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Modal analysis of spontaneous emission in a planar microcavity
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A complete set of cavity modes in planar dielectric microcavities is presented which naturally includes
guided modes. We show that most of these orthonormal fields can be derived from a coherent superposition of
plane waves incoming on the stack from the air and from the substrate. Spontaneous emission of a dipole
located inside the microcavity is analyzed, in terms of cavity modes. Derivation of the radiation pattern in the
air and in the substrate is presented. The power emitted into the guided modes is also determined. Finally, a
numerical analysis of the radiative properties of an erbium atom located in a FaimtyaRetilayer dielectric
microcavity is investigated. We show that a large amount of light is emitted into the guided modes of the
structure, in spite of the Fabry-Re resonance, which increases the spontaneous emission rate in a normal
direction.[S1050-294®6)03908-X]

PACS numbss): 42.50—p, 42.50.Lc, 42.55.Sa

I. INTRODUCTION (b) the modal field normalization problem, which is usu-
ally solved by calculating the normalizing integratifi8].

It is now well known that spontaneous emission is not an Nevertheless it is possible to avoid these problems in pla-
immutable property but can be altered by modifications ofnar dielectric structures by using a plane-wave description of
the electromagnetic boundaries conditions surrounding ththe vacuum field fluctuationg9]. In this framework, each
atom[1,2]. Optical microcavities hold technological promise plane-wave incident from a semi-infinite uniform dielectric
for constructing efficient devices such as microlasers. Thenedium outside the microcavity is associated with a vacuum
desired effects depend on the degree to which spontaneofisld. One can calculate the vacuum local electric field at any
emission may be altered by the presence of the cavity. Howlocation inside the cavity by a classical field-transfer matrix
ever it has been an open question whether the cavity has toethod[19]. As mentioned above, the spontaneous emission
confine the waves in all three dimensions, or if a much sim-of an atom, viewed as stimulated by the vacuum field at its
pler planar structure can suffice. location, can therefore be calculated. Thus, for every direc-

Spontaneous emission in a planar microcavity can be deion, one can determine whether the cavity enhances or de-
scribed in both frameworks of classical electromagnetism ocreases the spontaneous emission. This method has been
guantum electrodynamics. The classical apprd&cb] ex-  used with success to describe radiation and lifetime proper-
plains the changes in the spontaneous emission in classiciés of GaAs quantum wells in microcavitig8,20]. Never-
terms of a self-driven dipole due to the radiation reaction oftheless since it uses running waves in the media outside the
the reflected field at the location of the dipole. The use of anicrocavity, this method is unable to take into account
guantum-mechanical argumefit—15 leads us to describe guided modes, which are not coupled to traveling waves in
spontaneous emission as an emission stimulated by vacuutine surrounding media.
field fluctuations. The vacuum fluctuation and the classical The amount of power emitted by the atom in these guided
radiation reaction have been shown to be the two equal cormodes might not be negligible since those modes are reso-
tributions to the spontaneous emission prodé&s. nant in the stack. Furthermore, a multilayer stack can easily

The work presented in this paper uses an orthonormal seupport several guided modes for each polarization state.
of cavity modal fields. The conventional way of obtaining  Spontaneous emission in the guided modes can be taken
those modal fields inside a microcavity is to surround it withinto account by using a complete orthogonal set of modes,
a large perfect cavity and to solve the eigenmode problem imhich have been introduced in integrated optics for propaga-
the larger cavityf17]. As the dimension of the larger cavity tion problems[21,22. This set includes a continuous spec-
tends to infinity, the model will approach that of a microcav-trum, which is composed of the radiation modes, and a dis-
ity surrounded by infinitely thick material. crete spectrum, which is composed of the guided modes.

In case of a planar multilayer infinite microcavity, the Furthermore, the normalization, the orthogonalization, and
geometry of the system does not lend itself easily to such ¢he sampling of the continuous spectrum avoid all the nu-
description. Furthermore, the construction and the normalmerical problems associated with the traditional method
ization of the modal fields inside the larger cavity is usuallymentioned above. Those radiation modes have a plane-wave
a difficult and time consuming numerical problem, especiallyrepresentation and can be connected to the plane-wave
for complicated multilayer structures. One has to face twovacuum field description di].
difficulties, which are We have outlined a quantum-mechanical analysis of the

(a) the spectral continuity of modes, which present non-field and the emitter to predict accurately spontaneous emis-
vanishing fields far away from the cavitfthe radiation sion rates in microcavities. A classical description can give a
modes, and qualitative understanding of most of the phenomena, as well
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as quantitative predictions in comparing various structureswaves, the analysis being quite similar for TM waves. All
We choose such a classical description throughout this papethe electric fields considered are thus alongyteis, so we
Our work is devoted to present a modal analy@sluding  will use a scalar notation for these fields. Most of the electric
guided modesto calculate spontaneous emission of an atomfields appearing in this paper will have particular amplitude
considered as a dipole, and located in a planar dielectridistributions, in the forn(x,y,z) = E(z)exp(i 8x).

stack. Consider a plane wavgvave-vectolk, , electric-field am-

In Sec. I, we present a plane-wave field orthonormalizaplitude A,) incoming on the stack from the air under inci-
tion in multilayer dielectric structures. A simple set of or- denced, [Fig. 1(a), whereA,=1]. The incident field has an
thogonal fields is derived, which are fields resulting from aamplitude in air given by
single plane wave incoming on the stack from the air or from ) )
the substrate. In Sec. lll, we describe a complete set of or- Aa expi Bx+ixaz), Y

thogonal propagation modes, which includes radiation here B=k,-6,=2mn,(sin 6,/\y) is the propagation con-

modes, evanescent modes, and guided modes. A simple %fant or the longitudinal spatial frequency, which has the
thonormalization of these fields is presented, and a straigh?— 9 P q Y,

forward connection with the plane-wave fields presented ipame value in all media. Similarty,

Sec. Il is given. In Sec. IV,. we extend the modal fleld§ or- xa=ka‘ez=(n§ké—ﬁz)”2= nako COS 6, )

thonormalization to three dimensions. In Sec. V, we give a

classical description of the spontaneous emission in dieleds the transverse spatial frequency in air.

