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Optical dark resonance in multilevel systems with a treelike configuration
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Optical dark resonance in systems with arbitrary multilevels and multiphotons is studied theoretically. When
the system configuration is treelikéhe term of graph theojyall the coherence terms in the system can be
categorized into several groups on dark resonance. It is proved for generic system configurations with arbitrary
multilevels that the resonance conditions can be obtained successively by setting the determinant of the
submatrix of the Hamiltonian with respect to each group to zero. We calculate, as one of the practical
examples, all the conditions of dark resonance of potassium atoms with two laser fields and one rf field mixing
one excited state and eight ground states in the hyperfine structure. Although the system configuration is very
complicated, the condition is easily obtained in an analytic form and verified by the result of a numerical
simulation. Furthermore, our theory can reveal the fine structure of dark lines with power broadening in the
observed light-induced-fluorescence spectra and numerical calculations. In addition, the dark lines with the
complicated splitting pattern observed in experiments can be assigned to the relevant level configuration and
transitions by the present theoffs1050-294{@6)00808-4

PACS numbdis): 42.50.Gy, 42.50.Hz

I. INTRODUCTION of Fig. 1(a), which may often be the case of various atoms
such as potassiuri =2). The line shape of LIF might be
Optical dark resonand®DR) is one of the coherent mul- expected to have a single peak when the frequency of the rf
tiphoton processes and can prohibit fluorescence with a nafield is fixed and that of the laser field is scanned. However,
rower resonance in the observed spectrum than the naturilking into account the detailed level structiz&eman sub-
linewidth [1]. Its wide applicability to previous experiments levelg and the selection rule, the Figal becomes a system
such as trapping experiments and precise spectroscopiestisat includes nine levels and eight radiations, as in Fig).1
due to its Doppler sensitive and sub-natural property. Multi{We assume appropriate polarizations for the laser and rf
photon processes have also been investigated from the vievields here. Note that one rf and laser field can drive several
point of Raman processes from the early df®s7]. One transitions simultaneously, as seen in Fig&) land ib),
curious feature of the multiphoton process ODR is found asvhen the relevant transitions are nearly degenerate or the
black lines in the spectrum of sodium atopds8]. This type  resonant Rabi frequencies of the fields are large enough. The
of nonabsorbing atomic coherence was discussed theoretintensity of LIF from this system of Fig.(h) is numerically
cally by Arimondo and Orriold1] using the steady state calculated as in Fig.(t), in which the frequency of the rf
theory for coherent two-photon procefd]. ODR in the field is fixed and that of the laser is scann@daxis). The
three-levelA configuration has been discussed in several paresonant Rabi frequency of the laser fields is intentionally set
pers[10-13 and observed in trapping and multiwave mix- much larger than the reciprocal number of the lifetime of the
ing experiment$8,14,15. atom to make ODR dominant in the spectrum. Though the
One of the important applications of ODR is the laseroutline of this spectrum surely has a single peak as expected,
cooling below the one-photon recoil limMit6—23. The deep the complicated structure of the near-resonant condition is
cooling proved to be realized by the nonabsorbing pres- remarkable. This is because ODR makes the fluorescence
sure states for trapped atoms at zero velocity due to ODRvanish even in the near-resonant condition for strong fluores-
Another application is the analytic prediction and intuitive cence and therefore ODR may have a large influence on line
interpretation of the line-shape function of laser-inducedshape.
fluorescenceLIF), as discussed in this paper. Because the In this paper we show the analytic solution of all the
direct calculation of the LIF spectrum is known to give a conditions for ODR in multilevel and multiradiation systems
large analytical result, as in our previous paj@t], even for  under the rotating-wave approximati¢dRWA). The condi-
a five-level system, the determination of the condition oftion of the radiation frequency and strength for ODR in the
ODR is indispensable to get a more intuitive interpretation ofmultilevel system is determined for arbitrary multiphoton
the spectrum. The line shape of LIF is affected drastically byprocesses. For example, all the positions of ODR in the sys-
ODR because ODR may appear at nearly resonant conditiciem of Fig. 1b) are determined analytically by a simple ma-
between fields and materials and make the strong fluoregrix calculation. From the present theory, the LIF spectrum of
cence vanish completely. Especially in the intense fields, th&ig. 1(c) turns out to contain 15 dark lindsee later Fig. )
effect of ODR becomes dominant, and the explanation of thevhere the numerical resylFig. 1(c)] is too obscure to find
whole line shape of LIF requires not only the analysis of thethis fine structure. In addition, the intuitive interpretation of
usual intense-field approximation but also the fine structurg¢he splitting pattern of dark lines has proved to be possible
due to ODR. for complicated systems such as that in Figh)1Therefore
For example, consider the double-resonance experimeiihe parametric dependence of the LIF spectrum in multilevel
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(a) b Il. THE CONDITION FOR DARK RESONANCE
‘ IN AN N-LEVEL SYSTEM

———F-3,m=2

In this paper we treat those systems with arbitrary multi-
levels and multi-radiations such that all the levels are con-
nected by the radiations without constructing any cycle. In
other words, the level scheme forms a tfegterm of graph
; theory). Several proofs below are based on this requirement.
— Y F ! Note that a tree need not grow in one directifffigure Ib)
is a kind of tre€} Binary trees are not assumed. In addition,
while the decay terms for the population or the coherence of
—Y F=y the optically excited level are always necessary for the phe-
’ 0 nomenon of ODR, those in the ground states tend only to

make the resonance of ODR dull. In order to make our
(c) theory clear, we neglect the latter throughout this paper. This
is a reasonable assumption when the energy spacings within
the ground states are assumed to be in tH{errmicrowave
region and they can be stable enough in the realistic experi-
ments.

