
Optical dark resonance in multilevel systems with a treelike configuration

H. Kanokogi and K. Sakurai
Department of Pure and Applied Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan

~Received 16 October 1995; revised manuscript received 22 March 1996!

Optical dark resonance in systems with arbitrary multilevels and multiphotons is studied theoretically. When
the system configuration is treelike~the term of graph theory!, all the coherence terms in the system can be
categorized into several groups on dark resonance. It is proved for generic system configurations with arbitrary
multilevels that the resonance conditions can be obtained successively by setting the determinant of the
submatrix of the Hamiltonian with respect to each group to zero. We calculate, as one of the practical
examples, all the conditions of dark resonance of potassium atoms with two laser fields and one rf field mixing
one excited state and eight ground states in the hyperfine structure. Although the system configuration is very
complicated, the condition is easily obtained in an analytic form and verified by the result of a numerical
simulation. Furthermore, our theory can reveal the fine structure of dark lines with power broadening in the
observed light-induced-fluorescence spectra and numerical calculations. In addition, the dark lines with the
complicated splitting pattern observed in experiments can be assigned to the relevant level configuration and
transitions by the present theory.@S1050-2947~96!00808-6#

PACS number~s!: 42.50.Gy, 42.50.Hz

I. INTRODUCTION

Optical dark resonance~ODR! is one of the coherent mul-
tiphoton processes and can prohibit fluorescence with a nar-
rower resonance in the observed spectrum than the natural
linewidth @1#. Its wide applicability to previous experiments
such as trapping experiments and precise spectroscopies is
due to its Doppler sensitive and sub-natural property. Multi-
photon processes have also been investigated from the view-
point of Raman processes from the early days@2–7#. One
curious feature of the multiphoton process ODR is found as
black lines in the spectrum of sodium atoms@1,8#. This type
of nonabsorbing atomic coherence was discussed theoreti-
cally by Arimondo and Orriols@1# using the steady state
theory for coherent two-photon process@9#. ODR in the
three-levelL configuration has been discussed in several pa-
pers@10–13# and observed in trapping and multiwave mix-
ing experiments@8,14,15#.

One of the important applications of ODR is the laser
cooling below the one-photon recoil limit@16–23#. The deep
cooling proved to be realized by the nonabsorbing~no pres-
sure! states for trapped atoms at zero velocity due to ODR.
Another application is the analytic prediction and intuitive
interpretation of the line-shape function of laser-induced
fluorescence~LIF!, as discussed in this paper. Because the
direct calculation of the LIF spectrum is known to give a
large analytical result, as in our previous paper@24#, even for
a five-level system, the determination of the condition of
ODR is indispensable to get a more intuitive interpretation of
the spectrum. The line shape of LIF is affected drastically by
ODR because ODR may appear at nearly resonant condition
between fields and materials and make the strong fluores-
cence vanish completely. Especially in the intense fields, the
effect of ODR becomes dominant, and the explanation of the
whole line shape of LIF requires not only the analysis of the
usual intense-field approximation but also the fine structure
due to ODR.

For example, consider the double-resonance experiment

of Fig. 1~a!, which may often be the case of various atoms
such as potassium~I53

2!. The line shape of LIF might be
expected to have a single peak when the frequency of the rf
field is fixed and that of the laser field is scanned. However,
taking into account the detailed level structure~Zeeman sub-
levels! and the selection rule, the Fig. 1~a! becomes a system
that includes nine levels and eight radiations, as in Fig. 1~b!.
~We assume appropriate polarizations for the laser and rf
fields here.! Note that one rf and laser field can drive several
transitions simultaneously, as seen in Figs. 1~a! and 1~b!,
when the relevant transitions are nearly degenerate or the
resonant Rabi frequencies of the fields are large enough. The
intensity of LIF from this system of Fig. 1~b! is numerically
calculated as in Fig. 1~c!, in which the frequency of the rf
field is fixed and that of the laser is scanned~x axis!. The
resonant Rabi frequency of the laser fields is intentionally set
much larger than the reciprocal number of the lifetime of the
atom to make ODR dominant in the spectrum. Though the
outline of this spectrum surely has a single peak as expected,
the complicated structure of the near-resonant condition is
remarkable. This is because ODR makes the fluorescence
vanish even in the near-resonant condition for strong fluores-
cence and therefore ODR may have a large influence on line
shape.

In this paper we show the analytic solution of all the
conditions for ODR in multilevel and multiradiation systems
under the rotating-wave approximation~RWA!. The condi-
tion of the radiation frequency and strength for ODR in the
multilevel system is determined for arbitrary multiphoton
processes. For example, all the positions of ODR in the sys-
tem of Fig. 1~b! are determined analytically by a simple ma-
trix calculation. From the present theory, the LIF spectrum of
Fig. 1~c! turns out to contain 15 dark lines~see later Fig. 7!,
where the numerical result@Fig. 1~c!# is too obscure to find
this fine structure. In addition, the intuitive interpretation of
the splitting pattern of dark lines has proved to be possible
for complicated systems such as that in Fig. 1~b!. Therefore
the parametric dependence of the LIF spectrum in multilevel
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systems on field intensity and detuning frequency can be
determined in detail.

In Sec. II we show that the steady-state resonance of ODR
in the multilevel system could be categorized into two kinds
of resonance conditions described by simple matrix determi-
nant forms under the RWA of the optical Bloch equation.
One of these determinants is proved to be the condition for
ODR and the other is reduced to a simpler form with again
two kinds of subdeterminants in Sec. III. Therefore, succes-
sive application of this procedure reveals all the branches of
dark resonance in an arbitrarily complicated system~Sec.
III B !. However, not all these branches are observed in the
LIF spectrum in some critical cases due to the double val-
uedness of the steady-state condition, which we discuss in
Sec. III C. We calculate, as one of the practical examples, the
condition of dark resonance of potassium atoms with two
laser fields and one rf field mixing one excited state and eight
ground states in the hyperfine structure~Sec. IV!. We also
show that our theory can resolve the dark lines with power
broadening in the observed LIF spectrum into a fine struc-
ture. Finally, we conclude our theory in Sec. V.

