f r1 corresponding both tofAa50.
The electric-fieldF f r2 , of amplitudeEfr2(z,xa)exp(ibx),
results from two incident plane waves of amplitudesAa/&
andAa /&Axa /xs exp@i(fra2fta2p/2)#, incoming, respec-
tively, from the air and from the substrate. The electric-field
F f r1 , of amplitudeEfr1(z,xa)exp(ibx) results also from
two incident plane waves, of amplitudesAa/& and
Aa /&Axa /xs exp@i(fra2fta1p/2)#, incoming, respec-
tively, from the air and from the substrate. Figure 3 gives a
schematic view of these two radiation modes when we
chooseAa51.

We will now investigate the orthonormalization relation
satisfied by the radiation modesF f r2 previously defined.
The cross power through the planeyz of such a given radia-
tion mode is simply the sum of the corresponding cross pow-
ers of each of the two incident plane waves that form this
mode. From Sec. II we know that this can be written as

FIG. 2. Schematic views of the full radiation
modes ~a!, substrate radiation modes~b!, and
guided modes~c! of planar dielectric structures.
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b

2vm0
E

2`

1`

Efr2~z,xa!Efr28 ~z,xa8!* dz

5p
AaAa8*

2 S b

vm0
D d~xa2xa8!

1p
AsAs8*

2 S b

vm0
D d~xs2xs8!. ~18!

The use of Eqs.~9! and ~12! leads to

b

2vm0
E

2`

1`

Efr2~z,xa!Efr28 ~z,xa8!* dz

5pAaAa8* S b

vm0
D d~xa2xa8!. ~19!

TakingAa51, this can be simply written

E
2`

1`

Efr2~z,xa!Efr28 ~z,xa8!* dz52pd~xa2xa8!.

~20a!

The same type of derivation can be made for the radiation
modesF f r1 , and gives

E
2`

1`

Efr1~z,xa!Efr18 ~z,xa8!* dz52pd~xa2xa8!.

~20b!

Consider now the substrate radiation modes, which are eva-
nescent in the air@Fig. 2~b!#. Incident plane waves, incoming
from the substrate, and having such propagation constants,
are totally reflected by the stack. This leads to standing
waves in the structure. Resulting electric fields are thus
modal fields, and correspond to the fields denotedFsr in Sec.
III. These substrate radiation modes are also normalized
from Eq. ~11!. Figure 1~c! gives a schematic view of such
modes.

Let us now consider the case of the guided modes@see
Fig. 2~c!#. Contrary to radiation modes, which present a con-
tinuous spectrum, these guided modes only exist for discrete
values ofb ~namely,bg!, and present evanescent fields in the
air and in the substrate. Their electric-fieldsFg , of ampli-

tudesEg(z,xg)exp(ibgx), are of course modal since they
have a zero power flow in all planes parallel to the layers.
Their cross powersPg through the planeyz are given by
@22#

b

2vm0
E

2`

1`

Eg~z,xg!Eg8~z,xg8!* dz5Pgdxg ,xg8
, ~21!

wheredxg ,xg8
is the Kronecker symbol.

In order to have a similar orthonormalization relation than
for the full- and substrate-radiation modes, we require

E
2`

1`

Eg~z,xg!Eg8~z,xg8!* dz52pdxg ,xg8
. ~22!

The values of the propagation constant of the guided modes
are determined numerically by considering optical admit-
tance conditions on the external interfaces of the waveguide
@29#. Amplitude distributions of the guided modal fields are
then derived by the use of a field-transfer matrix method
@19#. Because of the finite values of their cross powers
through the planeyz, the fieldsFg can thus be directly nor-
malized from Eq.~22!. This field-transfer matrix method is
also well adapted to calculate the electric field that takes
place in the structure when illuminated by an incident plane
wave. Thez-dependent partsEpwa , Epws , andEsr , which
have been determined in Sec. II, can thus be directly and
easily determined by this method. This simplicity leads us to
calculateEfr1 andEfr2 from Epwa , andEpws , by the use of
the following relation:

Efr25
1

&
Epwa1

1

A2
Epwse

i ~fra2fta2p/2!, ~23a!

Efr15
1

&
Epwa1

1

A2
Epwse

i ~fra2fta1p/2!. ~23b!

This can be written in the matrix form

FEfr2

Efr1
G5M FEpwa

Epws
G , ~24!

whereM is the unitary transfer matrix between these two
types of fields.

