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Motion-quantized Jaynes-Cummings models with an arbitrary intensity-dependent medium
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The exact time dependence of the density operator and various physical quantities for the motion-quantized
Jaynes-Cummings model8IQJCMs is given using the operator transformation under which it is shown that
the MQJCMs have the same dynamics as the ordinary JCMs in the Kerr medium. The quantum collapses and
revivals of the atomic motion due to the quantum properties of light fields and the quantization of atomic
position and momentum, are predicted. The effects of the initial atomic momentum distribution and the
arbitrary intensity-dependent medium on the collapse and revival phenomena of the population inversion,
atomic momentum and radiation are formulated in def&iL050-294{06)00408-§

PACS numbe(s): 42.50.Ct, 42.50.Vk, 03.65.Ca, 42.6%

I. INTRODUCTION atom characterized by the spin operatéf;s (i,j=0,1), the

gnomentum and position operat(fisandli with a traveling-
is the Jaynes-Cummings mod@CM) [1] enabling one to wave mode of the electromagnetic field characterized by an-

calculate exactly all the quantum-mechanical properties of inilation and creation operatogsanda', respectively. The
system. It predicts many interesting effects such as vacuuntot@l Hamiltonian of the system in RWA can be written as
field Rabi oscillations, collapses and revivals of Rabi oscil- N

lations due to the quantized aspects of a coherent field, etc.,.  p? N . ~ta Atani

[2-4]. It has now become possible to experimentally test H= 5y +#| w00+ w101+ 0a a+2 dj(a'a)’

[5—7] many of the predictions of this model. In realistic situ- =1

ations, one does experiments in cavities with the atomic e A ta A KR ke AR AR A ik
beam at almost fixed velocity and hence, it is desirable to +h[galf(a'a)oe’ R g*f(a'a) (@) oge ™R,
generalize the ordinary JCM to include the quantization of (1)
atomic momentum and position. This generalization has

been done by some pap€@] althoughnobodyhas derived  \yhereg denotes the coupling between the atom and field. In

the exact dynamicsOn the other hand, the JCM has beenhis MQJcM Hamiltonian, there occur the three conservative

extended and generalized in many directions among which,4niities(atomic probability, excited number, and atomic-
the JCM in a Kerr-like medium has been studied recdrély Eeld mom(enturm ag fO||OWS'y, '

and naturally one should ask if the JCM in arbitrary
intensity-dependent medium can be solved. In this paper, we R R -~ . ~

will answer these two questions. We adopt thgerator oo+ a1=N, a'a+lo;=N,, p+hka'a=N,. (2
transformation to discuss the motion-quantized Jaynes-

Cummings modelsMQJCMs in an arbitrary intensity-  For solving Eq.(1) where there exist three commutation re-
dependent medium and obtain the exact results for the timgitions[a,a']=1, ffij&m:f}n Sk, and .p,] =i#, one intro-

dependence of various physical quantities, such as inversiogyces  the time-independent operator transformation T
momentumradiation force momentum diffusignand field

The simplest and most important model in quantum optic

amplitude and fluctuations. =exp(a'ak-R) to simplify it. Thus we have
This paper is organized as follows. In Sec. Il we will
introduce the operator transformation leading to the solvabil- (B_éfahg)z
ity of the MQJCM considered and the exact evolution of the H'=THT '=—————+#| wgoo+ 0,0, +0Qa%a
density operator in this model is given. In Sec. Ill the expec- 2M
tation values of atomic population, atomic momentum, radia-
tion force, momentum diffusion, and photon number are + E dj(éTé)i +#h[gdf(a’a)op+g*f(ata)
given. Their quantum-collapse-revival phenomena due to the i=1

guantization of atomic motion and the statistical properties
of the light field and the destruction of quantum revivals are
shown. The generalized MQJCM including the multimode
interaction is considered in Sec. 1V, followed by the sum
mary in Sec. V.

x(ah' ooyl 3)

Comparing Eq(3) with Eq. (2), we know that after the trans-
“formation: (1) the atomic momentum is a motion constant in
Eq. (3) so that the MQJCM can be processed as the ordinary

Il. THE OPERATOR TRANSFORMATION AND TIME JCM which includes only two commutation relations

EVOLUTION OPERATOR IN A SINGLE-MODE CASE [4,8"]=1 and &;; 6y = 6y 9y ; 2) the effects of the motion
quantization are equivalent to th&err-like intensity-