II. THE CONDITION FOR DARK RESONANCE
IN AN N-LEVEL SYSTEM

In this paper we treat those systems with arbitrary multi-
levels and multi-radiations such that all the levels are con-
nected by the radiations without constructing any cycle. In
other words, the level scheme forms a tree~a term of graph
theory!. Several proofs below are based on this requirement.
Note that a tree need not grow in one direction.@Figure 1~b!
is a kind of tree.# Binary trees are not assumed. In addition,
while the decay terms for the population or the coherence of
the optically excited level are always necessary for the phe-
nomenon of ODR, those in the ground states tend only to
make the resonance of ODR dull. In order to make our
theory clear, we neglect the latter throughout this paper. This
is a reasonable assumption when the energy spacings within
the ground states are assumed to be in the rf~or microwave!
region and they can be stable enough in the realistic experi-
ments.

The well-known optical Bloch equation for the density
matrix r is

i\
]

]t
r5Hr2rH1 i\D , ~1!

where the decay termD is

D55
2
1

T
r00 for the excited-state population

2
1

T2
rpq for optical coherence~p50 or q50)

1
f p
T

r00 for the ground-state populations

and

( f n51, ( rnn51. ~2!

The subscript 0 means the unique optically excited level.
~Considering more than two excited states does not lead to
any essential change in the proof below.! T andT2 are the
decay times for the optical population and coherence, respec-
tively. f p is called the repopulation ratio@1# and defines the
ratio of how the population in the optical excited state is
redistributed to the ground statep. The Hamiltonian is de-
fined as

Hpq5dpqEp1\Vpq„exp$ i @~Ep2Eq!/\1Dpq#t1 iupq%

1c.c.…, ~3!

whereEp is the energy of the levelp, Dpq is the detuning
frequency of the radiation from the atomic transition be-
tween levelsp andq, upq is the constant phase factor of the
field, andVpq5mpqEpq/2\ is the Rabi frequency for the
resonant radiation betweenp andq levels.

First, we introduce slow varying amplituder̃ to subtract
the phase factors rotating at the frequencies of the radiations
and apply the RWA in the ordinary manner.r̃ is defined as

FIG. 1. ~a! Example of multilevel laser rf double-resonance sys-
tem, one of which is an alkali metal havingI5 3

2. ~b! Detailed con-
figuration of ~a!, considering Zeeman sublevels.~c! Typical LIF
spectrum for the system~b! when one of the frequencies of the laser
fields is scanned. All the parameters are the same as the example
discussed in Fig. 7.
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rpq~ t !5 r̃pq~ t !expF2 i S ~Ep2Eq!/\1 (
p,...,ab,...,q

~6Dab! D
3t2 i (

p,...,ab,...,q
~6uab!G , ~4!

wherep andq need not to be adjacent levels.p,...,ab,...,q
means that the subscriptab runs along the radiation network
from the levelp to q. The uniqueness of the path fromp to
q is ensured since the system is like a tree and has no cycle.
The double sign ofDab or uab is taken to be the same as that
of (Ea2Eb). The diagonal termr̃nn is the same asrnn . After
substituting Eqs.~3! and~4! in the Schro¨dinger equation~1!,
settingdr̃nn/dt50, and neglecting the terms rapidly rotating
at the double frequency of any radiation, one gets a set of
linear equations that does not contain the timet explicitly. In
addition, a careful calculation verifies that all of the phase
constantsuab cancel each other.

When the system under study has more than one optically
excited state and several optical transitions, the definition of
dark resonance becomes ambiguous: Is dark resonance de-
fined for the state with no fluorescence for all optical transi-
tions or one specific transition? In any case, the system with
one optically excited state and two laser fields is the basis of
analysis, which we assume here the system is like.~We dis-
cuss the system with several excited levels and more than
two laser fields at the end of Sec. III A.! We categorize all
the ground states into two groupsP andQ, wherepiPP
( i50,1,...,np21) andqsPQ (s50,1,...,nq21) are linked
only with the element~s! in the same group by rf transi-
tion~s!. p0 andq0 denote those top levels in each group that
have optical transitions with the excited level@Fig. 1~c!#.
This discrimination is not trivial, because it is essential for
ODR that the optical coherencer̃0x,r̃x0 and populationr̃00,
which would connect the two groups, vanish and disconnect
the groupP fromQ. ~For example, the cascade type of three-
level system does not exhibit ODR because the ground states
cannot be divided likeP andQ.!

Dark resonance is observed as a sharp dip in the
LIF spectrum@1#. It is well known that the depth of the dip
depends on the relaxation time of the coherence and popula-
tion in the ground states~not the excited states!. On our
assumption that all the relaxations within the ground states
are negligible, the dip drops exactly to zero~i.e., no fluores-
cence is observed!. Therefore, in order to obtain the condi-
tion required for ODR, we can replace the optical population
r̃00 in the set of the linear equations for the steady state
simply with 0 since no population exists in the excited state
on the ODR condition.r̃0x5 r̃x050 follows the condition of
r̃0050. Note that, while settingr̃nn5a does not determine
r̃nx andr̃xn in general,r̃nn50 does whether the system is in
a pure or mixed state. After the substitutions mentioned
above, we get

r8 pipi5 (
pxPP

Vpipx
r̃pxpi

2 (
pxPP

r̃pipx
Vpxpi

50, ~5a!

r8 pipj52~6Dpipj
!r̃pipj

1Vpipj
r̃pj pj

2Vpj pi
r̃pipi

1(
xÞ j

Vpipx
r̃pxpj

2(
xÞ i

Vpxpj
r̃pipx

50

~Vpipj
Þ0, iÞ j !, ~5b!

r8 0p052V0p0
r̃p0p0

2V0q0
r̃q0p0

50, ~5c!

r8 0pi52V0p0
r̃p0pi

2V0q0
r̃q0pi

50 ~ iÞ0!, ~5d!

r8 pipj52S (
pi ,...,ab,...,pj

~6Dab! D r̃pipj
1(

xÞ i
Vpipx

r̃pxpj

2(
xÞ j

Vpxpj
r̃pipx

50 ~Vpipj
50, iÞ j !, ~5e!

r8 piqs52S (
pi ,...,ab,...,qs

~6Dab! D r̃piqs
1(

xÞ i
Vpipx

r̃pxqs

2(
xÞs

Vqxqs
r̃piqx

50, ~5f!

where i50,1,...,np21, j50,1,...,np21, and
s50,1,...,nq21. Note that Eqs.~5! include no decay terms.
The positions at which ODR appears are independent on the
lifetime T of the atoms, the decay timeT2 of optical coher-
ence, and the repopulation ratiosf n . ~The line profile is of
course affected by them.!