IV. EXTENSION OF THE MODAL FIELDS
ORTHONORMALIZATIONS TO THREE DIMENSIONS

In order to study the spontaneous emission of a dipole in
a cavity, we need to extend the normalization condition to
the three dimensions along thex, y, andz axes. This part of
the paper is thus devoted to the derivation of such a normal-
ization. It will then be applied to the different typesF f r2 ,
F f r1 , Fsr andFg of modal fields of the cavity, which have
been previously defined.

Consider first a plane wave of amplitude unity~uAau51!,
incoming on the stack from the air with the wave-vector
ka5bex1jey1xaez . From Sec. II, the total electric-field
Fpwa that takes place in the stack is given by

Fpwa~r ,ka!5Epwa~z,xa!exp~ ibx!exp~ i jy!u~ka!, ~25!

FIG. 3. Two orthogonal full radiation modesF f r2 ~a! andF f r1

~b! associated with the same propagation constantb.
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whereu~ka! is a TE unit electric-field vector. The extended
orthonormalization relation of the fieldFpwa is given by the
integral

E
r
Fpwa~r ,ka!Fpwa8~r ,ka8!* dr

5E
2`

1`E
2`

1`E
2`

1`

Epwa~z,xa!exp~ ibx!exp~ i jy!

3Epwa8~z,xa8!* exp~2 ib8x!

3exp~2 i j8y!dx dy dz, ~26!

whereFpwa(r ,ka)Fpwa8 (r ,ka8)* represents the classical scalar
product. Using Eq.~10a! and the fact that

E
2`

1`

exp~ ibx!exp~2 ib8x!dx52pd~b2b8!, ~27!

we get, as in@15#

E
r
Fpwa~r ,ka!Fpwa8~r ,ka8!* dr5~2p!2d~b2b8!

3d~j2j8!d~xa2xa8!,

~28!

which can be written

E
r
Fpwa~r ,ka!Fpwa8~r ,ka8!* dr5~2p!3d~ka2ka8!. ~29!

Similar results are obtained for the fieldsFpws andFsr , and
Eqs. ~11!, ~20!, and ~22! lead us then to define extended
orthonormalization relations for all the modal fields of the
cavity

E
r
Ff r6~r ,ka!Ff r68 ~r ,ka8!* dr5~2p!3d~ka2ka8!,

~30a!

E
r
Fsr~r ,ks!Fsr8 ~r ,ks8!* dr5~2p!3d~ks2ks8!, ~30b!

E
r
Fg~r ,kg!Fg8~r ,kg8!* dr5~2p!3d~b2b8!d~j2j8!dxg ,xg8

,

~30c!

where

Ff r6~r ,ka!5Efr6~z,xa!exp~ ibx!exp~ i jy!u~ka!,
~31a!

Fsr~r ,ks!5Esr~z,xs!exp~ ibx!exp~ i jy!u~ks!, ~31b!

Fg~r ,kg!5Eg~z,xg!exp~ ibx!exp~ i jy!u~kg!. ~31c!

V. CLASSICAL DESCRIPTION
OF THE SPONTANEOUS EMISSION

IN PLANAR DIELECTRIC STRUCTURES

This part of the paper is devoted to a classical description
of the spontaneous emission process in terms of cavity
modes@30–32#. Such a study is based on the expansion of
the total electric-field emitted by the atom on the complete
set of modal fields presented in Sec. III. This leads us to take
entirely into account the spontaneous emission, and to derive
the emitted powers in the different modes. At this point, we
will be able to compare the amounts of power emitted by the
atom into the running waves, which form the radiation pat-
terns in the air and in the substrate, and into the guided
modes.

The total electric-fieldE~r ,t! emitted by the atom, consid-
ered as a dipole, can be expanded on the propagation modal
fields in the two complementary polarization states TE and
TM. This can be written as

E~r ,t !5(
xg

E
Og

ag~ t,kg!Fg~r ,kg!db dj

1E
Of r

@a f r2~ t,ka!Ff r2~r ,ka!

1a f r1~ t,ka!Ff r1~r ,ka!#dka

1E
Osr

asr~ t,ks!Fsr~r ,ks!dks1~TM term!,

~32!

where eacha contains the complete temporal dependence of
its corresponding field component.Ofr , Osr , andOg are the
regions in thek space, which correspond, respectively, to the
full radiation modes, to the substrate radiation modes, and to
the guided modes. Figure 4 clarifies the definitions of these
different regions in thek space.

