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We perform nonperturbative analysis of forward scattering of resonance laser light on atoms in magnetic
field when the laser drives transitions between states with total angular momentaF51,2 and study the role of
the induced higher-order multipole moments in the forward-scattering signal. It is shown how the multipole
moments affect these signals and why not all possible multipoles are revealed for some transitions. The
analysis is performed in terms of density-matrix formalism and in terms of coupled and uncoupled~trap! states.
Evolution of the trap states in a magnetic field is found to be responsible for specific dependencies of the
forward-scattering signals on the multipoles of various ranks. The general theory is applied to the case of the
Na D1 line. We also present a pump-probe method for studying multipoles in systems with states of high
angular momenta and with complex transitions overlapping within their Doppler width.
@S1050-2947~96!08108-5#

PACS number~s!: 32.80.Bx, 33.55.Ad, 42.25.Bs

I. INTRODUCTION

One important consequence of atom-light interactions is
induction of various multipole moments of the atomic elec-
tron distribution. Such multipoles are generally described in
terms of irreducible tensor representation of the density ma-
trix @1–3#. The tensorial componentsrq

(k) of the density ma-
trix have a very simple physical interpretation: they are re-
lated to populations (q50) and phase relations~coherences!
of the specific atomic sublevels (qÞ0) and could be easily
associated with experimentally determined quantities. The
rq
(k) components are also related to the density-matrix ele-
mentsrm,m8 in the uL,m& representation of atomic angular
momentum in such a way thatq5Dm5m2m8 and uqu<k
with k<2 L. The order of polarity of a given multipole mo-
ment is defined by its tensorial rankk as 2k. Sinceuqu<k,
only the coherences with maximum possible values of
Dm5q, i.e., withDm5k, can be associated with transverse
components of a unique multipole while the coherences with
Dm,k are superpositions of componentsq of multipoles of
various possible ranks. For instance, withinL52 and for
linear light polarization, the possible ranks arek50,2,4 and
Dm5q50,62,64. The population (Dm50) consists then
of contributions of longitudinal components of monopole
r0
(0) , quadrupoler0

(2) , and hexadecapoler0
(4) , the Dm52

coherence consists of transverse components of quadrupole
r62
(2) and hexadecapoler62

(4) , and only theDm54 coherence
is equivalent to a transverse componentr64

(4) of a single mul-
tipole, the hexadecapole moment. In this paper we will there-
fore often use the notion of the hexadecapole moment or
hexadecapole coherence, meaning the density-matrix ele-
ment withDm54.

With a weak light intensity, such as in classical light
sources, only single-photon couplings of atomic sublevels
need to be considered. Because of theDm50,61 selection

rules for electric dipole transitions between atomic states,
only the sublevels of a given state withuDmu5um2m8u<2
can be coupled by weak beams. Thus with weak light beams
only quadrupole moments at most could be observed. The
uDmu<2 restriction does not hold for strong, coherent light
beams, in which case the Rabi frequency characterizing the
light-atom interaction might exceed the homogeneous width
of the perturbed transition. In such cases many photons are
coherently exchanged in a sequence of absorptions and
stimulated emissions~Rabi nutation! which couples the sub-
levels which may differ by anyDm allowed by quantum
numbers of a given system. When the angular momenta of
the states involved are sufficiently big, induction of multi-
pole moments of higher orders (k>4) is possible.

Evidence of such a quantity ofk.2 was obtained in the
experiment by Ducloyet al. @4#. In this work the hexadeca-
pole moment (k54) was detected in fluorescence light from
a neon cell placed in a laser cavity in a magnetic field, i.e., in
the nonlinear Hanle experiment@5#. The use of magnetic
fields for studying the multipoles is possible because of their
relation to magnetic sublevels. Another experiment where
the light-induced multipole moments were reported was de-
voted to the study of forward scattering~FS! of resonance
laser light by sodium atoms in a cell outside the laser cavity
@6#. In this experiment, which was based on the nonlinear,
resonant Faraday effect~NLFE!, very strong nonlinear con-
tributions to the Faraday rotation were attributed to the light-
induced quadrupole and hexadecapole moments in the
ground state of sodium atoms. Hexadecapole moments were
also detected in experiments with fluorescence detection by
Fischer and Hertel@7# and by McLeanet al. @8#. An elegant
way of studying the laser-induced multipole moments has
been used by Suteret al. @9#. Using excitation modulated at a
frequency of magnetic precession of a given multipole mo-
ment and phase-sensitive detection with Fourier analysis
they could selectively detect multipoles of a given order. The
method used by Yabuzakiet al. @10# where the Fourier
analysis is applied to a broadband laser beam transmitted
through an atomic vapor has similar potential. In both of
these Fourier-transform experiments the amplitudes of the
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possible hexadecapole contributions were, however, too
small to be detected.