The well-known optical Bloch equation for the density
matrix p is

Laser

J
iﬁﬁp=Hp—pH+iﬁfj/, (h)

where the decay terrty is

Fluorescence (arb. Unit)

40 50 200 10 0 f0 20 30 40 1 . )
— T Poo for the excited-state population

laser detuning frequency (units of 1/lifetime) 1
D= — T. Prg for optical coherencép=0 or q=0)
2

FIG. 1. (a) Example of multilevel laser rf double-resonance sys- f
tem, one of which is an alkali metal havitgr 3. (b) Detailed con- + P poo for the ground-state populations
figuration of (a), considering Zeeman sublevelg) Typical LIF . T
spectrum for the systefin) when one of the frequencies of the laser
fields is scanned. All the parameters are the same as the exam@é&d
discussed in Fig. 7.

> fa=1, X ppn=1. )

systems on field intensity and detuning frequency can be

determined in detalil. The subscript 0 means the unique optically excited level.
In Sec. Il we show that the steady-state resonance of oDIConsidering more than two excited states does not lead to

in the multilevel system could be categorized into two kindsany essential change in the proof belp@W.and T, are the

of resonance conditions described by simple matrix determidecay times for the optical population and coherence, respec-

nant forms under the RWA of the optical Bloch equation.tively- f, is called the repopulation ratid] and defines the

One of these determinants is proved to be the condition fofatio of how the population in the optical excited state is

ODR and the other is reduced to a simpler form with againf€diStributed to the ground stape The Hamiltonian is de-

two kinds of subdeterminants in Sec. Ill. Therefore, succes;]jlneci as

sive application of this procedure reveals all the branches of B . .

dark resonance in an arbitrarily complicated syst$ec. Hpq= GpaEp 7 Qpg(@XRiL(Ep—Eq)/fi+ Apqlt+i bpq}
Il B). However, not all these branches are observed in the +c.c), 3
LIF spectrum in some critical cases due to the double val-

uedness of the steady-state condition, which we discuss ighere E, is the energy of the levep, A, is the detuning
Sec. Ill C. We calculate, as one of the practical examples, thgequency of the radiation from the atomic transition be-
condition of dark resonance of potassium atoms with twaween levelsp andq, 6, is the constant phase factor of the
laser fields and one rf field mixing one excited state and eightield, and Q4= u,qEpq/2% is the Rabi frequency for the
ground states in the hyperfine structy&ec. I\V). We also  resonant radiation betwegnandq levels.

show that our theory can resolve the dark lines with power First, we introduce slow varying amplitugeto subtract
broadening in the observed LIF spectrum into a fine structhe phase factors rotating at the frequencies of the radiations
ture. Finally, we conclude our theory in Sec. V. and apply the RWA in the ordinary manngr.is defined as
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ﬁpipj:_(iApipj)ppipj+Qpipjppjpj_ﬂpjpippipi

..... ab,...,
_ +gj Qpipxszp,-_gi prpj’ﬁpipxzo
Xt=i 2, <reab>}, @
Proe@Bied (Qpp, #0, T#]), (5b)
wherep andqg need not to be adjacent levefs....,ab,...,q 50p0= —Qopoﬁpopo—ﬂoqoﬁqopfo, (50

means that the subscrigb runs along the radiation network

from the levelp to q. The uniqueness of the path fromto _— ~ ~ .

g is ensured since the system is like a tree and has no cycle. Pop; = _QOPopPoPi_Qo%p%Pi_o (i#0),  (5d
The double sign o, or 6, is taken to be the same as that

of (E,— E,). The diagonal terrp,,,, is the same ag,,. After . ~ _
substituting Eqs(3) and(4) in the Schrdinger equatior{1), Ppip, = _<p_ ;} N (iAab))Ppipj+)§i Qpip,Pr,p;
settingdp,,,/dt=0, and neglecting the terms rapidly rotating b .

at the double frequency of any radiation, one gets a set of ~ o

linear equations that does not contain the tinexplicitly. In —X; QppPpp =0 (Qpp=0,1#)), (59

addition, a careful calculation verifies that all of the phase
constantsd,, cancel each other.

When the system under study has more than one optically » _ _ + > 5
excited state and several optical transitions, the definition of "' (pi ;n ..... ds (_Aab))pp‘qSJFXEﬂ Loip,Prs
dark resonance becomes ambiguous: Is dark resonance de-
fined for the state with no fluorescence for all optical transi- — E Qqq ;p,q =0, (5f)
tions or one specific transition? In any case, the system with x#s s T
one optically excited state and two laser fields is the basis of
analysis, which we assume here the system is (W& dis-
cuss the system with several excited levels and more thawhere i=0,1,...n,—1, j=01,...n,—1, and
two laser fields at the end of Sec. Ill)AWe categorize all s=0,1,...n4—1. Note that Eqs(5) include no decay terms.
the ground states into two groups and Q, wherep; e P The positions at which ODR appears are independent on the
(i=0,1,...n,—1) andgse Q (s=0,1,...n4—1) are linked lifetime T of the atoms, the decay tinik, of optical coher-
only with the elemers) in the same group by rf transi- €nce, and the repopulation ratibs. (The line profile is of
tion(s). p, and g, denote those top levels in each group thatcourse affected by thein. o _ _
have optical transitions with the excited leVi#ig. 1(c)]. One of our main purposes in this paper is to obtain the
This discrimination is not trivial, because it is essential forcondition in which(5) has nontrivial solution op. Note that,
ODR that the optical coheren@&,. py, and populatiop,, ~ When the duplicated complex conjugates, the meaningless
which would connect the two groups, vanish and disconnecgduation fordpo/dt, and the variableox, pxo, poo are ex-
the groupP from Q. (For example, the cascade type of three-CI_Uded’ Egs.(5) ar.e np+nq+f|‘C2+ (np+nq+1) equations
level system does not exhibit ODR because the ground stat¥§th n_+n +1C2 variables. First, we reduce the number of

cannot be divided likd®> andQ.) the equations by applying a relation
Dark resonance is observed as a sharp dip in the
LIF spectrum[1]. It is well known that the depth of the dip Im(ppp)=0 when Q,, #0, (6)
iFj 7]

