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Field quantization in dielectric media and the generalized multipolar Hamiltonian
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Canonical quantization of the electromagnetM) field is carried out for the situation where the total
charge and current densities are the sum of contributions from neutral dielectric atoms whose effect is to be
described purely classically in terms of spatially dependent electric permittivity and magnetic permeability
functions, and neutral, stationary radiative atoms whose interaction with the EM field is to be treated quantum
mechanically. The coefficients for the expansion of the vector potential in terms of mode functions determined
from a generalized Helmholtz equation are chosen as independent generalized coordinates for the EM field.
The spatially dependent electric permittivity and magnetic permeability appear in a generalized Helmholtz's
equation and the former also occurs in the mode function orthogonality and normalization conditions. The
quantum Hamiltonian is derived in a generalized multipolar form rather than the minimal coupling form
obtained in other work. The radiative energy is the sum of quantum harmonic oscillator terms, one for each
mode. The modes are independent in the present case of exact mode functions associated with the spatially
dependent electric permittivity and magnetic permeability, there being no direct mode-mode coupling terms. In
the electric dipole approximation the electric interaction energy contribution for each mode and radiative atom
is proportional to the scalar product of the dipole operator with the mode function evaluated at the atom, times
the annihilation operator, plus the Hermitian adjoint. This form has been widely used in studies of radiative
processes for atomic systems in dielectric media, and it is justified here via the canonical quantization proce-
dure. The results apply to the theoretical treatment of numerous quantum optical experiments involving such
interactions in the presence of passive, lossless, dispersionless, linear classical optics devices such as resonator
cavities, lenses, beam splitters, and so on. An illustrative application of the theory for atomic decay in a
one-dimensional Fabry-Perot cavity is given.
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[. INTRODUCTION 1 shows a number of radiative atoms contained inside an
optical cavity produced by two concave mirrors consisting of
Quantum optical experiments often involve the interactionmaterial made up of dielectric atoms and having a high per-
of the electromagnetitEM) field and radiative atoms in the mittivity . The cavity would be represented by a permittiv-
presence of passive, lossless, dispersionless, lilaasical ity function e(R), which equalse inside the mirrors ana,
optics devicesuch as resonator cavities, lenses, beam splittverywhere else. In recent years mirrors of very high reflec-
ters, filters, and so on. In certain situations quantum treativity have been constructed using Bragg reflectors. Such
ments of the dielectric atoms in such “classical” devices
together with the various reservoiffor example, phonons
associated with lattice vibrationgo which they may be
coupled are required. For example, dispersion and absorption
effects(connected by causality through Kramers-Kigp re-
lations may be important—such as when the quantum opti-
cal frequencies of interest are close to resonance frequencies
for the dielectric atoms. Canonical quantizatidd of the
system of EM field, radiative and dielectric atoms, and with
the dielectric treated quantum mechanically as a harmonic
polarization field has been carried out by Huttner and Barnett
and by Ho and Kumaf2], and this procedure may be re-
ferred to asnicroscopiccanonical quantization. However, in
many cases it is possible to ignore quantum effects associ-
ated with thedielectric atomgessentially the Langevin noise
and associated dissipatioand to treat classical optics de-
vices via spatially inhomogeneous linear electric permittivity
&(R) and magnetic permeabilify(R) (if the material is mag- FIG. 1. Radiative atomgshown as dotsare contained in an
netic functions. Thus the basic idea in such an approach igptical cavity between two mirroréshown hatchedconsisting of
to replace the dielectric atoms by the classically equivaleninaterial made up of dielectric atoms and associated with a high
spatially dependent dielectric constant. To illustrate this, Figelectric permittivitye.
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mirrors can be modeled in terms of a permittivity function quantization involving the presence of radiative atoms and
£(R) with the required spatial periodicity. linear dielectricd4,5] has been carried out without the sec-

In quantum optical experiments the primary interest is inond step of forming a new Lagrangian and resulted in a
the coupledadiative atomsaandEM fieldsystem and in gen- quantum Hamiltonian in the minimal coupling form. Both
eral the dynamic behavior of this system should be studiethe multipolar and minimal coupling Hamiltonians are exact
via a quantum treatment. The quantum Hamiltonian for theand their complex forms contrast the simple Lagrangians on
system is of fundamental importance anddexivedin the  which they are based, indicating the impracticability of at-
present approach rather than meragsumedwith the di- tempting to prejudge the Hamiltonian form on the basis of
electric atoms constituting the classical linear optical devicegxpected contributions to the energy of the system. This is
taken into account via appropriate spatially dependent eleaiot to say that the various terms in the Hamiltonians cannot
tric permittivity functions. The radiative atoms and the EM be interpreted, and indeed a key result of the theory is the
field and their interaction are treated quantum mechanicallypresence of radiation field energy terms which are equivalent
The quantum Hamiltonian for the radiation atoms and EMto the Hamiltonian for a set ofhdependent quantum har-
field is properly derived using the canonical quantizationmonic oscillators one for each mode of the field. This im-
procedurd 1]. This is based on a classical Lagrangian whichportant result is the basis of the traditioqdioton picturefor
takes the dielectric atoms into account widR), u(R) and  the quantum EM field which still applies even though the
which gives the accepted classical Maxwell and Lorent#ield is modified by the classical linear optics device. The
equations via the principle of least actilmagrange’s equa- modes are independent, there being no direct mode-mode
tionsg). This procedure may be referred to mmcroscopic coupling terms in the Hamiltonian for the present situation
canonical quantization. where exact vector mode functioi4rue modes”) for the

In carrying out the canonical quantization procedure, aielectric system are used. Various studies that carry out
number of steps are involved. First, the EM field is describednacroscopic canonical quantization for the EM field in a
via thevector potentialA(R) and thescalar potentialp(R). linear dielectric medium with no radiative atoms pregesee
However, the latter is then eliminated from the Lagrangian7], for example or which involve microscopic canonical
using ageneralized radiation gaugtat allows for the pres- quantization, whereall charges are treated quantum me-
ence of the inhomogeneous electric permittivifR). The  chanically(see[1,2], for example also yield the photon pic-
scalar potential is then just associated with Coulomb energture. Work on macroscopic canonical quantization involving
terms. Second, the original Lagrangian is replaced by a newonlinear dielectrics but with no radiative atoms present, has
Lagrangian which is designed to give a new Hamiltonian inalso been carried outsee[8], for example, and also results
the multipolar form [1,3] rather than theminimal coupling in harmonic oscillator terms. Apart from the radiation field
form [1,3]. The new Lagrangian is still associated with the energy, the terms in the generalized multipolar Hamiltonian
same action thereby leaving the Maxwell and Lorentz equaebtained here can be identified with the radiative particle
tions unchanged. Third, a set of independeaygneralized kinetic energy, the radiative particle Coulomb energy, the
coordinatesto specify the EM field is obtained via the ex- polarization energy, the electric interaction energy, the mag-
pansion of the vector potential in terms\afctor mode func- netic interaction energy, and the diamagnetic energy. Leav-
tions These are given as harmonic solutions for the vectoing aside the last term the atom-field interaction leads to
potential with no radiative atoms present, and which satisfy grocesses in which the usual one-photon absorptions or
generalized Helmholtz equatidaking the presence of the emissions are the basic step.
classical quantum optics device into account through terms Approximate forms of the quantum multipolar Hamil-
depending ore(R). The spatially dependent electric permit- tonian can be obtained based oneleactric dipole approxi-
tivity is also involved in themode function orthogonalitgnd  mation analogous to that used for the usual quantum multi-
normalizationconditions[4—6]. Fourth, thegeneralized mo- polar Hamiltonian 1,3] based on quantization in free space,
mentum coordinatespecifying the EM field are determined where e=¢, everywhere. The electric interaction energy
and the classical Hamiltonian in the multipolar form is con-term is the sum of contributions for each mode and radiative
structed. Fifth, canonical quantization takes place by replacatom. Each such contribution is the sum of a term plus its
ing the generalized coordinates and momeiath for the  Hermitian adjoint, where the term is proportional to the sca-
EM field and for the radiative atom charged parti¢gley  lar product of the atomic dipole operator and the mode func-
quantum operators satisfying standard equal time commutdion evaluated at the atom, times the annihilation operator
tion laws. Sixth, the classical Hamiltonian is replaced by themultiplied by the electric field per photon. This form has
guantum multipolar Hamiltoniarand quantum field opera- been widely used9] in studies of radiative processes for
tors also replace the vector potential anddtsjugate mo- atomic systems in dielectric media, and in cavity quantum
mentum field=(R). Commutation rules for the field operators electrodynamic$10]. However, it is justified here using the
A(R) and 77(R) can then be determined, and these involve acanonical quantization procedure. The electric interaction en-
generalization of the familiar transverse component of theergy can also be expressed as a sum of contributions for each
delta function. The present macroscopic canonical quantizaatom of the scalar product of the atomic dipole operator with
tion process will be restricted to the case whigyehe radia- the conjugate momentum field operator evaluated at the
tive atoms are neutral and stationary, did the dielectric  atom, divided by the electric permittivity at the atom. In the
medium is electrically neutral and nonconducting. present case of an inhomogeneous mediufa is not the