tric multilayer microcavities in terms of cavity modes. We  Because the plane of incidence is assumed here to always

derive the power emitted by the dipole in the various propabe the planexz, each of the parametexg and3 can entirely

gation modal fields which leads to the radiation pattern in thejefine the wave-vectd,, for a given wavelength. By mul-

air and in the guided modes. Finally in Sec. VI we use theiple reflections, the incident plane wave of amplitudlein

theory previously presented to investigate numerically their gives rise to the total electric-fiel,,, in the structure,

radiative properties of an erbium atom located in variousof amplitude Epwa(Z xa)€Xp(BX). Although this notation

positions in a Fabry-Perot planar dielectric microcavity.  could seem to be not well adapted because of the dependence
on the y component with the considered medium of the

Il. PLANE-WAVE ORTHONORMALIZATION stack, it will be necessary as soon we have to describe cor-
IN DIELECTRIC PLANAR rectly the transverse cross powers of fields through the plane
MULTILAYER STRUCTURES Xy

The normalization of thez-dependent part of the field
This part of the paper is principally devoted to normaliz- Fowa leads us to consider the following relatipal,22:

ing z-dependent parts of fields that are generated in the struc-

ture when illuminated by an incident plane wave. Consider S8 tee , , ,

the stack of dielectric films schematically drawn in Fig. 1. 24, J_.. Epwal(Z Xa) Epua(Z Xa) " d2=Pad(xa= xa),

The surrounding medi@ir and substrajeare labeled as sub- (3)

scriptsa ands. All the media are considered lossless, isotro-

pic, and homogeneous. Interfaces are plane and parallel. TehereP, is the cross power per unit surface in theplane

axes of a right-hand Cartesian coordinate frame have beesf the field F,,,. The asterisk indicates complex conjuga-

chosen so that the interfaces between neighboring media atien.

parallel to thexy plane. The plane of the drawing is the As reported in[23], this integration can be performed

plane, which corresponds to the plane of incidence. The sywith some care to identify thé function. It can be shown

tem is assumed to be infinite along tkeandy directions. that all the finite terms, which result from the integration in

With these specifications the equations for {Etectric field the multilayer, cancel with each other. The infinite terms

E alonge) and TM (magnetic fieldH along e,) polariza-  result only from the integration with infinite boundaries in

tions are independent. the air and in the substrate, and are simply the cross power
We consider harmonic waves with an €xpwt) tempo-  through the plangz of the incident plane wave. This power

ral dependence, which will be omitted in the following cal- can be simply related to the amplitude, of the incident

culations. For simplicity we will only consider here TE plane wave by 23]
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B +o0 Such properties of these normalized fields will be of great
Epwa(Z Xa) Epua(Z x2)* dZ interest in Sec. Ill, when applied to modal field calculations.
By the way, we have considered only waves running both
B in the air and in the substrate. We have to also consider plane
= wAaA;*(—) S(Xa— Xa) (4 waves incoming from the substrate with a propagation con-
@fo stant greater thaB=2mn,/\q, i.e., waves running in the
which leads to: substrate and evanescent in the[&iig. 1(c)]. Such a plane
wave of amplitudeA, gives rise to an electric-fieléF, of
+oo , , ) , amplitude E,(z, xs)exp(B8x). It has been showh23] that
f . Epwa(Z Xa) Epwa(Z Xa) ™ dZ2= 2TAAL" 8(Xa~ Xa)- this field vsérrifiesS Eq.(6), so its normalization can be
(5) achieved as previously seen.
Taking |Aj|=1, we get the following orthonormalization
Equation (5) establishes not only the normalization of the relation, similar to Eq(10):
z-dependent parts of the fiel@#s,,,, but also their orthogo-
nality (Kogelnik [24] gives a derivation of the orthogonality +oo , o ,
relations, which makes apparent their connection with power fﬁm Esi(Z,xs)Es(Z,x8)*dz=27S(xs— xs).  (11)
conservation and reciprocjty
A similar analysis holds if we now consider a second
plane wave incoming on the stack from the substrate, with al
amplitudeA, [Fig. 1(b) whereA.=(x./x<)"?]. By multiple
reflections, this incident plane wave gives rise to the total
electric-fieldF s, of amplitudeE,,s(z, xs)exppBx), and is
assumed to have the same propagation congaas the
wave previously considerddFig. 1(a)]. We get the relation:

20pg J -

Let us now briefly comment on how these sets of orthogonal
flelds can be used to study spontaneous emission from a
ﬂuantum point of view.

Since the fields=,, result from plane waves incoming
from the air with the same amplitudA,| =1) but with dif-
ferent incidences, it is straightforward to associate each of
these fields with a vacuum field. Because of multiple reflec-

oo tions in the stack, the vacuum field inside the cavity is then
f Epws(Z:Xs) Epus(Z X8)* dz=27AAL* 8(xs— Xs), enhanced or decreased, compared to the outside unitary
- vacuum field. Spontaneous emission, viewed as stimulated
(6) by this vacuum field, is thus also enhanced or decreased.

Although this picture seems quite simple and has been

in the substrate. Let us assume that both these incident platfddely used to treat spontaneous emission problems, its com-

waves of amplituded, and A, have opposite cross powers plete justification requires a rigorous quantum analysis,
through the planecy. This implies which faces the difficult problem of the quantization into

multilayer dielectric structurgsl 7]. We will see further how
XslAd?= xal Adl?. (7) to also use this simple set of orthogonal fields to classically
study the spontaneous emission process.
By choosing As mentioned before, the fieldS,,, Fpus, andFy, are
composed of waves running in at least one of the media

wherey = (n2k2— 8%)¥2is the transverse spatial frequency

[Aal=1 and thereforg AJ = (xa/xs)" ®  outside the microcavity. They are thus unable to take natu-

and sincg 23] rally into account guided waves. This leads us to now present
a complete set of modes, which includes guided propagation