The motion-quantized Jaynes-Cummings model in thidlependent mediuplus the Doppler effect. These results can
paper considers the interaction of a single two-lawelving  be explained by using the transformation on the system total
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momentum operator becau%d?l 5123 means this trans- The matrix representation of the time evolution operator is
. P P —P i obtained from Eq(5) and Eq.(6) as
formation leads to a momentum conservation. Now we can

start from Eq.(3) to solve the MQJCM._ LAJ(t,O)ze*iV‘
Let the total Hamiltoniamd' =% (H,+ V) where the “free - o
part” being the nonlinear combination of the conservative . Agsint _igr Sinu,t f(a'a)(ah
quantities, different from the linear combination in an ordi- Cotat! 201, 9 i
nary JCM, and the “interaction part” are = A ~ A
ale ata, SINUt ~Assinuot
R R —igaf(a'a) —= Ccouot+i —=——
R p2 IZfJ R . - Al M 212
H0=W+ Q_V Ne+8Nej21 djNJe+ wO_E N, (8)
(4 where
G _ 2 A aleratayn xfoatavatyla - 1 e  k(p—atank
V=3 (160 QA @RGt 0 @@ G0 fopi0e T dj[(afa)J_(aTa_W]_“’T)
j=1
5
e —[(w1—wg) +£l%],
. 1 A A - k(p—Nghk
A= o+ 7 2 d;[N’e—(Ne—lw]—%] L
= R o
J B=110+7 X di[(@a+1)~(a'8))]
—[(w;— wo) +el?], (6) =1
where a special detuning operatbrwhich also consists of B KLp—(a'a+1)hk] o — )t 6l
the conservative quantities and includes the contribution of M [(w1=wo) +el7],
the intensity-dependent medium, is introduced and behaves
like a constante=(%k?/2M) is the recoil frequency shift per A2 A\2
photon. By using the commutation relations, it is simple to 72— - +|g|2f4ata)(ah'a' and pi= _2)
show thatH, andV are also the motion constant. So in the 2 2
“interaction picture,” if we define " |g|2f2(éTé+|)é'(éT)'
|1>_(0 10)= 1 7) Using the inverse operator transformation, the “true” time
BRRYA —\0/- evolution operator is

Ajsinpit  sinugt
*

cosust—i ———ig* — f(éTé)(éTe*“;"i)'
o 20 ph
Uy(t,0) =T UT= sinat Alsina/t 7 9
o2 | |
—ig(2e* R) (A1) et cogibt+i 2 e
1 2u,

where The expectation value of any operator as a function of time

A can be determined by E¢) and the initial combined atom-
- 1 am i man  k-p field state through the formula
Aj=11Q+ 7 J_Zl dif(a"8) - (@"a-1)']- =t ~[(wy
2 R A oA
—wg)+el?], (8(1)=((0)|Ug(t,008(0)Ug¢(0), (10
N 1 ~ta j Atani k(ﬁ_lﬁk)
A=11 O+ T J.Zl dif(a’athi—(a'a)']—- M wherep(0)=|y(0))}A0)|. We shall consider some statistical
aspects for the present model.
—[(w;— wo) +el?], Note that the methods of the operator transformation,
R R through which the MQJCMs are solvable, are not unique. In
“)o '\ 2 262 AtAL A lAl Y 2 Ref.[8], Sleator and Wilkens have given an another operator
= 5 +lgl“f*(@'a)(at)’'a’ and uy = > transformation and used it to discuss the quantum nondemo-

lition measurement of a photon number under scaddi-
+|g|?f?(aTa+1a'(a’)'. tional approximations
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lIl. THE EXACT DYNAMICS OF A MOTION-QUANTIZED
ATOM INTERACTING WITH A SINGLE-MODE
FIELD

If we assume that the initial statistics of the atomic mo-

mentum eigenstates is Gaussian, the initial atomic internal

state is the ground state and the initial field is prepared in
coherent state, the initial density operator is

n*m

e

X (P6,0.m[F(Po) F* (),

S e

m=0

pO= || 6o a5 00

(11)

5( pyo_ pyc) 5( Pz~ pzc)

x\2m

-

|F(po)|2:

e~ L(Pxo=Pxo) 2x°].
(12

wherepo= Pyo€y+ Pyo€y+ P€, and y is the initial momen-
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tum diffusion coefficient. Let us consider the wave vector of

a light field in thex direction, it is easy to get the expectation
values of some physical quantities

ANt

(n+

n!

H!