The quantum multipolar Hamiltonian resulting from the same as the negative of the electric displacement operator, so
macroscopic canonical quantization procedure is a key resuthe familiar expression for the electric interaction does not
obtained here. Previous work on macroscopic canonicahpply.
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Apart from the restrictions already indicated that the di- 1
electric medium is nondispersive, nonabsorptive, and linear, P=> %J du(rg—Re) S(R=R:—u(r;,—Ry)), (3
the present macroscopic canonical quantization procedure is b 0
also not intended to apply to situations where inhomoge- 1
neous effects in the dielectric medium on an atomic scale are M(R)=>, anf u du(rz,—R;)
involved. Thuslocal field effectsassociated with crystal lat- Ea 0
tices lie outside the scope of the theory. Nevertheless, the

results will be valid for a wide range of quantum optical X(Nga= R O(R—Re=U(rg, —Ry))
situations, especially those associated with the rapidly devel- 1
oping area of cavity quantum electrodynami¢g]. +E anf du(rg—Ry)

The plan of this paper is as follows. In Sec. Il the basic fa 0

Lagrangian for radiative atoms and EM field in a nonhomo-
geneous linear dielectric and magnetic medium is intro-

duced. In Sec. Il a Lagrangian leading to a generalized mul-
tipolar Hamiltonian is obtained. In Sec. IV vector mode where for the¢ atom Q;, M, andR, are the total charge,

functions and generalized position and momentum coordiEOtal mass, and center of mass position, respectively. Defin-

nates for the field are examined, leading to further forms of"9 the free (or (;onduct|0|)1 charge "’.md current densities
Posio, corresponding to all charges being located at the center

the generalized multipolar Hamiltonian. Canonical quantiza“ .
LS . . . . of massesRR; of the various atoms as

tion is carried out in Sec. V, leading to the generalized quan-

tum multipolar Hamiltonian and its electric dipole approxi-

mation form. An illustrative example of the theory for Po(R):Z Q:8(R—Ry),

atomic decay in a one-dimensional cavity is treated in Sec. 3

VI and the main results are summarized in Sec. VII. Detailed (5)

derivations are placed in the Appendixes. . :
jo(R)=2 Q:R:A(R-Ry),

XR§5(R_R§_U(r§a_R§))' (4)

II. BASIC LAGRANGIANS FOR RADIATIVE ATOMS
AND EM FIELD IN NONHOMOGENEOUS then we can writg1]
LINEAR DIELECTRIC AND MAGNETIC MEDIUM.
GENERALIZED RADIATION GAUGE p=po—V-P,

A. Macroscopic Lagrangian JP
If E andB are the electric and magnetic fields, the Max- i=lot r +VXM, (6)
well equations are

V.B=0 giving the charge density as the sum of the free charge den-
' sity po and the polarization charge densityV-P and the

B current density as the sum of the free current derjgityhe

VXE+ — =0 polarization current densitly, and the magnetization current
a7 densityVXM.
(1) The replacement of dielectric media atoms via permittiv-
V.-goE=p, ity and permeability functions is based on writing the quan-
tities p,j,P,M as the sum of contributions from chargees-
B JE ignatedD) associated with the dielectric atoms and charges
VX——¢gq F =i, (designated.) associated with the radiative atoms,
Mo
o , . p=potpL,
where the charge and current densiiieandj are given by
j=iptic,
PZE q§a5(R_r§a)a (7)
fa P=Py+P,,
)
M = M D + M L-

1= 2 Qealead(R—T o).
A similar decomposition as if6) applies to the constituents

Here ¢=1,2,... lists different atoms, andr=1,2,... lists ~ Pp.jp OF p.j. Making up the charge and current densities.
different particles within atont. q.,,M,, are the charge For the case of neutral and nonconducting dielectric media
and mass for thé&a particle at positiorr,,. At present we W€ have
considerall charges, whether associated with dielectric or
magnetic media atoms or with radiative atoms. Associated ppo=0,
with the charged particles we may defiffd a polarization (8
densityP and a magnetization densily, ipo=0,
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and using(6) for the case of the dielectric or magnetic mediaradiative atoms. The vector and scalar potentialg are
termspp,jp the third and fourth Maxwell equations can be related to the electric and magnetic fieEH®S via the usual

written as equations
V.- (eoE+Pp)=p_, 7.\
(© E=oVe G
VX E_'\/lD)_i({-JoE"f‘PD):JL (14)
“o at B=VXA.
The electric displacemerid and magnetic intensityd are A straightforward application of the principle of least ac-

related to the electric and magnetic fiel8 and the polar-  tion to the Lagrangian given by
ization and magnetization densitiPdV as

1 .
D=g,E+P, L=, EMgar§a+fd3R£, (15
(10 f
B
H=——M, where
Mo
c—l E? ! B%+j, -A 16
so that =5¢ "2 +jiL-A—p o (16

D=(eoE+Po)+PL, is the Lagrangian density, yields both the modified Max-

B 1D well's equationg13) and the Lorentz equationd?) for the
<__ M D) -M,. classical motion of the charged particles associated with the
Mo radiative atoms.

H

It is these results that enable the inhomogeneous electric per- M ol 0= Qe (E(T e0) + T ea X B(T 2)). (17)

mittivity e(R) and magnetic permeability(R) associated bl o HEalml fal T Ea ba

with the linear dielectric or magnetic medium to be intro- We may refer to the Lagrangian as themacroscopid_a_

duced. They are given via grangian, as the atoms in the dielectric or magnetic medium
are now treated macroscopically via the electric permittivity

eE=eoE+Pp, and magnetic permeability. It is important to note that the
(12 Lagrangian(15) (and all subsequent expressipraly in-

E _ E_ Mp. volves a suméa over charges associated with treiative

Mmoo Mo atoms.

It is important to note that,u are not the permittivity and
permeability associated with all the charges, but only with
the charges, current®f ,jp) associated with the dielectric
or magnetic medium. The distinction between the electric From the third Maxwell equatiofiL3) we find using(14)
permittivity and magnetic permeability of the dielectric me-
dium &1 _and the total electric permittivity and magnetic V.(eV$)+V.
permeabilitye 1, w1 for all the charges is an important one to
make. ) o
Maxwell's equations for electrically neutral, nonconduct- In @ generalized radiatiofCoulomb gauge we want the sca-
ing dielectric and magnetic media, but with the radiativelar potential¢ to be determined from the charge density
atom charges explicitly included, are obtained fr@ and without any retardation effects. This can be accomplished via

B. Generalized radiation gauge and elimination
of scalar potential

oA\ 18
€ ) P (18

(12) as the use of thegeneralized radiation gaugt,5]
V.-B=0, V.eA=0. (19
IB In this case the scalar potential satisfiegemeralized Pois-
VXE+ i 0, son equation
13 V- (eVg)=—p_. (20)
V.eE=p,, ¢ pL
This equation relates the scalar poteniato the instanta-
VXE— E_. neous positions ., of all the radiative atom charges. This
& ot I enables us to disregargl as an independent field variable.

Unlike the free space situation, however, the scalar potential
We thus have eliminated the dielectric or magnetic mediawill depend on the electric permittivity(R) as well as on the
charges whichonly appear vias(R),u(R). The remaining position of the radiative charges. From the fourth Maxwell
charge and current densities are nomly associated with the equation(13) we find using(14) that
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1 PA d
VX; (VXA)+e —=j -V —

at’ (21)

ot

which is ageneralized inhomogeneous wave equatmrthe
vector potentialA. The termj, —eV ¢ acts as a source term.
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IIl. LAGRANGIAN AND GENERALIZED MULTIPOLAR
HAMILTONIAN. CONJUGATE MOMENTUM
FIELD

The previous Lagrangiaf22) can be used to calculate the
conjugate momentum field, the minimal coupling Hamil-

The use of the generalized radiation gauge enables thghian and via a mode expansion and the canonical quanti-

scalar potential to be eliminated from the Lagrangian. Sub
stituting for E via (14) in the term[d®R2¢E? a straightfor-
ward vector calculus treatment making use(® and (20)
gives[4,5]

Lzé %Mgafs%a—vcm—kf d°R L, (22)
where
Veur f d°R ¢p = f &R —(sw’)sz (23
and
LC=%8A2—%(VXA)2+1L.A (24)

are the Coulomb energy and the radiative Lagrangian den-

sity. The Coulomb energy ¢, only depends on positions of

zation procedure will result in a quantum generalized mini-
mal coupling Hamiltonian obtained in previous wdi,5].
Here we wish to derive a quantum generalized multipolar
Hamiltonian, so following the procedure used in standard
treatmentg1,3] we add a term to the old Lagrangi&??) to
produce a new Lagrangian that leads to a Hamiltonian in the
multipolar form. The additional term is a total time deriva-
tive involving the vector potentiaA and the polarization
density P, associated with the radiative atoms. The action
and hence the Maxwell or Lorentz equations are thus left
unaltered. The new Lagrangian is