depends on the relaxation time of the coherence and popula-
tion in the ground stategnot the excited statésOn our
assumption that all the relaxations within the ground state
are negligible, the dip drops exactly to zdie., no fluores-
cence is observedTherefore, in order to obtain the condi-

tion required for ODR, we can replace the optical populationfrom consideration, requiring thi, =5;i (Q2;;#0). At this

oo In the set of the linear equations for the steady Stat%oint, one can define a square matkbpg and a vector

simply with 0 since no popljlatlon exists in the exglped stateﬁom, which consist of the components of the density ma-
on the ODR conditionpy,= p,o=0 follows the condition of

b ; 0 ; trix, and get an equivalent expressidigprpopr=0 for them
Poo=0. Note that, while setting,,=« does not determine pecausd5b)—(5f) have the same number of variables as that
pnx @ndpy, in generalp,,=0 does whether the system is in of the equationg5b—5f. It is clear that|Hopgl=0 is the
a pure or mixed state. After the substitutions mentionethecessary condition to seek. We expdHgpg Systemati-
above, we get cally into a simpler form below.
In simplifying |Hopgl, (5b), (5¢), and the columns for
dpp,p, /dt anddp,, , /dt can be expanded with nonzero fac-

Pop = S o0 Ppp — S PopQpp=0, (53 tors such aﬂpipj..The proof is alsg based on the assumption
Topgep T AL pyep T T of the system being a tr@ppendix B.

¥vhich is equivalent to Eq.(8). The proof of Eq(6) is based

on the assumption that the network of the energy levels and
the radiations is treelike agaippendix A).

Therefore we can exclude thg,+n, equations of(5a)
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(Note that the first determinant of the right-hand side is thathe subsysten® (or Q) to Iet?)'popi andFqoqi be zero, which
of a squared matrix.The second one has a single compo-we discuss in Sec. Il B.

nent, such as- Qopo'ﬁpopi), in the row that can be expanded
along the row with the nonzero facto#(QopO). Simulta-
neously, the columns fgs, , (orpg q), that is, the coher-

ence between the ground statg (or py) and all the levels
belonging to the groug (or Q), can be eliminated in Eq.
(8). The dark resonance in a complicatédevel system that

has several branches in its level configuration is characten:l-.h

ized by this elimination. The requiremepf,=0 descends to

(= Aab) ppipi - X?gj 0 Qpipxppxpj B x?g,j,o

>

x#i,j,0

Pj s ap,..., p]

Qpipxppxpj _X% 0

or

A |Poa =2 Qoo Poa
Pi,...ab,..., qj( an) Pplq] gi p,pxppxqj

- 2 quq]-?;pi ay’ (10)
XF |

or an equation similar to Eq9) for the groupQ. That is, in
a matrix form,

[Hs,[=0 (11)
or

[Hs,|=0 (12
or

|Hs,[=0, (11)

where the definition oHS1 is, for the indicesn=(p;p;) and
n=(pwP1),

2 (A, i=k, j=I
Pisees ab,... i
(Hs))mn= PP =k J#l 13
Qpipk i#=k, j=I
0 otherwise
andHs, for m=(p;q;) andn=(p,q,),
2 (FAy), =k, j=I
pj.n...,ab,..., dj
(Hs)mn=1 ~Pog =k 171 (14
Qpiqk i#=k, j=I
0 otherwise.

The first determinant on the right-hand side in E8)
contains the coefficients fcﬂﬁpq/dt and their complex con-
jugates fordp,/dt. From Eq.(5f), it can be seen that the
coefficients forp,, are completely decoupled from those for
pqp- If we define the coefficient matrix fop,, asHg, the
first determinant on the right-hand side in E§) including
both’s, andp,, can be reduced d#ig|>
We conclude this section with the following proposition.
e condition required for ODR is that at least one of the
following sets of equations has a nontrivial solution For

Qppbpp, (PiPiT Qpp=0, 170, j#0, i#]),

9
prpj’lspipx (Pip; : Qpipj=0, i=0 or j=0, i#j),

Hs, can be obtained if one replaces this with g’s in the
definition of Hs . Whether(),, is zero or nonzero depends

on the actual form of the system under study. It is easily
verified thatH g is Hermitian(or symmetric because we take
Q) to be rea), if we redefineHg so that the coefficients
>a(EA,,) are located on the diagonal part of the matrix.

Ill. TWO BRANCHES OF DARK RESONANCE

The condition for ODR obtained in the preceding section
consists of two kinds of solutions derived from E¢®). and
(10). These two branches of ODR have different properties.
For example(9) is independent of the frequencies of lasers,
but (10) is not, which means that even their applications for
the experiments differ from one another. We first discuss the
condition of Eq.(12) in Sec. lll A, which is important espe-
cially for trapping experiments, and second those of Egs.
(11) and(11’) in Sec. Il B. One more important problem is
the convergence of the time development of the ODR signal.
It is proved that the assumption p§,=0 gives us the reso-
nance condition of ODR in the steady-state treatment for
almost all configurations of the system in Sec. Ill C.

A. Coherence across the optical bridge

Recall that the Hermitian of Eq14) is obtained by pick-
ing up, from the Hamiltonian for the whole system under
study, the components of the coherence created between the
two groups of the energy levelR® and Q that share a com-
mon level by radiations. The resultant matrix proves to co-
incide with the Hamiltonian of a new system including only
P and Q, which are uncoupled from each other, while the
basis set of it is the direct product of each of the stateB in
andQ, {|P;)|Q;)}. The components of the diagonal part are
determined by sequential sums of the detuning frequencies
along the radiation network. The eigenvaluedgjy are the
direct sum of the perturbed enerdigelf-energy in the
dressed-atom pictureof P and Q by the radiations within
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each of them. Dark resonance appears when the difference sized that the optical transitions do not shift the resonance
the detuning frequencies of the two laser fields is equaposition at all, which discriminates dark resonance from
to that of the eigenvalues. In other words, it is when theother multiphoton processes. For example, 8®) and its
laser fields resonantly stimulate the transition betw&n determinant for the five-level symmetric systdi®4]| are
andQ, which are shifted by rf transitions. It must be empha-written as