Xa0(Xs— X2) = XsO(Xa— X0) (9)  inside the stack. This set of modal fields has been originally

proposed by Marcusg1] to solve propagation problems in
we get orthonormalization relations for both the fiekls,,  planar integrated optics structures. Most of these modes will
andF s associated to the same propagation consédisee  be defined from the fieldB s, Fpus, andFs, .
Figs. 1@ and Xb)]. This can be written as

too IIl. ORTHOGONAL MODES OF A PLANAR MULTILAYER
j Epwa(Z Xa) Epwa(Z X2)* d2=278(Xa= Xa), DIELECTRIC STRUCTURE
(109 The complete set of modes of a lossless multilayer dielec-
tric structure includes an infinite number of radiation modes
to Xa and evanescent modes, as well as a finite number of guided
Epns(Z,Xs) Epue(Z, x2) ¥ dz=27 — S5(xs— Xx2) o thi ;
_, Cpws\ 4 Xs) Epus {4 Xs ™ Ye Xs™ Xs) modes. The evanescent modes are neglected in this analysis

(10b) since they do not carry power far away from the guide.
Because of their modal properties, the fields of the radia-

where both right-hand sides are equal. tion modes must correspond to standing waves in the direc-

This normalization is based on the constant amplitudesion normal to the layers. They thus vary only by a phase
(|AL]=1 and|Ad= (x./xo)¥ of the incident plane waves factor when they propagate along thedirection. These
that give rise to the fields ,, andF,s. For a given propa- fields can be described by a superposition of two
gation constanp, the cross powers per unit surface throughz-contrapropagative plane waves, which have the same cross
the yz plane of both these fields are identical, and the crospowers through they plane. These two waves are incoming
powers per unit surface through thg plane are opposite. towards the stack from the air and from the substrate, respec-
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tively, so each outgoing power is a superposition ofwhere eachp represents the phase of the complex constant
the corresponding incoming power reflected by the stacklesignated by its subscripts. Using Et2), this can be writ-
and of the incoming power transmitted across the stacken

from the opposite sidéFig. 2(a)]. Two types of radiation

modes are usually distinguished. The full radiation modes |2 =]Aal*(RatTo) + 2|1 5| [t5]|Aql| A
(0<B<2mn,y/\y) radiate both in the air and in the
substrate, whereas the substrate radiation modes X €O Pppa— Past Pra— brs), (15

(2mn /N g<B<2mng\) radiate only in the substrate. Fig-

ures 2a) and 2b) give schematic views of these modes. whereR,=r,r* is the reflectivity of the stack from the air

Figure 2c) shows a guided mode, for which anqT =(y,/yJtdt? is its transmissivity from the substrate.
(_2771_15/)\0<,8< 2mny/No), whereny is the highest refrac-  gjnce we have in any cade=T, [19] implying R,+ T=1,
tive index of the stack. this requires

Using some recent work25,26, we will now present a
normalization for the radiation modes, which leads to the
same relation as the one derived in Sec[Hys. (10) and Pna= Past bra= == 7l2. (16)
(11)] for the plane-wave analysis. Consider a plane-wave
incident on the stack from the air with a propagation constanfquation(16) allows us to define a particular set of radiation
B, whose electric-field complex amplitude &,/v2 (this ~ modes, by fixing the phase relationship between the incident
choice will be clarified further Therefore the outgoing fields Plane waves of amplitude&,/v2 and A¢v2. Using the fact
in the air and in the substrate have the complex amplitudethat the phasep, of the transmission coefficient for the
r,A./vV2 andt,A,/V2, respectively, where, andt, are the Wave incoming from the air equals the phaggof the trans-
reflection and transmission coefficients in amplitude of themission coefficient for the wave incoming from the substrate
stack for an incident plane wave incoming from the[akie [27], Eq. (16) becomes
Fig. 1(a)].

For a standing wave to be ensured, the outgoing power DPas= Ppat Pra— drat 72, (17)
must equal the incoming power both in the air and in the

substrate. Because we consider here a lossless structure, g now choosep,,=0. Equation(17) implies that there are
can be achieved if we consider at the same time a secong possibilities to definap,.. Such a result is due to the
plane wave with complex amplitudeg/v2 incident on the  fact that radiation modes having the same propagation con-
stack from the substrate, which carries the same powegiant g constitute generally a bidimensional vectorial space

through thexy plane. This is satisfied if we have [25,28. So, for a given value 0B, there are two full radia-
. ) tion modesF;, _ and F;,, corresponding both ta@p,,=0.
X3l Asl*= Xal Aal*. 12 The electric-fieldF¢,_, of amplitudeE;, _(z, x,)exp( B8x),

results from two incident plane waves of amplitudegv?2

e e e e s ek o o A2 a1 XUy 1], ncoming espec
P 9 ively, from the air and from the substrate. The electric-field

from the substrate, we have not yet fixed their phase relatior]im of amplitudeE, . (2, x.)exp(i Bx) results also from

Shlgi[anGe]z.there is no power flow perpendicular to the stack two incident plane waves, of amplitudeA,/v2 and
"AL V2 xalxs exdi(da— Pt 72)], incoming, respec-
|AL2= | aAgt tA2 (13) tively, from the air and from the substrate. Figure 3 gives a
a e sy schematic view of these two radiation modes when we
chooseA,=1.

where tg is the amplitude transmission coefficient of the & . . o .
We will now investigate the orthonormalization relation

stack for an incident plane wave incoming from the substrate

see Fia. Expandina Ea(13) leads to satisfied by the radiation modds;, _ previously defined.
[ 9. )] P 9 Eq13 The cross power through the plape of such a given radia-
|AL2= a2 A2+ [t 2 A2+ 2|1 ol |t | Al A tion mode is simply the sum of the corresponding cross pow-

ers of each of the two incident plane waves that form this
X COY ppa— dast Dra— bis), (149 mode. From Sec. Il we know that this can be written as
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A ME (Z,xa)Ef,_(z,x)*dz
20mg ) - fr—{4: Xa)EBir -4 Xa
AA" [ B
R a P 8(Xa=Xa)
%
B
— (W) Sxs=x4)- (18)
The use of Eqs(9) and(12) leads to
B e ! !
20/ J Efr—(ZaXa)Efr—(ZrXa)*dZ
=7A A’*(i S(xXa—Xx25) (19
aa 0K Xa™ Xa/)-
Taking A,=1, this can be simply written
+
f_ Efr—(Z’Xa)Ef,r—(Zsz:\)*dZ:2775()(&1_)(:;1)-
(209

The same type of derivation can be made for the radiation

modesF;, . , and gives

+ oo

I

Etr+(Z.xa) Efr 1 (Z,x2)* dz=276(xa— Xxa)-
(20b)

Consider now the substrate radiation modes, which are eva-

nescent in the aifFig. 2(b)]. Incident plane waves, incoming
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tudes Ey(z, xq)expli BgX), are of course modal since they
have a zero power flow in all planes parallel to the layers.
Their cross powers, through the plang/z are given by
[22]

B e ,
2(1)/1/0 Eg(ZIXg)Eg(ZIXg) dZ Pgé)( X’ (21)
whereéX X, is the Kronecker symbol.