L'—|_+OIF 25
- my ( )
where

F=—fd3R PL-A. (26)

radiative atom charges and the radiative Lagrangian density From now on we assume that the radiative atoms are elec-

Lc only depends on the vector potential It should be
noted that the Coulomb enerdggnd hence the Lagrangigan
only depends on the scalar potentfain terms of the quan-
tity eV. It may appear that the vector potentialand the
scalar potential via&V ¢ are not determined uniquely by the
generalized radiation gauge conditi¢i®) and the general-
ized Poisson equatiof20). In fact these conditiondo give

A andeV ¢ uniquely, as is demonstrated in Appendix A.

|

1
58

dA

1M 2 —Veout+ | d°R
2 farga_ Coul ot

1 -2 3 ’
2 M§ar§a_VCOU|+ d°R Le,

where

dA
ot

© VXA)°—P/ A
Z( S

+M_-VXA.
(29

, 1
058

The new radiative Lagrangian densify. involves a reduced
polarization densityP , for which the explicit expression
will be obtained latefsee Eq(53)]. This allows forA to be

trically neutral,Q,=0. Hence from(5)

pLo=0,
. (27
jLo=0.
Using (27) and the second equatidf) j, = I'3L+V><ML for
the radiative charges it is easily seen that the new Lagrangian
is given by

i 1VA2F> A
—ﬂ(x)—um

+ML-V><A}

(28)

J d°R PL-Azf d°R P[-A. (30)

In the usual free space treatment whereg, everywhere
and V-A=0 gives the usual radiation gauge conditi®?},
would be the transverse component Rf. In the present
situation althoughP| turns out to be transverse, it i®t the
same as the transverse componenPpof This will be dem-
onstrated latefsee Eqs(82) and (83)] by a particular ex-
ample, but is not surprising in that wheres must depend
one(R) in view of (19), P, and its transverse component are

constrained via the generalized radiation gauge conditioindependent of(R).

(19), so that for all suctA

From now on we also assume that the radiative atoms are
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stationaryby assumingM ;—c. Thus 1
ML:; qgaJO u du(rga_Rg)

R,=0 (3D XT e 8(R—R—U(T i Ry)). (32

and from(4) the magnetization densityl is given as the The explicit dependence of the new Lagrangiag) on the
simpler form particle velocities, and field velocityA is

1 , 1 [dA\? 1
L’=§ EMgaréa—VCOUpLJdSR(Ee(—) —E(VXA)Z

ot
f d®R P/ A
Ll at

The momenta,,, for the radiative atom charges and the conjugate momentumafi@dl for the EM field can be obtaingd ]
from the Lagrangiari33) and the radiative Lagrangian dens{89) as

1
+ 2 Teo | U AU GeuB(ReAU(T 5= R))X (T = Ry)
Ea 0

. (33

1
p§a=M§ar§a+ J;) u dU OfaB(R§+ U(r’fa,_Rg))X(rga_Rg), (34)
A
m=s ——P[. (35

The new Hamiltonian can then be construcf&flusing the standard method as

(m+P))2 (VXA)?
+

2
H=S R vt [ o°R - [ wrevxa)-M;

ta 2Mg, 2¢e 2u
Uea | [* 2
+§ M, Uou du B(R§+u(r§a—R§))><(r§a—R§)) , (36)
where thereducedmagnetization density is given by
’ 1 pga
ML:; Uta Ou du(rga—Rf)xW S(R—Rs~U(rz—Ry)). (37

The details are given in Appendix B. This classical Hamil-guesswhat the commutation rules far7 are: presumably
tonian, although restricted to the case of neutral, stationanhey involve a generalization of the transvesseinction and
radiative atoms, is in the multipolar form. However, the in-jncludes(R) rather thare,. Also, A satisfies a constraint, the
terpretation of the various terms is not yet clear and thgagiation gauge conditioN-eA=0, and this has to be taken
I—!amlltoman is not suitable as it stands fpr quantization,ini account in the quantization procedure. In a proper ca-
since we do not know the proper commutation rules for opyonica| quantization procedure the fields are expressed in
erators representing the vector potential and its conjugatgyms of a suitable set of generalized independent coordi-
momentum field and we also do not have an explicit exprespates g, and the time derivative of the field will involve the
sion for the reduced polarization density. time derivatives of the generalized coordinatgs which
play the role of generalized velocities. The Lagrangian is

then expressed in terms of thg,q, and the generalized

IV. MODE FUNCTIONS, GENERALIZED POSITION, momentap, given via
AND MOMENTUM COORDINATES FOR THE EM FIELD,
AND THE GENERALIZED MULTIPOLAR sl
HAMILTONIAN Dy

Toar

(38)
A. Basic idea for canonical quantization

The possible approach of just replacing the fieAds by
field operatorsA,sr in the Hamiltonian is an unsatisfactory The complex conjugate allows for the case wheregpare
quantization procedure. At this stage we would have tccomplex. The Hamiltonian is then calculated via
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o This condition may be taken to apply to vector mode func-
H= Ek: (QkPk +ai P — L, (39 tions that are degenerate via the use of the Schmidt orthogo-
nalization procedure. The indéxwill be used to distinguish
where the sum is over independdatand depends on the degenerate vector functions; these may, for example, have

generalized coordinates, and generalized momeng . different polarization vectorsy . Thusk— (wy,i) wherei
Quantization then proceeds via the replacement of théSts degenerate modes. Noting that the complex conjugate

generalized coordinates and momenta by quantum operato@)™ satisfies the generalized Helmholtz equation with the

O— G, Pe— P, 9 _)al' pk —’ﬁl: and which satisfy stan- Same angular frequeney, as for thek mode, we may define

- .
dard commutation rules, for which the nonzero results are e k™ mode via

[Gw,pH1=TaL,P=i% 8. (40 A (R)= (AR (48

Other physical quantities such As 7, andH can then also  1NiS iS degenerate with,.
be replaced by quantum operators making use of their ex- [N the case of free space with=¢, everywhere the vec-
pressions in terms of they ,p, and their commutation rules tor mode functions are the usual plane wave forms defined in

derived from those applying to thig,py . quantization volume/,

B. Vector mode functions A(R)= 1 skeikﬂ (47)
In our case we will introduce the required independent VeoV
generalized coordinates via an expansion of the vector pQzi the polarization vector,

and angular frequenc
tential A in terms of the vector mode functios, applying g q W

for no radiative atoms presejjt=p, =0. This is the gener- satisfying

alization of the usual expansion Afin terms of plane waves k-£,=0,

and the use of reciprocal spafg]. We need not restrict

ourselves to the case of nonmagnetic media wheteu, 1

throughout. For the case whejg=p, =0 the generalized o =clk|, c= (48
inhomogeneous wave equati(#il) becomes a homogeneous VMo€o

wave equation and has harmonic solutions of the form
d In the free space case thé& mode would then have polar-

A=A (R)e“, (41) ization vector(g,)* and wave vector-k.

where wy is the angular frequency. The vector mode func- C. Expansion of vector potential

tions A, satisfy thegeneralized Helmholtz equation . -
k fy theg g The expansion of the vector potential in terms of the vec-

1 tor mode functions is written as
VX; (VXA)=wleA. (42

. , A=2 Ay, (49)
It is easy to see front42) that the vector mode functions K

satisfy the generalized radiation gauge conditi®9), . - .
bt g gaug @9 where theq, are the expansion coefficients. Usitp) we

V.eA=0. (43  have

Such vector mode functions have been extensively used in . 3 *
other work involving the quantized EM field in dielectric qk_f d°R &(RIAL(R)-A(R). (50)
media(see, for exampld4—6,11) and the properties of the ) ) o

vector mode functions have been worked out, at least for th¥/Sing the requirement that the vector potentiakial we see
case whereu=p, everywhere. The properties are obtainedusing (46) that the expansion coefficients for theand k*
for the general case by demonstrating that the operator ~modes are not independent, but are complex conjugates,

Qiex = (g™ (51)

In view of this and generalizing the free space case we then
see that it is the set af defined in a suitable half spaéea
which only one ofg, andq,» appearthat act as independent
generalized coordinates describing the EM field. Thus we
have

11
L==VX—(VX-) (44)
e M

is self adjoint in terms of integral§d°R &(R)..., where
e(R) acts as a weight function. From E@L2) the eigenval-
ues ofL are thew? and theA, are the eigenfunctions. De-
tails are given in Appendix C. The important properties of
the vector mode functions are as follows(i) the w, are all
real (and positive; and(ii) the orthogonality andiormaliza- A= (GAFOFAY), (52
tion conditions are given by k

where the sunk, is over the half space only. The setaf

3 * —
f d*R e(R)AL(R)- Al(R)= . @5 iy the half space act as the generalized velocities.