FIG. 4. Different regions in thek space;Ofr ~full radiation
modes!, Osr ~substrate radiation modes!, andOg ~guided mode!.
We assume here only one guided mode.
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The propagation of the electric field in a system contain-
ing a dipole distributionp~r ,t! and a current densityj ~r ,t! is
described by the equation

DE~r ,t !2e~z!m0

]2E

]t2
~r ,t !5m0

]2p

]t2
~r ,t !1m0

] j

]t
~r ,t !,

~33!

where we take for the dipole distribution a chargeq, oscil-
lating along a unit vectore with an amplitudea(t), and
located atr0.

p~r ,t !5qa~ t !d~r2r0!e. ~34!

We introduce as well a dissipative volume current density
j ~r ,t!, whose amplitude is assumed to be proportional to the
total electric-fieldE~r ,t!. This current will tend toward zero
at the end of the derivation since we are dealing with lossless
structures.

j ~r ,t !5e~z!GE~r ,t !. ~35!

As the propagation modal fields have been derived without
sources, they verify the Helmholtz equation. Considering, for
example, theF f r modes~whereF f r stands forF f r2 or F f r1!
we get

D@Ff r~r ,ka!#1vk
2e~z!m0Ff r~r ,ka!50 with vk

25
ka
2c2

na
2 .

~36!

Inserting Eq.~32! into Eq. ~33! and projecting both sides of
Eq. ~33! on Ff r~r ,ka!, and then taking into account Eq.~36!,
leads to

]2a f r~ t,ka!

]t2
1G

]a f r~ t,ka!

]t
1vk

2a f r~ t,ka!

52
q

~2p!3e~z0!

]2a~ t !

]t2
@e•Ff r* ~r0 ,ka!#, ~37!

where the last term of the right-hand side stands for the con-
ventional scalar product between the dipole unit vectoreand
the conjugate of the modal field vectorFf r~r0,ka!. Equation
~37! shows that each mode behaves as a harmonic oscillator
driven by an external source, whose amplitude is propor-
tional to the dipole acceleration. Similar equations can be
obtained to describe the temporal evolutions ofasr~t,ks! and
ag~t,kg!.

The equation describing the temporal evolution of the di-
pole is

]2a~ t !

]t2
1v0

2a~ t !5
q

m
@e•E~r0 ,t !#, ~38!

wherev0 is the bare dipole frequency.
We assume now a low coupling regime between the di-

pole and the electromagnetic field. This is the case in our
multilayer stack, where the dipole is coupled to a continuum
of cavity modes. In other words, we assume that the dipole
perturbation due to the transverse cavity field is weak
enough, so that we can neglect it in computing the total field

in the cavity. We consider therefore that
[ ]2a(t)/]t2]52v 0

2a(t) in Eq. ~37!, which gives

a f r~ t,ka!52
qa~ t !

~2p!3e~z0!

v0
2

v0
22vk

21 iGv0
@e•Ff r* ~r0 ,ka!#.

~39!

The mode expansion coefficientaf r is proportional both to
the projection of the modal field onto the dipole unit vector
evaluated at the location of the dipole, and to a complex
Lorentzian function. Similar results are obtained when we
consider the coefficientsasr~t,ks! andag~t,kg!.

Now that we have derived the field evolution, let us come
back to the temporal dipole evolution. Inserting Eq.~39! ~and
similar equations forasr~t,ks! andag~t,kg!! into Eq.~38! and
using Eq.~32!, we obtain the evolution of the dipole

]2a~ t !

]t2
1v0

2a~ t !52
q2a~ t !

m~2p!3e~z0!
SF v0

2

v0
22vk

21 iGv0
G ,
~40!

whereS[X(vk)] stands for

S @X~vk!#5(
xg

E
Og

X~vk!ue•Fg~r0 ,kg!u2db dj

1E
Of r

X~vk!@ ue•Ff r2~r0 ,ka!u2

1ue•Ff r1~r0 ,ka!u2#dka1E
Osr

X~vk!

3ue•Fsr~r0 ,ks!u2dks1~TM term!. ~41!

Assuming thata(t)5a0exp(2 iV0t) with V05v01dV, we
get the small complex frequency shift

dV5
q2

2mv0~2p!3e~z0!
SF v0

2

v0
22vk

21 iGv0
G . ~42!