In order to have a similar orthonormalization relation than
for the full- and substrate-radiation modes, we require

+
f_w Eq(2.Xg)Eg(z.xp)* dz=273, . (22)

The values of the propagation constant of the guided modes
are determined numerically by considering optical admit-
tance conditions on the external interfaces of the waveguide
[29]. Amplitude distributions of the guided modal fields are
then derived by the use of a field-transfer matrix method
[19]. Because of the finite values of their cross powers
through the plangz, the fieldsF 4 can thus be directly nor-
malized from Eq.(22). This field-transfer matrix method is
also well adapted to calculate the electric field that takes
place in the structure when illuminated by an incident plane
wave. Thez-dependent part&, ., Epws, andEg,, which
have been determined in Sec. I, can thus be directly and
easily determined by this method. This simplicity leads us to
calculateEy, , andE¢,_ from E,y,, andE,,s, by the use of

the following relation:

1 )
—pta—m/2
Epwsel(d)ra Sdta— ),

Efr- :E Epwa+ E (233
B+ = Epua* 5 Epwee' (P87 918t m2 (230
This can be written in the matrix form
Efr— _ Epwa
Efr+ —M Epws , 24

where M is the unitary transfer matrix between these two
types of fields.

IV. EXTENSION OF THE MODAL FIELDS
ORTHONORMALIZATIONS TO THREE DIMENSIONS

In order to study the spontaneous emission of a dipole in

from the substrate, and having such propagation constants, cavity, we need to extend the normalization condition to
are totally reflected by the stack. This leads to standinghe three dimensions along tiey, andz axes. This part of
waves in the structure. Resulting electric fields are thushe paper is thus devoted to the derivation of such a normal-

modal fields, and correspond to the fields dendtgdn Sec.
[ll. These substrate radiation modes are also normalize
from Eq. (11). Figure 1c) gives a schematic view of such
modes.

Let us now consider the case of the guided modes

ization. It will then be applied to the different typés, _,
g, Fq andF 4 of modal fields of the cavity, which have
been prewously defined.

Consider first a plane wave of amplitude unipp,|=1),
incoming on the stack from the air with the wave-vector

Fig. 2(c)]. Contrary to radiation modes, which present a conk, =pBe+ée,+ xa€,. From Sec. ll, the total electric-field
tinuous spectrum, these guided modes only exist for dlscrete owa that takes place in the stack is given by

values ofg (namely,,), and present evanescent fields in the
air and in the substrate. Their electric-fieldg, of ampli-

pra(r Ka)= Epwa(ZiXa) exp(i Bx)exp(iéy)u(ky), (25
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whereu(k,) is a TE unit electric-field vector. The extended
orthonormalization relation of the field,, is given by the
integral

Jl pra(r,ka)FpWé(r,k;)* dr

S I

X Epwa(Z, xa)* exp—iB'x)
Xexp —i¢'y)dx dy dz (26)

whereF . (r,Ka) Foua(r.Ka)* represents the classical scalar
product. Using Eq(109 and the fact that

fjw exp(iBx)exp( —iB'x)dx=278(B—B'), (27
we get, as if15]

f pra(r,ka)FpW;(r,k;)*dr=(277)25(ﬁ—,8’)

X 3(§=¢")3(Xa™ Xa),
(28)

which can be written
jr pra(raka) prél(r ,k;;)* dr= (277)35( Ka— k;;)- (29

Similar results are obtained for the fielfg,s andFg,, and

Egs. (11), (20), and (22) lead us then to define extended

orthonormalization relations for all the modal fields of the
cavity

| Freatr kBl r K *dr=2m)2stc,— ko),
(304

f For(r ko) Fgr(r kg)* dr=(2m)5(ks—kg), (30D

Jng(r,kg)Fg’,(r,ké)*dr=(27T)35(/5’—l3')5(§—f')5xg X0
(309

where

Fir+(r,Ka) =Efr+ (2, xa) expi Bx)exp(i éy)u(ky),
(313

Fsr(r,ke) =Egi(z, xs)expli Bx)exp(i éy)u(ks), (31b)

Fg(r,Kg) =E4(z, xg)expi Bx)expiéy)u(ky). (310

Of; region

Oy region

Og circle

Ky

ks

FIG. 4. Different regions in th& space;O;, (full radiation
modes, O, (substrate radiation modesand O4 (guided modg
We assume here only one guided mode.

V. CLASSICAL DESCRIPTION
OF THE SPONTANEOUS EMISSION
IN PLANAR DIELECTRIC STRUCTURES

This part of the paper is devoted to a classical description
of the spontaneous emission process in terms of cavity
modes[30-32. Such a study is based on the expansion of
the total electric-field emitted by the atom on the complete
set of modal fields presented in Sec. Ill. This leads us to take
entirely into account the spontaneous emission, and to derive
the emitted powers in the different modes. At this point, we
will be able to compare the amounts of power emitted by the
atom into the running waves, which form the radiation pat-
terns in the air and in the substrate, and into the guided
odes.