A laser Q rfl - Qrf2 0
Qrfl A laser Arf2 0 - Qrf2
=0, 15
_Qer 0 AIaser—"Arfl Qrfl ( )
0 -Q rf2 Qrf1 A lasert A 1™ A f2
|
Altlser"_ 2ArfA%ser+{Ar2f_ArflArf2_ ZQrzf}Alzaser_{ArflAer B. Coherence within each bank
+ 202 A 1A jpsert (3, — Q3,)%— (Q3,A%,+ Q% AZ,) This subsection is devoted to the explanation of the dark
) resonance of Eqg11) and(11'). This type of resonance is
+ QA AR=0, (16 detected by scanning the frequencies not of lasers, but those
where of rf fields while the signal is observed as a dip in LIF as
ODR is.[This is easily confirmed from the fact that the re-
Q= ‘/folJrQré, q_uired condition(9) does r_lot cor_1tain the detuning frequen-
cies of lasers at all.One might think that the dark resonance
A=Ap— Ay in the rf domain(RFDR) should be the same as the ODR

discussed above. For example, in Fig. 2, a well-known type

We return to the general case, E#0). Noticing that the  of dark resonance within the three-levAl configuration
subscriptab in 2 ap,...q(=Aap) always runs through {|1),3)|4)} should occur whem\;3=A,,, with no fluores-
Po—0, 0—do, that is, the optical bridge. Becaupgandg; cence observed. However, in our derivation of E3).from
belong to the deferent banks, it can be said thaEg. (1), we assume that only the population |®) is ex-
Zp,....ab,...q(FAap) always contains bothaser;aNdAjaser,  hausted and not ift), like the case of Sec. Il A. In addition,
as a form of A gerAjaser=Aaserr ThiS property is not none of the optical pumping required for dark resonance oc-
seen in (9), where ab runs within a bank in curs since we assume no incoherent decays within
Zp...ab,..., pj(iAab). In other words, the Doppler-sensitive {|1),|3),/4)}. (This means that the time development does not
dark resonance, which is important for trapping experimentshecessarily converge to the dark stata.spite of these dif-
is obtained only from10) and the branches determined by ferent situation, most cases allow RFDR to appear in the LIF
(9) are insensitive to the velocity of an atom because the rf'sspectrum whem\;3=A1,, as follows.
are low enough and the effect of the Doppler shiftgpfor It is clear that Eq(9) includes only the coherence com-
the condition of ODR is negligible. ponents of the density matrix within the groBpIn addition,

In summary, the optical frequencies at which the darkthe termspp p. OF Pp.pys which are relevant to the top level
lines appear are therefore easily obtained, for any systemj ihe treeP, have been already eliminated from the equa-
configuration with a tree form, without quite a lengthy deri- i s in sec. 111 A or, in another sense, they can be said to be
vation of po [24] by picking up the equations far,q (the  4ssumed zero. These situation are just the same asFeiys.

coherence between two banRsand Q) from Eq. (5) and  (5f) in Sec. II, wherepyy and py, are forced to be zero for
requiring the determinant of the coefficient matrix to be zero.

In addition, one finds a useful relation between the system
configuration and the number of dark lines. The number of

e o>
lines is
Nopr=NpNgq (17) £ \_

if one neglects the accidental degeneration of dark lines. D >
In addition, it is clear that ODR does not appear when

ny=0 (single bank, which corresponds to, e.g., the three-
level cascade system. Furthermore, if the system has many

banks such asR,Q,R,...), the number of ODR lines is 2>

Sap(nang), A, Be{P,Q,R,...}, A#B. (The proof is given [3>

in the same way as that for two bank3he condition for

ODR is|Hg| =0 for any two combination of two banié and FIG. 2. Simplest level configuration in which RFDR appears as

B. well as ODR.
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ODR if we replace the indep, by 0. It may be surprising Now we call the subbanks hooked on the lepglby R
that the condition for RFDR, that igy, , =pp,p,=0,isnot  andS, whose elements of the levels areands;, respec-

assumed but automatically introduced by the condition fottively. Successive application of the procedure explained be-
ODR, pgo=pox=pPxo=0. low Egs. (5d)—(5f) reduces the conditiof®) for RFDR to

(r- 2 _(iAab))Frirj: 2 OQrierrxrx_ E,Oﬂrxrj;;rirx (rirj: Qr-rj:O, i#0, j¢ol i#j),

XE00, X#1J, '

: (18

0= QD= 2 QP (rifj: Q.=0,i=0 or j=0, i#]),
x#0,j,0 "X XD oxezij00 X7 X "l

_ _ _ Schralinger equatiorfl). In addition, RFDR within the bank
(r_ > . (iAab))Prisj:);i Qrirxprxsj—gj Qssprise  {1),[3),4)} is derived from Eq(19) simply as

' (19

with an equation similar to Eq18) for group S. Again, the

condition in which Eq(19) has a nontrivial solution for the ]

p;S can be simply represented as a determinant of the coglote that Eqs(20) and(21) are independent of the repopu-

ficient matrix being zero. Equatioi18) can be reduced fur- Iatlon_ ratio of fluorescencg, . However, it can be confirmed

ther by the same procedure. Therefore, the present theory {8at if f3=f,=0, the system has two steady states when

self-scalable for the subbanks in the system. The conditiof13=A14. The dark resonand&FDR) pyo=0 is not a unique

for dark resonance can be obtained for an arbitrary multileve$olution. Another one havingye#0 and the arbitrary linear

system by a cascaded application of the procedure in Sec. fombination of them can appear in the system, depending on