D. Reduced polarization density

Consider the expression

>

k

P/(R) a(R)Ak(R)f d°R’ P_-A}. (53

Then with A given by the complex conjugate of the form
(49) we have for arbitranA satisfying the generalized radia-
tion gauge conditior{19)

f d®R PL-A=% q,*f d°R A*(R)- £(R)A((R)
xf d®R’ P(R")-A}(R’)

=§k) q:f d°R P_-AL . (54)

L'=>

fa

—;’ (qkf d®R PL.Ak+q§f d®R PL-A;*).

The details are given in Appendix D.

F. Conjugate momenta
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The orthogonality conditiori45) has been used. But for the
same arbitranA

f d°R PL~A=; q:f d°R P_-A} (55)
so that for all choices of thg, the condition(30) is satisfied
with the reduced polarization densiBf given by (53). We
may therefore také€53) as giving the expression for the re-
duced polarization density. It is obvious usi#) thatP| is
transverse field.

E. New Lagrangian

With the Lagrangian in the forni33) we can substitute
the expressiori52) for the vector potential enabling the La-
grangian to be given in terms of the generalized field veloci-
ties gy (k in half spacg and the particle velocities,, . We
find that

1 . P ! - 1
5 Mealfa—Veourt 2 00k~ 2" w00k + 2 Fea- | U dU BReHU(T o= Re)X (g~ R G

(56)

Thus we see that the field momentum is a linear combination
of thee A, with the generalized momentum coordinapgsas
coefficients. We note that the conjugate momentum field
always transverse

The conjugate momenta are obtained from the Lagrangian

(56) via the use of(38). The particle momenta,, are, of
course, as ii34). The generalized momentum coordingie
for the field is given by

kaQk—J d°R P_-A} (57)

and this can be extended to the full space via the ugé6)f
and(51) to give
Pix = (Pi) ™ - (58)

G. Conjugate momentum field

The expression for the conjugate momentum field can be

determined from(35), (53), and(57) as follows:

ﬁZSA—PL
=; sAk(qk—f d3RPL.A;:)
:; PreAk

=§’ (PkeAx+ pr eAY). (59)

V.-7=0. (60)

H. New multipolar Hamiltonian

This can be obtained in terms of the generalized coordi-
natesq, and momentgp, for the field. Using the general
result(39) and the Lagrangian given b{6), we then sub-
stitute for the particle velocities;, and generalized field
velocitiesq, via (34) and(57). The details are given in Ap-
pendix E. It is convenient to write the result in termskof
sums over the full space and we find that

H'=X

2
m +Veourt ; 3

2

f d*RP_-A,

+§k: %(pkp:+w§QkQE)+§k: pkj d*RP_-Ay

9z,
2M.,

—}k) qu d3RM[~V><Ak+§

1
x| > qkf uduV X AR, +U(rso—Ry)]
k 0

2
X(Fga—™ Rg)) . (61
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In order the terms in the Hamiltonid61) are particle kinetic réaﬁfga,
energy, Coulomb energy, polarization energy, radiation field (63)
energy, electric interaction energy, magnetic interaction en- Pea— Pea

ergy, and diamagnetic energy. The radiation field energy is

the sum of independent harmonic oscillators terms for eackvith the usual commutation rules applying, for which the
mode, withw, acting as the oscillator frequency. The electricnonzero commutators are,(=X,y,z)

and magnetic interaction energies depend linearly on the
generalized momenta, and generalized coordinatgg, re-
spectively. The diamagnetic energy depends quadratically on
the generalized coordinates. It should be noted that this gef=or the field we initially restrict ourselves to the half space

eralized multipolar Hamiltonian is restricted to the case ofand replace the generalized coordinajgsand the general-

neutral, stationary, radiative atoms with an electrically neui26d momentap, and their complex conjugates by non-

tral nonconducting dielectric and magnetic medium. TheHermitian operators
Hamiltonian is still classical at this stage.

Another form of the multipolar Hamiltonian can be ob-
tained from the original resul{36) by expanding the term . At

involving (zr+ P[)2 This is given as

[Fgai 'ﬁnﬁl]:m&f')‘saﬁéll . (64)

) (65
Pk— Pk
2 ’ 2
, P [PL(R)] .
H =§ 2M§a+VC0ul+f d°R—— SHET
2 (VXA)? Thus the complex conjugates are replaced by the Hermitian
+J d3R(—+ —_— adjoints. The standard commutation rules apply, for which
2e 2p the nonzero commutators are
- P/ 2 o . )
+fd3R - L—deR(VXA)-MHZ 2‘:5“ (G, T=[a.Pi]=i% 8¢ (66)
fa a

1 2
X fu du B(R§+u(rga—Rg))X(rga—Rg)) .

0

(62

Using the mode expansion{g9), (59), and (53) for A(R),

=(R), andP| (R), respectively, it is easily shown, using the

orthogonality conditior(45), that the terms i{62) are equal
to the corresponding terms i(61). Thus, as in(61), the

for k,I in the half space. Note that the fundamental commu-
tator which is nonzero involve§, andp; and notp, . It is
convenient to extend the relationships into the full space via
the use 0of(51),(58) so that

qk*—>f]l,
(67)

pk**f)lv

wherek* will be in the other half space. By this means the

terms in(62) in order are particle kinetic energy, Coulomb commutator rule$66) can be extended to apply to &lll and
energy, polarization energy, radiation field energy, electriove have the relationship
interaction energy, magnetic interaction energy, and diamag-

netic energy. We note that the radiation field energy involves

the square of the conjugate momentum figlds well as the
square of the magnetic field. The electric interaction en-
ergy involves the conjugate momentum fietdand the re-
duced polarization density| . The magnetic interaction en-
ergy involves the magnetic field and the reduced
magnetization densityl; . The diagmagnetic energy is qua-
dratic in the magnetic fiel@.

V. GENERALIZED QUANTUM
MULTIPOLAR HAMILTONIAN

Qux = di )

(68)
Pix = pl
between the operators representing kfieandk modes.

B. Annihilation and creation operators

Since the radiation field energy is equivalent to that of a
set of harmonic oscillators it is appropriate to introduce an-
nihilation and creation operators for the quantum description
of the field. These are defined via

A. Canonical quantization R Wy . 1 R
) . L A=\ 5z Gt P
In accordance with the canonical quantization procedure 2h wy
[1] we replace the classical quantities with quantum me- (69)
chanical operators. For the radiative atoms the positions and © 1
i . at— 2K At At
momenta for the charged particles are represented by Her a,= 5% Q1 > Py s
Wy

mitian operators
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wherea,,a/ are the annihilation and creation operators, re- D. Other field operators

spectively. Again, these expressions can be taken to apply to o . .

all k. The usual commutation rules apply, where the nonzero The magnetic field® also becomes a field operator given

commutators are given by by
[8y.8/1= 64 - (70 B(R)=V XA(R). (75)
The definitions of the annihilation and creation operators can
be inverted to give The electric fieldE can be expressed as a field operator using
- (35) and(14) to give
- / - t
Q= 2_a)k(ak+ak*)’ )
(71 ~ =(R)+ P/ (R) N
~ _1 ﬁ(,()k - ~t E(R)__ S(R) _Vd)(R)v (76)
P=7 \ 5 (& &),

showing that the generalized coordindeand generalized where bothP; and V¢ can be considered as operators de-

momentap, are related to the annihilation operator for the pending on the radiative charged particle position operators

mode and the creation operator for tkit mode. F o
There is no simple relationship between the transverse

C. Vector potential and conjugate momenta field component of the electric displacemddtand 7 as in the

The vector potentiah(R) and the conjugate momentum case for a free field. From the condition that
field @#(R) become quantum field operators via the replace-
ment of theq, ,py in the mode expansiong9),(59) via the A

quantum operatorg, , Py V-D=po, (77
A—A=S G- \/ o {AAR) + AL (R ituat ielectri iati
AT 4 G £ Zwk[ak KR+ aA(R], then the situation of neutral dielectric and radiative atoms
(72) (pLo=ppo=0) implies thatpy,=0, so thatD is purely trans-
verse

~ ~ 1 ﬁka
’"H"T:E pKSAk:E (i_ \/TaKSAk(R) ~ A

K K D=D, . (78)
1 \/@éf A¥ (R 73
i 2 kS k( ) . ( )

The second forms oA and # follow from the expression

(72) for the gy ,py in terms of annihilation and creation op- oA , 2o

erators. The field operato’(R) and #(R) are Hermitian. D=D, 7= (eVe), + (PP (79
We can now obtain the commutation rules #y 7. Obvi-

ously the components gk all commute, as do those of, Thus i D d—n ¢ | For the f
since allg, commute and alp, commute. The commutators ' 1US IN 9en€rab, and—a are not equal. For the Iree space
which are nonzero are situation eV¢=eqVep, which is purely longitudinal,P|

=(P,), , so thatD=—1.