The total electric-fieldE(r,t) emitted by the atom, consid-
ered as a dipole, can be expanded on the propagation modal
fields in the two complementary polarization states TE and
TM. This can be written as

E(r,)=2 | ay(tkg)Fy(r.ky)dB dé
Xg 7O

+ [afr—(trka)Ffr—(rvka)
Ofr

+ag o (t,Ka)Frei (1,Ka) Jdky
+ f as(t,ks)Fs (1, ks)dks+ (TM term),
OSI’
(32

where eachr contains the complete temporal dependence of
its corresponding field compone@y, , Og,, andOg are the
regions in thek space, which correspond, respectively, to the
full radiation modes, to the substrate radiation modes, and to
the guided modes. Figure 4 clarifies the definitions of these
different regions in thé space.
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The propagation of the electric field in a system containin  the cavity. We consider therefore that
ing a dipole distributiorp(r,t) and a current densityr,t) is  [d%a(t)/dt?] = — w Za(t) in Eq. (37), which gives

described by the equation 5

’E 2p y (L) =~ Gyt 2 [e (o k)]
AE(r,) = e(2)po iz (1) =po gz (N0 +po 7 (11), ekl women it o 39
(33
The mode expansion coefficient, is proportional both to
where we take for the dipole distribution a chaigeoscil-  the projection of the modal field onto the dipole unit vector
lating along a unit vectoe with an amplitudea(t), and evaluated at the location of the dipole, and to a complex
located atr. Lorentzian function. Similar results are obtained when we
consider the coefficients,(t,ks) and ay(t,kg).
p(r.t)=qa(t)s(r—ro)e. (34) Now that we have derived the field evolution, let us come

. S _._back to the temporal dipole evolution. Inserting E2p) (and
We introduce as yvell a dissipative volume current densitygimilar equations for(t ks) andag(t,ky)) into Eq.(38) and
j(r,t), whose amplitude is assumed to be proportional to theusing Eq.(32), we obtain the evolution of the dipole

total electric-fieldE(r,t). This current will tend toward zero

at the end of the derivation since we are dealing with lossless ;25t) g2a(t) w2
structures. — - twgalt)=— 3 —
at 0 m(2m)%e(zg) ~| 05— wi+ilwg|’
j(r,t)=e(2)TE(r,t). (35 (40

As the propagation modal fields have been derived withouWhereS[X(wk)] stands for
sources, they verify the Helmholtz equation. Considering, for

example, thé=;, modes(whereF;, stands forF;,_ or F¢, ) S[X(w)]=2, X(wy)|e Fy(ro.ky)|?dB dé
we get Xg 7 Oqg
kc? +f X(wl]e Fr—(ro.ka)|?
A[Fre(r ka)]+ wfe(2) uoFre(r ka) =0 with wf=—5. o, (LleFr-(roca)
a
(36 )
+|e' Ffr+(r01ka)| ldk,+ X(wy)
Inserting Eq.(32) into Eq.(33) and projecting both sides of Osr
Eq. (33) on F¢,(r k,), and then taking into account E(6), X |e-Fg(rg,ke)|2dks+ (TM term).  (41)
leads to
5 Assuming thata(t) =agexp(—iQgt) with Qy=wy+ 2, we
Fag(tky)  dag(tka) get the small complex frequency shift
pre. +T g + wpag(t,ky)
2 50 a° 0 42)
Jca(t = - .
_ q a(t) [e-Fi(roka)]s  (37) 2Mwg(2m)%€(2y) ~| w5— wi+iT vy

T (2m)3e(zy)  at?
This enables us to express explicitly the dipole damping rate

where the last term of the right-hand side stands for the corny, defined as the ratio of the total power radiated at the
ventional scalar product between the dipole unit veetand  infinite over the dipole mechanical energy.

the conjugate of the modal field vectBy, (rq.k,). Equation

(37) shows that each mode behaves as a harmonic oscillator q° wéF
driven by an external source, whose amplitude is propor- y=—2Im(6Q)= m(27)%e(zg) S| (01— o)) 21 122"
tional to the dipole acceleration. Similar equations can be (43
obtained to describe the temporal evolutionsft,.k,) and
ag(tkg). which can be written
The equation describing the temporal evolution of the di- ,
pole is _
ﬁza(t) . Y= 2m(277) E(Zo) S [51“((1)0 wk)]i (44)
— 2 = -_— .
ot? +wpalt) m [e-E(ro.0)], (38) where we have consideregy+w,~2w,. The normalized

Lorentz functiond(wy—w,) of width I" is defined by

where w, is the bare dipole frequency.

We assume now a low coupling regime between the di- 1 I'/2
pole and the electromagnetic field. This is the case in our or(wo— wi)= 7 (wo— wp) 2+ 124" (45)
multilayer stack, where the dipole is coupled to a continuum
of cavity modes. In other words, we assume that the dipoléultiplying (44) by the dipole mechanical energy
perturbation due to the transverse cavity field is weak(1/2maZw3, we get the dipole radiation powé as a sum
enough, so that we can neglect it in computing the total fieldbver the modal fields contributions.




FIG. 5. Coordinate frame for the calculation of the dipole emis-
sion.

5 g?adwim
 4(2m)°€en*(2o)

S [r(wo—wy)]. (46)
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Consider nowI'=0, corresponding to a lossless material.
Since the normalized Lorentz functiofy(wy—wy) tends to
the Dirac distributions{wy— w,) whenT tends to 0, the total
power radiated by the dipole is expressed by

g?aiwen

12meqC =NPo(wo),

(52

wherePy(wyg) is the total power radiated by a dipole in free
space 33].

Let us now come back to the dipole emission in a planar
lossless multilayer structure. Using spherical coordinates,
Eq. (46) with I'=0 reads

3Po(wg) c ; J'zw )
P= g won?(2Zp) kEg Nar $=0 &-Fylfo.ky)| "dé
n3 2 fzw ,
—— sin @ e F:_(rg,k
nZ(ZO) 4=0 a ¢:O[| fr ( 0 a)|

Let us discuss now the limiting case of a dipole radiating in

an infinitely thick material of refractive index=n(z,) con-

sidered above. In this case, only the full radiative modes

F¢ _(r,k) andF;,, (r,k) remain. The dipole radiation power
is given by

2.2 2
978w m ~ ,
 4(2m)3gn? Jofrgf(“’o o[ Fe_(rg,k)|

+|e Fir4(rg,k)|2]dk+(TM term). (47)

It is easy to showsee Appendix Athat in the bulk material
le-Fr—(ro,k)|*+]e-Frr i (ro,k)|>=2le-u(k)[?, (48)

and Eq.(47) reads

2
k
3~ Or(wo— wy)

+o» ndw

fw
/2

2
xdwkf sin 0f
6=0 $=0

+sirf¢ cog6)de de,

g?adwim

P= 4(21)3€gn?