Eventually, all of the RFDR conditions can be obtained bythe initial condition. In fac_t, the Ilng _p_roflle of_ f[he fluores-

picking up all of the coherences across the bridge in th&ence to be observed is FigaB(the initial conditionp,,=1

subbanks successively. and all the other components of the density matrix are_)zero
RFDR is Doppler insensitive. In fact, Eq&l8) and (19) and the dark resonance is completel)é mlzssmg2 in it

do not contain the detuning frequency that is determined byBut the _solution of ppy=0, pgg={1/(€235+01y),

the velocity of atoms as well as the Rabi frequency of thePaa=14(Qi3+Q7y), and pss=—Q150,/(Qi3+01,), with

optical field (but rf field) and one cannot observe RFDR in all the other components being zero, does satisfy(Exfor

LIF when the frequency of laser is scanned. In additionthe steady state. In add|t|o.n, this solutlor_1 is of course s’gable

RFDR can be missing in LIF if the system is configured in abecause Eq1) is a linear, simultaneous differential equation

particular way, discussed in the next subsection. and its steady-state solution is always stgb@n the other
hand, if f3#0 or f,#0, the system does exhibit dark reso-

Az=Aqy. (21)

C. Critical condition for RFDR

One problem important especially for ODR and RFDR is  Fluorescence
whether or not the steady-state solution of the system is  (Arb.Unit)
uniquely determined under any initial population distribu-
tion. For example, since three-levkl[1] and five-level sym-
metric configuration$24] have an(analytio unique expres- (@)
sion for the steady-state line profile of LIF, the observed |
spectrum is proved to be independent of the initial condition.

The conclusion is that ODR is always observable for any )

case. On the other hand, RFDR can be missing when the

system is configured in a particular way, as discussed in this ‘ ‘ Ajs
subsection. Before proceeding, we show the simplest ex- 0.0 2.0 4.0 (units of 1ifetime)

ample of this critical condition. Consider the dark resonance
of a five-level system, such as that in Fig. 2. ODR appears at FIG. 3. Fluorescence intensity of the system in Fig. 2 when the

those laser and rf frequencies derived from Ed), detuning frequency of the rf field betwedh) and|5) is scanned.
The intensity is appropriately normalize@ The case where fluo-
Agi—Ags Q43 Q14 rescence fron0) to |4) and|5) in Fig. 2 is forbidden, while that to
913 A13+ AOl_AOZ 0 :0, ‘1> and ‘2> is a”OWed, that iS,f]_:fz: %, f3:f4:O. RFDR at
Q4 0 AqgtAgi—Agy A45=3 is missing(b) The case where fluorescence from the excited

(20) state falls to all the ground statefg:=f,=f,=f,= 7. Fluorescence
completely vanishes whefi;5=3. The common conditions of the
taking into account the coefficients that prefix the coherencesalculation areT=3, T,=1, Q,5=10, Q,=10, Q;,=10, Q,:=10,
across the optical bridge, that ig;s, p3p, and ps, in the  Ajz=1, Ay3=2, andA;,=3.
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the validity of conventional dark resonance spectroscopy

0> (DRS). It is well known that in DRY 25,26 the decay time
A in the ground states can be determined by the depth of the
AN dip of dark resonance. In contrast, the critical level configu-
SN // AN ration mentioned above is an exception to which the conven-

tional interpretation of the depth of the dip is appliédow-
ever, ODR is free from this exception. The cases to which
! one must pay attention are only those of RFDR.
|(Po> In summary, the condition for dark resonance in any tree-
like system is obtained as a zero-determinant form of the
o TN |BO> submatrix of the Hamiltonian. If all fluorescences are forbid-
SN SN den to fall on all the levels included in a subtree, the system
| A : S B,> has another steady state and ODR can be missing. We verify
that at least one level on which fluorescence is allowed is
l I | necessary to avoid this critical condition.
Bank A Bank B

IV. DISCUSSION
FIG. 4. Example of a level configuration in which RFDR may

occur. Fluorescence fron0) to |AY's or |B)'s is necessary for One of the important cases of ODR for realistic experi-
RFDR to appear completelyNote that fluorescence twy has  ments is a hydrogen-like atom, e.g., alkali metal, with a nu-
nothing to do with the existence of RFDR. clei spinl#0. The ground state of i]=1/2, splits into two

hyperfine structuref =1+ 1/2,1 — 1/2. Assume that such an

nance[Fig. 3b)]. Below, we discuss this drastic difference atom is located on a static magnetic fidg.;. along thez
and find the sufficient and practical condition to avoid miss-axis to yield Zeeman splitting in first order and that two of
ing dark lines. the Zeeman components with the highestin each hyper-

The uniqueness of the steady state is closely related to thghe structure share a common excited level by the laser
condition of RFDR. The number of the steady states for Edfields. Figure %) represents the case for=3. If a rf mag-
(1) coincides with the degree of the degeneracy of the solunetic field that is linearly polarized along theaxis, withB
tion A=0 in the characteristic equation of the Hamiltonkdn for its amp"tude, is app“ed to mix the Zeeman components
|H—X\E[=0, whereE is the identity matrix. It is well known  within the sameF, the dark line splits itself into several
that|H—\E| always has a factdil—Xf,,) and if the system  pranches.(Note that g factors for the statess=I+1/
is a closed systerfwhich means no incoherent drain to or 2 | —1/2 accidentally have the same absolute value and op-
from the other systefs), i.e., (1-2f,)=0], it has at least posite signs because d1/2 and that one rf magnetic field
one steady-state solution. Therefore a certain special condign pe simultaneously resonant for bptRor this case we

tion for H is required forlH —\E|=0 to have another solu- can associate groug® andQ discussed in Secs. Il and Il
tion A=0. In other words|H| has to have a zero factor other wjth

than(1—=f,)). In this paper, we focus our attention on those
cases {IF=1+43, me=1+3),...|F=1+3, me=—(1+3))}

and

(F=1-3%, me=1-1),. . JF=1-% me=—(1-1))},

\é\{?ereHHS iiggfined d"?‘S ir|1 Elc(.1d4) ’ Thﬁ dglrk tr)(lasoni':mcde con- espectively. The total number of the dark lines can be ob-
ition |Hg| =0 immediately leads to the double valuedness o ained immediately from Eq(17),

the steady state in this case. This condition is not a special or
critical one for the practical level configuratiofBee the last Npno=41(1+1). (23
example in Sec. IV.In Appendix C we prove that, when

fluorescence is forbidden to fall on all energy levels of the(See Sec. Il A.