This enables us to express explicitly the dipole damping rate
g, defined as the ratio of the total power radiated at the
infinite over the dipole mechanical energy.

g522 Im~dV!5
q2

m~2p!3e~z0!
SF v0

2G

~v0
22vk

2!21G2v0
2G ,
~43!

which can be written

g5
q2p

2m~2p!3e~z0!
S @dG~v02vk!#, ~44!

where we have consideredv01vk'2v0. The normalized
Lorentz functiondG~v02vk! of width G is defined by

dG~v02vk!5
1

p

G/2

~v02vk!
21G2/4

. ~45!

Multiplying ~44! by the dipole mechanical energy
~1/2!ma0

2v0
2, we get the dipole radiation powerP as a sum

over the modal fields contributions.
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P5
q2a0

2v0
2p

4~2p!3e0n
2~z0!

S @dG~v02vk!#. ~46!

Let us discuss now the limiting case of a dipole radiating in
an infinitely thick material of refractive indexn5n(z0) con-
sidered above. In this case, only the full radiative modes
F f r2~r ,k! andF f r1~r ,k! remain. The dipole radiation power
is given by

P5
q2a0

2v0
2p

4~2p!3e0n
2 E

Of r

dG~v02vk!@ ue•Ff r2~r0 ,k!u2

1ue•Ff r1~r0 ,k!u2#dk1~TM term!. ~47!

It is easy to show~see Appendix A! that in the bulk material

ue•Ff r2~r0 ,k!u21ue•Ff r1~r0 ,k!u252ue•u~k!u2, ~48!

and Eq.~47! reads

P5
q2a0

2v0
2p

4~2p!3e0n
2 E

v50

1` n3vk
2

c3
dG~v02vk!

3dvkE
u50

p/2

sin uE
f50

2p

2~cos2 f

1sin2f cos2u!du df, ~49!

where spherical coordinates have been used~see Fig. 5!, with

dk5
n3vk

2

c3
sin ududfdvk . ~50!

The range ofu is @0,p/2# by definition of the propagation
modal fieldsF f r2~r ,k! andF f r1~r ,k! used here. The term in
the integral overf stands for the scalar product 2ue•uu2,
where we have placed the dipole along they axis, and con-
sidered both the contributions of the polarization states TE
and TM.

It can easily be shown that

E
u50

p/2

sinuE
f50

2p

2~cos2f1sin2f cos2 u!du df5
8p

3
~51!

Consider nowG50, corresponding to a lossless material.
Since the normalized Lorentz functiondG~v02vk! tends to
the Dirac distributiond~v02vk! whenG tends to 0, the total
power radiated by the dipole is expressed by

P5
q2a0

2v0
4n

12pe0c
3 5nP0~v0!, ~52!

whereP0~v0! is the total power radiated by a dipole in free
space@33#.

Let us now come back to the dipole emission in a planar
lossless multilayer structure. Using spherical coordinates,
Eq. ~46! with G50 reads

P5
3P0~v0!

8p H c

v0n
2~z0!

(
kg

Neff
2 E

f50

2p Ue•Fg~r0 ,kg!U2df

1
na
3

n2~z0!
E

u50

p/2

sin uaE
f50

2p

@ ue•Ff r2~r0 ,ka!u2

1ue•Ff r1~r0 ,ka!u2#duadf1
ns
3

n2~z0!
E

u5uc

p/2

3sin usE
f50

2p Ue•Fsr~r0 ,ks!U2dusdfJ 1~TM term!,

~53!

whereuc5arcsin(na/ns) is the critical angle of total reflec-
tion for a plane wave incoming on the stack from the sub-
strate, and where eachNeff5kg/k0 is one of the effective
refractive indices of the guided modes. Equation~53! permits
us to determine the different powers, which are emitted in
each modal field. Appendix B clarifies the derivation of the
first term on its right-hand side, which describes the guided
mode contribution.

The dipole radiation power can also be written using the
fieldsFpwa andFpws presented in Sec. I. Appendix A shows
that

ue•Ff r2~r0 ,ka!u21ue•Ff r1~r0 ,ka!u2

5ue•Fpwa~r0 ,ka!u21ue•Fpws~r0 ,ks!u2. ~54!

We can then write Eq.~53! by replacing the full radiation
term by

3P0~v0!

8p

na
3

n2~z0!
E
0

p/2

sinuaduaE
0

2p

@ ue•Fpwa~r0 ,ka!u2

1ue•Fpws~r0 ,ks!u2#df. ~55!