-0 C

2(cog ¢

(49

where spherical coordinates have been sed Fig. 5, with

2

Wy .
i sin fddd pdw, .

n3
dk=

(50

The range ofé is [0,7/2] by definition of the propagation
modal fieldsF;, _(r k) andF;,, (r,k) used here. The term in
the integral over¢ stands for the scalar productedu|?,

where we have placed the dipole along thaxis, and con-

3 w2

L—ec

2d 0Sd¢>] +(TM term),

S

+ |e' Ffr+(r01ka)|2]d0ad¢+ nZ(ZO)

2

Xsin 0SJ
¢

where 6.=arcsinf,/n) is the critical angle of total reflec-
tion for a plane wave incoming on the stack from the sub-
strate, and where eadN.z=Kky/K, is one of the effective
refractive indices of the guided modes. Equatib8 permits
us to determine the different powers, which are emitted in
each modal field. Appendix B clarifies the derivation of the
first term on its right-hand side, which describes the guided
mode contribution.

The dipole radiation power can also be written using the
fields Fp,, andFp,s presented in Sec. I. Appendix A shows
that

€ Fsr(rO-ks)

=0

(53

| Frr—(ro.ka) >+ e Frri(ro.ka) |2

= |e' pra(r01ka)|2+|e' prs(rOaks)|2- (54)

We can then write Eq(53) by replacing the full radiation
term by

3Py(wy) N3 J w2 2n 2
8w n%(z9) Jo sind,d o, 0 [l Fowa(ro.Ka)|

+ e Fous(ro.ks)[*1d¢. (59

Expression(55) shows that for the full radiation modes, the

sidered both the contributions of the polarization states Tﬁ)ower is emitted through running waves in the air and in the

and TM.
It can easily be shown that

2
sinaf
¢

/2

I

8
3
(51

" 2(co@¢p+sirt cof 0)do dp=

=0

substrate. Let us consider a detector located in the air and
placed at the infinite from the dipolgig. 6). This detector
receives the powed?P3, which is emitted in the infinitesi-
mal solid angle sirg,d6,d¢. Such a power comes only from
running waves in the air, so only the full radiative modes are

concerned. From Eq55), one can express this power by
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| \
X, 240 120

FIG. 6. Plane-wave fieldf,, (solid lineg and F,s (dashed
lines) involved in the radiation pattern at the infinite.

200 160

180

d’Ps*  3n,°

= . 2 FIG. 7. Free space radiation pattern in a plane perpendicular to
Po(wq) SﬂTnz(ZO) {Ra|e pra(ro,ka)l

the dipole vector.

. 2
+Tol& Fous(ro.ks)[*+ (TM term)} VI. SPONTANEOUS EMISSION OF ERBIUM ATOMS

X sin6,d6,d ¢, (56) PLACED INTO A MULTILAYER
DIELECTRIC MICROCAVITY

whereR,=r,r% is the intensity reflection coefficient for a This part of the paper shows a numerical example using
plane wave incoming on the stack from the air ahg the theory presented in the previous parts. It deals with the
=(xa/ xs)tsts is the intensity transmission coefficient for a problem of the infrared\y=1.53 um) radiation emitted by
plane wave incoming on the stack from the substrate. Equaan erbium atom, where we assume that this atom can be
tion (56) allows us to determine the radiation pattern in therepresented by a dipole having &s/ector along they axis.
air, normalized by the total power radiated by the dipole inLet us first consider radiation in free space. Figure 7 shows
free space. the radiation pattern in the plame (i.e., perpendicular to the
Similarly, now consider the detector located in the sub-dipole moment which has been computed from E(&ﬁ) In
strate withd,< 6., . The powerd?P §, which is emitted by the thls plane the isotropic emitted power ig°P3=0.12

dipole in the infinitesimal solid angle sihd6.d, is given  Py(w)d 2, whered()=sin6ddd¢ stands for the |nf|n|te5|-
by mal solid angle. Integration of this radiation pattern in the
whole space giveRy(wp), as expectedsee Egs. 49 and 52
d2ps 3ng3 Let us take now the same dipole, located at various posi-
Polwg) = 8mr2(zo) {TJe Fowa(ro,K D2 tions into a multilayer microcavity. The microcavity consid-
01%0 ered here can be described B\LHLHL 2H LHLHLH,
+Rgle: Fous(ro, ko)|?+(TM term)} whereH and L denote respectively higkn,=2.181) and

low (n_=1.477 refractive index layers, whose optical thick-
nesses aray/4. The structure is deposited on a substrate of
refractive indexng=1.444. This design corresponds ta./2

Let us now consider a guided mode in TE polarization. Themicrocavity with a quality factoQ=Ay/AN=40 (see Fig. 8,
guided powerdPy, which is emitted in the infinitesimal

angled¢, is given by

Xsin 0,d6d¢. (57

TRAN[;SM;TTANCE
.97
Py 3 oNe? L — || |
Poloo 8 woi(zg) | Fellorkall 00 (58 =
0.8 . i i
To end our analysis, we may be interested in the spontaneous [ T0s W 502 / | \ i
lifetime of the dipole, defined as =1/y. It is simply given 0. 41 'g ] ;
by o\
0.28 : : :
7 _ Polw J i \\\
7 _ P o), (59 . .
To P
13380 1479 1628 167 17R86

WAVELENGTH {am)
wherer and rp are the spontaneous emission lifetimes of the

dipole in the stack and in free space, respectively. FIG. 8. Transmittance and microcavity design.
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FIG. 9. Normalized emitted power in the air
2pa P ;
(d“Pg)/[Po(wp)dQ] for every direction and every location of the Erbium location i —

dipole in the stack. — e —-———

and of total thickness 2.956m. We have chosen such re-

fractive index figures because it corresponds to a microcavity 0O Ta,05 MW SO,

made by the use of a plasma assisted deposition technique

(ion plating, with, respectively, T05 and SiQ as high and

low refractive index dielectric materials. FIG. 10. Position 1: dipole location and radiation pattern.
Consider the radiation pattern in ti plane for the di-

pole lying along they axis inside the cavity. Figure 9 shows dissymmetry of the microcavity. The emission in the normal
the normalized power densitgl{P §)/[Po(w,)dQ] emitted  direction in the air igi?P§=0.8 Py(wy)d(2, and is 6.6 times

in the air for every direction$ (in the range 0°-897and for  higher than in free spacésee Fig. 7. The total radiative
every locations of the dipole in the stack. We can see, fopower, which can exit the stack, is then 0.P§w,).