One of our main purposes in this paper is to obtain the
condition in which~5! has nontrivial solution ofr̃. Note that,
when the duplicated complex conjugates, the meaningless
equation fordr̃00/dt, and the variablesr̃0x,r̃x0,r̃00 are ex-
cluded, Eqs.~5! are np1nq11C21(np1nq11) equations

with np1nq11C2 variables. First, we reduce the number of
the equations by applying a relation

Im~ r̃pipj
!50 when Vpipj

Þ0, ~6!

which is equivalent to Eq. 5~a!. The proof of Eq.~6! is based
on the assumption that the network of the energy levels and
the radiations is treelike again~Appendix A!.

Therefore we can exclude thenp1nq equations of~5a!
from consideration, requiring thatr̃ i j5 r̃ j i ~V i jÞ0!. At this
point, one can define a square matrixHODR and a vector
r̃ODR, which consist of the components of the density ma-
trix, and get an equivalent expressionHODRr̃ODR50 for them
because~5b!–~5f! have the same number of variables as that
of the equations~5b–5f!. It is clear thatuHODRu50 is the
necessary condition to seek. We expanduHODRu systemati-
cally into a simpler form below.

In simplifying uHODRu, ~5b!, ~5c!, and the columns for
dr̃pipi

/dt anddr̃pipi
/dt can be expanded with nonzero fac-

tors such asVpipj
. The proof is also based on the assumption

of the system being a tree~Appendix B!.
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~Note that the first determinant of the right-hand side is that
of a squared matrix.! The second one has a single compo-
nent, such as (2V0p0

r̃p0pi
), in the row that can be expanded

along the row with the nonzero factor (2V0p0
). Simulta-

neously, the columns forr̃p0pi
~or r̃q0qi

!, that is, the coher-

ence between the ground stateq0 ~or p0! and all the levels
belonging to the groupP ~or Q!, can be eliminated in Eq.
~8!. The dark resonance in a complicatedN-level system that
has several branches in its level configuration is character-
ized by this elimination. The requirementr0050 descends to

the subsystemP ~or Q! to let r̃p0pi
and r̃q0qi

be zero, which
we discuss in Sec. III B.

The first determinant on the right-hand side in Eq.~8!
contains the coefficients fordr̃pq/dt and their complex con-
jugates fordr̃qp/dt. From Eq.~5f!, it can be seen that the
coefficients forr̃pq are completely decoupled from those for
r̃qp . If we define the coefficient matrix forr̃pq asHS , the
first determinant on the right-hand side in Eq.~8! including
both r̃pq and r̃qp can be reduced asuHSu

2.
We conclude this section with the following proposition.

The condition required for ODR is that at least one of the
following sets of equations has a nontrivial solution forr̃:

S (
pi ,...,ab,...,pj

~6Dab! D r̃pipj
5 (

xÞ i , j ,0
Vpipx

r̃pxpj
2 (

xÞ i , j ,0
Vpxpj

r̃pipx

05 (
xÞ i , j ,0

Vpipx
r̃pxpj

2 (
xÞ i , j ,0

Vpxpj
r̃pipx

~pipj : Vpipj
50, iÞ0, jÞ0, iÞ j !,

~pipj : Vpipj
50, i50 or j50, iÞ j !,

~9!

or

S (
pi ,...,ab,...,qj

~6Dab! D r̃piqj
5(

xÞ i
Vpipx

r̃pxqj

2(
xÞ j

Vqxqj
r̃piqx

, ~10!

or an equation similar to Eq.~9! for the groupQ. That is, in
a matrix form,

uHS1
u50 ~11!

or

uHS2
u50 ~12!

or

uHS3
u50, ~118!

where the definition ofHS1
is, for the indicesm5(pipj ) and

n5(pkpl),

~HS1
!mn55 (

pi ,...,ab,...,pj
~6Dab!, i5k, j5 l

2Vplpj
i5k, jÞ l

Vpipk
iÞk, j5 l

0 otherwise

~13!

andHS2
, for m5(piqj ) andn5(pkql),

~HS2
!mn55 (

pi ,n...,ab,...,qj
~6Dab!, i5k, j5 l

2Vplqj
i5k, jÞ l

Vpiqk
iÞk, j5 l

0 otherwise.

~14!

HS3
can be obtained if one replaces thep’s with q’s in the

definition ofHS1
. WhetherVxy is zero or nonzero depends

on the actual form of the system under study. It is easily
verified thatHS is Hermitian~or symmetric because we take
V to be real!, if we redefineHS so that the coefficients
(ab(6Dab) are located on the diagonal part of the matrix.

III. TWO BRANCHES OF DARK RESONANCE

The condition for ODR obtained in the preceding section
consists of two kinds of solutions derived from Eqs.~9! and
~10!. These two branches of ODR have different properties.
For example,~9! is independent of the frequencies of lasers,
but ~10! is not, which means that even their applications for
the experiments differ from one another. We first discuss the
condition of Eq.~12! in Sec. III A, which is important espe-
cially for trapping experiments, and second those of Eqs.
~11! and ~118! in Sec. II B. One more important problem is
the convergence of the time development of the ODR signal.
It is proved that the assumption ofr0050 gives us the reso-
nance condition of ODR in the steady-state treatment for
almost all configurations of the system in Sec. III C.

