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Canonical quantization of the electromagnetic~EM! field is carried out for the situation where the total
charge and current densities are the sum of contributions from neutral dielectric atoms whose effect is to be
described purely classically in terms of spatially dependent electric permittivity and magnetic permeability
functions, and neutral, stationary radiative atoms whose interaction with the EM field is to be treated quantum
mechanically. The coefficients for the expansion of the vector potential in terms of mode functions determined
from a generalized Helmholtz equation are chosen as independent generalized coordinates for the EM field.
The spatially dependent electric permittivity and magnetic permeability appear in a generalized Helmholtz’s
equation and the former also occurs in the mode function orthogonality and normalization conditions. The
quantum Hamiltonian is derived in a generalized multipolar form rather than the minimal coupling form
obtained in other work. The radiative energy is the sum of quantum harmonic oscillator terms, one for each
mode. The modes are independent in the present case of exact mode functions associated with the spatially
dependent electric permittivity and magnetic permeability, there being no direct mode-mode coupling terms. In
the electric dipole approximation the electric interaction energy contribution for each mode and radiative atom
is proportional to the scalar product of the dipole operator with the mode function evaluated at the atom, times
the annihilation operator, plus the Hermitian adjoint. This form has been widely used in studies of radiative
processes for atomic systems in dielectric media, and it is justified here via the canonical quantization proce-
dure. The results apply to the theoretical treatment of numerous quantum optical experiments involving such
interactions in the presence of passive, lossless, dispersionless, linear classical optics devices such as resonator
cavities, lenses, beam splitters, and so on. An illustrative application of the theory for atomic decay in a
one-dimensional Fabry-Perot cavity is given.
@S1050-2947~96!06707-8#

PACS number~s!: 42.50.2p, 12.20.Ds, 32.80.2t

I. INTRODUCTION

Quantum optical experiments often involve the interaction
of the electromagnetic~EM! field and radiative atoms in the
presence of passive, lossless, dispersionless, linearclassical
optics devicessuch as resonator cavities, lenses, beam split-
ters, filters, and so on. In certain situations quantum treat-
ments of the dielectric atoms in such ‘‘classical’’ devices
together with the various reservoirs~for example, phonons
associated with lattice vibrations! to which they may be
coupled are required. For example, dispersion and absorption
effects~connected by causality through Kramers-Kro¨nig re-
lations! may be important—such as when the quantum opti-
cal frequencies of interest are close to resonance frequencies
for the dielectric atoms. Canonical quantization@1# of the
system of EM field, radiative and dielectric atoms, and with
the dielectric treated quantum mechanically as a harmonic
polarization field has been carried out by Huttner and Barnett
and by Ho and Kumar@2#, and this procedure may be re-
ferred to asmicroscopiccanonical quantization. However, in
many cases it is possible to ignore quantum effects associ-
ated with thedielectric atoms~essentially the Langevin noise
and associated dissipation! and to treat classical optics de-
vices via spatially inhomogeneous linear electric permittivity
«~R! and magnetic permeabilitym~R! ~if the material is mag-
netic! functions. Thus the basic idea in such an approach is
to replace the dielectric atoms by the classically equivalent
spatially dependent dielectric constant. To illustrate this, Fig.

1 shows a number of radiative atoms contained inside an
optical cavity produced by two concave mirrors consisting of
material made up of dielectric atoms and having a high per-
mittivity «. The cavity would be represented by a permittiv-
ity function «~R!, which equals« inside the mirrors and«0
everywhere else. In recent years mirrors of very high reflec-
tivity have been constructed using Bragg reflectors. Such

FIG. 1. Radiative atoms~shown as dots! are contained in an
optical cavity between two mirrors~shown hatched! consisting of
material made up of dielectric atoms and associated with a high
electric permittivity«.
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mirrors can be modeled in terms of a permittivity function
«~R! with the required spatial periodicity.

In quantum optical experiments the primary interest is in
the coupledradiative atomsandEM fieldsystem and in gen-
eral the dynamic behavior of this system should be studied
via a quantum treatment. The quantum Hamiltonian for the
system is of fundamental importance and isderived in the
present approach rather than merelyassumed, with the di-
electric atoms constituting the classical linear optical devices
taken into account via appropriate spatially dependent elec-
tric permittivity functions. The radiative atoms and the EM
field and their interaction are treated quantum mechanically.
The quantum Hamiltonian for the radiation atoms and EM
field is properly derived using the canonical quantization
procedure@1#. This is based on a classical Lagrangian which
takes the dielectric atoms into account via«~R!, m~R! and
which gives the accepted classical Maxwell and Lorentz
equations via the principle of least action~Lagrange’s equa-
tions!. This procedure may be referred to asmacroscopic
canonical quantization.

In carrying out the canonical quantization procedure, a
number of steps are involved. First, the EM field is described
via thevector potentialA~R! and thescalar potentialf~R!.
However, the latter is then eliminated from the Lagrangian
using ageneralized radiation gaugethat allows for the pres-
ence of the inhomogeneous electric permittivity«~R!. The
scalar potential is then just associated with Coulomb energy
terms. Second, the original Lagrangian is replaced by a new
Lagrangian which is designed to give a new Hamiltonian in
themultipolar form @1,3# rather than theminimal coupling
form @1,3#. The new Lagrangian is still associated with the
same action thereby leaving the Maxwell and Lorentz equa-
tions unchanged. Third, a set of independent,generalized
coordinatesto specify the EM field is obtained via the ex-
pansion of the vector potential in terms ofvector mode func-
tions. These are given as harmonic solutions for the vector
potential with no radiative atoms present, and which satisfy a
generalized Helmholtz equationtaking the presence of the
classical quantum optics device into account through terms
depending on«~R!. The spatially dependent electric permit-
tivity is also involved in themode function orthogonalityand
normalizationconditions@4–6#. Fourth, thegeneralized mo-
mentum coordinatesspecifying the EM field are determined
and the classical Hamiltonian in the multipolar form is con-
structed. Fifth, canonical quantization takes place by replac-
ing the generalized coordinates and momenta~both for the
EM field and for the radiative atom charged particles! by
quantum operators satisfying standard equal time commuta-
tion laws. Sixth, the classical Hamiltonian is replaced by the
quantum multipolar Hamiltonianand quantum field opera-
tors also replace the vector potential and itsconjugate mo-
mentum fieldp~R!. Commutation rules for the field operators
Â~R! andp̂~R! can then be determined, and these involve a
generalization of the familiar transverse component of the
delta function. The present macroscopic canonical quantiza-
tion process will be restricted to the case where~i! the radia-
tive atoms are neutral and stationary, and~ii ! the dielectric
medium is electrically neutral and nonconducting.

The quantum multipolar Hamiltonian resulting from the
macroscopic canonical quantization procedure is a key result
obtained here. Previous work on macroscopic canonical

quantization involving the presence of radiative atoms and
linear dielectrics@4,5# has been carried out without the sec-
ond step of forming a new Lagrangian and resulted in a
quantum Hamiltonian in the minimal coupling form. Both
the multipolar and minimal coupling Hamiltonians are exact
and their complex forms contrast the simple Lagrangians on
which they are based, indicating the impracticability of at-
tempting to prejudge the Hamiltonian form on the basis of
expected contributions to the energy of the system. This is
not to say that the various terms in the Hamiltonians cannot
be interpreted, and indeed a key result of the theory is the
presence of radiation field energy terms which are equivalent
to the Hamiltonian for a set ofindependent quantum har-
monic oscillators, one for each mode of the field. This im-
portant result is the basis of the traditionalphoton picturefor
the quantum EM field which still applies even though the
field is modified by the classical linear optics device. The
modes are independent, there being no direct mode-mode
coupling terms in the Hamiltonian for the present situation
where exact vector mode functions~‘‘true modes’’! for the
dielectric system are used. Various studies that carry out
macroscopic canonical quantization for the EM field in a
linear dielectric medium with no radiative atoms present~see
@7#, for example! or which involve microscopic canonical
quantization, whereall charges are treated quantum me-
chanically~see@1,2#, for example! also yield the photon pic-
ture. Work on macroscopic canonical quantization involving
nonlinear dielectrics but with no radiative atoms present, has
also been carried out,~see@8#, for example!, and also results
in harmonic oscillator terms. Apart from the radiation field
energy, the terms in the generalized multipolar Hamiltonian
obtained here can be identified with the radiative particle
kinetic energy, the radiative particle Coulomb energy, the
polarization energy, the electric interaction energy, the mag-
netic interaction energy, and the diamagnetic energy. Leav-
ing aside the last term the atom-field interaction leads to
processes in which the usual one-photon absorptions or
emissions are the basic step.

Approximate forms of the quantum multipolar Hamil-
tonian can be obtained based on anelectric dipole approxi-
mationanalogous to that used for the usual quantum multi-
polar Hamiltonian@1,3# based on quantization in free space,
where «5«0 everywhere. The electric interaction energy
term is the sum of contributions for each mode and radiative
atom. Each such contribution is the sum of a term plus its
Hermitian adjoint, where the term is proportional to the sca-
lar product of the atomic dipole operator and the mode func-
tion evaluated at the atom, times the annihilation operator
multiplied by the electric field per photon. This form has
been widely used@9# in studies of radiative processes for
atomic systems in dielectric media, and in cavity quantum
electrodynamics@10#. However, it is justified here using the
canonical quantization procedure. The electric interaction en-
ergy can also be expressed as a sum of contributions for each
atom of the scalar product of the atomic dipole operator with
the conjugate momentum field operator evaluated at the
atom, divided by the electric permittivity at the atom. In the
present case of an inhomogeneous mediump̂/« is not the
same as the negative of the electric displacement operator, so
the familiar expression for the electric interaction does not
apply.
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Apart from the restrictions already indicated that the di-
electric medium is nondispersive, nonabsorptive, and linear,
the present macroscopic canonical quantization procedure is
also not intended to apply to situations where inhomoge-
neous effects in the dielectric medium on an atomic scale are
involved. Thuslocal field effectsassociated with crystal lat-
tices lie outside the scope of the theory. Nevertheless, the
results will be valid for a wide range of quantum optical
situations, especially those associated with the rapidly devel-
oping area of cavity quantum electrodynamics@10#.