A full theoretical analysis of the forward-scattering ex-
periments is very complicated for the case of strong lasers
and transitions with hyperfine structure~hfs! and large angu-
lar momenta, because of the wealth of states and mutual
couplings of their coherences and populations. For this rea-
son the observations of FS signals by Gawliket al. @6# re-
mained without detailed, quantitative interpretation for a
long time. An attempt to provide such an interpretation was
made by Giraud-Cottonet al. @11#, who performed perturba-
tive, third-order calculations of the NLFE for the sodium
lines with the aim of explaining the observations of Gawlik
et al. Indeed, the calculated line shapes were qualitatively
similar to some of the experimental ones reported in@6#.
From this agreement, Giraud-Cottonet al. concluded that
their perturbative analysis with onlyDm52 coherences,
without invoking higher-order (Dm54) ones, provides a
satisfactory explanation. This started a long-lasting contro-
versy, since as pointed out by Gawlik@12# the agreement
was not exact and the theory of Giraudet al. was far from
complete. In particular, the restoration of coherence and
population by spontaneous emission was neglected in this
treatment. Moreover, under the conditions of the experiment
@6# substantial saturation made the perturbative approach in-
applicable. On the other hand, the tentative interpretation of
the results of Gawliket al. apparently has not been suffi-
ciently substantiated. In particular, the resemblance of their
results to those reported by Ducloy is only superficial: the FS
signals are not composed of peaks and dips that can be re-
lated to the specific multipole moments as in@4#, rather they
are superpositions of symmetrical contributions, all being
zero atB50. Amplitudes and widths of the contributions of
various coherences have various intensity dependencies. As
we will show below, this makes their unambiguous identifi-
cation virtually impossible with a standard, single-beam ar-
rangement.

Despite its deficiency, third-order perturbative analysis
was performed by many authors, e.g., Jungner and co-
workers@13# and Weis and co-workers@14#. These calcula-
tions included only quadrupolar coherences, yet they were in
a good qualitative agreement with the experimental results
even though the atomic states involved had sufficiently high
angular momenta to allow the existence of higher multipoles.
This agreement suggested that the possible hexadecapole co-
herence cannot produce dramatic changes of the signals ob-
tained with single light beams, i.e., with the NLFE-FS ar-
rangement, which has been convincingly demonstrated in a
thorough recent experiment by Holmes and Griffith@15#.

The surprising agreement of the experimental observa-
tions of FS by sodium atoms with a very simple theoretical
description is an intriguing question that we wish to answer
in this work. We will also show when, if at all, the hexade-
capole moments can be observed in forward scattering of
laser light and thereby solve the above-mentioned contro-
versy.

Below we present detailed, nonperturbative analysis of
the FS in theuF,m& representation, whereF represents the
angular momentum of a given hyperfine sublevel, and in
terms of the coupled and uncoupled states in analogy with
the phenomenon of the coherent-population trapping~CPT!,

also related to laser-induced coherences@16#. While CPT is
well known for the simpleJ50↔J51 and J51↔J51
systems, much less attention has been devoted to this phe-
nomenon in more complex systems@17#. In this paper we
also suggest a pump-probe approach to the studies of laser-
induced multipole moments which should simplify identifi-
cation of individual multipoles. Though the pump-probe ar-
rangement has already been employed in the FS studies
@9,18,19#, here we analyze a geometry which allows sensi-
tive detection of high-order multipoles with the velocity se-
lection, i.e., sub-Doppler resolution, which is particularly
useful for such complex systems as alkali-metal atoms. In
Sec. II we specify two experimental arrangements for studies
of FS: the standard single-beam scattering~SBS! and the
alternative two-beam scattering~TBS! with a strong pump
and a counterpropagating weak probe and present basic as-
sumptions and definitions. In Sec. III we calculate the FS
signals with the two geometries for the wholeD1 sodium
line and for its various individual hfs components and we
interpret the calculated signals in terms of the trap states in
Sec. IV.