Expression~55! shows that for the full radiation modes, the
power is emitted through running waves in the air and in the
substrate. Let us consider a detector located in the air and
placed at the infinite from the dipole~Fig. 6!. This detector
receives the powerd2Pd

a , which is emitted in the infinitesi-
mal solid angle sinuaduadf. Such a power comes only from
running waves in the air, so only the full radiative modes are
concerned. From Eq.~55!, one can express this power by

FIG. 5. Coordinate frame for the calculation of the dipole emis-
sion.

54 2363MODAL ANALYSIS OF SPONTANEOUS EMISSION INA . . .



d2Pd
a

P0~v0!
5

3na
3

8pn2~z0!
$Raue•Fpwa~r0 ,ka!u2

1Tsue•Fpws~r0 ,ks!u21~TM term!%

3sinuaduadf, ~56!

whereRa5r ar a* is the intensity reflection coefficient for a
plane wave incoming on the stack from the air andTs
5(xa/xs)tsts* is the intensity transmission coefficient for a
plane wave incoming on the stack from the substrate. Equa-
tion ~56! allows us to determine the radiation pattern in the
air, normalized by the total power radiated by the dipole in
free space.

Similarly, now consider the detector located in the sub-
strate withus,uc . The powerd

2Pd
s, which is emitted by the

dipole in the infinitesimal solid angle sinusdusdf, is given
by

d2Pd
s

P0~v0!
5

3ns
3

8pn2~z0!
$Taue•Fpwa~r0 ,ka!u2

1Rsue•Fpws~r0 ,ks!u21~TM term!%

3sin usdusdf. ~57!

Let us now consider a guided mode in TE polarization. The
guided powerdPg , which is emitted in the infinitesimal
angledf, is given by

dPg
P0~v0!

5
3

8p

cNeff
2

v0n
2~z0!

ue•Fg~r0 ,kg!u2df. ~58!

To end our analysis, we may be interested in the spontaneous
lifetime of the dipole, defined ast 51/g. It is simply given
by

t

t0
5
P0~v0!

P
, ~59!

wheret andt0 are the spontaneous emission lifetimes of the
dipole in the stack and in free space, respectively.

VI. SPONTANEOUS EMISSION OF ERBIUM ATOMS
PLACED INTO A MULTILAYER
DIELECTRIC MICROCAVITY

This part of the paper shows a numerical example using
the theory presented in the previous parts. It deals with the
problem of the infrared~l051.53mm! radiation emitted by
an erbium atom, where we assume that this atom can be
represented by a dipole having itse vector along they axis.
Let us first consider radiation in free space. Figure 7 shows
the radiation pattern in the planexz ~i.e., perpendicular to the
dipole moment!, which has been computed from Eq.~56!. In
this plane the isotropic emitted power isd2Pd

a50.12
P0~v0!dV, wheredV5sinududf stands for the infinitesi-
mal solid angle. Integration of this radiation pattern in the
whole space givesP0~v0!, as expected~see Eqs. 49 and 52!.

Let us take now the same dipole, located at various posi-
tions into a multilayer microcavity. The microcavity consid-
ered here can be described byHLHLHL 2H LHLHLH,
whereH and L denote respectively high~nH52.181! and
low ~nL51.477! refractive index layers, whose optical thick-
nesses arel0/4. The structure is deposited on a substrate of
refractive indexns51.444. This design corresponds to al/2
microcavity with a quality factorQ5l0/Dl540 ~see Fig. 8!,

FIG. 6. Plane-wave fieldsFpwa ~solid lines! andFpws ~dashed
lines! involved in the radiation pattern at the infinite.

FIG. 7. Free space radiation pattern in a plane perpendicular to
the dipole vector.

FIG. 8. Transmittance and microcavity design.

2364 54H. RIGNEAULT AND S. MONNERET



and of total thickness 2.956mm. We have chosen such re-
fractive index figures because it corresponds to a microcavity
made by the use of a plasma assisted deposition technique
~ion plating!, with, respectively, Ta2O5 and SiO2 as high and
low refractive index dielectric materials.