The plan of this paper is as follows. In Sec. II the basic
Lagrangian for radiative atoms and EM field in a nonhomo-
geneous linear dielectric and magnetic medium is intro-
duced. In Sec. III a Lagrangian leading to a generalized mul-
tipolar Hamiltonian is obtained. In Sec. IV vector mode
functions and generalized position and momentum coordi-
nates for the field are examined, leading to further forms of
the generalized multipolar Hamiltonian. Canonical quantiza-
tion is carried out in Sec. V, leading to the generalized quan-
tum multipolar Hamiltonian and its electric dipole approxi-
mation form. An illustrative example of the theory for
atomic decay in a one-dimensional cavity is treated in Sec.
VI and the main results are summarized in Sec. VII. Detailed
derivations are placed in the Appendixes.

II. BASIC LAGRANGIANS FOR RADIATIVE ATOMS
AND EM FIELD IN NONHOMOGENEOUS

LINEAR DIELECTRIC AND MAGNETIC MEDIUM.
GENERALIZED RADIATION GAUGE

A. Macroscopic Lagrangian

If E andB are the electric and magnetic fields, the Max-
well equations are

“•B50,

“3E1
]B

]t
50,

~1!
“•«0E5r,

“3
B

m0
2«0

]E

]t
5 j ,

where the charge and current densitiesr and j are given by

r5(
ja

qjad~R2r ja!,

~2!

j5(
ja

qja ṙ jad~R2r ja!.

Here j51,2, . . . lists different atoms, anda51,2, . . . lists
different particles within atomj. qja ,M ja are the charge
and mass for theja particle at positionr ja . At present we
considerall charges, whether associated with dielectric or
magnetic media atoms or with radiative atoms. Associated
with the charged particles we may define@1# a polarization
densityP and a magnetization densityM ,

P5(
ja

qjaE
0

1

du~r ja2Rj!d„R2Rj2u~r ja2Rj!…, ~3!

M ~R!5(
ja

qjaE
0

1

u du~r ja2Rj!

3~ ṙ ja2Ṙj!d„R2Rj2u~r ja2Rj!…

1(
ja

qjaE
0

1

du~r ja2Rj!

3Ṙjd„R2Rj2u~r ja2Rj!…, ~4!

where for thej atomQj , M j , andRj are the total charge,
total mass, and center of mass position, respectively. Defin-
ing the free ~or conduction! charge and current densities
r0,j0, corresponding to all charges being located at the center
of massesRj of the various atoms as

r0~R!5(
j
Qjd~R2Rj!,

~5!

j0~R!5(
j
QjṘjd~R2Rj!,

then we can write@1#

r5r02“•P,

j5 j01
]P

]t
1“3M , ~6!

giving the charge density as the sum of the free charge den-
sity r0 and the polarization charge density2“•P and the
current density as the sum of the free current densityj0, the
polarization current densityṖ, and the magnetization current
density“3M .

The replacement of dielectric media atoms via permittiv-
ity and permeability functions is based on writing the quan-
tities r,j ,P,M as the sum of contributions from charges~des-
ignatedD! associated with the dielectric atoms and charges
~designatedL! associated with the radiative atoms,

r5rD1rL ,

j5 jD1 jL ,
~7!

P5PD1PL ,

M5MD1ML .

A similar decomposition as in~6! applies to the constituents
rD ,jD or rL ,jL making up the charge and current densities.
For the case of neutral and nonconducting dielectric media
we have

rD050,
~8!

jD050,
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and using~6! for the case of the dielectric or magnetic media
termsrD ,jD the third and fourth Maxwell equations can be
written as

“•~«0E1PD!5rL ,
~9!

“3S Bm0
2MDD2

]

]t
~«0E1PD!5 jL .

The electric displacementD and magnetic intensityH are
related to the electric and magnetic fieldsE,B and the polar-
ization and magnetization densitiesP,M as

D5«0E1P,
~10!

H5
B

m0
2M ,

so that

D5~«0E1PD!1PL ,
~11!

H5S Bm0
2MDD2ML .

It is these results that enable the inhomogeneous electric per-
mittivity «~R! and magnetic permeabilitym~R! associated
with the linear dielectric or magnetic medium to be intro-
duced. They are given via

«E5«0E1PD ,
~12!

B

m
5

B

m0
2MD .

It is important to note that«,m arenot the permittivity and
permeability associated with all the charges, but only with
the charges, currents (rD ,jD) associated with the dielectric
or magnetic medium. The distinction between the electric
permittivity and magnetic permeability of the dielectric me-
dium «,m and the total electric permittivity and magnetic
permeability«T ,mT for all the charges is an important one to
make.

Maxwell’s equations for electrically neutral, nonconduct-
ing dielectric and magnetic media, but with the radiative
atom charges explicitly included, are obtained from~9! and
~12! as

“•B50,

“3E1
]B

]t
50,

~13!
“•«E5rL ,

“3
B

m
2«

]E

]t
5 jL

We thus have eliminated the dielectric or magnetic media
charges whichonly appear via«~R!,m~R!. The remaining
charge and current densities are nowonlyassociated with the

radiative atoms. The vector and scalar potentialsA,f are
related to the electric and magnetic fieldsE,B via the usual
equations

E52“f2
]A

]t
,

~14!
B5“3A.

A straightforward application of the principle of least ac-
tion to the Lagrangian given by

L5(
ja

1

2
M ja ṙ ja

2 1E d3RL, ~15!

where

L5
1

2
«E22

1

2m
B21 jL•A2rLf ~16!

is the Lagrangian density, yields both the modified Max-
well’s equations~13! and the Lorentz equations~17! for the
classical motion of the charged particles associated with the
radiative atoms.

M ja r̈ ja5qja„E~r ja!1 ṙ ja3B~r ja!…. ~17!

We may refer to the LagrangianL as themacroscopicLa-
grangian, as the atoms in the dielectric or magnetic medium
are now treated macroscopically via the electric permittivity
and magnetic permeability. It is important to note that the
Lagrangian~15! ~and all subsequent expressions! only in-
volves a sumja over charges associated with theradiative
atoms.

B. Generalized radiation gauge and elimination
of scalar potential

From the third Maxwell equation~13! we find using~14!

“•~«“f!1“•S «
]A

]t D52rL . ~18!

In a generalized radiation~Coulomb! gauge we want the sca-
lar potentialf to be determined from the charge density
without any retardation effects. This can be accomplished via
the use of thegeneralized radiation gauge@4,5#

“•«A50. ~19!

In this case the scalar potential satisfies ageneralized Pois-
son equation

“•~«¹f!52rL . ~20!

This equation relates the scalar potentialf to the instanta-
neous positionsr ja of all the radiative atom charges. This
enables us to disregardf as an independent field variable.
Unlike the free space situation, however, the scalar potential
will depend on the electric permittivity«~R! as well as on the
position of the radiative charges. From the fourth Maxwell
equation~13! we find using~14! that
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“3
1

m
~“3A!1«

]2A

]t2
5 jL2«“

]f

]t
, ~21!

which is ageneralized inhomogeneous wave equationfor the
vector potentialA. The termjL2«“ḟ acts as a source term.

The use of the generalized radiation gauge enables the
scalar potential to be eliminated from the Lagrangian. Sub-
stituting forE via ~14! in the term*d3R1

2«E
2 a straightfor-

ward vector calculus treatment making use of~19! and ~20!
gives @4,5#

L5(
ja

1

2
M ja ṙ ja

2 2VCoul1E d3R LC , ~22!

where

VCoul5
1

2 E d3R frL5E d3R
~«“f!•~«“f!

2«
~23!

and

LC5
1

2
«Ȧ22

1

2m
~“3A!21 jL•A ~24!

are the Coulomb energy and the radiative Lagrangian den-
sity. The Coulomb energyVCoul only depends on positions of
radiative atom charges and the radiative Lagrangian density
LC only depends on the vector potentialA. It should be
noted that the Coulomb energy~and hence the Lagrangian!
only depends on the scalar potentialf in terms of the quan-
tity «“f. It may appear that the vector potentialA and the
scalar potential via«“f are not determined uniquely by the
generalized radiation gauge condition~19! and the general-
ized Poisson equation~20!. In fact these conditionsdo give
A and«“f uniquely, as is demonstrated in Appendix A.

III. LAGRANGIAN AND GENERALIZED MULTIPOLAR
HAMILTONIAN. CONJUGATE MOMENTUM

FIELD

The previous Lagrangian~22! can be used to calculate the
conjugate momentum field, the minimal coupling Hamil-
tonian, and via a mode expansion and the canonical quanti-
zation procedure will result in a quantum generalized mini-
mal coupling Hamiltonian obtained in previous work@4,5#.
Here we wish to derive a quantum generalized multipolar
Hamiltonian, so following the procedure used in standard
treatments@1,3# we add a term to the old Lagrangian~22! to
produce a new Lagrangian that leads to a Hamiltonian in the
multipolar form. The additional term is a total time deriva-
tive involving the vector potentialA and the polarization
densityPL associated with the radiative atoms. The action
and hence the Maxwell or Lorentz equations are thus left
unaltered. The new Lagrangian is

L85L1
dF

dt
, ~25!

where

F52E d3R PL•A. ~26!