|H|=(1—Z fn)leMcons), (22)

subgroups in Fig. 4. i.e]A) and|B), the determinan{H]| The frequencies at which these dark lines appear are
can be factorized as E422). The ODR conditionHg=0  analogous with those of Zeeman splitting lines of a system
introduces another zero pole jH| besides(1 —=f,)=0. It  consisting of two angular momental,=1-1/2 and

follows that another steady state witk,#0 can suppress or J,=1+1/2 in a static magnetic fiel8=(B, 0, Bgggd. In
hide the dark steady state. In contrast, if fluorescence falls ofact, the off-diagonal part dfipg mixes all the adjacent lev-
at least one of the levels in such a group, this critical condiels within each ofl; andJ, and the matrix elements are the
tion Eq. (22) is broken and the system converges into thesame as those for the Zeeman interaction, that is, the proper
unique steady state of dark resonance even whikfi=0  Clebsh-Gordan coefficients multiplied by the rotational com-
(Fig. 3. ponents of the amplitude of the rf magnetic field
This phenomenon shows the role of the incoherent decaB , =B _=B/2 (of course, because the time dependence of
in dark resonance. If no fluorescence to the levels in thd3,; has been already removed and the effectBoseems
relevant tree is allowed, the mechanism of optical pumpingstatig. On the other hand, each component of the diagonal
for RFDR does not work and the population in the brightpart is the direct sum of the detuning frequerik in Eq.
state can exist all the time. This fact has a serious effect ofbf), that is,{0,A,2A,...(21 +1)A}PD{0,A,24A,...,21A}. There-
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(@) (2) (b)

F=3, m=+2

F=2, m;
+2
+1 L.
F=2, m, 0
+2 5
+1 7— F=1,m
» Mg
-1
0 —— 0
-1 04— +1
2 (©)
F_ 1 ’ mF laser detuning frequency (units of 1/lifetime) .
A
-1 5 ssignment
0
1

(b)

0
laser detuning frequency (units of 1/lifetime) Assignment]  Assignment2 \
4

_5 ( | | ]

- i rf Rabi frequency (units of 1/lifetime)

— 14 FIG. 6. Potassium atom with two laser fields and one rf mag-

netic field. (a) System configuration(b) Taking into account the

al 14 possible transitionga) can be rewritten as this complicated treelike

system. One rf field can be resonant with the hyperfine splittings

a4 A with different detuning frequencies for each transiti¢r). Calcu-

lated splitting pattern of dark lines in the LIF spectrum when the rf

4 | - power is increased. The parameters are determined for the potas-
0 2 4 sium atoml =3 in a static magnetic field of 1.5 G. The frequency of

rf Rabi frequency (units of 1/lifetime) the rf field is 461.7 MHz.

27

FIG. 5. Potassium atom with two laser fields and one rf mag-by the total J=3,2,1 and their Zeeman components,
netic field.(a) System configuration. Since tlgefactors for the two whose numbers of lines are 7,5,3, respectiv@gsignment

hyperfine structures have the same absolute value, the rf magne - .
field can be resonant with all the Zeeman spacings simultaneousla.(j' Therefore these dark lines can be assigned by the Jotal

(b) Calculated splitting pattern of dark lines in the LIF spectrum andm, . Another direct assignment is also possible: the five
when the rf power is increased. The parameters are determined f¢€€mMan components 65=2 are offset by the three values

the potassium atonh=3 in a static magnetic field of 3 G. The Of the Zeeman energy df=1 (assignment 2 This interpre-
frequency of the rf field is 4 MHz. tation is based on the fact that the resonance condition of

ODR is not affected by the optical field that would mingle
fore the components in the diagonal part correspond to thghe two angular momenta and that the two systems are iso-
(first-ordey Zeeman energy of a system including two de-|ated from each other. WheB,;~0, the dark lines are sepa-
coupled angular momentudy ,J, in a static magnetic field rated by SA. Because of the nonlinear Zeeman effect by
B=(0,0Bsad for their decoupled base s, )|m, ). For  B__. the splitting pattern is rather complicated in the con-
example, the dark resonance for the systenj in Fig. 5@  dition above(WhenBg,.is small enough foA to be evalu-
is graphically shown in Fig.(®). (The parameters are deter- ated in the linear region, the pattern resembles that in the
mined for potassium atomn=3 in static magnetic field of 3G strongB.)
and the rf magnetic field at 4 MHzThe Rabi frequency of Another important case is when a rf magnetic field is
laser field does not affect the line position, as we alreadyapplied to mix the two hyperfine structures with each other
mentioned. The total number of the dark lines is 15 from Eq[Fig. 6(@)]. This case can be rewritten as Figbg taking
(23). WhenB4; is sufficiently large, the system is separatedinto account the possible transitions. The matrix elements of
into several branches. This can be explained by the analogie off-diagonal part irHp for this case does not coincide
of the systeml=J,;+J,, which will split in a large field into  with those for Zeeman splitting because the relevant
branches corresponding de=J;+J5,J;+J,—1,... | 31— J5| Clebsch-Gordan coefficients are calculated between the two
and their Zeeman components. For the case of Fig) 5 different hyperfine structures. However, since the ladderlike
whereJ,;=1 andJ,=2, there are three structures, categorizedorm of the network of the system resembles the previous
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Poo
0.010 / \