Consider the radiation pattern in thexz plane for the di-
pole lying along they axis inside the cavity. Figure 9 shows
the normalized power density (d2Pd

a)/[P0(v0)dV] emitted
in the air for every directionsu ~in the range 0°–89°!, and for
every locations of the dipole in the stack. We can see, for
example, that the power emitted in normal incidence~i.e., for
u50°! drastically depends on the location of the dipole in the
stack@7#. For the computation, we use the microscopic elec-
tric field seen by the atom, given by the Clausius-Mossoti-
Lorentz-Lorenz equation@34#

Emicro5
3n~z0!

2

2n~z0!
211

Emacro. ~60!

Let us define first the nonresonant case, where the dipole is
located in the middle of thisl/2 cavity ~i.e., at 1.478mm—
see Fig. 10!. From Fig. 9 we see that the emission in normal
incidence is completely inhibited. Figure 10 is a polar cut of
Fig. 9 and shows the radiation pattern of such a dipole in the
air and in the substrate. The emission in normal direction in
the air isd2Pd

a5631023 P0~v0!dV and is 20 times smaller
than in free space~see Fig. 7!. It is clear that this location,
referred to as ‘‘position 1,’’ must be avoided in order to
favor emission in normal incidence. Integration of this power
in every directions and in the two polarizations gives the
radiative power, which can exit the stack. One finds 0.03
P0~v0!.

We can now define the resonant case~referred to as ‘‘po-
sition 2’’!, where the dipole is located on the interfaces be-
tween the spacer and the low refractive index layer~see Fig.
11!. From Fig. 9 we know that the emission in normal inci-
dence is enhanced. Figure 11 gives the radiation pattern of
such a dipole in the air and in the substrate. The emission is
well directed~10° around the normal! and is stronger in the
substrate than in the air, this last point being due to the

dissymmetry of the microcavity. The emission in the normal
direction in the air isd2Pd

a50.8P0~v0!dV, and is 6.6 times
higher than in free space~see Fig. 7!. The total radiative
power, which can exit the stack, is then 0.78P0~v0!.

Consider now emission into the guided modes. Figure 12
gives the normalized emitted powerPg/P0 in the various TE

FIG. 9. Normalized emitted power in the air
(d2Pd

a)/[P0(v0)dV] for every direction and every location of the
dipole in the stack.

FIG. 10. Position 1: dipole location and radiation pattern.

FIG. 11. Position 2: dipole location and radiation pattern.
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guided modes@integration of Eq.~58! over f#, versus the
dipole location in the stack.

For the ‘‘position 1’’ dipole location~i.e., in the middle of
the microcavity, see Fig. 10!, the stronger emission is in the
TE0 mode, which is quite strong@1.67P0~v0!# at this place.
Figure 13 gives the emitted power in the various guided
modes and in the radiative modes. Emission in the TE modes
is stronger than in the TM ones because of the dipole orien-
tation along they axis. Summation of these guided powers
and of the radiative power gives the total powerP emitted by
the dipole in this radiative nonresonant case. One finds
P5~1.9510.03! P0~v0!51.98 P0~v0!, and the normalized
lifetime @see Eq. ~59!# is therefore @P0(v0)/P#
5~1/1.98!'0.5.

This lifetime is two times shorter than in free space be-
cause the TE0 mode is in this case a strong canal of relax-
ation for the dipole~see Fig. 13!. Such a configuration
achieves in fact a really good control of the spontaneous
emission into the guided mode TE0, and would therefore be
of great interest for a guided wave device.

We consider now the ‘‘position 2’’ dipole location~i.e., at
the interface of the spacer~see Fig. 11!!. Figure 14 gives the
power emitted in the various guided modes and in the radia-
tive modes. In this case, the power is shared between the
TE0, TM0, and TE3 modes. The total powerP emitted by the
dipole in the radiative and in the guided modes isP5~1.39

10.78! P0~v0!52.17 P0~v0! and the normalized lifetime is
0.46, which is about the same as for the previous dipole
location. Although this resonant case partly confines the ra-
diation in normal incidence, the microcavity strongly suffers
from emission in the guided modes.

VII. CONCLUSION

We have presented a classical electromagnetic theory de-
scribing spontaneous emission in multilayer dielectric struc-
tures. This theory is based on a modal field expansion of the
total electric field emitted by the dipole. In Secs. II and III
we have presented a complete set of cavity modes, and how
these modal fields~except the guided ones! can be derived
from plane waves incoming on the stack from the air and
from the substrate. Once the normalization of these modal
fields has been achieved, we have extended our analysis to
three dimensions, in order to treat the spontaneous emission
of a dipole located in the stack, in terms of cavity modes.
This approach gives the power emitted by the dipole in every
direction in the air, in the substrate, and in the guided modes.