From now on we assume that the radiative atoms are elec-
trically neutral,Qj50. Hence from~5!

rL050,
~27!

jL050.

Using ~27! and the second equation~6! jL5ṖL1“3ML for
the radiative charges it is easily seen that the new Lagrangian
is given by

L85(
ja

1

2
M ja ṙ ja

2 2VCoul1E d3RH 12 «S ]A

]t D
2

2
1

2m
~“3A!22PL•S ]A

]t D1ML•“3AJ
5(

ja

1

2
M ja ṙ ja

2 2VCoul1E d3R LC8 , ~28!

where

LC8 5
1

2
«S ]A

]t D
2

2
1

2m
~“3A!22PL8•S ]A

]t D1ML•“3A.

~29!

The new radiative Lagrangian densityLC8 involves a reduced
polarization densityPL8 , for which the explicit expression
will be obtained later@see Eq.~53!#. This allows forA to be
constrained via the generalized radiation gauge condition
~19!, so that for all suchA

E d3R PL•A5E d3R PL8•A. ~30!

In the usual free space treatment where«5«0 everywhere
and“•A50 gives the usual radiation gauge condition,PL8
would be the transverse component ofPL . In the present
situation althoughPL8 turns out to be transverse, it isnot the
same as the transverse component ofPL . This will be dem-
onstrated later@see Eqs.~82! and ~83!# by a particular ex-
ample, but is not surprising in that whereasPL8 must depend
on «~R! in view of ~19!, PL and its transverse component are
independent of«~R!.

From now on we also assume that the radiative atoms are
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stationaryby assumingM j→`. Thus

Ṙj50 ~31!

and from ~4! the magnetization densityML is given as the
simpler form

ML5(
ja

qjaE
0

1

u du~r ja2Rj!

3 ṙ jad„R2Rj2u~r ja2Rj!…. ~32!

The explicit dependence of the new Lagrangian~28! on the
particle velocitiesṙ ja and field velocityȦ is

L85(
ja

1

2
M ja ṙ ja

2 2VCoul1E d3RS 12 «S ]A

]t D
2

2
1

2m
~“3A!2D1(

ja
ṙ jaE

0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!

2E d3R PL8•S ]A

]t D . ~33!

The momentapaj for the radiative atom charges and the conjugate momentum fieldp~R! for the EM field can be obtained@1#
from the Lagrangian~33! and the radiative Lagrangian density~29! as

pja5M ja ṙ ja1E
0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!, ~34!

p5«
]A

]t
2PL8 . ~35!

The new Hamiltonian can then be constructed@1# using the standard method as

H85(
ja

pja
2

2M ja
1VCoul1E d3RS ~p1PL8 !2

2«
1

~“3A!2

2m D 2E d3R~“3A!•ML8

1(
ja

qja
2

2M ja
S E

0

1

u du B„Rj1u~r ja2Rj!…3~r ja2Rj! D 2, ~36!

where thereducedmagnetization density is given by

ML85(
ja

qjaE
0

1

u du ~r ja2Rj!3
pja

M ja
d„R2Rj2u~r ja2Rj!…. ~37!

The details are given in Appendix B. This classical Hamil-
tonian, although restricted to the case of neutral, stationary
radiative atoms, is in the multipolar form. However, the in-
terpretation of the various terms is not yet clear and the
Hamiltonian is not suitable as it stands for quantization,
since we do not know the proper commutation rules for op-
erators representing the vector potential and its conjugate
momentum field and we also do not have an explicit expres-
sion for the reduced polarization density.

IV. MODE FUNCTIONS, GENERALIZED POSITION,
AND MOMENTUM COORDINATES FOR THE EM FIELD,

AND THE GENERALIZED MULTIPOLAR
HAMILTONIAN

A. Basic idea for canonical quantization

The possible approach of just replacing the fieldsA,p by
field operatorsÂ,p̂ in the Hamiltonian is an unsatisfactory
quantization procedure. At this stage we would have to

guesswhat the commutation rules forÂ,p̂ are; presumably
they involve a generalization of the transversed function and
include«~R! rather than«0. Also,A satisfies a constraint, the
radiation gauge condition“•«A50, and this has to be taken
into account in the quantization procedure. In a proper ca-
nonical quantization procedure the fields are expressed in
terms of a suitable set of generalized independent coordi-
nates,qk and the time derivative of the field will involve the
time derivatives of the generalized coordinatesq̇k , which
play the role of generalized velocities. The Lagrangian is
then expressed in terms of theqk ,q̇k and the generalized
momentapk given via

pk5
]L

]q̇k*
. ~38!

The complex conjugate allows for the case where theqk are
complex. The Hamiltonian is then calculated via
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H5(
k

~ q̇kpk*1q̇k* pk!2L, ~39!

where the sum is over independentk and depends on the
generalized coordinatesqk and generalized momentapk .

Quantization then proceeds via the replacement of the
generalized coordinates and momenta by quantum operators
qk→q̂k , pk→ p̂k , qk*→q̂k

† , pk*→ p̂k
† , and which satisfy stan-

dard commutation rules, for which the nonzero results are

@ q̂k ,p̂k
†#5@ q̂k

† ,p̂l #5 i\dkl . ~40!

Other physical quantities such asA, p, andH can then also
be replaced by quantum operators making use of their ex-
pressions in terms of theqk ,pk and their commutation rules
derived from those applying to theq̂k ,p̂k .

B. Vector mode functions

In our case we will introduce the required independent
generalized coordinates via an expansion of the vector po-
tentialA in terms of the vector mode functionsAk applying
for no radiative atoms presentjL5rL50. This is the gener-
alization of the usual expansion ofA in terms of plane waves
and the use of reciprocal space@1#. We need not restrict
ourselves to the case of nonmagnetic media wherem5m0
throughout. For the case wherejL5rL50 the generalized
inhomogeneous wave equation~21! becomes a homogeneous
wave equation and has harmonic solutions of the form

A5Ak~R!eivkt, ~41!

wherevk is the angular frequency. The vector mode func-
tionsAk satisfy thegeneralized Helmholtz equation

“3
1

m
~“3Ak!5vk

2«Ak . ~42!

It is easy to see from~42! that the vector mode functions
satisfy the generalized radiation gauge condition~19!,

“•«Ak50. ~43!

Such vector mode functions have been extensively used in
other work involving the quantized EM field in dielectric
media~see, for example,@4–6,11#! and the properties of the
vector mode functions have been worked out, at least for the
case wherem5m0 everywhere. The properties are obtained
for the general case by demonstrating that the operator

L5
1

«
“3

1

m
~“3••• ! ~44!

is self adjoint in terms of integrals*d3R «~R!. . . , where
«~R! acts as a weight function. From Eq.~42! the eigenval-
ues ofL are thev k

2 and theAk are the eigenfunctions. De-
tails are given in Appendix C. The important properties of
the vector mode functions are as follows:~i! thevk are all
real ~and positive!; and~ii ! the orthogonality andnormaliza-
tion conditions are given by

E d3R «~R!Ak* ~R!•A l~R!5dkl . ~45!

This condition may be taken to apply to vector mode func-
tions that are degenerate via the use of the Schmidt orthogo-
nalization procedure. The indexk will be used to distinguish
degenerate vector functions; these may, for example, have
different polarization vectors«k . Thus k→(vk ,i ) where i
lists degenerate modes. Noting that the complex conjugate
~Ak)* satisfies the generalized Helmholtz equation with the
same angular frequencyvk as for thek mode, we may define
the k* mode via

Ak* ~R!5„Ak~R!…* . ~46!

This is degenerate withAk .
In the case of free space with«5«0 everywhere the vec-

tor mode functions are the usual plane wave forms defined in
quantization volumeV,

Ak~R!5
1

A«0V
«ke

ik–R ~47!

with the polarization vector«k and angular frequencyvk
satisfying

k–«k50,

vk5cuku, c5
1

Am0«0
. ~48!

In the free space case thek* mode would then have polar-
ization vector~«k!* and wave vector2k.

C. Expansion of vector potential

The expansion of the vector potential in terms of the vec-
tor mode functions is written as

A5(
k
qkAk , ~49!

where theqk are the expansion coefficients. Using~45! we
have

qk5E d3R «~R!Ak* ~R!•A~R!. ~50!

Using the requirement that the vector potential isrealwe see
using ~46! that the expansion coefficients for thek and k*
modes are not independent, but are complex conjugates,

qk*5~qk!* . ~51!

In view of this and generalizing the free space case we then
see that it is the set ofqk defined in a suitable half space~in
which only one ofqk andqk* appear! that act as independent
generalized coordinates describing the EM field. Thus we
have

A5( 8
k

~qkAk1qk*Ak* !, ~52!

where the sum(k8 is over the half space only. The set ofq̇k
in the half space act as the generalized velocities.
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D. Reduced polarization density

Consider the expression

PL8~R!5(
k

«~R!Ak~R!E d3R8 PL•Ak* . ~53!

Then with A given by the complex conjugate of the form
~49! we have for arbitraryA satisfying the generalized radia-
tion gauge condition~19!

E d3R PL8•A5(
kl

ql* E d3R A l* ~R!•«~R!Ak~R!

3E d3R8 PL~R8!•Ak* ~R8!

