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The exact time dependence of the density operator and various physical quantities for the motion-quantized
Jaynes-Cummings models~MQJCMs! is given using the operator transformation under which it is shown that
the MQJCMs have the same dynamics as the ordinary JCMs in the Kerr medium. The quantum collapses and
revivals of the atomic motion due to the quantum properties of light fields and the quantization of atomic
position and momentum, are predicted. The effects of the initial atomic momentum distribution and the
arbitrary intensity-dependent medium on the collapse and revival phenomena of the population inversion,
atomic momentum and radiation are formulated in detail.@S1050-2947~96!00408-8#

PACS number~s!: 42.50.Ct, 42.50.Vk, 03.65.Ca, 42.65.2k

I. INTRODUCTION

The simplest and most important model in quantum optics
is the Jaynes-Cummings model~JCM! @1# enabling one to
calculate exactly all the quantum-mechanical properties of a
system. It predicts many interesting effects such as vacuum-
field Rabi oscillations, collapses and revivals of Rabi oscil-
lations due to the quantized aspects of a coherent field, etc.,
@2–4#. It has now become possible to experimentally test
@5–7# many of the predictions of this model. In realistic situ-
ations, one does experiments in cavities with the atomic
beam at almost fixed velocity and hence, it is desirable to
generalize the ordinary JCM to include the quantization of
atomic momentum and position. This generalization has
been done by some papers@8# althoughnobodyhas derived
the exact dynamics. On the other hand, the JCM has been
extended and generalized in many directions among which
the JCM in a Kerr-like medium has been studied recently@9#,
and naturally one should ask if the JCM in anarbitrary
intensity-dependent medium can be solved. In this paper, we
will answer these two questions. We adopt theoperator
transformation to discuss the motion-quantized Jaynes-
Cummings models~MQJCMs! in an arbitrary intensity-
dependent medium and obtain the exact results for the time
dependence of various physical quantities, such as inversion,
momentum, radiation force, momentum diffusion, and field
amplitude and fluctuations.

This paper is organized as follows. In Sec. II we will
introduce the operator transformation leading to the solvabil-
ity of the MQJCM considered and the exact evolution of the
density operator in this model is given. In Sec. III the expec-
tation values of atomic population, atomic momentum, radia-
tion force, momentum diffusion, and photon number are
given. Their quantum-collapse-revival phenomena due to the
quantization of atomic motion and the statistical properties
of the light field and the destruction of quantum revivals are
shown. The generalized MQJCM including the multimode
interaction is considered in Sec. IV, followed by the sum-
mary in Sec. V.

II. THE OPERATOR TRANSFORMATION AND TIME
EVOLUTION OPERATOR IN A SINGLE-MODE CASE

The motion-quantized Jaynes-Cummings model in this
paper considers the interaction of a single two-levelmoving

atom characterized by the spin operatorsŝ i j ~i , j50,1!, the

momentum and position operatorspŴ andRŴ with a traveling-
wave mode of the electromagnetic field characterized by an-
nihilation and creation operatorsâ and â†, respectively. The
total Hamiltonian of the system in RWA can be written as

Ĥ5
pŴ 2

2M
1\Fv0ŝ01v1ŝ11Vâ†â1(

j51
dj~ â

†â! j G
1\@gâl f ~ â†â!ŝ10e

ilkW•RŴ 1g* f ~ â†â!~ â†! l ŝ01e
2 i lkW•RŴ #,

~1!

whereg denotes the coupling between the atom and field. In
this MQJCM Hamiltonian, there occur the three conservative
quantities~atomic probability, excited number, and atomic-
field momentum! as follows:

ŝ01ŝ15N̂, â†â1 l ŝ15N̂e , pŴ 1\kW â†â5NŴ p . ~2!

For solving Eq.~1! where there exist three commutation re-
lations@â,â†#51, ŝ i j ŝkl5ŝ i ld jk , and [x̂,p̂x]5 i\, one intro-
duces the time-independent operator transformation Tˆ

5exp(iâ†âkW•RŴ ) to simplify it. Thus we have

Ĥ85T̂ĤT̂215
~pŴ 2â†â\kW !2

2M
1\Fv0ŝ01v1ŝ11Vâ†â

1(
j51

dj~ â
†â! j G1\@gâl f ~ â†â!ŝ101g* f ~ â†â!

3~ â†! l ŝ01#. ~3!