A. Coherence across the optical bridge

Recall that the Hermitian of Eq.~14! is obtained by pick-
ing up, from the Hamiltonian for the whole system under
study, the components of the coherence created between the
two groups of the energy levelsP andQ that share a com-
mon level by radiations. The resultant matrix proves to co-
incide with the Hamiltonian of a new system including only
P andQ, which are uncoupled from each other, while the
basis set of it is the direct product of each of the states inP
andQ, $uPi&uQj&%. The components of the diagonal part are
determined by sequential sums of the detuning frequencies
along the radiation network. The eigenvalues ofHDR are the
direct sum of the perturbed energy~self-energy in the
dressed-atom picture! of P andQ by the radiations within
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each of them. Dark resonance appears when the difference of
the detuning frequencies of the two laser fields is equal
to that of the eigenvalues. In other words, it is when the
laser fields resonantly stimulate the transition betweenP
andQ, which are shifted by rf transitions. It must be empha-

sized that the optical transitions do not shift the resonance
position at all, which discriminates dark resonance from
other multiphoton processes. For example, Eq.~10! and its
determinant for the five-level symmetric system@24# are
written as

U D laser

V rf1

2V rf2

0

V rf1

D laser2D rf2

0
2V rf2

2V rf2

0
D laser1D rf1

V rf1

0
2V rf2

V rf1

D laser1D rf12D rf2

U50, ~15!

D laser
4 12D rfD laser

3 1$D rf
22D rf1D rf222V rf

2%D laser
2 2$D rf1D rf2

12V rf
2%D rfD laser1~V rf1

2 2V rf2
2 !22~V rf2

2 D rf1
2 1V rf1

2 D rf2
2 !

1V rf
2D rf1D rf250, ~16!

where

V rf5AV rf1
2 1V rf2

2,

D rf5D rf12D rf2 .

We return to the general case, Eq.~10!. Noticing that the
subscriptab in (pi ,...,ab,...,qj

(6Dab) always runs through
p0→0, 0→q0, that is, the optical bridge. Becausepi andqj
belong to the deferent banks, it can be said that
(pi ,...,ab,...,qj

(6Dab) always contains bothDlaser1andDlaser2

as a form ofDlaser12Dlaser2[Dlaser. This property is not
seen in ~9!, where ab runs within a bank in
(pi ,...,ab,...,pj

(6Dab). In other words, the Doppler-sensitive
dark resonance, which is important for trapping experiments,
is obtained only from~10! and the branches determined by
~9! are insensitive to the velocity of an atom because the rf’s
are low enough and the effect of the Doppler shift onDrf for
the condition of ODR is negligible.

In summary, the optical frequencies at which the dark
lines appear are therefore easily obtained, for any system
configuration with a tree form, without quite a lengthy deri-
vation of r̃00 @24# by picking up the equations forr̃piqj

~the
coherence between two banksP andQ! from Eq. ~5! and
requiring the determinant of the coefficient matrix to be zero.
In addition, one finds a useful relation between the system
configuration and the number of dark lines. The number of
lines is

nODR5npnq ~17!

if one neglects the accidental degeneration of dark lines.
In addition, it is clear that ODR does not appear when

nq50 ~single bank!, which corresponds to, e.g., the three-
level cascade system. Furthermore, if the system has many
banks such as (P,Q,R,...), the number of ODR lines is
(A,B(nAnB), A,BP$P,Q,R,...%, AÞB. ~The proof is given
in the same way as that for two banks.! The condition for
ODR is uHSu50 for any two combination of two banksA and
B.

B. Coherence within each bank

This subsection is devoted to the explanation of the dark
resonance of Eqs.~11! and ~118!. This type of resonance is
detected by scanning the frequencies not of lasers, but those
of rf fields while the signal is observed as a dip in LIF as
ODR is. @This is easily confirmed from the fact that the re-
quired condition~9! does not contain the detuning frequen-
cies of lasers at all.# One might think that the dark resonance
in the rf domain~RFDR! should be the same as the ODR
discussed above. For example, in Fig. 2, a well-known type
of dark resonance within the three-levelL configuration
$u1&,u3&,u4&% should occur whenD135D14, with no fluores-
cence observed. However, in our derivation of Eq.~9! from
Eq. ~1!, we assume that only the population inu0& is ex-
hausted and not inu1&, like the case of Sec. III A. In addition,
none of the optical pumping required for dark resonance oc-
curs since we assume no incoherent decays within
$u1&,u3&,u4&%. ~This means that the time development does not
necessarily converge to the dark state.! In spite of these dif-
ferent situation, most cases allow RFDR to appear in the LIF
spectrum whenD135D14, as follows.

It is clear that Eq.~9! includes only the coherence com-
ponents of the density matrix within the groupP. In addition,
the termsrp0pX

or rpXp0
, which are relevant to the top level

of the treeP, have been already eliminated from the equa-
tions in Sec. III A or, in another sense, they can be said to be
assumed zero. These situation are just the same as Eqs.~5d!–
~5f! in Sec. II, wherer0X andrX0 are forced to be zero for

FIG. 2. Simplest level configuration in which RFDR appears as
well as ODR.
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ODR if we replace the indexp0 by 0. It may be surprising
that the condition for RFDR, that is,rp0pX

5rpXp0
50, is not

assumed but automatically introduced by the condition for
ODR, r005r0X5rX050.

Now we call the subbanks hooked on the levelp0 by R
andS, whose elements of the levels arer i and si , respec-
tively. Successive application of the procedure explained be-
low Eqs.~5d!–~5f! reduces the condition~9! for RFDR to

S (
r i ,...,ab,...,r j

~6Dab! D r̃ r i r j
5 (

xÞ i , j ,0
V r i r j

r̃ r xr x
2 (

xÞ i , j ,0
V r xr j

r̃ r i r x
~r i r j : V r i r j

50, iÞ0, jÞ0, iÞ j !,

05 (
xÞ i , j ,0

V r i r x
r̃ r xr j

2 (
xÞ i , j ,0

V r xr j
r̃ r i r x

~r i r j : V r i r j
50, i50 or j50, iÞ j !,

~18!

S (
r i ,...,ab,...,sj

~6Dab! D r̃ r i sj
5(

xÞ i
V r i r x

r̃ r xsj
2(

xÞ j
Vsxsj

r̃ r i sx
,

~19!

with an equation similar to Eq.~18! for groupS. Again, the
condition in which Eq.~19! has a nontrivial solution for the
ri js can be simply represented as a determinant of the coef-
ficient matrix being zero. Equation~18! can be reduced fur-
ther by the same procedure. Therefore, the present theory is
self-scalable for the subbanks in the system. The condition
for dark resonance can be obtained for an arbitrary multilevel
system by a cascaded application of the procedure in Sec. II.
Eventually, all of the RFDR conditions can be obtained by
picking up all of the coherences across the bridge in the
subbanks successively.