5(
k
qk* E d3R PL•Ak* . ~54!

The orthogonality condition~45! has been used. But for the
same arbitraryA

E d3R PL•A5(
k
qk* E d3R PL•Ak* ~55!

so that for all choices of theqk the condition~30! is satisfied
with the reduced polarization densityPL8 given by ~53!. We
may therefore take~53! as giving the expression for the re-
duced polarization density. It is obvious using~43! thatPL8 is
transverse field.

E. New Lagrangian

With the Lagrangian in the form~33! we can substitute
the expression~52! for the vector potential enabling the La-
grangian to be given in terms of the generalized field veloci-
ties q̇k ~k in half space! and the particle velocitiesṙ ja . We
find that

L85(
ja

1

2
M ja ṙ ja

2 2VCoul1( 8
k

q̇kq̇k*2( 8
k

vk
2qkqk*1(

ja
ṙ ja•E

0

1

u du B„Rj1u~raj2Rj!…3~raj2Rj!qja

2( 8
k

S q̇kE d3R PL•Ak1q̇k* E d3R PL•Ak* D . ~56!

The details are given in Appendix D.

F. Conjugate momenta

The conjugate momenta are obtained from the Lagrangian
~56! via the use of~38!. The particle momentapja are, of
course, as in~34!. The generalized momentum coordinatepk
for the field is given by

pk5q̇k2E d3R PL•Ak* ~57!

and this can be extended to the full space via the use of~46!
and ~51! to give

pk*5~pk!* . ~58!

G. Conjugate momentum field

The expression for the conjugate momentum field can be
determined from~35!, ~53!, and~57! as follows:

p5«Ȧ2PL8

5(
k

«AkS q̇k2E d3RPL•Ak* D
5(

k
pk«Ak

5( 8
k

~pk«Ak1pk* «Ak* !. ~59!

Thus we see that the field momentum is a linear combination
of the«Ak with the generalized momentum coordinatespk as
coefficients. We note that the conjugate momentum fieldp is
always transverse

“•p50. ~60!

H. New multipolar Hamiltonian

This can be obtained in terms of the generalized coordi-
natesqk and momentapk for the field. Using the general
result ~39! and the Lagrangian given by~56!, we then sub-
stitute for the particle velocitiesṙ ja and generalized field
velocitiesq̇k via ~34! and ~57!. The details are given in Ap-
pendix E. It is convenient to write the result in terms ofk
sums over the full space and we find that

H85(
ja

pja
2

2M ja
1VCoul1(

k

1
2U E d3RPL•AkU2

1(
k

1
2 ~pkpk*1vk

2qkqk* !1(
k

pkE d3RPL•Ak

2(
k
qkE d3RML8•“3Ak1(

ja

qja
2

2M ja

3S (
k
qkE

0

1

udu“3Ak@Rj1u~r ja2Rj!#

3~r ja2Rj! D 2. ~61!
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In order the terms in the Hamiltonian~61! are particle kinetic
energy, Coulomb energy, polarization energy, radiation field
energy, electric interaction energy, magnetic interaction en-
ergy, and diamagnetic energy. The radiation field energy is
the sum of independent harmonic oscillators terms for each
mode, withvk acting as the oscillator frequency. The electric
and magnetic interaction energies depend linearly on the
generalized momentapk and generalized coordinatesqk , re-
spectively. The diamagnetic energy depends quadratically on
the generalized coordinates. It should be noted that this gen-
eralized multipolar Hamiltonian is restricted to the case of
neutral, stationary, radiative atoms with an electrically neu-
tral nonconducting dielectric and magnetic medium. The
Hamiltonian is still classical at this stage.

Another form of the multipolar Hamiltonian can be ob-
tained from the original result~36! by expanding the term
involving (p1PL8!2. This is given as

H85(
ja

pja
2

2M ja
1VCoul1E d3R

@PL8~R!#2

2«

1E d3RS p2

2«
1

~“3A!2

2m D
1E d3R

p•PL8

«
2E d3R~“3A!•ML81(

ja

qja
2

2M ja

3S E
0

1

u du B„Rj1u~r ja2Rj!…3~r ja2Rj! D 2.
~62!

Using the mode expansions~49!, ~59!, and ~53! for A~R!,
p~R!, andPL8(R), respectively, it is easily shown, using the
orthogonality condition~45!, that the terms in~62! are equal
to the corresponding terms in~61!. Thus, as in~61!, the
terms in ~62! in order are particle kinetic energy, Coulomb
energy, polarization energy, radiation field energy, electric
interaction energy, magnetic interaction energy, and diamag-
netic energy. We note that the radiation field energy involves
the square of the conjugate momentum fieldp as well as the
square of the magnetic fieldB. The electric interaction en-
ergy involves the conjugate momentum fieldp and the re-
duced polarization densityPL8 . The magnetic interaction en-
ergy involves the magnetic fieldB and the reduced
magnetization densityML8 . The diagmagnetic energy is qua-
dratic in the magnetic fieldB.

V. GENERALIZED QUANTUM
MULTIPOLAR HAMILTONIAN

A. Canonical quantization

In accordance with the canonical quantization procedure
@1# we replace the classical quantities with quantum me-
chanical operators. For the radiative atoms the positions and
momenta for the charged particles are represented by Her-
mitian operators

r ja→ r̂ ja ,
~63!

pja→p̂ja

with the usual commutation rules applying, for which the
nonzero commutators are (i , j5x,y,z)

@ r̂ ja i ,p̂hb j #5 i\djhdabd i j . ~64!

For the field we initially restrict ourselves to the half space
and replace the generalized coordinatesqk and the general-
ized momentapk and their complex conjugates by non-
Hermitian operators

qk→q̂k ,

qk*→q̂k
† ,

~65!
pk→ p̂k ,

pk*→ p̂k
† .

Thus the complex conjugates are replaced by the Hermitian
adjoints. The standard commutation rules apply, for which
the nonzero commutators are

@ q̂k ,p̂l
†#5@ q̂k

† ,p̂l #5 i\dkl ~66!

for k,l in the half space. Note that the fundamental commu-
tator which is nonzero involvesq̂k and p̂k

† and notp̂k . It is
convenient to extend the relationships into the full space via
the use of~51!,~58! so that

qk*→q̂k
† ,

~67!
pk*→ p̂k

† ,

wherek* will be in the other half space. By this means the
commutator rules~66! can be extended to apply to allk,l and
we have the relationship

q̂k*5q̂k
† ,

~68!
p̂k*5 p̂k

†

between the operators representing thek* andk modes.

B. Annihilation and creation operators

Since the radiation field energy is equivalent to that of a
set of harmonic oscillators it is appropriate to introduce an-
nihilation and creation operators for the quantum description
of the field. These are defined via

âk5Avk

2\
q̂k1 i

1

A2\vk

p̂k ,

~69!

âk
†5Avk

2\
q̂k
†2 i

1

A2\vk

p̂k
† ,
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where âk,âk
† are the annihilation and creation operators, re-

spectively. Again, these expressions can be taken to apply to
all k. The usual commutation rules apply, where the nonzero
commutators are given by

@ âk ,âl
†#5dkl . ~70!

The definitions of the annihilation and creation operators can
be inverted to give

q̂k5A \

2vk
~ âk1ak*

†
!,

~71!

p̂k5
1

i
A\vk

2
~ âk2âk*

†
!,

showing that the generalized coordinateq̂k and generalized
momentap̂k are related to the annihilation operator for thek
mode and the creation operator for thek* mode.

C. Vector potential and conjugate momenta field

The vector potentialA~R! and the conjugate momentum
field p~R! become quantum field operators via the replace-
ment of theqk ,pk in the mode expansions~49!,~59! via the
quantum operatorsq̂k ,p̂k

A→Â5(
k
q̂kAk5(

k
A \

2vk
@ âkAk~R!1âk

†Ak* ~R!#,

~72!

p→p̂5(
k

p̂k«Ak5(
k

S 1i A\vk

2
âk«Ak~R!

2
1

i
A\vk

2
âk
†«Ak* ~R! D . ~73!

The second forms ofÂ and p̂ follow from the expression
~71! for the q̂k ,p̂k in terms of annihilation and creation op-
erators. The field operatorsÂ~R! and p̂~R! are Hermitian.
We can now obtain the commutation rules forÂ, p̂. Obvi-
ously the components ofÂ all commute, as do those ofp̂,
since allq̂k commute and allp̂k commute. The commutators
which are nonzero are

@Âi~R!,p̂ j~R8!#5(
kl

Aki~R!Al j* ~R8!«~R8!@ q̂k ,p̂l
†#

5 i\(
k
Aki~R!Akj* ~R8!«~R8!

~ i , j5x,y,z!, ~74!

which is a generalization of the result involving the trans-
versed function@ i\d i j

>~R2R8!# for the free field case@1#. It
is hard to see how this result could have been just postulated,
indicating the necessity of a canonical quantization proce-
dure involving the mode functions and invoking the basic
commutation rules~66!.

D. Other field operators

The magnetic fieldB also becomes a field operator given
by

B̂~R!5“3Â~R!. ~75!

The electric fieldE can be expressed as a field operator using
~35! and ~14! to give

Ê~R!52S p̂~R!1P̂L8~R!

«~R!
D 2“f̂~R!, ~76!

where bothP̂L8 and“f̂ can be considered as operators de-
pending on the radiative charged particle position operators
r̂ ja.

There is no simple relationship between the transverse
component of the electric displacementD̂ and p̂ as in the
case for a free field. From the condition that

“•D̂5 r̂0 , ~77!

then the situation of neutral dielectric and radiative atoms
~rL05rD050! implies thatr050, so thatD̂ is purely trans-
verse

D̂5D̂' . ~78!