<&11>:r]20 e "

manr19° f2(n+1)

e [(Pxo—Pxd?/2x°] gjp? n(Pxo)t

o

Xf—wdp“ xW2r [P
(13
<AB>: <B> - (pxcéx+ pycéy+ pzcéz) =I ﬁ|z< 6'1]}, (14

(Any=(a"a)—n=—1(ayy), (15

>

By = 14k( —ig(Ae % B f(aT8) 540+ h.cl)

Fr= (B
_meO e " (::1)' lg|? (n:!m f2(n+1)
(AP)2) = 2+ (1K) XG4 (1— (G1)
+2Iﬁkn§30 e“(_:l), |g|? (nH)' f2(n+1)

ef[(pxofpxc)zlz)(z] S|nz/.Lnt
xVam Mr21
17

Xf_ dpxo(pxo_pxc)

54
(A2 =N+1XG1)(1=(51)) =21 X e "(n+1=1)
nnt! (n+H!
Xnanr 19° P+
a
x J " dp e [(Po P2 sir? (18
e 0 V27 5
where
Kipo=laf? T g2+ T
and
k —
A(pyoum)=Ao(n)— | 0" Pxe).
m
where we define further
2 AL+ 11- 011 2| (0, 417
=Aq(N). (19

From the above calculation, we show that the operator
transformation in Eq(3) is very useful to study all funda-
mental questions in the context ofm@otion-quantized atom
with a singleor multimode traveling-wave fieldsuch as the
radiation force, the atomic momentum, etc. From E48)—

(18), it is shown that all the above quantities including the
atomic momentunand theradiation force experience the
quantum collapses and revivals due to the quantum proper-
ties of a coherent-state field and the monochromaticity of the
initial matter wave(an atom initially prepared in the momen-
tum eigenstate which will be destroyed by the diffusion of
the atomic initial momentum. These phenomena would be
explained as the results of the atom motion reflecting the
variation of the atomic population inversion and the initial
momentum diffusion dephasing the Rabi frequency compo-
nents. The above quantities have been calculated in detalil
[10] when the atomic momentum is initially prepared in a
pure eigenstate. In this paper, the expectation values of
atomic population in the excited state, atomic momentum
and radiation force as the functions of timand intensity-
dependent medium(or intensity-dependent couplingare
plotted in Fig. 1-4 when the atom is initially in a momentum
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FIG. 2. The radiation forceF, (unit: #k|g|) induced by the
atom-light interaction as the function dg|t and an intensity-
dependent medium.(a) F=F,+18 for d;=0.00dg|; (b)
F=Fo+11 for d,=0.008g| and dj=0, j#2; (c) F=Fy+4 for
d;=0.008g| and d;=0, j#3; (d) F=F, for d,=0.009g| and
d;=0, j #4. The other parameters are same as those in Fig. 1.

FIG. 1. Y, being the expectation value of the atomic population

in the excited-statéo,) and the momentum incremeqh ﬁ) (unit:
#ik) as the function ofg|t and an intensity-dependent mediuga).
Y=Yq+3 for dj=0.000g|, (b) Y=Y,+2 for d,=0.004g| and
d;=0, j#2; (c) Y=Y,+1 for d3=0.009g| and d;=0, j#3; (d)
Y=Y, for d;=0.009g| and d;=0, j#4. Note thatl=1 (one-
photon procegs f(x) =1, Q—(kpy/m) —[(w,—w;)+e]=0, N=10
and the atomic center-of-mass state initially in a pure momentum
eigenstate$y=0). . . .
detuning and effective photon statistifer example:f(n
+1) is related to the statistigs

eigenstate and the light field in a coherent state. The calcu- In the following section, we discuss the generalization of

lation results have definitely shown that the atomic momens, MOVING two-level atom interacting with the multimode

tum and the radiation force have the quantum collapsetr"’“/elmg'wawe fields.

revival behavior, like the population inversion in the

ordinary \.]CMS. Th.e intensity-dependent mgdium modifies |\, a MOTION-QUANTIZED ATOM INTERACTING

the effectlvg detuning to eff(_actuate the_modlflcanon qf the \WITH THE MULTIMODE TRAVELING-WAVE FIELDS
collapse-revival phenomena in the atomic motion. But in the

intensity-dependent medium, the collapse-revival phenom- The total Hamiltonian of the system in RWA, considered
ena are distorted due to the huge change of both effectivim this section, is written as
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FIG. 3. Y, being the expectation value of the atomic population