Comparing Eq.~3! with Eq. ~2!, we know that after the trans-
formation:~1! the atomic momentum is a motion constant in
Eq. ~3! so that the MQJCM can be processed as the ordinary
JCM which includes only two commutation relations
@â,â†#51 and ŝ i j ŝkl5ŝ i ld jk ; 2! the effects of the motion
quantization are equivalent to theKerr-like intensity-
dependent mediumplus the Doppler effect. These results can
be explained by using the transformation on the system total
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momentum operator becauseT̂NŴ pT̂
215pŴ means this trans-

formation leads to a momentum conservation. Now we can
start from Eq.~3! to solve the MQJCM.

Let the total HamiltonianĤ85\(Ĥ01V̂) where the ‘‘free
part’’ being the nonlinear combination of the conservative
quantities, different from the linear combination in an ordi-
nary JCM, and the ‘‘interaction part’’ are

Ĥ05
pŴ 2

2\M
1S V2

kW•pŴ

M
D N̂e1«N̂e

2(
j51

djN̂e
j 1S v02

D̂

2
D N̂,

~4!

V̂52
D̂

2
~ ŝ12ŝ0!1gâl f ~ â†â!ŝ101g* f ~ â†â!~ â†! l ŝ01,

~5!

D̂5 l H V1
1

l (
j51

dj@N̂e
j 2~N̂e2 l ! j #2

kW~pŴ 2N̂e\kW !

M J
2@~v12v0!1« l 2#, ~6!

where a special detuning operatorD̂ which also consists of
the conservative quantities and includes the contribution of
the intensity-dependent medium, is introduced and behaves
like a constant.«5(\k2/2M ) is the recoil frequency shift per
photon. By using the commutation relations, it is simple to
show thatĤ0 and V̂ are also the motion constant. So in the
‘‘interaction picture,’’ if we define

u1&5S 01D , u0&5S 10D . ~7!

The matrix representation of the time evolution operator is
obtained from Eq.~5! and Eq.~6! as

Û~t,0!5e2 iV̂t

5S cosm̂1t2i
D̂1sin1t

2m̂1
2ig*

sinm̂1t

m̂1
f~â†â!~â†!l

2igâl f~â†â!
sinm̂1t

m̂1
cosm̂2t1i

D̂2sinm̂2t

2m̂2

D,
~8!

where

D̂15 l H V1
1

l (
j51

dj@~ â
†â! j2~ â†â2 l ! j #2

kW~pŴ 2â†â\kW !

M J
2@~v12v0!1« l 2#,

D̂25 l H V1
1

l (
j51

dj@~ â
†â1 l ! j2~ â†â! j #

2
kW @pŴ 2~ â†â1 l !\kW #

M J 2@~v12v0!1« l 2#,

m̂1
25S D̂1

2 D 21ugu2f 2~ â†â!~ â†! l âl and m̂2
25S D̂2

2 D 2
1ugu2f 2~ â†â1 l !âl~ â†! l .

Using the inverse operator transformation, the ‘‘true’’ time
evolution operator is

Ûd~ t,0!5T̂21ÛT̂5S cosm̂18t2 i
D̂18sinm̂18t

2m̂18
2 ig*

sinm̂18t

m̂18
f ~ â†â!~ â†e2 ikW•RŴ ! l

2 ig~ âeik
W
•RŴ ! l f ~ â†â!

sinm̂18t

m̂18
cosm̂28t1 i

D̂28sinm̂28t

2m̂28

D , ~9!

where

D̂185 l H V1
1

l (
j51

dj@~ â
†â! j2~ â†â2 l ! j #2

k̂•pŴ

M J 2@~v1

2v0!1« l 2#,

D̂285 l H V1
1

l (
j51

dj@~ â
†â1 l ! j2~ â†â! j #2

kW~pŴ 2 l\kW !

M J
2@~v12v0!1« l 2#,

m̂18
25S D̂18

2 D 21ugu2f 2~ â†â!~ â†! l âl and m̂28
25S D̂28

2 D 2
1ugu2f 2~ â†â1 l !âl~ â†! l .

The expectation value of any operator as a function of timet
can be determined by Eq.~9! and the initial combined atom-
field state through the formula

^ô~ t !&5^c~0!uÛd~ t,0!ô~0!Ûd
†uc~0!&, ~10!

wherer̂~0!5uc~0!&^c~0!u. We shall consider some statistical
aspects for the present model.