RFDR is Doppler insensitive. In fact, Eqs.~18! and ~19!
do not contain the detuning frequency that is determined by
the velocity of atoms as well as the Rabi frequency of the
optical field ~but rf field! and one cannot observe RFDR in
LIF when the frequency of laser is scanned. In addition,
RFDR can be missing in LIF if the system is configured in a
particular way, discussed in the next subsection.

C. Critical condition for RFDR

One problem important especially for ODR and RFDR is
whether or not the steady-state solution of the system is
uniquely determined under any initial population distribu-
tion. For example, since three-levelL @1# and five-level sym-
metric configurations@24# have an~analytic! unique expres-
sion for the steady-state line profile of LIF, the observed
spectrum is proved to be independent of the initial condition.
The conclusion is that ODR is always observable for any
case. On the other hand, RFDR can be missing when the
system is configured in a particular way, as discussed in this
subsection. Before proceeding, we show the simplest ex-
ample of this critical condition. Consider the dark resonance
of a five-level system, such as that in Fig. 2. ODR appears at
those laser and rf frequencies derived from Eq.~10!,

UD012D02

V13

V14

V13

D131D012D02

0

V14

0
D141D012D02

U50,

~20!

taking into account the coefficients that prefix the coherences
across the optical bridge, that is,r12, r32, and r42 in the

Schrödinger equation~1!. In addition, RFDR within the bank
$u1&,u3&,u4&% is derived from Eq.~19! simply as

D135D14. ~21!

Note that Eqs.~20! and ~21! are independent of the repopu-
lation ratio of fluorescencef n . However, it can be confirmed
that if f 35 f 450, the system has two steady states when
D135D14. The dark resonance~RFDR! r0050 is not a unique
solution. Another one havingr00Þ0 and the arbitrary linear
combination of them can appear in the system, depending on
the initial condition. In fact, the line profile of the fluores-
cence to be observed is Fig. 3~a! ~the initial conditionr2251
and all the other components of the density matrix are zero!
and the dark resonance is completely missing in it.
@But the solution of r0050, r335V13

2 /~V13
2 1V14

2 !,
r445V14

2 /~V13
2 1V14

2 !, and r̃3452V13V14/~V13
2 1V14

2 !, with
all the other components being zero, does satisfy Eq.~1! for
the steady state. In addition, this solution is of course stable
because Eq.~1! is a linear, simultaneous differential equation
and its steady-state solution is always stable.# On the other
hand, if f 3Þ0 or f 4Þ0, the system does exhibit dark reso-

FIG. 3. Fluorescence intensity of the system in Fig. 2 when the
detuning frequency of the rf field betweenu1& and u5& is scanned.
The intensity is appropriately normalized.~a! The case where fluo-
rescence fromu0& to u4& and u5& in Fig. 2 is forbidden, while that to
u1& and u2& is allowed, that is,f 15 f 25

1
2 , f 35 f 450. RFDR at

D1553 is missing.~b! The case where fluorescence from the excited
state falls to all the ground states:f 15 f 25 f 35 f 45

1
4 . Fluorescence

completely vanishes whenD1553. The common conditions of the
calculation areT5

1
2, T251, V13510, V23510, V14510, V15510,

D1351, D2352, andD1453.
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nance@Fig. 3~b!#. Below, we discuss this drastic difference
and find the sufficient and practical condition to avoid miss-
ing dark lines.

The uniqueness of the steady state is closely related to the
condition of RFDR. The number of the steady states for Eq.
~1! coincides with the degree of the degeneracy of the solu-
tion l50 in the characteristic equation of the HamiltonianH,
uH2lEu50, whereE is the identity matrix. It is well known
that uH2lEu always has a factor~12(f n! and if the system
is a closed system@which means no incoherent drain to or
from the other system~s!, i.e., ~12(f n!50#, it has at least
one steady-state solution. Therefore a certain special condi-
tion for H is required foruH2lEu50 to have another solu-
tion l50. In other words,uHu has to have a zero factor other
than~12(f n!. In this paper, we focus our attention on those
cases

uHu5S 12( f nD uHSu~const!, ~22!

whereHS is defined as in Eq.~14!. The dark resonance con-
dition uHSu50 immediately leads to the double valuedness of
the steady state in this case. This condition is not a special or
critical one for the practical level configuration.~See the last
example in Sec. IV.! In Appendix C we prove that, when
fluorescence is forbidden to fall on all energy levels of the
subgroups in Fig. 4. i.e.,uA& and uB&, the determinantuHu
can be factorized as Eq.~22!. The ODR conditionuHSu50
introduces another zero pole inuHu besides~1 2(f n!50. It
follows that another steady state withr00Þ0 can suppress or
hide the dark steady state. In contrast, if fluorescence falls on
at least one of the levels in such a group, this critical condi-
tion Eq. ~22! is broken and the system converges into the
unique steady state of dark resonance even whenuHSu50
~Fig. 3!.

This phenomenon shows the role of the incoherent decay
in dark resonance. If no fluorescence to the levels in the
relevant tree is allowed, the mechanism of optical pumping
for RFDR does not work and the population in the bright
state can exist all the time. This fact has a serious effect on

the validity of conventional dark resonance spectroscopy
~DRS!. It is well known that in DRS@25,26# the decay time
in the ground states can be determined by the depth of the
dip of dark resonance. In contrast, the critical level configu-
ration mentioned above is an exception to which the conven-
tional interpretation of the depth of the dip is applied.~How-
ever, ODR is free from this exception. The cases to which
one must pay attention are only those of RFDR.!

In summary, the condition for dark resonance in any tree-
like system is obtained as a zero-determinant form of the
submatrix of the Hamiltonian. If all fluorescences are forbid-
den to fall on all the levels included in a subtree, the system
has another steady state and ODR can be missing. We verify
that at least one level on which fluorescence is allowed is
necessary to avoid this critical condition.