In Sec. VI, we have investigated numerically the radiative
properties in the infrared~l051.53mm! of an erbium atom
located at various positions in a particular dielectric micro-
cavity. We have shown that the radiation pattern can be very
different depending on the location of the dipole in the stack.
Precisely, we have investigated two positions in the stack;
one favors the emission in the guided modes and could be of
great interest in building a guided wave device. The other
one is known to favor the emission in the direction normal to
the stack, and is usually implemented to build vertical emit-
ting devices. In this last case, although the emission is well
directed in a normal direction, the major part of the power is
emitted into the guided modes. Although the radiation pat-
tern is very different for the two locations of the dipole con-
sidered above, calculations show that its lifetime is about the
same. In other words, if the dipole can not relax in the ra-
diative modes that can exit the structure, it will strongly relax
into the guided modes and vice versa. In conclusion the life-
time is not strongly affected. Nevertheless, the possibility of
partially controlling spontaneous emission makes these pla-
nar structures of great interest for building high emissive
devices such as directive light-emitting diodes or low thresh-
old microlasers@32#.

FIG. 12. Normalized emitted powerPg/P0 in the various TE
guided modes versus the dipole location.

FIG. 13. Position 1: contribution of the guided and
radiative powers.

FIG. 14. Position 2: contribution of the guided and
radiative powers.
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APPENDIX A: DERIVATION OF EQS. „48… AND „54…

Using Eqs.~23a! and ~23b! we can write

ue•Ff r2~r0 ,ka!u25
1
2 ue•Fpwa~r0 ,ka!1e•Fpws~r0 ,ks!e

i ~fra2f ta2p/2!u25 1
2 ˆue•Fpwa~r0 ,ka!u21ue•Fpws~r0 ,ks!u2

1$@e•Fpwa~r0 ,ka!* #@e•Fpws~r0 ,ks!#e
i ~fra2f ta2p/2!1@e•Fpwa~r0 ,ka!#@e

•Fpws~r0 ,ks!* #e2 i ~fra2f ta2p/2!%‰ ~A1!

and

ue•Ff r1~r0 ,ka!u25
1
2 ue•Fpwa~r0 ,ka!1e•Fpws~r0 ,ks!e

i ~fra2f ta1p/2!u25 1
2 ˆue•Fpwa~r0 ,ka!u21ue•Fpws~r0 ,ks!u2

1$@e•Fpwa~r0 ,ka!* #~e•Fpws~r0 ,ks!#e
i ~fra2f ta1p/2!

1@e•Fpwa~r0 ,ka!#@e•Fpws~r0 ,ks!* #e2 i ~fra2f ta1p/2!%‰ ~A2!

using the fact thatei (fra2f ta2p/2)1ei (fra2f ta1p/2)50, we
get

ue•Ff r2~r0 ,ka!u21ue•Ff r1~r0 ,ka!u25ue•Fpwa~r0 ,ka!u2

1ue•Fpws~r0 ,ks!u2.
~A3!

In an infinite and homogeneous medium, the fieldsFpwa and
Fpws become u~ka! and u~ks!, respectively, with
ka5bx1jy1xz, and ks5bx1jy2xz. We can consider
theevector along they axis without loss of generality. Equa-
tion ~A3! becomes

ue•Ff r2~r0 ,k!u21ue•Ff r1~r0 ,k!u252ue•u~k!u2. ~A4!

APPENDIX B: DERIVATION OF THE GUIDED
MODE POWER

From Eqs.~41! and ~46! it is clear that the guided mode
contribution to the power emitted by the dipole is propor-
tional to

(
Xg

E
Og

dG~v02vk!ue•Fg~r0 ,kg!u2dbdj, ~B1!

where the integration is performed on theOg circle in thek
space~see Fig. 4!.
Sincev02vk!v0, we can consider thatxg is notv- depen-
dent. This implies that in polar coordinates

dbdj5kgdkgdf5
v

c2
Neff
2 dvdf. ~B2!

kg5~b21x2!1/2 is the modulus of the guided wave-vectorkg ,
which stands in thekxky plane.Neff5kg/k0 is the effective
refractive index of the considered guided mode. Taking as
previouslyG50, expression~B1! reads

v0

c2 (
kg

Neff
2 E

0

2p

ue•Fg~r0 ,kg!u2df. ~B3!
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