Note that the methods of the operator transformation,
through which the MQJCMs are solvable, are not unique. In
Ref. @8#, Sleator and Wilkens have given an another operator
transformation and used it to discuss the quantum nondemo-
lition measurement of a photon number under someaddi-
tional approximations.
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III. THE EXACT DYNAMICS OF A MOTION-QUANTIZED
ATOM INTERACTING WITH A SINGLE-MODE

FIELD

If we assume that the initial statistics of the atomic mo-
mentum eigenstates is Gaussian, the initial atomic internal
state is the ground state and the initial field is prepared in a
coherent state, the initial density operator is

r̂~0!5 (
n,m50

`

e2 n̄
ana*m

An!m!
E

2`

` E
2`

`

d3pW 0•d
3pW 08upW 0,0,n&

3^pW 08,0,muF~pW 0!F* ~pW 08!, ~11!

uF~pW 0!u25
d~py02pyc!d~pz02pzc!

xA2p
e2@~px02pxc!

2/2x2#,

~12!

wherepW 05px0eW x1py0eW y1pz0eW z andx is the initial momen-
tum diffusion coefficient. Let us consider the wave vector of
a light field in thex direction, it is easy to get the expectation
values of some physical quantities

^ŝ11&5 (
n50

`

e2 n̄
n̄n1 l

~n1 l !!
ugu2

~n1 l !!

n!
f 2~n1 l !

3E
2`

`

dpx0
e2@~px02pxc!

2/2x2#

xA2p

sin2 mn~px0!t

@mn~px0!#
2 ,

~13!

^DpŴ &5^pŴ &2~pxceW x1pyceW y1pzceW z!5 l\kW ^ŝ11&, ~14!

^Dn̂&5^â†â&2n̄52 l ^ŝ11&, ~15!

^FŴ &5
1

i\
^@pŴ ,Ĥ#&5 l\kW ^@2 ig~ âe2 ikW•RŴ ! l f ~ â†â!ŝ101h.c.#&

5 l\k(
n50

`

e2 n̄
n̄n11

~n1 l !!
ugu2

~n1 l !!

n!
f 2~n1 l !

3E
2`

`

dpx0
e2@~px02pxc!

2/2x2#

xA2p

sin2mnt

mn
, ~16!

^~DpŴ !2&5x21~ l\kW !2^ŝ11&~12^ŝ11&!

12l\k(
n50

`

e2 n̄
n̄n1 l

~n1 l !!
ugu2

~n1 l !!

n!
f 2~n1 l !

3E
2`

`

dpx0~px02pxc!
e2@~px02pxc!

2/2x2#

xA2p

sin2mnt

mn
2 ,

~17!

^~Dn̂!2&5n̄1 l 2^ŝ11&~12^ŝ11&!22l(
n50

`

e2 n̄~n1 l2n̄!

3
n̄n1 l

~n1 l !!
ugu2

~n1 l !!

n!
f 2~n1 l !

3E
2`

`

dpx0
e2@~px02pxc!

2/2x2#

xA2p

sin2mnt

mn
2 , ~18!

where

mn
2~px0!5ugu2

~n1 l !!

n!
f 2~n1 l !1FD~px0 ,n!

2 G2

and

D~px0 ,n!5D0~n!2 l
k~px02pxc!

m
,

where we define further

l H V1
1

l (
j51

dj@~n1 l ! j2nj #2
kpxc
m J 2@~v22v1!1« l 2#

5D0~n!. ~19!

From the above calculation, we show that the operator
transformation in Eq.~3! is very useful to study all funda-
mental questions in the context of amotion-quantized atom
with a singleormultimode traveling-wave fields, such as the
radiation force, the atomic momentum, etc. From Eqs.~13!–
~18!, it is shown that all the above quantities including the
atomic momentumand the radiation force experience the
quantum collapses and revivals due to the quantum proper-
ties of a coherent-state field and the monochromaticity of the
initial matter wave~an atom initially prepared in the momen-
tum eigenstate!, which will be destroyed by the diffusion of
the atomic initial momentum. These phenomena would be
explained as the results of the atom motion reflecting the
variation of the atomic population inversion and the initial
momentum diffusion dephasing the Rabi frequency compo-
nents. The above quantities have been calculated in detail
@10# when the atomic momentum is initially prepared in a
pure eigenstate. In this paper, the expectation values of
atomic population in the excited state, atomic momentum
and radiation force as the functions of timet and intensity-
dependent medium~or intensity-dependent coupling! are
plotted in Fig. 1–4 when the atom is initially in a momentum
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eigenstate and the light field in a coherent state. The calcu-
lation results have definitely shown that the atomic momen-
tum and the radiation force have the quantum collapse-
revival behavior, like the population inversion in the
ordinary JCMs. The intensity-dependent medium modifies
the effective detuning to effectuate the modification of the
collapse-revival phenomena in the atomic motion. But in the
intensity-dependent medium, the collapse-revival phenom-
ena are distorted due to the huge change of both effective

detuning and effective photon statistics@for example: f (n
11) is related to the statistics#.