IV. DISCUSSION

One of the important cases of ODR for realistic experi-
ments is a hydrogen-like atom, e.g., alkali metal, with a nu-
clei spin IÞ0. The ground state of it,J51/2, splits into two
hyperfine structuresF5I11/2,I21/2. Assume that such an
atom is located on a static magnetic fieldBstatic along thez
axis to yield Zeeman splittingD in first order and that two of
the Zeeman components with the highestmF in each hyper-
fine structure share a common excited level by the laser
fields. Figure 5~a! represents the case forI53

2. If a rf mag-
netic field that is linearly polarized along thex axis, withBrf
for its amplitude, is applied to mix the Zeeman components
within the sameF, the dark line splits itself into several
branches.~Note that g factors for the statesF5I11/
2,I21/2 accidentally have the same absolute value and op-
posite signs because ofJ51/2 and that one rf magnetic field
can be simultaneously resonant for both.! For this case we
can associate groupsP andQ discussed in Secs. II and III
with

$uF5I1 1
2 , mF5I1 1

2 &,...,uF5I1 1
2 , mF52~ I1 1

2 !&%

and

$uF5I2 1
2 , mF5I2 1

2 &,...,uF5I2 1
2 , mF52~ I2 1

2 !&%,

respectively. The total number of the dark lines can be ob-
tained immediately from Eq.~17!,

nPnQ54I ~ I11!. ~23!

~See Sec. III A.!
The frequencies at which these dark lines appear are

analogous with those of Zeeman splitting lines of a system
consisting of two angular momentaJ15I21/2 and
J25I11/2 in a static magnetic fieldB5~Brf , 0, Bstatic!. In
fact, the off-diagonal part ofHDR mixes all the adjacent lev-
els within each ofJ1 andJ2 and the matrix elements are the
same as those for the Zeeman interaction, that is, the proper
Clebsh-Gordan coefficients multiplied by the rotational com-
ponents of the amplitude of the rf magnetic field
B15B25Brf/2 ~of course, because the time dependence of
Brf has been already removed and the effect ofB seems
static!. On the other hand, each component of the diagonal
part is the direct sum of the detuning frequency(D in Eq.
~5f!, that is, $0,D,2D,...,~2I11!D%!$0,D,2D,...,2ID%. There-

FIG. 4. Example of a level configuration in which RFDR may
occur. Fluorescence fromu0& to uA&’s or uB&’s is necessary for
RFDR to appear completely.~Note that fluorescence touw0& has
nothing to do with the existence of RFDR.!
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fore the components in the diagonal part correspond to the
~first-order! Zeeman energy of a system including two de-
coupled angular momentumJ1 ,J2 in a static magnetic field
B5~0,0,Bstatic! for their decoupled base setumJ1

&umJ2
&. For

example, the dark resonance for the systemI5 3
2 in Fig. 5~a!

is graphically shown in Fig. 5~b!. ~The parameters are deter-
mined for potassium atomI5 3

2 in static magnetic field of 3 G
and the rf magnetic field at 4 MHz.! The Rabi frequency of
laser field does not affect the line position, as we already
mentioned. The total number of the dark lines is 15 from Eq.
~23!. WhenBrf is sufficiently large, the system is separated
into several branches. This can be explained by the analogy
of the systemJ5J11J2, which will split in a large field into
branches corresponding toJ5J11J2 ,J11J221,...,uJ12J2u
and their Zeeman components. For the case of Fig. 5~a!
whereJ151 andJ252, there are three structures, categorized

by the total J53,2,1 and their Zeeman componentsmJ ,
whose numbers of lines are 7,5,3, respectively~assignment
1!. Therefore these dark lines can be assigned by the totalJ
andmJ . Another direct assignment is also possible: the five
Zeeman components ofJ252 are offset by the three values
of the Zeeman energy ofJ151 ~assignment 2!. This interpre-
tation is based on the fact that the resonance condition of
ODR is not affected by the optical field that would mingle
the two angular momenta and that the two systems are iso-
lated from each other. WhenBrf'0, the dark lines are sepa-
rated by(D. Because of the nonlinear Zeeman effect by
Bstatic, the splitting pattern is rather complicated in the con-
dition above.~WhenBstatic is small enough forD to be evalu-
ated in the linear region, the pattern resembles that in the
strongBrf .!

Another important case is when a rf magnetic field is
applied to mix the two hyperfine structures with each other
@Fig. 6~a!#. This case can be rewritten as Fig. 6~b!, taking
into account the possible transitions. The matrix elements of
the off-diagonal part inHDR for this case does not coincide
with those for Zeeman splitting because the relevant
Clebsch-Gordan coefficients are calculated between the two
different hyperfine structures. However, since the ladderlike
form of the network of the system resembles the previous

FIG. 5. Potassium atom with two laser fields and one rf mag-
netic field.~a! System configuration. Since theg factors for the two
hyperfine structures have the same absolute value, the rf magnetic
field can be resonant with all the Zeeman spacings simultaneously.
~b! Calculated splitting pattern of dark lines in the LIF spectrum
when the rf power is increased. The parameters are determined for
the potassium atomI53

2 in a static magnetic field of 3 G. The
frequency of the rf field is 4 MHz.

FIG. 6. Potassium atom with two laser fields and one rf mag-
netic field. ~a! System configuration.~b! Taking into account the
possible transitions,~a! can be rewritten as this complicated treelike
system. One rf field can be resonant with the hyperfine splittings
with different detuning frequencies for each transition.~c! Calcu-
lated splitting pattern of dark lines in the LIF spectrum when the rf
power is increased. The parameters are determined for the potas-
sium atomI53

2 in a static magnetic field of 1.5 G. The frequency of
the rf field is 461.7 MHz.
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example, the splitting pattern can be assigned similarly.@See
Fig. 6~c!. The parameters are determined for the potassium
atom in a static magnetic field of 1.5 G and a rf magnetic
field at 461.7 MHz.# The inhomogeneous frequency spacings
are due to those transition moments not corresponding to the
Zeeman interaction. The dark lines in the weak field appear
at the detuning frequencies(D, which are more complicated
than the case in Fig. 5~a! because of the different signs of the
g factors in each hyperfine structure. The splitting pattern
also can be assigned to five energy levels offset by three,
which corresponds to the number of ladderlike energy levels
relevant to ODR.

Figure 7 shows a comparison between the results of the
numerical integration of Eq.~1! and the dark line position
expected from the analytic expression of our theory. Not all
dark lines are resolved due to the power broadening. One can
see that a fine structure of dark lines does exist in the line
shape obtained by simulation. The degree of degeneracy of
the dark lines qualitatively explains the inhomogeneous line
widths of the~unresolved! dark lines. Then it can be said that
our simple theory also gives information for the line shape of
LIF without a long calculation or simulation.