It is then easy to see from~11!, ~12!, and~76! that

D̂5D̂'52p̂2~«“f̂!'1~P̂L!'2PL8 . ~79!

Thus in generalD̂' and2p̂ are not equal. For the free space
situation «“f̂5«0“f̂, which is purely longitudinal,PL8
5(P̂L)' , so thatD̂52p̂.

E. Quantum Hamiltonian

The classical multipolar Hamiltonian~62! is replaced by
the quantum multipolar Hamiltonian via substituting the
classical quantitiesPL8 , ML8 , A, p by the field operators and
replacing the classical charged particle position and momen-
tum coordinatesr ja ,Pja by the quantum operators. For con-
venience the radiation field energy term is written in terms of
annihilation and creation operators. Details are given in Ap-
pendix F. We find that thegeneralized quantum multipolar
Hamiltonian for the case of neutral, stationary radiative at-
oms in a neutral, nonconducting, dielectric and magnetic me-
dium is given by
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Ĥ85(
ja

p̂ja
2

2M ja
1V̂Coul1E d3R

~P̂L8 !2

2«
1(

k
S âk†âk1 1

2D \vk1E d3R
P̂L8• p̂

«
2E d3R M̂L8•“3Â

1(
ja

qja
2

2M ja
S E

0

1

u du B̂„Rj1u~r ja2Rj!…3~r ja2Rj! D 2. ~80!

In order the terms of the Hamiltonian are particle kinetic
energy, Coulomb energy, polarization energy, radiation field
energy, electric interaction energy, magnetic interaction en-
ergy, and diamagnetic energy. This quantum Hamiltonian is
based on a vector mode function treatment. We see that the
form of the radiation field energy establishes the photon pic-
ture for this system, with the quantum field being equivalent
to a set of quantum harmonic oscillators, one for each mode
of the field. It should be noted that there are no direct cou-
pling terms between the different modes, a characteristic fea-
ture associated with the use of the exact vector mode func-
tions associated with the classical linear optics device~‘‘true
modes’’!. The electric and magnetic interaction energy terms
allow for basic atom-field processes in which one photon is
created or destroyed in each fundamental step, this being a
consequence of the linear dependence of these interaction
energy terms on the creation and annihilation operators.

F. Electric dipole approximation

To obtain the electric dipole approximation result we ig-
nore the polarization energy, magnetic interaction energy,
and diamagnetic energy terms in the quantum Hamiltonian
~80! and replace the polarization density with its dipolar ap-
proximation

P̂L~R!5(
j

m̂jd~R2Rj!, ~81!

wherem̂j is the dipole operator for thej atom. In view of
~31! theRj are classical. The transverse (P̂L)' and longitu-
dinal (P̂L) i components ofP̂L may be evaluated using the
Helmholtz theorem@10#. These are given as~details are in
Appendix G!

~P̂L~R!!'5
21

4p (
j

S m̂j

uR2Rju3
2
3~R2Rj!•m̂j~R2Rj!

uR2Rju5
D

52„P̂L~R!…i for ~RÞRj!. ~82!

A straightforward calculation gives the reduced polarization
density as

P̂L8~R!5(
kj

m̂j•Ak* ~Rj!«~R!Ak~R! ~83!

and substituting forp̂~R! in terms of the mode expression
~73! enables the Hamiltonian to be determined. The different
results for the transverse component ofP̂L~R! and the re-
duced polarization densityP̂L8~R! are apparent.

The quantum Hamiltonianin theelectric dipole approxi-
mation is given by

ĤE18 5(
ja

pja
2

2M ja
1V̂Coul1(

k
S âk†âk11

2D\vk

1(
ja
A\vk

2

1

i
@ âkm̂j•Ak~Rj!2âk

†m̂j•Ak* ~Rj!#,

~84!

where the first two terms give the particle energy, the third
term is the radiation field energy, and the last term is the
electric dipole interaction energy.

Thus the atom-field interaction is given by

ĤAF5(
kj
A\vk

2

1

i
@ âkm̂j•Ak~Rj!2âk

†m̂j•Ak* ~Rj!#. ~85!

This form has been widely used in cavity QED calculations
@11#. It involves the sum over modes and radiative atoms and
includes scalar products of the mode functions evaluated at
the atomic center of massRj with the atomic dipole opera-
tors, as well as the mode creation and annihilation operators
and the factor~\vk/2!1/2 giving the electric field per photon.
The atom-field interaction can also be written in the form

ĤAF5(
j

m̂j•p̂~Rj!

«~Rj!
~86!

displaying the dependence on the conjugate momentum field
evaluated at the atomic center of mass. Note that because
p̂/« is not the same as2D̂'/«, this form cannot be simply
related to the transverse component of the electric displace-
ment operator, as in the free field case.

VI. SIMPLE APPLICATION ATOMIC DECAY
IN A ONE-DIMENSIONAL CAVITY

As a simple application we consider the decay of an ex-
cited and level atom placed at the center of a one-
dimensional cavity of lengthl ~see Fig. 2!. The cavity is of
the Fabry-Perot type: one mirror is perfect, the other is made
up of a dielectric layer of thicknessd with permittivity
«15k1«0, k1 being the dielectric constant. The region exter-
nal to the cavity is of lengthL and a second perfect mirror is
situated at its end. The cross sectional area of the system is
A. Such cavities, in which the field and radiating atoms are
contained in a one-dimensional universe between the two
perfect mirrors have often been used for laser theory; see, for
example, Langet al. @12#. In the present case the decay of an
excited atom will be treated, via an approach of Laiet al.
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@13#, and which demonstrates the full range of behavior from
cavity modified irreversible spontaneous emission in the
weak coupling regime to reversible energy interchange be-
tween atom and field in the strong coupling regime.

In the electric dipole approximation~85! the atom-field
coupling can be written

ĤAF5(
k

\gkŜâk1~Hermitian conjugate!,

where the coupling constantgk is given by

gk5
1

i
Avk

2\
m–Ak~R!. ~87!

m is the dipole matrix element^2um̂u1&, Ŝ5u2&^1u is the usual
atomic transition operator.u2&,u1& are the atomic excited- and
ground-state eigenvectors. The atom is at positionR, where
the mode function isAk(R! for modek.

The form of the mode functions inside this cavity is de-
rived in Appendix H and is given by

Ak~R!5 iA 2

«0LA
LnGn

A~k2kn!
21Gn

2
sin k~z2 l !, 0<z< l

~88!

assuminguk2knu!GnLn . HereLn ,Gn are peak height and
width factors for the cavity, expressions for which are

Ln5k1knd, ~89!

Gn5
1

Ln
2l
. ~90!

The wave vectorkn for the nth Fabry-Pe´rot resonance is
given by

kn'n
p

l
1

1

lLn
, n50,1,2,... . ~91!

In these expressions the thin strong dielectric regime applies
~see Appendix H! whereAk1kd!1, k1kd@1, and where the
mode separationDk;p/L is small compared to the width
factor Gn . The mode function has essentially a Lorentzian
dependence on wave numberk, with Ln(@1) defining the
peak height andGn the width.

Taking the dipole operator alongi and with the atom at
z5 l /2, the coupling constantgk is given by

gk5 iA vk

\«0LA
m

GnLn

A~k2kn!
21Gn

2
sin

1

2
kl. ~92!

The atom is initially in excited stateu2& and there are no
photons in the field. An essential states approach for a time-
dependent state vectoruFI& in the interaction picture is used
to describe the process in which the atom makes a transition
to the ground stateu1& and one photon appears in one of the
field modesk. The state vectoruF I& is written as

uw1&5c2u2&u•••0k•••&1(
k
c1ku1&•••1k•••&, t>0,

~93!

where c2,c1k are amplitudes for the statesu2&u•••0k•••& and
u1&u•••1k•••!, respectively.

The coupled amplitude equations are

ċ252 i(
k
gke

idktc1k ,

~94!
ċ1k5 igk* e

2 idktc2 ,

with

dk5v02vk , ~95!

and wherev0 is the atomic transition frequency.
Formally solving the second amplitude equation with ini-

tial conditionsc2~0!51, c1k~0!50 and substituting the solu-
tion for c1k into the first amplitude equation leads to an in-
tegrodifferential equation for the probability amplitudec2
that the atom remains excited, given as

dc2~ t !

dt
5E

0

t

dt K~t!c2~ t2t!. ~96!

The kernelK~t! is given by

K~t!52(
k

ugku2eidkt. ~97!

The solution may be obtained using Laplace transform
methods in which a functionX(t) ~t>0! and its Laplace
transformX̃(s) are related via

X̃~s!5E
0

`

dt e2stX~ t !, Res.0,

~98!

X~ t !5
1

2p i Ecds e1stX̃~s!, t.0,

wherec is a contour to the right of the imaginary axis going
from 2i` to 1i`. In the present case the Laplace transform
for c2(t) is given in terms of the Laplace transform ofK(t)
as

FIG. 2. One-dimensional cavity model of the Fabry-Perot type.
Regions I, II, and III are the cavity, dielectric, and external regions,
respectively. The hatched regions at the ends are perfectly reflecting
mirrors. The cross-sectional area isA.
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c̃2~s!5
1

s2K̃~s!
. ~99!

The properties of the kernel determines whether the
atomic decay exhibits reversible~non-Markovian! or irre-
versible~Markovian! behavior. We find that

K̃~s!5 i(
k

ugku2

~vk2v0!2 is
. ~100!