In the following section, we discuss the generalization of
a moving two-level atom interacting with the multimode
traveling-wave fields.

IV. A MOTION-QUANTIZED ATOM INTERACTING
WITH THE MULTIMODE TRAVELING-WAVE FIELDS

The total Hamiltonian of the system in RWA, considered
in this section, is written as

FIG. 1. Y0 being the expectation value of the atomic population

in the excited-statêŝ11& and the momentum increment^DpŴ & ~unit:
\kW ! as the function ofugut and an intensity-dependent medium.~a!
Y5Y013 for dj50.000ugu, ~b! Y5Y012 for d250.005ugu and
dj50, jÞ2; ~c! Y5Y011 for d350.005ugu and dj50, jÞ3; ~d!
Y5Y0 for d450.005ugu and dj50, jÞ4. Note that l51 ~one-
photon process!, f (x)51, V2(kpxc/m)2@~v22v1!1«#50, n̄510
and the atomic center-of-mass state initially in a pure momentum
eigenstates~x50!.

FIG. 2. The radiation forceF0 ~unit: \kW ugu! induced by the
atom-light interaction as the function ofugut and an intensity-
dependent medium.~a! F5F0118 for dj50.000ugu; ~b!
F5F0111 for d250.005ugu and dj50, jÞ2; ~c! F5F014 for
d350.005ugu and dj50, jÞ3; ~d! F5F0 for d450.005ugu and
dj50, jÞ4. The other parameters are same as those in Fig. 1.
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Ĥ5
pŴ 2

2M
1\Fv0ŝ01v1ŝ11(

l51
V l âl

†âl

1(
j51

S (
l51

djl âl
†âl D j G

1\Fgŝ10f ~ â1
†â1 ,â2

†â2 , . . . !

3)
l51

~ âle
ikW t•R

Ŵ
!ml1H.c.G ~20!

In this MQJCM Hamiltonian, the conservative quantities
~atomic probability, excited numbers, and atomic-field mo-
mentum! are as follows:

ŝ01ŝ15N̂, âl
†âl1ml ŝ15N̂l ~ l51,2,...!,

pŴ 1\(
l51

kW l âl
†âl5NŴ p, ~21!

FIG. 3. Y0 being the expectation value of the atomic population

in the excited-statêŝ11& and the momentum increment^DpŴ & ~unit:
\kW ! as the function ofugut and an intensity-dependent coupling.~a!
Y5Y013 for f (x)5x; ~b! Y5Y012 for f (x)51/(x11); ~c!
Y5Y011 for f (x)5sin(x); ~d! Y5Y0 for f (x)5exp~2Ax!. Note
that l51 ~one-photon process!, dj50( j51,2,...),
V2(kpxc/m)2@~v22v1!1e#50, n̄510 and the atomic center-of-
mass state initially in a pure momentum eigenstates~x50!.

FIG. 4. The radiation forceF0 ~unit: \kW ugu! induced by the
atom-light interaction as the function ofugut and an intensity-
dependent coupling.~a! F5F01160 for f (x)5x; ~b! F5F01120
for f (x)51/(x11); ~c! F5F0180 for f (x)5sin(x); ~d! F5F0 for
f (x)5exp~2Ax!. The other parameters are the same as those in Fig.
3.
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wherel andml represents thel th mode and its corresponding
multiphoton transition, respectively. One introduces theop-

erator transformation Tˆ5exp@i((l51âl
†âlkWl)RŴ #. Then, follow-

ing the same procedure and the same definitions, we have the
Hamiltonians, the detuning operator

Ĥ85
~pŴ 2( l51\kW l âl

†âl !
2

2M
1\Fv0ŝ01v1ŝ11(

l51
V l âl

†âl

1(
j51

S (
l51

djl âl
†âl D j

1\Fgŝ10f ~ â1
†â1 ,â2

†â2 , . . . !)
l51

~ âl !
ml1H.c.G ,

~22!

Ĥ05
~pŴ 2( l51\kW l N̂l !