example, that the power emitted in normal incide(ice, for Consider now emission into the guided modes. Figure 12

6=0°) drastically depends on the location of the dipole in thegives the normalized emitted powig/ P, in the various TE
stack[7]. For the computation, we use the microscopic elec-

tric field seen by the atom, given by the Clausius-Mossoti-
Lorentz-Lorenz equatiof34]

3”(20)2

Emicro= m macro-

(60)

300
Let us define first the nonresonant case, where the dipole is

located in the middle of thia/2 cavity (i.e., at 1.478um—

see Fig. 10 From Fig. 9 we see that the emission in normal 280 80
incidence is completely inhibited. Figure 10 is a polar cut of 0 e Sample
Fig. 9 and shows the radiation pattern of such a dipole in the 250 Substrate {4,

air and in the substrate. The emission in normal direction in
the air isd’P3=6X10"2 Py(wp)dQ and is 20 times smaller o o
than in free spacésee Fig. 7. It is clear that this location, 240 I L 120
referred to as “position 1,” must be avoided in order to
favor emission in normal incidence. Integration of this power

in every directions and in the two polarizations gives the 200 50 160
radiative power, which can exit the stack. One finds 0.03 Position 2
Po(wo).

We can now define the resonant césferred to as “po- S —

Erbium location ———

sition 2”), where the dipole is located on the interfaces be- —p Tm— -

tween the spacer and the low refractive index lagee Fig.

11). From Fig. 9 we know that the emission in normal inci-
dence is enhanced. Figure 11 gives the radiation pattern of -
such a dipole in the air and in the substrate. The emission is 0 T0s M SO

well directed(10° around the normahknd is stronger in the

substrate than in the air, this last point being due to the FIG. 11. Position 2: dipole location and radiation pattern.
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0.00 FIG. 14. Position 2: contribution of the guided and

radiative powers.

Location from the substrate (jtm)

+0.78 Py(wg)=2.17 Py(wg) and the normalized lifetime is

FIG. 12. Normalized emitted powe?y/P in the various TE  0.46, which is about the same as for the previous dipole

guided modes versus the dipole location. location. Although this resonant case partly confines the ra-
diation in normal incidence, the microcavity strongly suffers

guided modegintegration of Eq.(58) over ¢], versus the from emission in the guided modes.
dipole location in the stack.

For the “position 1” dipole locatior(i.e., in the middle of
the microcavity, see Fig. 10the stronger emission is in the VIl. CONCLUSION
TE, mode, which is quite stronl.67 Py(w)] at this place.
Figure 13 gives the emitted power in the various guided We have presented a classical electromagnetic theory de-
modes and in the radiative modes. Emission in the TE modescribing spontaneous emission in multilayer dielectric struc-
is stronger than in the TM ones because of the dipole orientures. This theory is based on a modal field expansion of the
tation along they axis. Summation of these guided powerstotal electric field emitted by the dipole. In Secs. Il and IlI
and of the radiative power gives the total poweemitted by  we have presented a complete set of cavity modes, and how
the dipole in this radiative nonresonant case. One findshese modal field$except the guided ongsan be derived
P=(1.95+0.03 Py(wg)=1.98 Pg(awg), and the normalized from plane waves incoming on the stack from the air and
lifetime [see Eq. (59)] is therefore [Po(wo)/P]  from the substrate. Once the normalization of these modal
:(1/1_-93”9-5- _ ) ) fields has been achieved, we have extended our analysis to

This lifetime is two times shorter than in free space be-three dimensions, in order to treat the spontaneous emission
cause the TEmode is in this case a strong canal of relax-of 5 dipole located in the stack, in terms of cavity modes.
ation for the dipole(see Fig. 13 Such a configuration this anproach gives the power emitted by the dipole in every

achle\(es In fact a r'eally good control of the SpontaneoUgirection in the air, in the substrate, and in the guided modes.

srlfzgr}r:?(;(r)e'fsr]{ef(?ru;degi(g;?jd\?vg/iagg\xv(:(;UId therefore be In Sec. VI, we have investigated numerically the radiative
?Ne consider now th% “position 2” dipolé locatiae., at properties in the infraredho=1.53 um) of an erbium atom

z located at various positions in a particular dielectric micro-

the interface of the spacésee Fig. 1)). Figure 14 gives the . L
power emitted in the various guided modes and in the radiaSaVity- We have shown that the radiation pattern can be very

tive modes. In this case, the power is shared between th%ifferent depending on the location of the dipole in the stack.

TE,, TM,, and TE modes. The total powe® emitted by the Precisely, we have investigated two positions in the stack;
dipdle in :the radiative and in the guided mode®is(1.39 ©One favors the emission in the guided modes and could be of

great interest in building a guided wave device. The other
one is known to favor the emission in the direction normal to

P/P, the stack, and is usually implemented to build vertical emit-
18 - ting devices. In this last case, although the emission is well
16 4 M directed in a normal direction, the major part of the power is
14 4 emitted into the guided modes. Although the radiation pat-

11-2 1 tern is very different for the two locations of the dipole con-
08 ] sidered above, calculations show that its lifetime is about the
0.6 | same. In other words, if the dipole can not relax in the ra-
0.4 | diative modes that can exit the structure, it will strongly relax
02 - M into the guided modes and vice versa. In conclusion the life-
0 y T = T T T —— time is not strongly affected. Nevertheless, the possibility of
TEO TE1 TE2 TE3 TMO TM1 TMZ TM3 Rad partially controlling spontaneous emission makes these pla-

nar structures of great interest for building high emissive
FIG. 13. Position 1: contribution of the guided and devices such as directive light-emitting diodes or low thresh-
radiative powers. old microlaserg32].
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. . ! APPENDIX A: DERIVATION OF EQS. (48) AND (54
Techniques—French Ministry of Defeng®PRET) and the QS. (48 9
Centre National de la Recherche Scientifif@dNRS have Using Eqgs.(239 and(23h) we can write

le-Fre—(ro,Ka)|?=3|e Fpua(ro.ka) +e€ prs(ro'ks)ei(¢’af¢taiﬂ/2)|2: 3{le Fowal(ro.Ka) |2+ € Fous(ro.Ks)|?
+{[& Fpua(To.ka)* 1[€ Fpus(ro, ks J&'Pra™ %™ ™2 e Fpya(ro,ka) [
Fous(ro,ke)* Je!(%ra” da= 721} (A1)
and
le-Frei(ro.ka)|?=3le- Fowa(ro.Ka) +€ prs("o,ks)ei(¢rai¢‘a+ﬂ/2)|2: Hle pra(rOaka)|2+ |e- prs(rOaks)|2
+{[& Foa(T0.Ka)* 1(& Fpus(ro,ks)]€!(Pra” ¢t 72