For a one-dimensional cavity model withvn5ckn giving the
cavity ~Fabry-Perot! resonance frequencies the sum overk
can be evaluated based using the expression~92! for the
coupling constantsgk to give

K̃~s!5 i
m2vn

\«0A
GnLn

2nn
s1cGn1 i ~vn2v0!

52
1

2
G0Ln

2 cGnnn
s1cGn1 i ~vn2v0!

, ~101!

where as beforeGn is the cavity width factor andLn is the
cavity height factor,nn50,1 depending on whether the atom
is at a node or antinode of the mode function, and where

G05
2m2vn

\«0cA
, vn'v0 . ~102!

G0 will be identified with thefree space atomic spontaneous
emission ratefor this one-dimensional case. Inverting the
Laplace transform gives the following expressions for the
kernelK~t!:

K~t!52
1

2
G0Ln

2nncGne
2 i ~vn2v0!te2cGnt. ~103!

This is an oscillating, decaying exponential with acorrela-
tion timeequal to cavity decay time

tc5~cGn!
21. ~104!

Markovian or non-Markovian behavior depends on whether
this correlation time is short or long compared to the char-
acteristic time over whichc2(t) changes~still to be deter-
mined!.

For the Markovian regime, we assume thatc2 hardly
changes during correlation timetc , the assumption to be
checkeda posterioi. Then

ċ2'S E
0

`

dt K~t! D c2~ t ! for t@tc

'K̃~«!c2 , ~105!

where« is a small quantity.
Now

K̃~«!52
1

2
G0Ln

2nn
cGn

cGn1 i ~vn2v0!
, ~106!

giving the excited-state amplitude as

c2~ t !5expH 2
1

2
G0Ln

2 nn
Gn

i ~kn2k0!1Gn
tJ . ~107!

The excitation probability is therefore

P2~ t !5expH 2G0Ln
2 nn

Gn
2

~kn2k0!
21Gn

2 tJ . ~108!

The atom thus decays exponentially with time, but with a
cavity modified atomic decay rate given by the Purcell@14#
result

G5G0Ln
2 nn

Gn
2

~kn2k0!
21Gn

2 . ~109!

SinceLn@1 we see that the atomic decay rate is cavity en-
hanced from the free-space rateG0 when the atom is at an
antinode, and is cavity decreased~to zero! when the atom is
at a node.

For the usual case of near resonance (kn2k0);Gn we see
that the condition required for atomic Markovian behavior
~irreversible decay! for an atom at an antinode is

G0Ln
2tc!1 ~110!

so that

G0

c
!

Gn

Ln
2 . ~111!

Thus the free-space spontaneous emission width must be
small compared to the cavity line width divided by the
square of the peak height enhancement factor. This condition
is the same as that required for the so-called weak-coupling
regime, as will be seen later.

Returning to the general results given by~99! and
~101! we find that the general solution for the Laplace trans-
form c̃2(s) is

c̃2~s!5
s1cGn1 i ~vn2v0!

s@s1cGn1 i ~vn2v0!#1
1

2
G0Ln

2nncGn

. ~112!

The behavior of the solution will depend on the poles
of c̃2(s) which are at the zeros of the denominator in~112!
and are

s652
1

2
@cGn1 i ~vn2v0!#

6
1

2
A@cGn1 i ~vn2v0!#

212G0Ln
2nncGn.

~113!

For simplicity we will only consider the antinode case for
resonance wherekn5k0 , so that the atomic transition fre-
quency coincides with a Fabry-Perot resonance. In this case

s652
1

2
cGn6

1

2
cGnA12

2G0Ln
2

cGn
~114!

and
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c̃2~s!5
s1cGn

~s2s1!~s2s2!
. ~115!

Two regimes may be distinguished depending on whether
the poless6 are real~weak-coupling regime! or are complex
~strong-coupling regime!.

In the weak-coupling regime~poles real!

G0

c
!

Gn

Ln
2 , ~116!

giving

s1'2
1

2
cGn

G0Ln
2

cGn
'2

1

2
G0Ln

2,

~117!

s2'2cGn1
1

2
G0Ln

2.

In this case we find approximately that

c2~ t !'expS 2
1

2
GnLn

2t D , ~118!

P2~ t !'exp~2G0Ln
2t !, ~119!

which is the same solution as for the Markoff case, repre-
senting the overdamped regime with irreversible decay at the
cavity modified decay rateG0L n

2.
In the strong-coupling regime~poles complex!

G0

c
@

Gn

Ln
2 , ~120!

giving

s6'2
1

2
cGn6

1

2
iA2G0Ln

2cGn. ~121!

In this case the expression for the probability amplitudec2 is
of the form

c2~ t !5~ae2~1/2!iA2G0Ln
2cGnt

1a* e~1/2!iA2G0Ln
2cGnt!e2~1/2!cGnt, ~122!

wherea is a constant. Hence the excitation probability will
oscillate with a frequency

vosc5A2G0Ln
2cGn . ~123!

The excitation probability will also decay at the cavity decay
ratecGn .

Hence in this strong-coupling regime we have atomic
non-Markovian behavior in an underdamped regime showing
reversible photon emission into the cavity modes at an oscil-
lation frequencyvosc. In addition, there is a slow overall
decay, corresponding to loss of energy from the cavity to the
outside region.

In order to give an interpretation ofvosc an effective one-
photon Rabi frequencygeff can be introduced via summing
the ~gk!

2 for all modes under the Fabry-Perot resonance

geff
2 5(

k
ugku2. ~124!

This gives

geff5
v0

\«0A
mLnGn

1/25
1

2
A2G0Ln

2cGn5
1

2
vosc. ~125!

Thus the excitation probability oscillates at a rate given in
terms of the effective one-photon Rabi frequency associated
with replacing all the modes under the Fabry-Perot reso-
nance by an equivalent single mode. This is the basis of the
quasimode approach.

The criteria for the two regimes can also be stated in
terms of the effective one-photon Rabi frequency;

geff!cGn ~weak coupling! ~126!

and

geff@cGn ~strong coupling!. ~127!

Thus the weak-coupling regime has the cavity decay time
much shorter than the atom-effective cavity mode interaction
time, in the strong-coupling regime the atom and the effec-
tive cavity mode interchange energy much faster than it leaks
out of the cavity. The behavior in the two regimes is shown
in Fig. 3. These effects are, of course, quite well known, but
serve as an illustrative application of the general results in
this paper.

VII. CONCLUSIONS

The key results may be summarized as follows. Macro-
scopic canonical quantization for the system of radiative at-
oms interacting with the EM field in the presence of a neutral
dielectric medium describing passive, lossless, linear, classi-
cal optics devices has been carried out based on describing
the dielectric atoms via an inhomogeneous electric permittiv-
ity and an inhomogeneous magnetic permeability. This ca-
nonical quantization procedure has been based on the exact
vector mode functions associated with the classical optics
device. The macroscopic canonical quantization leads to a
generalized multipolar quantum Hamiltonian, containing
terms corresponding to the particle kinetic energy, the Cou-
lomb energy, the polarization energy, the radiation field en-
ergy, the electric interaction energy, the magnetic interaction
energy, and the diamagnetic energy. The quantum Hamil-
tonian shows that the field is equivalent to a set of indepen-
dent quantum harmonic oscillators, one for each mode, jus-
tifying the basic photon picture for this situation. The field
oscillators are independent since there are no direct coupling
terms between different modes in the Hamiltonian, and this
arises because the exact vector mode functions for the optics
device have been used. The atom-field coupling terms in the
Hamiltonian show that the basic energy interchange pro-
cesses involve one-photon emissions and absorptions. In the
electric dipole approximation, the Hamiltonian is obtained in
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a form suitable for further applications. Here, the atom-field
coupling terms for each field mode involve the scalar product
of the dipole operator with the vector mode-function evalu-
ated at the atomic center of mass, as well as annihilation and
creation operators for the field mode. An illustrative applica-
tion to atomic decay in a one-dimensional cavity has been
given and the results are in accord with previous work.
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APPENDIX A: UNIQUENESS OF A, «“f

In the generalized radiation gauge we have

“•«A50, ~A1!

from which follows the generalized Poisson and the general-
ized inhomogeneous wave equations.

“•~«“f!52rL , ~A2!

“3
1

m
~“3A!1«

]2

]t2
A5 jL2

]

]t
~«“f!. ~A3!

The various fields are given by

E52“f2
]A

]t
, ~A4!

B5“3A, ~A5!

D5«E1PL , ~A6!

H5
B

m
2ML . ~A7!

The Lagrangian in the minimal coupling form is

L5(
ja

1

2
M ja ṙ ja

2 1E d3RS 12 «E22
1

2m
B21 jL•A2rLf D .

~A8!

It is not obvious thatA,f are uniquely defined by the gener-
alized radiation gauge condition and the generalized Poisson
equation and generalized inhomogeneous wave equation. For
example, the familiar conventional gauge transformations

A85A1“x, ~A9!

f85f2ẋ ~A10!

leave E,B unaltered. They alter the Lagrangian by
“•~jLx)1(]/] t)(rLx), which leaves the action~and hence
leaves the Maxwell and Lorentz equations! unchanged.

However other changes toA,f can be considered. The
generalized radiation gauge condition would still be valid if a
transverse field“3F was added to«A. Thus we may con-
sider a possible vector potential, referred to asÃ and given
by

Ã5A1
1

«
“3F. ~A11!

Assuming that the magnetic fieldB is given by~A5! in terms
of Ã, we require that

B5“3Ã5“3A, ~A12!

so that

“3
1

«
~“3F!50. ~A13!