in the excited-statéo; ;) and the momentum |ncrememp> (unit:
hk) as the function ofg|t and an intensity-dependent couplirig).
Y=Yo+3 for f(x)=x; (b) Y=Yo+2 for f(x)=1/(x+1); (c)
Y=Yo+1 for f(x)=sin(x); (d) Y=Y, for f(x)=exp(—/x). Note
dj=0(j=12,...),

that | = (one-photon  process

Q- (kpxc/m) [(w;—wq)+€]=0, N=10 and the atom|c center-of-
mass state initially in a pure momentum eigenstéies0).
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FIG. 4. The radiation forcd=q (unit: ﬁIZ|g|) induced by the
atom-light interaction as the function df|t and an intensity-
dependent couplinda) F=F4+ 160 for f(x)=x; (b) F=Fy+ 120
for f(x)=1/(x+1); (c) F=Fy+ 80 for f(x) =sin(x); (d) F=F for
f(x) =exp(—vX). The other parameters are the same as those in Fig.

In this MQJCM Hamiltonian, the conservative quantities

6'0+(}1=N,

(20

éré|+m|<}1= N|

(atomic probability, excited numbers, and atomic-field mo-
mentun) are as follows:

(1=1,2,..),

kala =N, (21)
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wherel andm, represents theh mode and its corresponding A

multiphoton transition, respectively. One introduces tipe V=-— 5 (01— Go)+|goof(ala;,ala,, .. .)
erator transformation exp{i(2,=léfé,lz,)§]. Then, follow-
ing the same procedure and the same definitions, we have the A
Hamiltonians, the detuning operator X,Hl (@)™+H.c., (24)
. (p-3,_,hkala)? A X o
H' = e e h w00'0+w10'1+2 Q|a,*a|
2M =1
i R A\ R j
+J_§l 2, dyd' A:; m,+ 2, (IZl dj|N|) —[lzl dj,(Nl—ml)} ]
1 9or1of (a]2,,808,, )H (a)™+H. C} (2|:1m||2|)(’6_2|:1h|2|&|)
(22 B M
2
~ (P Zj=1hkNp)? ~ ~|(@1mwo)+ 5 (E ) } (25
Ho= T +Z‘1 N,
Y N
+2 | 2 dyNy | + wo——>N (23)
=1 \i=1 2
and the time evolution operator
|
Alsina/t - sinugt T
cosuit—i l—Ml —ig* —l (alal,...)]_[ (a,Te"kl‘R)ml
“ 21 i ,ul =1
Ud(tyo): ~ Sln ~ ,t A . A ,t ’ (26)
. . o o " . sin
—ig[l (a|e'k"R)mIf(afra1,...) A—,l cosu,t+i ;{Lz
=1 72 2u;
where
atn N (Simamik)p h _\2
Al_E m|Q|+E dji aFa 2 d]|(a| a—m) — | (01— wo)+ 577 mk; | |,
= i= =1 M 2M \ =1
R j
Aézlgl m|Q|+j21 [21 dj|(éré|+m| <2 |a| a| ]

i[5 e

o i)

<

ME
a?= (71 +|9|%3(a]ay,.. -)II:[ @hma)™,

+|g|?f3(ala,+my,... a/a+m )|];[l (a)m@ahHm.

Like Sec. lll, we assume that the initial statistics of the atomic momentum eigenstates is Gaussian, the initial atomic in-

ternal state is the ground state and each initial field is prepared in a corresponding coherent state, and then the initial density
operator is
- — Ty (ay) i)™
pO= 3 ema

ny.ng, =0 yngmgtn,imy! -
mq,my,---=0

[ ] ooatsipoon.

X{Pg,0,my, - [F(Po) F* (Po)- (27
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Let us consider the wave vector of a light field in the where
direction, it is easy to get the expectation values of some

physical quantities

(010 = > Zj=an
nl,nz,---:O =1 +m)' nj!

X|g|#f2(ny+my,ny+my,...) fﬁ dpxo

e~ [(Pxo— pxc)zlzXz] S|n2/.L{nl}( pXO)t

X , 28
X\/ﬂ [M{nj}(pxo)]z 28
<A5>:<5>_(pxcéx+pycéy+pzcéz):ﬁjgl mj|2j<a'11>i
(29)
(Aﬁj)—(a i) nJ —mi(G11), (30
(lf)=(ﬁ mJIZ) > e T
j=1 ni,ny,---=0
ﬁﬂ'j+mj
i 22
X 1|9| fe(ny+mg,ny+my,...)
j=1.n
o e*[(pxofpxc)zlzXz] Sin . t
Xf dpxo 2vu“{n,]}(pxo) , (31)
xVam M{nj}(pxo)

<<A6>2>=x2+(;lhmji,-) (020 (1= (1))

oo

2 121 hmjkj) >

ny,np,---=0

e—Ejzlnj

—rr+mJ
(nj+m;)!