Finally, we consider the case of Fig. 8, which is quite
similar to Fig. 6~a!. We do not show the splitting pattern of
it, which is almost the same as Fig. 6~c!. @In fact, the off-
diagonal part ofHDR is the same as that of Fig. 6~a!. A few
elements in the diagonal part are different, which contribute
only to the weak-field region.# However, this level configu-
ration yields RFDR, which we discussed in Sec. III B. Now
we defineD as the linear Zeeman splitting frequency.~We
neglect the nonlinear component of it in order to make the
calculation brief.! The level configuration of
uF,mF&5$u2,12&,u1,11&,u2,0&,u1,21&,u2,22&% is rewritten as
the same graph as Fig. 1~b! if we set Dlaser152~D1d!,
Dlaser25D2d, Drf15D2d, and Drf253D2d, where d is the
detuning frequency of the rf field from 0↔0 transition. Tak-
ing into account the Clebsch-Gordan coefficients6A1/5 of
the rf transitions, the condition for RFDR can be obtained
from Eq. ~15! as

U D2d

2
Brf

2A5

2
Brf

2A5
0

2
Brf

2A5
22D
0

2
Brf

2A5

2
Brf

2A5
0
4D

2
Brf

2A5

0

2
Brf

2A5

2
Brf

2A5
D1d

U50; ~24!

therefore

d56S D21
Brf
2

40D
1/2

. ~25!

These new dark resonances would appear when the fre-
quency of the rf field is scanned. However, recall that RFDR
is allowed only when at least one of the levels in the sub-
system accepts fluorescence from the excited level~Sec.
III C !. If the optically excited level in Fig. 8 isuF53,
mF50&, fluorescence is forbidden to fall on all the levels in
the subsetuF,mF&5$u2,12&,u1,11!,u1,21&,u2,22&% ~the left
bank of the ground state in the figure!, exceptu2,0&, the top
level of the group. In this case, RFDR is incomplete from the
discussion in Sec. III C. Figure 9~a! is the result of the nu-
merical calculation of the line shape.~On our assumption of
negligible incoherent decay in ground states, no fluorescence
is observed in ODR.! Otherwise, if the excited state is one of
the possible states, i.e.,uF,mF&5u3,11&,u2,0&,u2,11&,
u1,0&,u1,11&, fluorescence to at least one level in the left bank
is allowed and complete RFDR occurs. For example, when
the excited state isuF,mF&5u3,11&, the fluorescence through
the allowed transitionu3,11&→u2,12& enables RFDR to ap-
pear@Fig. 9~b!#.

In summary, the frequencies of laser detuning at which
dark lines appear are determined by the eigenvalues of a
HermitianHDR, which can be interpreted as a Hamiltonian
of a system including two isolated systems under the decou-
pled basis set. This interpretation enables one to predict the
position of dark resonance intuitively or to assign the ob-

FIG. 7. LIF spectrum obtained from numerical integration
of the Bloch equation for the case of Fig. 6. The resonant Rabi
frequencies of the rf field and laser fields are 4 and 60 multiplied by
the appropriate Clebsch-Gordan coefficients, respectively. The
straight lines indicate the positions of dark lines derived from the
analytic expression of the present theory@Fig. 6~c!#. ~The rf
power is equal to 4.!

FIG. 8. Level configuration of the potassium atom with two
laser fields and one rf field in which RFDR may occur. The left
bank of ground states is graphically equivalent to a symmetric five-
level case@24#. Besides the dark lines of ODR, those of RFDR can
appear when the rf frequency is scanned.
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served complicated resonance pattern of dark lines with the
relevant energy levels and transitions. Because dark reso-
nance spectroscopy is a kind of Raman spectroscopy, it pos-
sesses the same advantageous properties of them such as
sub-natural resonance width. We showed that attention must
be paid to some critical level configurations in which ODR
can be hidden. It may be interesting that fluorescence condi-
tion affects the existence of ODR, which is not the usual case
of the Raman process.

V. CONCLUSION

We obtain the analytic expression of the condition for
optical dark resonance in multilevel and multiradiation sys-
tem with an arbitrary treelike configuration under the
rotating-wave approximation. The splitting pattern of the
dark lines is found to be analogous to the energy shift of the
composite system of two systems. These dark lines are ex-
pected to be useful for the analysis of complicated multilevel
systems. Our theory can reveal the fine structure of dark lines
with power broadening. Furthermore, it is possible that the
complicated splitting pattern of the dark lines in the observed
fluorescence spectrum can be assigned to the relevant level
configuration and transitions. The advantage of the present
theory, that is, the general formalism for the arbitrary multi-
radiation and multilevel system without perturbation treat-
ment, is expected to be promising for the analytic studies of
multiphoton effects@27,28#.

APPENDIX A: PROOF OF EQ. „6… IN EQ. „5…

A brief and elementary proof is as follows. Assume that a
level pAPP is the tip of a tree. BecausepA has only one

transition with, e.g.,pB , the relation equation~5a! for
r̃pApA

has only one term and implies

r̃pApA
5VpApB

r̃pBpA
2VpBpA

r̃pApB

52i Im~VpApB
r̃pBpA

!50. ~A1!

This relation is satisfied for all the tips in the network and
therefore they are cut down from the tree, assuming the
imaginary parts of the relevantr’s to be zero. This procedure
produces new tips in the network, which can be reduced
using ~A1!. For example,

~VpBpA
r̃pApB

2VpApB
r̃pBpA

!1~VpBpC
r̃pCpB

2VpCpB
r̃pBpC

!

52i Im~VpBpC
r̃pCpB

!50. ~A2!

All edges can be cut in these processes when the network is
treelike.

APPENDIX B: EXPANSION OF zHODRz
WITH THE NONZERO FACTOR

Assume that a levelpAPP is the tip of a tree andpB is
the only energy level having a transition withpA . The equa-
tions includingpA are only Eqs.~5b! and ~5c!,

2VpBpA
r̃pApB

1$2~6DpApB
!r̃pApB

1VpBpA
r̃pBpB

2 (
X'B

VpXpB
r̃pApX

%50. ~B1!