It is then easy to see froifil), (12), and(76) that

[A(R), m(RN1=2 A(R)AS(R)e(R)[a.pl]
ki E. Quantum Hamiltonian

S>» AG(R)AL(R)e(R) The classical multipolar Hamiltoniaf62) is replaced by
K the quantum multipolar Hamiltonian via substituting the
classical quantitie®, , M|, A, @ by the field operators and
(i,j=x,y,2), (74 replacing the classical charged particle position and momen-
tum coordinates ., P, by the quantum operators. For con-
which is a generalization of the result involving the trans-venience the radiation field energy term is written in terms of
versed function[i# 6 ;;(R—R’")] for the free field casl]. It annihilation and creation operators. Details are given in Ap-
is hard to see how this result could have been just postulategendix F. We find that thgeneralized quantum multipolar
indicating the necessity of a canonical quantization proceHamiltonianfor the case of neutral, stationary radiative at-
dure involving the mode functions and invoking the basicoms in a neutral, nonconducting, dielectric and magnetic me-
commutation rules66). dium is given by
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a2 D)2 D/ 2
- P:, - (P)) a1 P -z N -
H’=§ _2|v|§§ +VCOU|+fd3R S +3 |alac; ﬁwk+fd3R - —fng M/ VXA
N E 2
|

In order the terms of the Hamiltonian are particle kinetic péa . 1
energy, Coulomb energy, polarization energy, radiation field H’E1=E WJrVCOUﬁrE alakJrE hwy
energy, electric interaction energy, magnetic interaction en- b ta K
ergy, and diamagnetic energy. This quantum Hamiltonian is oy 1
based on a vector mode function treatment. We see that the + /T.—[ékiz§~Ak(Rg)—él‘:ﬁg-A’k‘(Rg)],
form of the radiation field energy establishes the photon pic- far !
ture for this system, with the quantum field being equivalent (84)

to a set of quantum harmonic oscillators, one for each mode
Of. the field. It should be nOted that there are no d|re_ct_ COUhere the first two terms give the particle energy, the third
pling terms betwec_an the different mades, a characteristic fea}érm is the radiation field energy, and the last term is the
ture associated with the use of the exact vector mode func- I : : '
i iated with the classical | tics devio: electric dipole interaction energy.

lons a.:ssoma ed with the classical finear optics evieie Thus the atom-field interaction is given by

modes’). The electric and magnetic interaction energy terms

allow for basic atom-field processes in which one photon is

created or destroyed in each fundamental step, this being _ ol . At~ ax
consequence of the linear dependence of these interacti F_kzg 2 T[ak"f'Ak(Rf)_ak"f' «(Ro]. (89
energy terms on the creation and annihilation operators.

This form has been widely used in cavity QED calculations
[11]. It involves the sum over modes and radiative atoms and
To obtain the electric dipole approximation result we ig-includes scalar products of the mode functions evaluated at
nore the polarization energy, magnetic interaction energythe atomic center of madg, with the atomic dipole opera-
and diamagnetic energy terms in the quantum Hamiltoniators, as well as the mode creation and annihilation operators
(80) and replace the polarization density with its dipolar ap-and the factof%w,/2)*? giving the electric field per photon.

F. Electric dipole approximation

proximation The atom-field interaction can also be written in the form
PLR)=2 md(R—Ry), (81) - fre- (Re)
- ¢ He ¢ HAFZE =& (86)
¢ S(Rg)

whereﬁ§ is the dipole operator for thé atom. In view of

(31) the R, are classical. The transversi, J, and longitu-  displaying the dependence on the conjugate momentum field

dinal (P_);, components o may be evaluated using the evaluated at the atomic _center of mass. Note that because

Helmholtz theoren{10]. These are given a@letails are in /¢ is not the same as-D, /e, this form cannot be simply

Appendix G related to the transverse component of the electric displace-
ment operator, as in the free field case.

. -1 Be  3(R-Ry)-ji(R—Ry)
¢ 3 3 VI. SIMPLE APPLICATION ATOMIC DECAY
- IN A ONE-DIMENSIONAL CAVITY

. . . o As a simple application we consider the decay of an ex-
A straightforward calculation gives the reduced polarizationgited and level atom placed at the center of a one-

density as dimensional cavity of length (see Fig. 2. The cavity is of
the Fabry-Perot type: one mirror is perfect, the other is made
PL(R)IZ ﬁg. ¥ (RY)e(R)A(R) (83) up_of a dlelegtrlc Iayer of thmknesd with permittivity
ké £1= K189, K1 being the dielectric constant. The region exter-

nal to the cavity is of length and a second perfect mirror is
and substituting form(R) in terms of the mode expression situated at its end. The cross sectional area of the system is
(73) enables the Hamiltonian to be determined. The differentd. Such cavities, in which the field and radiating atoms are
results for the transverse componentRf(R) and the re- contained in a one-dimensional universe between the two
duced polarization density| (R) are apparent. perfect mirrors have often been used for laser theory; see, for
The quantum Hamiltoniarin the electric dipole approxi- example, Langet al.[12]. In the present case the decay of an
mationis given by excited atom will be treated, via an approach of kaial.
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[13], and which demonstrates the full range of behavior from 4%
cavity modified irreversible spontaneous emission in the A m
weak coupling regime to reversible energy interchange be- 2
tween atom and field in the strong coupling regime. 2
In the electric dipole approximatio(85) the atom-field 2
coupling can be written ; N >,
Z
I’ L
HAF:EK %9, S3,+ (Hermitian conjugate A
FIG. 2. One-dimensional cavity model of the Fabry-Perot type.
where the coupling constagy, is given by Regions I, II, and Il are the cavity, dielectric, and external regions,
respectively. The hatched regions at the ends are perfectly reflecting
1 on mirrors. The cross-sectional areaAs
9=7 Yoz AdR). (87)
w is the dipole matrix elemen®|z|1), S=|2)(1| is the usual |92)=C5[2)] -0k~ '>+; Cil1)- L), t=0,
atomic transition operatof2),/1) are the atomic excited- and (93
ground-state eigenvectors. The atom is at posiRomvhere
the mode function i#\(R) for modek. wherec,,c,, are amplitudes for the staté®)|---0-:-) and
The form of the mode functions inside this cavity is de- |D++1,-+), respectively.
rived in Appendix H and is given by The coupled amplitude equations are

]2 Anly . Co=—i2, g.e'%c
A(R)=i sink(z—1), 0<z<I 2 K 1k
«(R) el A k)7 T2 (z—1) X

94
(®9 eu=igie ey, 0
assuminglk—k,|<I' A . Here A, I', are peak height and | .,
width factors for the cavity, expressions for which are
5k=wo—wk, (95)

A= kqkpd, (89
and whereuw, is the atomic transition frequency.
1 Formally solving the second amplitude equation with ini-
R (90) tial conditionsc,(0)=1, ¢4, (0)=0 and substituting the solu-
n tion for cq into the first amplitude equation leads to an in-
tegrodifferential equation for the probability amplitudg
that the atom remains excited, given as

I'n

The wave vectork, for the nth Fabry-Peot resonance is
given by

dey(t) t
T 1 :f dr K(7)cy(t—17). (96)
ky~n-—+——, n=0,1,2.... (91) dt 0
I 1A,
The kernelK(7) is given by
In these expressions the thin strong dielectric regime applies

(see Appendix Hwherek;kd<1, x;kd>1, and where the

_ 241 6T
mode separatiodhk~ /L is small compared to the width K(m)= _Ek: |9/ “e' % 97
factor I',,. The mode function has essentially a Lorentzian
dependence on wave numberwith A,(>1) defining the The solution may be obtained using Laplace transform
peak height and’,, the width. methods in which a functioX(t) (t=0) and its Laplace

Taking the dipole operator alorigand with the atom at transformi(s) are related via
z=1/2, the coupling constarg, is given by

Sier= | —st
=iVit Lodo_ginZk. (@ X(S)_L e, Resmd
FT N e A ¥ Tk 2 (99)

X(t)=i fds e"sX(s), t>0
2@ Je ' '

The atom is initially in excited statf) and there are no
photons in the field. An essential states approach for a time-
dependent state vectfb,) in the interaction picture is used wherec is a contour to the right of the imaginary axis going
to describe the process in which the atom makes a transitiofiom —io to +i. In the present case the Laplace transform
to the ground statfl) and one photon appears in one of thefor c,(t) is given in terms of the Laplace transform Kft)
field modesk. The state vectojd,) is written as as
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1
S—R(S) '

To(s)= (99

The properties of the kernel determines whether th
atomic decay exhibits reversibl@on-Markovian or irre-
versible(Markovian behavior. We find that