2

2\M
1(

l51
V l N̂l

1(
j51

S (
l51

djl N̂l D j1S v02
D̂

2 D N̂, ~23!

V̂52
D̂

2
~ ŝ12ŝ0!1Fgŝ10f ~ â1

†â1 ,â2
†â2 , . . . !

3)
l51

~ âl !
ml1H.c.G , ~24!

D̂5(
l51

mlV l1(
j51

H S (
l51

djl N̂l D j2F(
l51

djl ~N̂l2ml !G j J

2
~( l51mlkW l !~pŴ 2( l51\kW l N̂l !

M

2F ~v12v0!1
\

2M S (
l51

mlkW l D 2G ~25!

and the time evolution operator

Ûd~ t,0!5S cosm̂18t2 i
D̂18sinm̂18t

2m̂18
2 ig*

sinm̂18t

m̂18
f ~ â1

†â1 ,...!)
l51

~ âl
†e2 ikW l•R

Ŵ
!ml

2 ig)
l51

~ âle
ikW l•R

Ŵ
!ml f ~ âl

†â1 ,...!
sin m̂18t

m̂18
cosm̂28t1 i

D̂2sinm̂28t

2m̂28

D , ~26!

where

D̂185(
l51

mlV l1(
j51

H S (
l51

djl âl
†âl D j2F(

l51
djl ~ âl

†âl2ml !G j J 2
~( l51mlkW l !pŴ

M
2F ~v12v0!1

\

2M S (
l51

mlkW l D 2G ,
D̂285(

l51
mlV l1(

j51
H F(

l51
djl ~ âl

†âl1ml !G j2S (
l51

djl âl
†âl D j J

2

S (
l51

mlkW l D S pŴ 2(
l51

ml\kW l D
M

2F ~v12v0!1
\

2M S (
l51

mlkW l D 2G ,
m̂18

25S D̂18

2 D 21ugu2f 2~ â1
†â1 ,...!)

l51
~ âl

†!ml~ âl !
ml,

m̂28
25S D̂28

2 D 21ugu2f 2~ â1
†â11m1 ,...,âl

†âl1ml ,...!)
l51

~ âl !
ml~ âl

†!ml.

Like Sec. III, we assume that the initial statistics of the atomic momentum eigenstates is Gaussian, the initial atomic in-
ternal state is the ground state and each initial field is prepared in a corresponding coherent state, and then the initial density
operator is

r̂~0!5 (
n1 ,n2 ,•••50
m1 ,m2 ,•••50

`

e2( j51n̄j
P j51~a j !

nj~a j* !mj

An1!m1!n2!m2! •••
E

2`

` E
2`

`

d3pW 0•d
3pW 08upW 0,0,n1,...&

3^pW 08,0,m1,•••uF~pW 0!F* ~pW 08!. ~27!
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Let us consider the wave vector of a light field in thex
direction, it is easy to get the expectation values of some
physical quantities

^ŝ11&5 (
n1 ,n2 ,•••50

`

e2( j51 n̄ jF)
j51

n̄ j
nj1mj

~nj1mj !!

~nj1mj !!

nj !
G

3ugu2f 2~n11m1 ,n21m2 ,...!E
2`

`

dpx0

3
e2@~px02pxc!

2/2x2#

xA2p

sin2m$nj %
~px0!t

@m$nj %
~px0!#

2 , ~28!

^DpŴ &5^pŴ &2~pxceW x1pyceW y1pzceW z!5\(
j51

mjkW j^ŝ11&,

~29!

^Dn̂ j&5^â j
†â j&2n̄ j52mj^ŝ11&, ~30!

^FŴ &5S \(
j51

mjkW j D (
n1 ,n2 ,•••50

`

e2( j51 n̄ j

3F)
j51

n̄ j
nj1mj

nj !
G ugu2f 2~n11m1 ,n21m2 ,...!

3E
2`

`

dpx0
e2@~px02pxc!

2/2x2#

xA2p

sin2m$n, j %~px0!t

m$nj %
~px0!

, ~31!

^~DpŴ !2&5x21S (
j51

\mjkW j D 2^ŝ11&~12^ŝ11&!

12S (
j51

\mjkj D (
n1 ,n2 ,•••50

`

e2( j51 n̄ j

3F)
j51

n̄ j
nj1mj

~nj1mj !!

~nj1mj !!

nj !
G ugu2

3 f 2~n11m1 ,n21m2 ,••• !E
2`

`

dpx0~px02pxc!