Also the electric field must be given by~A4! in terms ofÃ
and a possible scalar potential referred to asf̃ so that

E52 Ȧ̃2“f̃52Ȧ2“f. ~A14!

Hence from~A11!

FIG. 3. Atomic excitation probabilityP2 versus timet for ~a!
the weak-coupling regime and~b! the strong-coupling regime. In
both cases resonance conditionskn5k0 apply and the atom is at an
antinode. In~b! the solid line indicates decay at the cavity modified
rateGnL n

2, the dashed line indicates decay at the free space rateG0.
In ~b! the solid line indicates the cavity modified oscillating decay,
the dashed line indicates the cavity decay ratecGn .
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«“f̃5«“f2“3Ḟ. ~A15!

This means that for the transverse and longitudinal compo-
nents

~«“f̃ ! i5~«“f! i ,
~A16!

~«“f̃ !'5~«“f!'2“3Ḟ.

Obviously if E,B are unaltered so also areD,H.
The generalized Poisson and inhomogeneous wave equa-

tions are still valid in terms of the new potentials. From
~A16! and ~A2!

“•~«“f̃ !5“•~«“f̃ ! i5“•~«“f! i52rL . ~A17!

Indeed the generalized Poisson equation itself only deter-
mines ~«“f!i . In the free space situation, however,
~«0“f!i5«0“f since ~«0“f!'5«0~“f!'50. Also from
~A3!, ~A11!, ~A13!, and~A15! we have

“3
1

m
~“3Ã!1

]2

]t2
«Ã

5“3
1

m
~“3A!1“3

1

m S“3
1

«
~“3F! D

1
]2

]t2
«A1

]2

]t2
“3F

5 j L2
]

]t
«“f101

]2

]t2
“3F

5 jL2
]

]t
~«“f̃ !. ~A18!

However, it is not difficult to show thatF is, in fact, zero.
Since“•«A, “•«Ã, “•~“3F! are all zero it follows that
A, Ã, and ~1/«!“3F can all be expanded in terms of the
mode functionsAk~R! @see Eq.~49!#,

A5(
k
qkAk , ~A19!

Ã5(
k
q̃kAk , ~A20!

1

«
“3F5(

k
CkAk . ~A21!

The coefficientsCk are fixed byF. Hence

q̃k5qk1Ck . ~A22!

But we have from~A13! and ~A21!

(
k
Ck“3Ak50. ~A23!

Hence

(
k
Ck“3

1

m
~“3Ak!50. ~A24!

For variablem~R! the generalized Helmholtz equations~42!

“3
1

m
~“3Ak!5«vk

2Ak ~A25!

give

(
k
Ck«vk

2Ak50. ~A26!

Multiplying by Ak8
* and integrating gives@using Eq.~45!#.

Ckvk
250 ~A27!

so that allCk are zero. Hence

F50, ~A28!

Ã5A, ~A29!

«“f̃5«“f. ~A30!

ThusA and«¹f are unique.

APPENDIX B: DERIVATION OF HAMILTONIAN „36…

The Hamiltonian density is

HC8 5p•
]A

]t
2LC8 ~B1!

5
~p1PL8 !2

2«
1

~“3A!2

2m
2ML•“3A ~B2!

on substituting forȦ from ~35!. The Hamiltonian is

H85(
ja

pja• ṙ ja2(
ja

1

2
M ja ṙ ja

2 1VCoul1E d3R HC8 ,

~B3!

where we substitute for the particle velocitiesṙ ja from ~34!,
including inside the term*d3R ML•“3A, and whereML is
given by ~32!. For the latter term
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E d3R ML•~“3A!5(
ja

ṙ ja•E
0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj! ~B4!

so that after some vector algebra we find that

H85(
ja

@pja2*0
1u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!#

2

2M ja
1VCoul1E d3RS ~p1PL8 !2

2«
1

~“3A!2

2m D . ~B5!

With the reduced magnetization density given by~37! we see that the cross term in~B5! obtained by expanding the first term
is

E d3R ML8~R!•B~R!5(
ja

qjaE
0

1

u du~r ja2Rj!3
pja

M ja
•B„Rj1u~r ja2Rj!…

5(
ja

pja

M ja
•E

0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!. ~B6!

Substituting~B6! into ~B5! the new Hamiltonian~36! then follows.

APPENDIX C: PROPERTIES OF VECTOR
MODE FUNCTIONS

The harmonic solutionsAk~R! of the generalized inhomo-
geneous wave equations~21! for zero source terms satisfies
the generalized Helmholtz equation~42!, which can be writ-
ten as an eigenvalue equation in terms of an operatorL,

LAk5lkAk , ~C1!

where

L5
1

« S“3
1

m
~“3••• ! D ~C2!

and the eigenvalueslk equalv k
2. The differential operatorL

is self-adjoint in that for arbitrary vector fieldsU, V ~which
are periodic over the space of integration!

E d3R «~R!U* •~LV!5E d3R «~R!~LU!* •V.

~C3!

Here the electric permittivity function«~R! acts as a positive
weight function. To show this result we note that the left and
right sides can be written as

I L5E d3R U* •S“3
1

m
~“3V! D ,

~C4!

I R5E d3RS“3
1

m
~“3U* ! D •V.

Now

“•SU*3
1

m
~“3V! D5

1

m
~“3V!•~“3U* !

2U* •“3S 1m ~“3V! D ,
~C5!

“•SV3
1

m
~“3U* ! D5

1

m
~“3U* !•~“3V!

2V•“3
1

m
~“3U* !.

Integrating each side of the equations~C5!, and noting that
the integrals of the divergence terms are zero, we find that

I L5E d3R
1

m
~“3V!•~“3U* !,

~C6!

I R5E d3R
1

m
~“3U* !•~“3V!.

As these expressions are the same the result~C3! follows.
The properties of theAk and thevk then follow from similar
proofs to those used in quantum theory.

To show that the eigenvalueslk are real, each side of Eq.
~C1! is multiplied by «(R)Ak* in a scalar product and then
integrated overR. The use of~C3! gives

E d3R «~R!Ak* •~LAk!5lkE d3R «~R!Ak* •Ak

5E d3R «~R!~LAk!* •Ak .

~C7!

The right-hand side of~C7! is the complex conjugate of the
left-hand side showing both to be real. As the quantity
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«(R)Ak* •Ak is real, the reality oflk follows. The result that
lk is positive, and hence equal to the square of a positive real
frequencyvk , follows via the use of the form~C6! for the
left-hand side of~C7!. We see that

E d3R
1

m
~“3Ak!•~“3Ak* !5lkE d3R «~R!Ak* •Ak .

~C8!

As the integrals are clearly positive, then so must belk .
To show that the mode functionsAk are orthogonal as in

Eq. ~45! for different vk , we apply~C1! for a different ei-
genvaluell , multiply by «(R)Ak* in a scalar product, and
integrate overR. Thus gives

E d3R «~R!Ak* •~LA l !5l lE d3R «~R!Ak* •A l . ~C9!

Reverting to~C1! and multiplying by«(R)A l* in a scalar
product and integrating gives

E d3R «~R!A l* •~LAk!5lkE d3R «~R!A l* •Ak . ~C10!

Taking the complex conjugate of each side of~C10!, using
lk real and the adjoint condition~C3! gives

E d3R «~R!Ak* •~LA l !5lkE d3R «~R!Ak* •A l . ~C11!

Since the left sides of~C9! and ~C11! are equal it follows
that if lkÞll the orthogonality condition~C12! applies.

E d3R «~R!Ak* •A l50. ~C12!

APPENDIX D: DERIVATION OF LAGRANGIAN „56…

The various terms in Eq.~33! are evaluated via substitut-
ing for the vector potentialA via Eq. ~49! or its complex
conjugate form, and introducing the half-space expressions
after simplification. We have

E d3R
1

2
«S ]A

]t D
2

5
1

2(kl q̇k* q̇lE d3R «~R!Ak* ~R!•A l~R!

5
1

2(kl q̇k* q̇ldkl

@using orthogonality~45!#

5
1

2(k q̇k* q̇k5(
k

8q̇k* q̇k ~D1!

using the relationship~51! between the generalized coordi-
nates of thek andk* modes. Also

E d3R
1

2m
~“3A!2

5(
kl

qk* qlE d3R
1

2m
~“3Ak* !•~“3A l !.

Using

“•SA l3
1

m
~“3Ak* ! D5

1

m
~“3Ak* !•~“3A l !

2A l•S“3
1

m
~“3Ak* ! D

and with the integral of the divergence term giving zero we
find that

E d3R
1

2m
~“3A!2

5
1

2(kl qk* qlE d3RS“3
1

m
~“3Ak* ! D •A l

5
1

2(kl qk* qlE d3R vk
2«~R!Ak* •A l

5
1

2(k vk
2qk* qk

5( 8
k

vk
2qk* qk ~D2!

using the generalized Helmholtz equation~42!, and orthogo-
nality conditions~45! and ~51! again. Finally

E d3R PL8•S ]A

]t D
5(

k
q̇k* E d3R PL8•Ak*

5(
kl

q̇k* E d3R8 PL•A l* E d3R «~R!Ak* •A l

5(
k
q̇k* E d3R PL•Ak*

5(
k

S q̇k* E d3R PL•Ak*1q̇kE d3R PL•AkD ~D3!

using ~53! and orthogonality~45!.