2
K(S):i; (w |gk|

(w18 1o
For a one-dimensional cavity model with,= ck,, giving the
cavity (Fabry-Peradt resonance frequencies the sum oker
can be evaluated based using the express&@ for the
coupling constantg, to give

2
Mzwn LAy,

K =1 oA ST (o= wg)

cl'v,
s+clp+i(w,—wg)’

1 2
== E 1_‘OAn (10

where as beford', is the cavity width factor and\, is the

cavity height factorp,,=0,1 depending on whether the atom
is at a node or antinode of the mode function, and where

2ulw,

FO:hSoCA, (102)

W~ wWq -

I’y will be identified with thefree space atomic spontaneous
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e

5_4
= LA Tn 10
cz(t)—ex —E 0 nvnmt . ( 7
The excitation probability is therefore
2
Py(t)= “ToA2 vy —— . (1
2(t) ex4 04i3n Vn (kn_ko)z_’_l—v% t} ( 08)

The atom thus decays exponentially with time, but with a
cavity modified atomic decay rate given by the Purged]
result

ry

I=TA2 vy ——— . 109
0% TN (K — ko) 2+ T2 (109

Since A,>1 we see that the atomic decay rate is cavity en-
hanced from the free-space rdig when the atom is at an
antinode, and is cavity decreasg@d zerg when the atom is
at a node.

For the usual case of near resonarige(ky) ~1", we see
that the condition required for atomic Markovian behavior
(irreversible decayfor an atom at an antinode is

ToA27.<1 (110
so that
1-‘O 1-‘n

emission ratefor this one-dimensional case. Inverting the Thus the free-space sponta.neogs emission' yvidth must be
Laplace transform gives the following expressions for thesmall compared to the cavity line width divided by the

kernelK(7):
1 2 —i(wy—wg)Ta—ClnT
K(r)=—§ FoAjvcl e ton™@07e™ ™ (103

This is an oscillating, decaying exponential wittcarrela-
tion timeequal to cavity decay time

r.=(cl'y) L (104

square of the peak height enhancement factor. This condition
is the same as that required for the so-called weak-coupling
regime, as will be seen later.

Returning to the general results given K99 and
(101) we find that the general solution for the Laplace trans-
formc,(s) is

st+cl'yti(wy— wg)
Cas)=

T (112
s[s+clp+i(wy—wo)]+ 5 ToA2vacl,

Markovian or non-Markovian behavior depends on whether

this correlation time is short or long compared to the char-

acteristic time over whicle,(t) changegstill to be deter-
mined.

For the Markovian regime, we assume that hardly
changes during correlation time,, the assumption to be
checkeda posterioi Then

éz*( f:dT K(T))Cz(t) for t> 7.

~K(e)cy, (105
wheree is a small quantity.
Now
R(e)=— S ToAZpy 0 106
(e)==3 T 77—y (109

giving the excited-state amplitude as

The behavior of the solution will depend on the poles
of C,(s) which are at the zeros of the denominator(112)
and are

+=

1 .
- E [clh+i(wp—wo)]

E i _ 2 2
* 5 Vel +i(wn— wg) 12+ 2T gA2p,cT .

(113

For simplicity we will only consider the antinode case for
resonance wherk,=k,, so that the atomic transition fre-
gquency coincides with a Fabry-Perot resonance. In this case

! r ! 'n\/1 ZFOAﬁ 114
= — — +— —
Sx 2¢n=2%n cl', (114

and
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s+cl), In order to give an interpretation af,. an effective one-
= (5-s,)(5-5.)" (115 photon Rabi frequencyg.; can be introduced via summing
* - the (g,)? for all modes under the Fabry-Perot resonance

Two regimes may be distinguished depending on whether
the poless.. are real(weak-coupling regimeor are complex g§ﬁ= 2 lgwl?. (124
(strong-coupling regime k

In the weak-coupling regiméoles real

Cy(s)

This gives
Lo _Th (116 1 1
/<< 220 wO
c Aﬁ Gett= :U«Anrﬁlzz_ \/ZFOAﬁCFn: 5 Wosc: (129
fLSOA 2 2
giving i . . . .
Thus the excitation probability oscillates at a rate given in
1 A2 1 terms of the effective one-photon Rabi frequency associated
s,~—=cl, O __ = ToA2, with replacing all the modes under the Fabry-Perot reso-
2 cly 2 nance by an equivalent single mode. This is the basis of the
(117 quasimode approach.
1 The criteria for the two regimes can also be stated in
s_.~—cl',+ > FOAﬁ. terms of the effective one-photon Rabi frequency;
<cl’ weak couplin 126
In this case we find approximately that Ger<Cl'n pling (129
1 and
- _= 2
CZ(t)NeX[{ 2 F”A”t)' (118 ge>cl,  (strong coupling. (127
Po(t)~exp(—ToA2t), (119  Thus the weak-coupling regime has the cavity decay time

much shorter than the atom-effective cavity mode interaction

which is the same solution as for the Markoff case, reprefime, in the strong-coupling regime the atom and the effec-
senting the overdamped regime with irreversible decay at thve cavity mode interchange energy much faster than it leaks

cavity modified decay ratE,A 2. out of the cavity. The behavior in the two regimes is shown
In the strong-coupling regim@oles complex in Fig. 3. These effects are, of course, quite well known, but
serve as an illustrative application of the general results in
Iy I, this paper.
_— >
¢ AZ (120

VII. CONCLUSIONS
giving The key results may be summarized as follows. Macro-
1 1 scopic canonical quantization for' the system of radiative at-
s.~— = clh+= i2TeAZCT,,. (121  oms interacting with the EM field in the presence of a neutral
2 2 dielectric medium describing passive, lossless, linear, classi-
cal optics devices has been carried out based on describing
the dielectric atoms via an inhomogeneous electric permittiv-
ity and an inhomogeneous magnetic permeability. This ca-
. . nonical quantization procedure has been based on the exact
Co(t) = (e~ (Y21 V2l oAnCTnt vector mode functions associated with the classical optics
device. The macroscopic canonical quantization leads to a
+ a* e M2TN2loAelnty g = (M2clnt - (129)  generalized multipolar quantum Hamiltonian, containing
terms corresponding to the particle kinetic energy, the Cou-
where« is a constant. Hence the excitation probability will lomb energy, the polarization energy, the radiation field en-

In this case the expression for the probability amplitagés
of the form

oscillate with a frequency ergy, the electric interaction energy, the magnetic interaction
energy, and the diamagnetic energy. The quantum Hamil-
wos= V2T gA%cT . (123  tonian shows that the field is equivalent to a set of indepen-

dent quantum harmonic oscillators, one for each mode, jus-
The excitation probability will also decay at the cavity decaytifying the basic photon picture for this situation. The field
ratecl’,,. oscillators are independent since there are no direct coupling
Hence in this strong-coupling regime we have atomicterms between different modes in the Hamiltonian, and this
non-Markovian behavior in an underdamped regime showingrises because the exact vector mode functions for the optics
reversible photon emission into the cavity modes at an oscildevice have been used. The atom-field coupling terms in the
lation frequencyw,s.. In addition, there is a slow overall Hamiltonian show that the basic energy interchange pro-
decay, corresponding to loss of energy from the cavity to theesses involve one-photon emissions and absorptions. In the
outside region. electric dipole approximation, the Hamiltonian is obtained in
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P,(0) from which follows the generalized Poisson and the general-
2 ized inhomogeneous wave equations.
V-(eVg)=—p_, (A2)
V><1 VXA aZA - \% A3
() ;( )+8W =)L E(S ?). (A3)
The various fields are given by
t E=-V A A4
B=V XA, (A5)
D=¢E+P_, (AB6)
H 5 M (A7)
P,(t) poot
\ The Lagrangian in the minimal coupling form is
1 _ 1 1
L=> 5 Mgar§a+f d3R(§sE2— 7 B?+j -A—p ¢
ta
(b) ~ (A8)
It is not obvious tha#\,¢ are uniquely defined by the gener-
alized radiation gauge condition and the generalized Poisson
L t equation and generalized inhomogeneous wave equation. For
example, the familiar conventional gauge transformations
A'=A+Vy, (A9)
FIG. 3. Atomic excitation probability?, versus timet for (a) ¢'=d—x (A10)

the weak-coupling regime an(®) the strong-coupling regime. In .
both cases resonance conditidis= ky apply and the atom is at an Iga\_/e EB /unaltered. Jhﬁ% alter hthe I__agraggr:an by
antinode. In(b) the solid line indicates decay at the cavity modified ‘(LX) +(d/) (pLx), which leaves the actiofand hence

ratel", A 2, the dashed line indicates decay at the free spacdgate '€2ves the Maxwell and Lorentz equatipnschanged.