3
e2@~px02pxc!

2/2x2#

xA2p

sin2 m$nj %
~px0!t

@m$nj %
~px0!#

2 , ~32!

^~Dn̂ j !
2&5n̄ j1mj

2^ŝ11&~12^ŝ11&!

12mj (
n1 ,n2 ,•••50

`

e2( j51 n̄ j

3F)
j51

n̄ j
nj1mj

~nj1mj !!

~nj1mj !!

nj !
G

3ugu2f 2~n11m1 ,n21m2 ,...!~nj1mj2n̄ j !

3E
2`

`

dpx0
e2@~px02pxc!

2/2x2#

xA2p

sin2m$nj %
~px0!t

@m$nj %
~px0!#

2 ,

~33!

where

m$nj %
2 ~px0!5ugu2f 2~n11m1 ,n21m2 ,...!)

j51

~nj1mj !!

nj !

1FD8~px0 ,n1 ,n2 ,••• !

2 G2
and

D8~px0 ,n1 ,n2 ,...!5D08~n1 ,n2 ,...!

2S (
j51

mjkj D ~px02pxc!

M
,

where we define further

D̂18~n1 ,n2 ,...!5(
l51

mlV l1(
j51

H F(
l51

djl ~nl1ml !G j

2(
l51

djl ~nl !
j J 2S (

l51
mlkW l D pŴ xc

M

2F ~v12v0!1
\

2M S (
l51

mlkW l D 2G .
From Eq. ~28! and Eq.~33!, it is shown that: ~1! The

operator transformation developed in this paper is very ef-
fective for solving exactly the single-channel MQJCMs al-
though it is not unique.~2! The quantum collapse-revival
phenomena of atomic population, atomic momentum, radia-
tion force, momentum diffusion, and the statistical properties
of light fields are predicted due to the quantization of atomic
motion and the quantum properties of light fields.~3! The
destruction of the above quantum revivals due to the initial
superposition of atomic momentum eigenstates can be calcu-
lated.~4! The effective effects of the intensity-dependent me-
dia is explicitly included in the specially defined detuning
and this result can lead to recovering all the consequences of
the JCMs in the Kerr-like media@9#.

The differences between the ordinary JCMs and the
present MQJCMs are: ~1! The latter involves three types of
physical quantities—field, atomic internal states, and atomic
external states, other than two types of physical quantities—
field and atomic states in the former.~2! The ordinary JCMs
only give the variation of atomic internal states due to the
quantum properties of the light fields such as the quantum
collapse-revival phenomena of atomic population, and the
modulation of the light fields through the interaction such as
squeezed states. But in MQJCMs, the variation of atomic
external states~momentum, force, momentum statistics, etc.!
as a function of atomic internal states and light fields is pre-
dicted, which does not appear in the ordinary JCMs. On the
other hand, the effects of atomic external states and their
statistics on atomic internal states and light fields is eluci-
dated explicitly. In one word, MQJCMs can link the light
fields, atomic internal and external states, and give their ex-
act variations and statistics.
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V. SUMMARY

In this paper, we introduce the operator transformation to
solve the motion-quantized Jaynes-Cumming Model which
consists of a two-level moving atom in the arbitrary
intensity-dependent media interacting with a single-mode or
multimode traveling-wave fields under the quantization of
atomic position and momentum. The exact time evolution of
the systems is given through which all the dynamics can be
calculated. The quantum collapse-revival phenomena of
atomic population, atomic momentum, radiation force, mo-
mentum diffusion, and the statistical properties of light fields
due to the quantization of atomic motion and the quantum
properties of light fields are predicted when the light fields
and a moving atom is initially prepared in the coherent states
and a momentum eigenstate, respectively. If the atom ini-
tially in a superposition of atomic momentum eigenstates,
the destruction of the quantum revivals due the dephasing

properties of the initial momentum statistics appears like the
ordinary JCMs with the cavity loss or the spontaneous emis-
sion @4#. The effective effects of the intensity-dependent me-
dia is explicitly included in the specially defined detuning
and this result can lead to recovering all the consequences of
the JCMs in the Kerr-like media@9#.

The method developed in this paper can be generalized to
solve the motion-quantized problems in the traveling-wave
fields. The resulting conclusion will lead to well understand-
ing the effects of quantizing the atomic position, momentum
and light fields and the relations between fields, atomic in-
ternal, and external degrees of freedom, which is very im-
portant for atom optics and a single-atom maser.
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