APPENDIX E: DERIVATION OF MULTIPOLAR
HAMILTONIAN „61…

Our Hamiltonian is given by

H85(
ja

pja• ṙ ja1( 8
k

~pkq̇k*1pk* q̇k!2L8, ~E1!
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wherer ja ,q̇k* ,q̇k** ,5q̇k are replaced by their expressions in terms of the generalized momenta~34! and ~57!. Then with the
Lagrangian as in~56!

H85(
ja

pja•
S pja2E

0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!

M ja

D
2(

ja

1

2
M ja

S pja2E
0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!

M ja

D 2

1VCoul

2(
ja

S pja2E
0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!

M ja

D
•E

0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj!

1( 8
k

FpkS pk*1E d3R PL•AkD1pk* S pk1E d3R PL•Ak* D G2( 8
k

S pk1E d3R PL•Ak* D S pk*1E d3R PL•AkD
1( 8

k
vk
2qkqk*1( 8

k
H S pk1E d3R PL•Ak* D E d3R PL•Ak1S pk*1E d3R PL•AkD E d3R PL•Ak* J . ~E2!

Hence

H85(
ja

S pja2E
0

1

u du qjaB„Rj1u~r ja2Rj!…3~r ja2Rj! D 2
2M ja

1VCoul1( 8
k

S E d3R PL•Ak* D S E d3R PL•AkD
1( 8

k
~pkqk*1vk

2qkqk* !1( 8
k

S pkE d3R PL•Ak1pk* E d3R PL•Ak* D . ~E3!

The cross terms associated with the expansion of the first
term is treated as in Appendix B to give

(
ja

pja•E
0

1

u du
qja

M ja
B„Rj1u~r ja2Rj!…3~r ja2Rj!

5E d3R ML8•B5( 8
k

S qkE d3R ML8•“3Ak

1qk* E d3R ML8•“3Ak* D . ~E4!

The particle kinetic energy and the diamagnetic energy term
arise from the other contributions from the expansion of the
first term in ~E3!. Combining~E3! and ~E4! the multipolar
Hamiltonian~61! is obtained.

APPENDIX F: RADIATION FIELD ENERGY TERM

We start from the form given in the multipolar Hamil-
tonian ~61!,

HF5(
k

1

2
~pkpk*1vk

2qkqk* !.

This becomes, on replacing theqk, pk by quantum operators,

ĤF5(
k

1

2
~ p̂kp̂k

†1vk
2q̂kq̂k

†!

5(
k

H 12 S 1iA\vk

2
~ âk2âk*

†
! D

3S 2
1

i
A\vk

2
~ âk

†2âk* ! D
1
1

2
vk
2A \

2vk
A \

2vk
~ âk1âk*

†
!~ âk

†1âk* !J
5(

k

1

4
\vk$âkâk

†2âkâk*2âk*
† âk

†1âk*
† âk*1âkâk

†

1âkâk*1âk*
† âk

†1âk*
† âk* %

5(
k

1

2
\vk~ âkâk

†1âk*
† âk* !

5(
k

1

2
\vk~ âkâk

†1âk
†âk!. ~F1!

Using the commutation rules~70! we find that
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ĤF5(
k

S âk†âk1 1

2D\vk , ~F2!

the same as that for a set of quantum harmonic oscillators.

APPENDIX G: TRANSVERSE AND LONGITUDINAL
COMPONENTS OF PL IN THE ELECTRIC

DIPOLE APPROXIMATION

The transverseF'~R! and longitudinalFi~R! components
of a vector fieldF~R! may be calculated via Helmholtz theo-
rem @10# via

F~R!5Fi~R!1F1~R!, ~G1!

Fi~R!5“f, ~G2!

F'~R!5“3A, ~G3!

wheref, A are given by

f52“•X, ~G4!

A5“3X, ~G5!

with the fieldX~R! obtained fromF~R! via

X~R!5
1

4pE d3R8
F~R8!

uR2R8u
. ~G6!

In this case

“•A50. ~G7!

The polarization density in the electric dipole approximation
is

PL~R!5(
j

mjd~R2Rj!. ~G8!

A straightforward evaluation gives

X~R!5
1

4p(
j

mj

uR2Rju
, ~G9!

f5
1

4p(
j

~R2Rj!•mj

uR2Rju3
, ~G10!

A52
1

4p (
j

~R2Rj!3mj

uR2Rju3
, ~G11!

~PL! i5
1

4p (
j

S mj

uR2Rju3
2
3~R2Rj!•mj~R2Rj!

uR2Rju5
D ,

RÞRj , ~G12!

~PL!'52~PL! i . ~G13!

APPENDIX H: MODE FUNCTIONS
FOR ONE-DIMENSIONAL CAVITY

The mode functionsAk~R! for the one-dimensional
Fabry-Perot cavity shown in Fig. 2 will be assumed to have
polarization vector along thex axis and the mode functions
will only depend on thez coordinate,

Ak~R!5 iAk~z!. ~H1!

From the generalized Helmholtz equation~42! we obtain

d2Ak

dz2
1vk

2m0«~z!Ak50, ~H2!

where «(z)5«0 everywhere except for2d<z<0, where
«(z)5k1«0•m5m0 everywhere.

The continuity of the tangential components ofE andH
show thatAk(z) anddAk/dz are continuous atz52d and
z50 and we take as boundary conditions

Ak~ l !50, ~H3!

Ak~2L2d!50, ~H4!

corresponding to the mode functions terminating at the per-
fect mirrors.

From the Helmholtz equation~H2! the mode functions are
essentially sine functions in the cavity, dielectric, and exter-
nal regimes, respectively:

Ak~z!5H a1sink~z2 l !, l>z>0

b1sinAk1k~z1z2!, 0>z>2d
g1sink~z1L1d!, 2d>z>2~L1d!.

~H5!

In these equationsk5vk/c is the wave number,a1, b1, and
g1 are amplitudes, andz2 is a shift term.

The thin dielectric approximation is based on the wave-
length in the dielectric layer being much longer than its
thickness,

Ak1kd!1. ~H6!

Associated with the dielectric layer is a strength parameter
L5k1kd which for the strong dielectric approximation is
much larger than unity,

k1kd@1. ~H7!

Applying the continuity conditions to the case of the thin,
strong dielectric leads to a mode equation for the wave vec-
tor k,

f ~k!5tankL5
tankl

L tankl21
5g~k!. ~H8!

This is a transcendental equation. The assymptotes for the
function on the left hand side [f (k)] are separated byp/L.
As L@ l the function on the right hand side [g(k)] is a much
more slowly varying function ofk apart from perhaps near
its asymptotes~where tankl51/L!. Thus g(k) will cross
f (k) once between each of the assymptotes of the latter,
giving modes with an average separationDk;p/L. Thus the
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actual or true modes form a quasicontinuum, the separation
being given by the universe lengthL.

The Fabry-Perot resonances occur at wave vectorskn ~not
themselves necessarily equal to a mode wave numberk!
given by the assymptotes ofg(k) such that

kn5
np

l
1
1

l
tan21~Ln

21! ~H9!

'
np

l
1

1

lLn
, ~H10!

wheren is an integer and the strength factorLn is

Ln5k1knd. ~H11!

As can be seen from~H9! the strength factorLn determines
the shift in Fabry-Perot wave numberkn from the valuenp/
l . This notional wave numbernp/ l corresponds to there be-
ing n half wavelengths inside the cavity of lengthl . A further
parameter that is important is the width factorGn given by

Gn5
1

Ln
2l
. ~H12!

The ratio of the cavity region to outside region amplitudes
can also obtained by applying the continuity conditions. For
wave numbersk near to a resonancekn the expression for
~a1/g1!

2 is of Lorentzian form,

S a1

g1
D 2' Ln

2Gn
2

~k2kn!
21Gn

2 for uk2knu!GnLn . ~H13!

Thus it is clear that the square of the strength factorL n
2

defines the peak value for~a1/g1!
2, which occurs on reso-

nance withk5kn . As Ln@1 the cavity region amplitude is
very large compared to the outside region amplitude fork
values near resonance. Furthermore it is seen thatGn does in
fact define the half width of the Lorentzian form for~a1/g1!

2.
The normalization condition for the mode functions in a

volume V5LA ~whereA is a cross-sectional area for the
system! is obtained from~45! as

E dz «~z!Ak
2~z!51/A. ~H14!

Substituting the forms~H5! for the mode functions and mak-
ing appropriate approximations leads to the result

1

A'
1

2
«0a1

2l1
1

2
«0g1

2L, for uk2knu!GnLn .

~H15!

The average separationDk;p/L of the wave vectors is
assumed to be small in comparison to half widthGn of the
Lorentzian~H13! that gives the square of the ratio of cavity
region to outside region amplitudes.

p

L
!Gn . ~H16!

Substituting forGn from ~H12! the previous condition leads
to

l

L
!

1

pLn
2 . ~H17!

Since the largest value of~a1/g1!
2 is L n

2 ~at resonance! it
follows that

a1
2l!g1

2L, ~H18!

and hence the first term in the normalization result~H15!
may be ignored, giving

g1'A 2

«0LA
. ~H19!

This is the same normalization that would apply for mode
functions in a free space with volumeV5LA. The expres-
sion for the cavity region amplitude then becomes

a1'A 2

«0LA
LnGn

@~k2kn!
21Gn

2#1/2
. ~H20!

Thus the mode function inside the cavity is given by

Ak~z!5A 2

«0LA
LnGn

@~k2kn!
21Gm#1/2

sin k~z2 l !,

l>z>0,

assuming thatuk2knu!LnGn , and so this result is certainly
valid for uk2knu;Gn , corresponding to the regime of wave
numbers close to the Fabry-Perot resonance.
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