0 AN
-10 -5 0 5 10
laser detuning frequency (units of 1/lifetime)

FIG. 7. LIF spectrum obtained from numerical integration

of the Bloch equation for the case of Fig. 6. The resonant Rabi F|G. 8. Level configuration of the potassium atom with two
frequencies of the rf field and laser fields are 4 and 60 multiplied byaser fields and one rf field in which RFDR may occur. The left
the appropriate Clebsch-Gordan coefficients, respectively. Th@ank of ground states is graphically equivalent to a symmetric five-
straight lines indicate the positions of dark lines derived from thelevel case24]. Besides the dark lines of ODR, those of RFDR can

analytic expression of the present thedfyig. 6(c)]. (The rf  appear when the rf frequency is scanned.
power is equal to 4.

itti - i A=o Bt B 0
example, the splitting pattern can be assigned similg8ge B - - — B
Fig. 6(c). The parameters are determined for the potassium _ 2\5 25 _ B
atom in a static magnetic field of 1.5 G and a rf magnetic 25 -2A 0 2\5 _0 (29
field at 461.7 MHz] The inhomogeneous frequency spacings By 0 4A B '
are due to those_transition moments not correspo_nding to the - 25 By By ﬁ
Zeeman interaction. The dark lines in the weak field appear 0 - E - m At s
at the detuning frequenci@\, which are more complicated
than the case in Fig.(8 because of the different signs of the
g factors in each hyperfine structure. The splitting patterriherefore
also can be assigned to five energy levels offset by three,
which corresponds to the number of ladderlike energy levels B2\ 12
relevant to ODR. S==*| A%+ 4—8 (29

Figure 7 shows a comparison between the results of the
numerical integration of Eq(l) and the dark line position
expected from the analytic expression of our theory. Not allThese new dark resonances would appear when the fre-
dark lines are resolved due to the power broadening. One cajuency of the rf field is scanned. However, recall that RFDR
see that a fine structure of dark lines does exist in the lings allowed only when at least one of the levels in the sub-
shape obtained by simulation. The degree of degeneracy @fystem accepts fluorescence from the excited l¢@eic.
the dark lines qualitatively explains the inhomogeneous lindll C). If the optically excited level in Fig. 8 idF=3,
widths of the(unresolvegidark lines. Then it can be said that mg=0), fluorescence is forbidden to fall on all the levels in
our simple theory also gives information for the line shape ofthe subset|F,mg)={|2,+2),|]1,+1),/]1,—1),]2,—-2)} (the left
LIF without a long calculation or simulation. bank of the ground state in the figlirexcept|2,0), the top

Finally, we consider the case of Fig. 8, which is quitelevel of the group. In this case, RFDR is incomplete from the
similar to Fig. &a). We do not show the splitting pattern of discussion in Sec. Il C. Figure(® is the result of the nu-
it, which is almost the same as Fig(ch [In fact, the off-  merical calculation of the line shap@n our assumption of
diagonal part oHpy is the same as that of Fig(&#. A few  negligible incoherent decay in ground states, no fluorescence
elements in the diagonal part are different, which contributds observed in ODR.Otherwise, if the excited state is one of
only to the weak-field regioh However, this level configu- the possible states, i.e.|F,mg)=|3,+1),2,0),|2,+1),
ration yields RFDR, which we discussed in Sec. Il B. Now |1,0),|1,+1), fluorescence to at least one level in the left bank
we defineA as the linear Zeeman splitting frequenéWe is allowed and complete RFDR occurs. For example, when
neglect the nonlinear component of it in order to make thehe excited state i, mg)=|3,+1), the fluorescence through
calculation  briefi The level configuration of the allowed transition3,+1)—|2,4+2) enables RFDR to ap-
pear[Fig. 9b)].
the same graph as Fig.() if we set A gor=—(A+), In summary, the frequencies of laser detuning at which
Apser=A—6, Ay=A—5, and A;,=3A—6, where § is the  dark lines appear are determined by the eigenvalues of a
detuning frequency of the rf field from-80 transition. Tak- Hermitian Hpg, which can be interpreted as a Hamiltonian
ing into account the Clebsch-Gordan coefficients1/5 of  of a system including two isolated systems under the decou-
the rf transitions, the condition for RFDR can be obtainedpled basis set. This interpretation enables one to predict the
from Eq.(15) as position of dark resonance intuitively or to assign the ob-
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transition with, e.g.,pg, the relation equation5a for

Poo FpApA has only one term and implies
0.0z F ’EPAPA:QPAPBZPBPA_QPBPA’EPADB
L (@) =2i Im(Qp p.Ppop,) =0 (A1)
0.01 b This relation is satisfied for all the tips in the network and
®) therefore they are cut down from the tree, assuming the
imaginary parts of the relevapts to be zero. This procedure
produces new tips in the network, which can be reduced
0 ; ' : using (A1). For example,

-10 0 10

rf detuning frequency (units of 1/lifetime)

(Q )+ (Q

poAppApB_QpApopoA poCppCpB_QpchppoC)
FIG. 9. LIF spectra obtained from numerical integration of
Bloch equation for the case of Fig. & When the excited state is
|F=3, mg=0), fluorescence to the left bank of ground states in Fig. =2i Im(QpoC'ﬁpch) =0. (A2)
8 is forbidden by the selection rulézluorescence tfF =2, mg=0)
has nothing to do with the existence of RFIDRhe dark resonance
is incomplete due to the double valuedness of the steady évate. All edges can be cut in these processes when the network is
The case where the excited statdFs=3, mg=+1). Fluorescence treelike.
completely vanishes on RFDR\;=*6.3). The common condi-
tions areT=3 and T,=1. The resonant Rabi frequencies of the rf
field and laser fields are 40 and 60 multiplied by the appropriate APPENDIX B: EXPANSION OF |H opgl
Clebsch-Gordan coefficients, respectively. The detuning frequen- WITH THE NONZERO FACTOR
cies of the laser fields are 1 for the left bank and 0 for the right

bank. The Zeeman spacing frequency is 0.1. Assume that a levab, e P is the tip of a tree angg is

the only energy level having a transition wiph . The equa-
served complicated resonance pattern of dark lines with théions includingp, are only Egqs(5b) and(5¢),
relevant energy levels and transitions. Because dark reso-
nance spectroscopy is a kind of Raman spectroscopy, it pos-
sesses the same advantageous properties of them such as
sub-natural resonance width. We showed that attention must
be paid to some critical level configurations in which ODR
can be hidden. It may be interesting that fluorescence condi- - 2
tion affects the existence of ODR, which is not the usual case X~B
of the Raman process.