2
j=1 +mj)' n;! 9l

sz(n1+m11n2+m21"')f_ dpxo(pxo_pxc)

e—[(pxo_pxc)zlz)(z] sir? /-L{nj}( pXO)t

X , 32
wzr [yl (32
((AR)?) =+ mX(F1)(1—(F10)
+om; X e e
nq,np,---=0
| I ﬁ?’ " (nj+mj)!
j=1 (n]+mj)' nj!
X |gl?f2(ng+my,ny+my, .. ) (nj+m—n))

fw q e*[(pxofpxc)zlz)(z] Sinzﬂ{nj}(pXO)t

X

9P 27 [,M{nj}(loxo)]2
(33

(ﬂj+m])|

n:!

i (Pro) =[P F2(nytmy i+ a0 TT
= J

A’ ,Ny,Ny, e 2
+{ (Pxo 21 2 )}

and

.):Aé(nl,nz,...)

_(E mjkj) (pxol\_/lpxc)7

j=1

A,(pXO!nl!nZl"

where we define further

i

E m|Q|+E

A (ny,Ny,..)=

[E dji(nj+my)

From Eq.(28) and Eq.(33), it is shown that: (1) The
operator transformation developed in this paper is very ef-
fective for solving exactly the single-channel MQJCMs al-
though it is not unique(2) The quantum collapse-revival
phenomena of atomic population, atomic momentum, radia-
tion force, momentum diffusion, and the statistical properties
of light fields are predicted due to the quantization of atomic
motion and the quantum properties of light field3) The
destruction of the above quantum revivals due to the initial
superposition of atomic momentum eigenstates can be calcu-
lated.(4) The effective effects of the intensity-dependent me-
dia is explicitly included in the specially defined detuning
and this result can lead to recovering all the consequences of
the JCMs in the Kerr-like medigo].

The differences between the ordinary JCMs and the
present MQJCMs are: (1) The latter involves three types of
physical quantities—field, atomic internal states, and atomic
external states, other than two types of physical quantities—
field and atomic states in the forméR) The ordinary JCMs
only give the variation of atomic internal states due to the
quantum properties of the light fields such as the quantum
collapse-revival phenomena of atomic population, and the
modulation of the light fields through the interaction such as
squeezed states. But in MQJCMSs, the variation of atomic
external statemomentum, force, momentum statistics, etc.
as a function of atomic internal states and light fields is pre-
dicted, which does not appear in the ordinary JCMs. On the
other hand, the effects of atomic external states and their
statistics on atomic internal states and light fields is eluci-
dated explicitly. In one word, MQJCMs can link the light
fields, atomic internal and external states, and give their ex-
act variations and statistics.
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V. SUMMARY properties of the initial momentum statistics appears like the
In this paper, we introduce the operator transformation too_rdinary JCMs With the cavity loss or the spontaneous emis-
solve the motién-QUantized Jaynes-Cumming Model whichzl.on.w' Th_e_effe_cuve effects of the m;ensny—o_lependent me-
ia is explicitly included in the specially defined detuning

pon&s}s of a two-level_ moving .ato”? n the arbitrary and this result can lead to recovering all the consequences of
intensity-dependent media interacting with a single-mode %fhe JCMs in the Kerr-like medio]

e et e, T ko e vt . The method devlaped n e pape can e generazed
P . solve the motion-quantized problems in the traveling-wave

the systems is given through which all the dynamics can b?elds. The resulting conclusion will lead to well understand-

calcu'lated. Thg quantum collapse—rewva! phenomena 9 g the effects of quantizing the atomic position, momentum
atomic population, atomic momentum, radiation force, mo-

mentum diffusion, and the statistical properties of light fieldsand light fields and the relations between fle_lds,_atomlc_ln-
due to the quantization of atomic motion and the quantumtemal’ z;nd external_degredes OT frleedom, which is very im-
properties of light fields are predicted when the light fieldsportant or atom optics and a single-atom maser.
and a moving atom is initially prepared in the coherent states
and a momentum eigenstate, respectively. If the atom ini-
tially in a superposition of atomic momentum eigenstates, This work is supported by the National Natural Science

the destruction of the quantum revivals due the dephasingoundation, R.P. China, under Grant No. 19392503.
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