In (b) the solid line indicates the cavity modified oscillating decay, ~However other changes t#,¢ can be considered. The

the dashed line indicates the cavity decay Kt . generalized radiation gauge condition would still be valid if a
transverse fiel?W XF was added ta¢A. Thus we may con-

a form suitable for further applications. Here, the atom-fieldsider a possible vector potential, referred tofaand given

coupling terms for each field mode involve the scalar producPy

of the dipole operator with the vector mode-function evalu-

ated _at the atomic center o_f mass, as weI_I as anrjihilatior_w and A=A+ EVX F. (A11)

creation operators for the field mode. An illustrative applica- €

tion to atomic decay in a one-dimensional cavity has been

given and the results are in accord with previous work.  ASsuming that the magnetic fiekis given by(AS) in terms
of A, we require that
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o that

Also the electric field must be given KA4) in terms of A

and a possible scalar potential referred togaso that
APPENDIX A: UNIQUENESS OF A, V¢

In the generalized radiation gauge we have E= —K—VE= —A—V¢. (A14)

V.-eA=0, (A1) Hence from(A11)
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eVp=eVh—VXF. (A15)  But we have from/A13) and(A21)
This means that for the transverse and longitudinal compo-
nents > C VY XA=0. (A23)
k
(eV)=(eV ), Hence
(A16)

(£V), =(V ), — VXF. s Cka% (VXAY=0. (A24)

Obviously if E,B are unaltered so also aieH.

_ The generalized Poisson and inhomogeneous wave equyy variableu(R) the generalized Helmholtz equatiof?)
tions are still valid in terms of the new potentials. From

(A16) and (A2)

1
5 N VX— (VXA =cwiAy (A25)
V- (eV)=V-(cV$)=V-(eV$)=—p. (AL7) H
. : Lo ive
Indeed the generalized Poisson equation itself only deterg
mines (eV¢),. In the free space situation, however,
(egV ) =gV since (ggV), =eo(Vep), =0. Also from
(A3), (A11), (A13), and(A15) we have Ek Cre @A =0. (A26)

2

1 ~ 0° ~ Multiplying by A¥, and integrating givefusing Eg.(45)].
VX;(VXA)+EZ8A plying Dy Ay grating givepusing Eq.(45)]

Crwi=0 (A27)
1 1 1
:VX; (VXAHVX; VX=(VXF) so that allC,, are zero. Hence
+ ” A+ ” VXF F=0 (A28)
a2 T a2 '
d 92 ~
i 2 7 A=A, A29)
L= eVé+0+ 5 VXF (
I~ -
:jL_E (eV ). (A18) eVp=eV . (A30)

However, it is not difficult to show thée is, in fact, zero. ThusA andsV are unique.

Since V-eA, V-eA, V-(VXF) are all zero it follows that

A, A, and (1/e)VXF can all be expanded in terms of the APPENDIX B: DERIVATION OF HAMILTONIAN  (36)

mode functionsA,(R) [see Eq(49)], The Hamiltonian density is
He= ” L Bl
A=Z i, (a19) M= Groke (B1)
(m+P))? (VXA)?
= + M-V XA (B2)
~ _ 2¢ 2un
A= G, (A20)
on substituting forA from (35). The Hamiltonian is
1 ' . l =2 3 !
~VXF=3 CA. (21 H'=2 Peaiem 2 5 MedfutVourt | &°R He,
k (24 o

(B3)

Th fficientC fixed byF. H . .

€ coetlicients are fixed by ence where we substitute for the particle velocitigg from (34),

including inside the ternfd*R M| - VXA, and whereM, is
Qx=09x+Cx. (A22)  given by(32). For the latter term
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J d°R ML-(VXA)=; Fea: Olu dU GeoB(R+U(F go— Re))X (o= Ry) (B4)

so that after some vector algebra we find that

= Jau du g, B(RAU(T e — R))X (10— Ry 12
H'ZE [pg Jo % §2M( ¢ g) (e g] +VCou|+f d®R
fa a

(m+P))?2 (VXA)?
+

2¢e 2u (B5)

With the reduced magnetization density given(BY) we see that the cross term(B5) obtained by expanding the first term
is

! Pia
f dSR M(_(R)B(R):; q€af0 u du(rsca_Rg)xﬁ B(R§+U(r§a_R§))

1
:gE l\‘jli:a .Jou du G, B(Re+u(rg,—Ry))X(rg—Ry). (B6)

Substituting(B6) into (B5) the new Hamiltoniar(36) then follows.

APPENDIX C: PROPERTIES OF VECTOR 1 1
MODE FUNCTIONS V-(U*x;(VxV) :;(VXV)-(VXU*)
The harmonic solutiond, (R) of the generalized inhomo- 1
geneous wave equatio®l) for zero source terms satisfies —U*. Vx| = (VXV)],
the generalized Helmholtz equatié#?), which can be writ- 2
ten as an eigenvalue equation in terms of an opetator (CH
1 1
V. (V><— (VXU*)) =—(VXU*)-(VXV)
LAk:)\kAkv (Cl) m M
1
where —V~V><;(V><U*).
1 1 Integrating each side of the equatiof@5), and noting that
L= 5 VX; (VX)) (C2)  the integrals of the divergence terms are zero, we find that
. . . — d3 1 *
and the eigenvalues, equalw 2. The differential operatok L= R m (VXV)-(VXUY),
is self-adjoint in that for arbitrary vector fields, V (which (Ch)

are periodic over the space of integradion 1
|R=f d°R m (VXU*)-(VXV).

As these expressions are the same the rd€l8t follows.
(C3)  The properties of thé, and thew, then follow from similar
proofs to those used in quantum theory.

Here the electric permittivity function(R) acts as a positive 10 Show that the eigenvillqe;; are real, each side of Eq.
weight function. To show this result we note that the left and(CD is multiplied by (R)Aj in a scalar product and then

f d°R s(R)U*-(LV)=f d°R &(R)(LU)* - V.

right sides can be written as integrated oveR. The use of(C3) gives
1 f d°R e(R)A} - (LAY =\ fng e(R)AY-A
IL=Jd3R Ut V2 (Vxv) |, kAT K kT
(C4) =J @R s(R)(LAY* - A.
1
|R=fd3R Vx;(VxU*))-V. (C7)

The right-hand side ofC7) is the complex conjugate of the
Now left-hand side showing both to be real. As the quantity
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e(R)AL - A is real, the reality of, follows. The result that 1

; . . d®R =—(VXA)?
A\ is positive, and hence equal to the square of a positive re 2u
frequencyw,, follows via the use of the forniC6) for the

left-hand side ofC7). We see that 3 . f 5 i .
—% Gy | o°R 5 (VXAQ)- (VXA).

f R %(VXAK)-(VXAEFMJ IR s(R)AL -Ay.
(c8)

Using

V-

: . A|><£(V><AI))=E(VXAI)~(V><A|)
As the integrals are clearly positive, then so musipe 2 2

To show that the mode functios, are orthogonal as in
Eq. (45) for different w,, we apply(C1) for a different ei- —A-
genvalue);, multiply by e(R)Aj in a scalar product, and
integrate oveR. Thus gives

1
Vx—(VxA;))
)7

and with the integral of the divergence term giving zero we

find that
f d°R s(R)A:-(LA|)=)\|f d°R e(R)AL-A,. (C9

1
f d°R =—(V XA)?
Reverting to(C1) and multiplying bye(R)A in a scalar 2u
product and integrating gives

1 1
== * d®R| VX—(VXA* )-A
2%: Qk%f M( k) I

f d°R s(R)Al*.(LAk):xkf d°R e(R)AF-A,. (C10 1
=§% QEChf R wfe(RIA] A
Taking the complex conjugate of each side(6fL0), using

A\ real and the adjoint conditiofC3) gives 1
‘ =520 Ok

f d°R s(R)A:-(LA|)=)\kf d®R e(R)AY-A,.  (C1)

=2 w0 a, (D2)
Since the left sides ofC9) and (C11) are equal it follows
that if A\ #X\| the orthogonality conditioiC12) applies. using the generalized Helmholtz equati@?®), and orthogo-
nality conditions(45) and (51) again. Finally
f d®R e(R)AL-A=0. (C12 IA
f d*R P e

APPENDIX D: DERIVATION OF LAGRANGIAN (56) .