o QPBPAPPAPB+ { B ( * ApApB)ppApB+ QPBPAPPBPB

Qp 0.Pp0,) = 0. (BI)

The fact thaﬁpApA is included only in this equation enables
_ _ _ N IHoprl to be expanded as®(Q, ., )[Hoprl, eliminating the
We obtain the analytic expression of the condition forcolumn for'b'pApA and the row fofi)'poA_ (The choice of the

optical dark resonance in multilevel and multiradiation SYS-4ouble sign depends on the position of the key in the matrix,

tem with an arbitrary treelikeh conf:guration underf tue but it is not important to our proof.Removing all the tips
rotating-wave approximation. The splitting pattern of the; : L pu
dark lines is found to be analogous to the energy shift of the“ke Pa brings about the new tips likg . Thoughpp,,, can

composite system of two systems. These dark lines are ef€ included in two(or morg equations in the original equa-
pected to be useful for the analysis of complicated multilevefions: (5b) or (5c), all of them except one have already been
systems. Our theory can reveal the fine structure of dark Iine@e[eted by the previous procedure. One can always expand
with power broadening. Furthermore, it is possible that theHoprl Using the keyp, .. and proceed until all the tips
complicated splitting pattern of the dark lines in the observed]o"pi P, have been removed. No tip remains after the same pro-
fluorescence spectrum can be assigned to the relevant levgddure for the grou®. (The last tippy, has already been
configuration and transitions. The advantage of the presemliminated by the assumption of ODREventually the rows
theory, that is, the general formalism for the arbitrary multi- of Egs. (5¢) and (5d) and the column fop,,, are eliminated
radiation and multilevel system without perturbation treat-from the conditionH opg/=0 with nonzero factors.

ment, is expected to be promising for the analytic studies of

multiphoton effect§27,28|.

V. CONCLUSION

APPENDIX C: PROOF OF EQ. (25
APPENDIX A: PROOF OF EQ. (6) IN EQ. (5) IN THE CRITICAL CASE

A brief and elementary proof is as follows. Assume thata When we call the two bank& andB (Fig. 4), the condi-
level ppe P is the tip of a tree. Becausg, has only one tion of RFDR can be written as
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Apg, Qap, - Im(EBiBj)=O when QBiBjaﬁO. (Co)

[Hel=| Qap, Ang, =0 (€D Note that those substitutions are valid for subsysténzsd
: ‘ B because we assume that no decay terms are included in

groupsA andB. In contrast, the proof of Eq6) in Sec. Il is
from Eq.(12). We define the energy level, as the stem on  based on the condition of dark resonance, which forces no
which A and B are hooked. We now return to the Schro fluorescence to appediThis is equivalent to the assumption
dinger equatior(1), in which the optical population and co- of no decay terms.From (C5) and (C6), the coherences
herence have not been set to zero. If we focus our attentioglirectly driven by the applied radiation, that is,
on the subtreed, B, and ¢, (1) can be rewritten, usinglg PAAPBB Pehg and their complex conjugates can be re-

in (C1), placed with their real parts.
The submatrixM has only four nonzero components. In
H 0 M 0 fact, all the time differentials of the coherence across the
d PA;B; S _ _ bridgedI)'AiBj /dt are made only prXBY, exceptp, a, and
gt | Pam O Pag | = 0 L N ifs orifg Pogs, that is,
otherwise
doas,/dt=1Q, a Re(p, 5 )—1Q, 8 Re(p, A )
r (as) 7
+.71 PAB. ) C
% Paa; OF Pgig, . (2 iP]
PegAg OF PegB,
otherwise dpea,/dt=1Qy a Re&(p, )~ 10,8, Ry
+ »7('5Ai B j) , (C8

The component;@AiAj, PBB;» Poghy a”dP<poBo on the right-
hand side are those coherences created directly by the aRhere.7 is a function o

plied radiation, that isQAiAjaﬁO, QBiBjaﬁO, Q%AO#O, and fEAiBj- ThereforeM is written as

Q, g #0. On the other hand, those on the left-hand side are i0 —i0
?050 . . ! ©0A0 I ©0Bo 0
the coherences across the bridge and the population. ) )
Now we assume that aif , andifg are zero and get M= iQen, ~1Qgms, 0 c9)
0 0 0
q PAB; Hs 0 M 0
at pPaa, OF pepB, | = 0 L N O The submatrixN has only two nonzero components for
otherwise dpaga,/dt anddpg g /dt through the relations
PaB, dpaga,/dt=2iQ A Re(5¢OAO)+'7(5AiAj)- (C10
A OF pgg ~ . —~ o~
Pan = PeR L (ca dPege,/dt=2i0 5 ReF, )+ 7 (Pag) (C1D
PegAg O PegB,
otherwise and the matrixN is expressed as
What we show below is that the expansion of the determi- 21 gen, _ 0 0
nant|H| with the key of the submatriM yields zero and N= 0 2y, 0 - (12

that|H| can be expanded as 0 0 0

Hs 0 M O
HI=[0 L N 0|=|Hd

0 The matriced andN are expanded in the same manner as in
‘_ (C4) Sec. Il with a nonzero factor. In fact, the proof in Appendix
t B is also valid for any steady state. After the final stage of
this expansion, all of the four componentsMf that is, the
first and second column ¢€9), are already eliminated, with
Within groupsA andB, to which no fluorescence is allowed the components ofC12 being adopted for the key of ex-

to fall because of, e.g., the selection rule, B).is satisfied, pansion. ThereforéH| can be expanded as
that is,

- Hs O
IM(pan)=0 when Qpp #0, (C5) HI=IT (zQ)| > ~|=C|H4. (C13
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