The fact thatr̃pApA
is included only in this equation enables

uHODRu to be expanded as (6VpBpA
)uHODR8 u, eliminating the

column for r̃pApA
and the row forr̃pBpA

. ~The choice of the
double sign depends on the position of the key in the matrix,
but it is not important to our proof.! Removing all the tips
like pA brings about the new tips likepB . Thoughr̃pBpB

can
be included in two~or more! equations in the original equa-
tions, ~5b! or ~5c!, all of them except one have already been
deleted by the previous procedure. One can always expand
uHODR8 u using the keyr̃pBpB

and proceed until all the tips

r̃pipj
have been removed. No tip remains after the same pro-

cedure for the groupQ. ~The last tipr̃00 has already been
eliminated by the assumption of ODR.! Eventually the rows
of Eqs.~5c! and ~5d! and the column forr̃nn are eliminated
from the conditionuHODRu50 with nonzero factors.

APPENDIX C: PROOF OF EQ. „25…
IN THE CRITICAL CASE

When we call the two banksA andB ~Fig. 4!, the condi-
tion of RFDR can be written as

FIG. 9. LIF spectra obtained from numerical integration of
Bloch equation for the case of Fig. 8.~a! When the excited state is
uF53,mF50&, fluorescence to the left bank of ground states in Fig.
8 is forbidden by the selection rule.~Fluorescence touF52,mF50&
has nothing to do with the existence of RFDR.! The dark resonance
is incomplete due to the double valuedness of the steady state.~b!
The case where the excited state isuF53, mF511&. Fluorescence
completely vanishes on RFDR~Drf566.3!. The common condi-
tions areT5

1
2 andT251. The resonant Rabi frequencies of the rf

field and laser fields are 40 and 60 multiplied by the appropriate
Clebsch-Gordan coefficients, respectively. The detuning frequen-
cies of the laser fields are 1 for the left bank and 0 for the right
bank. The Zeeman spacing frequency is 0.1.
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uHSu5UDA1B1
VA1B2 •••

VA1B2
DA2B2

A �

U50 ~C1!

from Eq. ~12!. We define the energy levelw0 as the stem on
which A and B are hooked. We now return to the Schro¨-
dinger equation~1!, in which the optical population and co-
herence have not been set to zero. If we focus our attention
on the subtreesA, B, andw0, ~1! can be rewritten, usingHS
in ~C1!,

d

dt S rAiBi
rAiAi or rBiBi
otherwise

D 5S HS 0 M 0

0 L N i f Ai or i f Bi

••• ••• ••• •••
D

3S rAiBi
rAiAj or rBiBj
rw0A0

or rw0B0

otherwise

D . ~C2!

The componentsrAiAj , rBiBj , rw0A0
, andrw0B0

on the right-
hand side are those coherences created directly by the ap-
plied radiation, that is,VAiAj

Þ0, VBiBj
Þ0, Vw0A0

Þ0, and

Vw0B0
Þ0. On the other hand, those on the left-hand side are

the coherences across the bridge and the population.
Now we assume that alli f Ai and i f Bi are zero and get

d

dt S rAiBi
rAiAi or rBiBi
otherwise

D 5S HS 0 M 0

0 L N 0

••• ••• ••• •••
D

3S rAiBi
rAiAj or rBiBj
rw0A0

or rw0B0

otherwise

D . ~C3!

What we show below is that the expansion of the determi-
nant uHu with the key of the submatrixM yields zero and
that uHu can be expanded as

uHu5UHS 0 M 0

0 L N 0

••• ••• ••• •••
U5uHSuU L N 0

••• ••• •••
U. ~C4!

Within groupsA andB, to which no fluorescence is allowed
to fall because of, e.g., the selection rule, Eq.~6! is satisfied,
that is,

Im~ r̃AiAj
!50 when VAiAj

Þ0, ~C5!

Im~ r̃BiBj
!50 when VBiBj

Þ0. ~C6!

Note that those substitutions are valid for subsystemsA and
B because we assume that no decay terms are included in
groupsA andB. In contrast, the proof of Eq.~6! in Sec. II is
based on the condition of dark resonance, which forces no
fluorescence to appear.~This is equivalent to the assumption
of no decay terms.! From ~C5! and ~C6!, the coherences
directly driven by the applied radiation, that is,
rAiAj ,rBiBj ,rw0A0

, and their complex conjugates can be re-
placed with their real parts.

The submatrixM has only four nonzero components. In
fact, all the time differentials of the coherence across the
bridgedr̃AiBj

/dt are made only byrAXBY, exceptrw0A0
and

rw0B0
, that is,

dr̃A0B0
/dt5 iVw0A0

Re~ r̃w0B0
!2 iVw0B0

Re~ r̃w0A0
!

1F ~ r̃AiBj
!, ~C7!

dr̃B0A0
/dt5 iVw0A0

Re~ r̃w0B0
!2 iVw0B0

Re~ r̃w0A0
!

1F ~ r̃AiBj
!, ~C8!

whereF is a function ofr̃AiBj
. ThereforeM is written as

M5S iVw0A0
2 iVw0B0 0 •••

iVw0A0
2 iVw0B0 0 •••

0 0 0 •••

A A A �

D . ~C9!

The submatrixN has only two nonzero components for
dr̃A0A0

/dt anddr̃B0B0
/dt through the relations

dr̃A0A0
/dt52iVw0A0

Re~ r̃w0A0
!1F ~ r̃AiAj

!, ~C10!

dr̃B0B0
/dt52iVw0B0

Re~ r̃w0B0
!1F ~ r̃BiBj

! ~C11!

and the matrixN is expressed as

N5S 2iVw0A0

0
0
A

0
2iVw0B0

0
A

0
0
0
A

•••
•••
•••
�

D . ~C12!

The matricesL andN are expanded in the same manner as in
Sec. II with a nonzero factor. In fact, the proof in Appendix
B is also valid for any steady state. After the final stage of
this expansion, all of the four components ofM , that is, the
first and second column of~C9!, are already eliminated, with
the components of~C12! being adopted for the key of ex-
pansion. ThereforeuHu can be expanded as

uHu5) ~6V!UHS

•••
0

•••U5CuHSu. ~C13!
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