+[e pra( ro.ka) e prs( ro.kg)*le” i(¢ra— drat 7r/2)}} (A2)

using the fact thag'(¢ra= %72t gl(¢ra=¢at 2= we
get XE fo Sr(wo— wp)|e Fylro.kg)|2dBds,  (B1)
9 9

|e' Ffrf(rkaa)lz"' |e' Ffr+(r01ka)|2: |e' pra(rkaa)|2
) where the integration is performed on t@g circle in thek
e Fpus(ro.ks)|*. space(see Fig. 4
(A Since wy—w<wy, wWe can consider thay, is not - depen-

In an infinite and homogeneous medium, the figfdg, and dent. This implies that in polar coordinates

Fows become u(k,) and u(ky), respectively, with

k,=Bx+ &éy+ xz, and ks=Bx+ &y— xz. We can consider )

thee vector along theg axis without loss of generality. Equa- dpde=kydkyd¢= - NZydwd . (B2)
tion (A3) becomes

le-Fr—(ro.K)[?+]e Fr oy (ro,k)2=2le-u(k) |2 (A4)  ky=(8*+x)"?is the modulus of the guided wave-veciqy,
which stands in thé,k, plane.Ngz=Kky/K, is the effective

APPENDIX B: DERIVATION OF THE GUIDED refractive index of the considered guided mode. Taking as
MODE POWER previouslyI'=0, expressior{B1) reads
From Eqgs.(41) and(46) it is clear that the guided mode )
c_ontribution to the power emitted by the dipole is propor- ‘”_g 2 NgﬁJ W|e~ Fg(ro,kg)|2d¢. (B3)
tional to € g 0
[1] E. M. Purcell, Phys. Rew9, 681 (1946. tum Electron.26, 1492(1990.
[2] D. Kleppner, Phys. Rev. Letfl7, 233(1981). [9] G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev.
[3] K. H. Drexhage, inProgress in Optics edited by E. Wolf A 44, 669(199)).
(North-Holland, Amsterdam, 1974Vol. XlI, p. 163. [10] S. T. Ho, S. L. McCall, and R. E. Slusher, Opt. Let8 909
[4] H. Kuhn, J. Chem. Phy&3, 101(1970. (1993.
[5] K. H. Tews, J. Lumin9, 223 (1974. [11] K. Kakazu and Y. S. Kim, Phys. Rev. B0, 1830(1994.
[6] C. Amra, J. Opt. Soc. Am. A0, 365(1993. [12] D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, J. Mod.
[7] X.-P. Feng and K. Ujihara, Phys. Rev.44, 2668(1990. Opt. 41, 325(1994).

[8] S. D. Brorson, H. Yokoyama, and E. P. Ippen, IEEE J. Quan{13] N. Koide and K. Ujihara, Opt. Commuri11, 381(1994.



2368 H. RIGNEAULT AND S. MONNERET 54

[14] N. J. Hunt, E. F. Shubert, D. L. Sivco, A. Y. Cho, R. F. Kopf, mun. 88, 96 (1992.

R. A. Logan, and G. J. Zydzik, if€onfined Electrons and [24] H. Kogelnik, Guided-wave Optoelectronicsedited by T.

Photons, New Physics and Applicatj@dited by C. Weisbuch Tamir (Springer-Verlag, Berlin, 1988

and E. Burstein NATO ASI Series @lenum, New York, [25] P. Gerard, P. Benech, H. Ding, and R. Rimet, Opt. Commun.

1995, p. 701. 108, 235(1994.
[15] F. DeMartini, F. Cairo, P. Mataloni, and F. Verzegnassi, Phys[26] J. J. Burke, J. Opt. Soc. Am. Al, 2481(1994).

Rev. A46, 4220(1992. [27] P. Yeh,Optical Waves in Layered Medi@Viley, New York,
[16] J. Dalibard, J. Dupond-Roc, and C. Cohen-Tannoudji, J. Phys. 1988, p. 114.

(Parig 43, 1617(1982. [28] D. Marcuse, Quantum Electronics(Academic, New York,
[17] R. J. Glauber and M. Lewenstein, Phys. Rev.48 467 1997, p. 19.

(1992. [29] J. Chilwell and I. Hodgkinson, J. Opt. Soc. Am. B 742
[18] K. Tsutsumi, Y. Imada, H. Hirai, and Y. Yuba, IEEE J. Light- (1984.

wave Technol6, 590(1988. [30] S. Haroche, inFundamental Systems in Quantum Optics
[19] H. A. Macleod, Thin Film Optical Filters (Hilger London, (North-Holland, Amsterdam 199.1p. 767.

1986, pp. 11-48. [31] E. A. Hinds, in Advanced in Atomic, Molecular and Optical
[20] Y. Yamamoto, S. Machida, Y. Horikoshi, and K. Igeta, Opt. Physics Suppl. 2(Academic, New York, 1994

Commun.50, 337 (1992. [32] F. DeMartini, M. Marroco, P. Mataloni, L. Crescentini, and R.
[21] D. Marcuse,Light Transmission OpticéVan Nostrand Rein- Loudon, Phys. Rev. A3, 2480(1991.

hold, New York, 1972 [33] J. D. Jackson(Classical Electrodynamicé/Niley, New York,
[22] D. Marcuse,Theory of Dielectric Optical Waveguideznd ed. 1975.

(Academic, New York, 1991 [34] A. R. Von Hippel, Dielectrics and WaveéWiley, New York,

[23] P. Benech, D. A. M. Khalil, and F. Saint Andr®pt. Com- 1954.