-3 ot | oRPLAL
The various terms in Eq33) are evaluated via substitut- K
ing for the vector potentiah via Eq. (49) or its complex
conjugate form, and introducing the half-space expressions =, q:f d°R’ PL~A|*f d°R e(R)AL-A
after simplification. We have K

S ot [ @reAL

1 [0A\? 1o .. .
J d*R 58(5) =§% q’k*qlfdsR e(R)AZ(R)-A(R)

1w, .. = qu d°R PL'A:"_Qkf d°R PL'Ak) (D3)
= E% Ok Qi S .
using (53) and orthogonality(45).
[using orthogonality(45)]
APPENDIX E: DERIVATION OF MULTIPOLAR
1 . P HAMILTONIAN (61)
=52 G2 G (DY)

Our Hamiltonian is given by

using the relationshig51) between the generalized coordi- ) . , P ,
nates of thek andk* modes. Also H :é pga'fgﬁ% (PO +pxaw—L',  (ED
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wherer g, ol ,q;* ,=0 are replaced by their expressions in terms of the generalized mott3@tand (57). Then with the
Lagrangian as irf56)

1

H = Pia
¢a pg Mfa
1 2
1 ( —f U du g,B(Re+U(rg,—Ry))X(rg—Ry)
0
_é 2 Mga +Veoul
1
f U du g,B(Rs+u(rg,,—Ry))X(rg,—R )
0
_é Mga . fo u du qgaB(Rg'f'u(rga,_Rg))x(rga_Ré)

+2k’ [pk<p§+fd3R PL.AK>+p;(pk+fd3R P,_-A’,;H—Ek’ (pk+f d®R P,_-A’k‘)(p’k‘+jd3R P,_-Ak)

+> g+ > [(pk-i-J d°R PL~A’k‘>fd3R PL-AK+(p*,;+J d®R PL-Ak)Jd3R PL-A;]. (E2
k k
Hence
1 2
(pga—f u du ufaB(Rngu(rga—Rg))x(rga—Rg))
H'=2 ° +V +Z’Ud3RP-A*)Ud3RP-A>
fa 2M§a Coul L k L k
2 (Pii o)+ (pkf d°R PL-Ak+p:f d°R PL-A:). (E3
|
The cross terms associated with the expansion of the first Lot pmoay
term is treated as in Appendix B to give He= =~ 3 (PkPk + @ Qi)
Z pga'flu du qga B(R§+U(r§a Rg))X(rgu, §) hwk ~ ~t
fa 0 M§ :; (ak ak*
=f d*RM/[-B=D,’ (qkf d*R M| - VXA, P
k K, A -~
-7 (ak Ay )

+q;fd3RML.V><A:). (E4

1, h Ao st At

5 Wy 2_ _(ak+ak*)(ak+ak*)
. . . . . Wy 2(x)k
The particle kinetic energy and the diamagnetic energy term
arise from the other contributions from the expansion of the
first term in (E3). Combining(E3) and (E4) the multipolar => “hodad] —adn — élt* al+ él‘:* A + A A
Hamiltonian(61) is obtained. x 4

+3a.+a,al+ala }
APPENDIX F: RADIATION FIELD ENERGY TERM kG k* Zk kx Gk*

We start from the form given in the multipolar Hamil- 1 et At
tonian (61), =Ek Eﬁwk(akahak*ak*)

1
HFZEK E(pkp:+w§qkq:)- =3

akak + akak) (F1
k

I\JII—‘

This becomes, on replacing thg, p, by quantum operators, Using the commutation rule§0) we find that
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1 APPENDIX H: MODE FUNCTIONS
aEakJr > hwy, (F2 FOR ONE-DIMENSIONAL CAVITY

F'F:E
K

The mode functionsA(R) for the one-dimensional
the same as that for a set of quantum harmonic oscillators.Fabry-Perot cavity shown in Fig. 2 will be assumed to have
polarization vector along the axis and the mode functions

APPENDIX G: TRANSVERSE AND LONGITUDINAL will only depend on the coordinate,

COMPONENTS OF P_ IN THE ELECTRIC A(R)=iA(2). (H1)
DIPOLE APPROXIMATION

The transversé, (R) and longitudinalF (R) components From the generalized Helmholtz equati@t?) we obtain

of a vector field=(R) may be calculated via Helmholtz theo-

: d?A,
rem[10] via 4zt wipoe(Z)A=0, (H2)
F(R)=F,(R)+F(R), Gl
(R=R(R)*+F.(R) G here &(z)=¢, everywhere except ford<z<0, where
_ e(2) = k189 u= pq €verywhere.
F(R)=V¢, (G2) The continuity of the tangential componentsfandH
show thatA,(z) anddA,/dz are continuous at=—d and
FL (R)=VXA, (G3  z=0 and we take as boundary conditions
where ¢, A are given by A(l)=0, (H3)
$=-V-X, (G4 A(—L—d)=0, (H4)
A=V XX (G5) corresponding to the mode functions terminating at the per-

fect mirrors.

From the Helmholtz equatiofiH2) the mode functions are
essentially sine functions in the cavity, dielectric, and exter-
nal regimes, respectively:

with the field X(R) obtained fromF(R) via

X(R)= ! fd3R' FRY) (G6)
(R)= 17 R-R|" a;sink(z—1), 12220
_ Al2)=1 BisinVkik(z+2,), 0=z=-d (H5)
In this case v4Sink(z+L+d), —d=z=-—(L+d).
V-A=0. (G7)  In these equation= w,/c is the wave numbery;, 3,, and

o o o v, are amplitudes, ang, is a shift term.
The polarization density in the electric dipole approximation The thin dielectric approximation is based on the wave-

IS length in the dielectric layer being much longer than its
thickness,
P,_(R)=E§ p:O(R=Ry). Gy Jiikd<1. (H6)

Associated with the dielectric layer is a strength parameter
A=k1kd which for the strong dielectric approximation is
much larger than unity,

A straightforward evaluation gives

- M
XR)= 72 [RoRy ©9) kokds 1, (H7)
1 R_R Applying the continuity conditions to the case of the thin,
® 4_2 (“?% (G1g  strong dielectric leads to a mode equation for the wave vec-
T —R¢ tor K,
1 o (R-R)X s ol — Ak
A=—E§ “IR=RJ® (G11) fk)=tarkL= 5 =9(K). (H8)
This is a transcendental equation. The assymptotes for the
PO —— M 3(R—Ry)-m(R—Ry) function on the left hand sidef (k)] are separated byrL.
Uit am ¢\ [R-R, IR-R,® ’ As L>1 the function on the right hand sidg(k)] is a much
more slowly varying function ok apart from perhaps near
R#R;, (G12  its asymptoteswhere tarkl=1/A). Thus g(k) will cross

f(k) once between each of the assymptotes of the latter,
(P =—(P)y. (G13  giving modes with an average separatiok~ 7/L. Thus the
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actual or true modes form a quasicontinuum, the separation

being given by the universe length
The Fabry-Perot resonances occur at wave ve&tp(aot

themselves necessarily equal to a mode wave nurkper

given by the assymptotes g{k) such that

nm 1
Ky=——++ tan YA ")

T H9)
A H10
~1 "t A, (H10)
wheren is an integer and the strength facty is
A=Kk, d. (H11

As can be seen frortH9) the strength factoh,, determines
the shift in Fabry-Perot wave numblef from the valuen/

[. This notional wave number/l corresponds to there be-

ing n half wavelengths inside the cavity of lendthA further
parameter that is important is the width faclgy given by

1

Fn:/\_ﬁ'-

(H12)
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for |k—kq|<ThA,.
(H15)

1 1
Esoail + —soyiL,

1
A 2

The average separatiakk~ /L of the wave vectors is
assumed to be small in comparison to half widithof the
Lorentzian(H13) that gives the square of the ratio of cavity
region to outside region amplitudes.

ar
T<ln. (H16)

Substituting forl",, from (H12) the previous condition leads
to

| 1
E< 7TA§.

(H17)

Since the largest value dix/y,)? is A2 (at resonandeit
follows that
a?l<y2L, (H18)

and hence the first term in the normalization resHi5)

The ratio of the cavity region to outside region amplitudesmay be ignored, giving
can also obtained by applying the continuity conditions. For

wave numberk near to a resonande, the expression for
(ay/y1)? is of Lorentzian form,

(al)z Ao o k<A, (HI3
ZNWOW nl <TpAn. (H13)

Thus it is clear that the square of the strength factdgr
defines the peak value fde,/v;)% which occurs on reso-

nance withk=k,. As A,>1 the cavity region amplitude is
very large compared to the outside region amplitudekfor

values near resonance. Furthermore it is seenlthdbes in
fact define the half width of the Lorentzian form fag,/y;)2.

The normalization condition for the mode functions in a
volume V=LA (where A is a cross-sectional area for the

system is obtained from(45) as

f dz e(2)A2(z)=1/A. (H14)

2
"= \ SOLA.

(H19

This is the same normalization that would apply for mode

functions in a free space with volumé=L.A. The expres-
sion for the cavity region amplitude then becomes

[2 Anly
“7 N goLA[(k—k) 2+ T2]72

Thus the mode function inside the cavity is given by

[ 2 ATy .
A(2)= sOLA[(k—kn)2+Fm]1’2 sink(z—1),

|=z=0,

(H20)

assuming thatk—k,|<A.I',,, and so this result is certainly

Substituting the formgH5) for the mode functions and mak- valid for |k—k,|~T',,, corresponding to the regime of wave

ing appropriate approximations leads to the result

numbers close to the Fabry-Perot resonance.
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