II. DESCRIPTION OF THE SYSTEM

A. Assumptions and definitions

In this paper we consider the experimental situation of the
Faraday-effect geometry as depicted in Fig. 1. Atoms con-
tained in a cell are placed within a constant, homogeneous
magnetic fieldB. They can interact either with a single beam
~SBS! or with two light beams counterpropagating along the
direction of the fieldB ~TBS!. In the case of SBS a single
beam~pump! induces coherences~multipoles! in the atomic
sample and tests them as well, while in the case of TBS the
coherences are induced by a strong pump beam~1! and are
sampled by the weak probe beam~2!. Both beams are lin-
early polarized perpendicularly toB (s polarization! and
beam 2 is detected after passing analyzer A crossed with
polarizer P (P•A50). In that way only this part of the
forward-scattering beam 2 is detected which undergoes po-
larization change while passing the atomic sample. IfB50

FIG. 1. Scheme of two geometries of the FS experiments con-
sidered in this paper.~i! SBS geometry where the same laser beam
induces and probes multipole moments. For this geometry only
beam~1! is used and FS signals are detected by the SBS detector at
2r0. ~ii ! TBS geometry where the two roles are separated. The
strong beam~1! induces the multipole moments which affect for-
ward scattering of a weak, counterpropagating probe beam~2! of
the same frequency. The probe FS signals are measured by the TBS
detector atr0. P andA represent orientations of the polarizer and
analyzer which are orthogonal toB and to themselves.
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and no additional external perturbation is imposed on atoms,
a single, linearly polarized light beam propagates through the
vapor without any modification of its polarization. Thus no
signal is seen by the detector due to symmetry between the
s6 components of the propagating beam. If, however, either
an additional light beam appropriately polarized~circularly
or linearly with 45° with respect toP andA), or a longitu-
dinal magnetic field is additionally perturbing the atoms, the
s6 symmetry in the forward propagation of the probe is
broken and there will be a nonzero signal after the crossed
analyzer@20,21#. In the considered case the strong pump is
linearly polarized in the direction perpendicular to the probe
polarization, henceBÞ0 is necessary to observe the
forward-scattering signals with crossed polarizers. Since the
multipole moments we are interested in are associated with
the magnetic sublevels, they are affected by the magnetic
field and correspondingly modify the forward-scattering sig-
nals, i.e., the dependencies of FS intensity onB.

We assume that both beams~pump and probe! are coher-
ent fields of the same frequencyvL . The positive frequency
part of the total light field is

E~r ,t !5$@AE1~r !#e
ik1•r1@PE2~r !#e

ik2•r%e2 ivLt , ~1!

whereE1 andE2 are the amplitudes of the pump~1! and the
probe~2! fields, while unit vectorsA, P determine their po-
larizations andk152k2 ~Fig. 1!. We neglect any possible
nonuniform transverse distribution of the incident light fields
@22#.

The field given by Eq.~1! interacts resonantly with atomic
transitionF↔ f whereF and f are the total angular momenta
of the upper and lower level, respectively. TheuF,m& and
u f ,m& (m52 f , . . . ,f and m52F, . . . ,F) label corre-
sponding Zeeman sublevels in the reference frame with
quantization axis alongB. Evolution of the density matrix
describing our atomic system is governed by the master
equation

d

dt
r52 i @H,r#1LRr1Lcollr, ~2!

whereH is the Hamiltonian of an atom in the magnetic field
that interacts with two coherent fields and\51. The radia-
tive relaxation (LRr) due to spontaneous emission is con-
sidered in a standard way, see, e.g.,@23#. The collisional
relaxation (Lcollr) is described within the impact limit and
ignoring collisional shifts~we return to the case when colli-
sions are important in Sec. III B! in a general way, allowing
for different relaxation rates of various coherences. The re-
laxation terms are

LRr5ge(
l51

N

(
Fm,F8m8

S 2 (
fm, f 8m8

Dm,m
f ,F s fm,Fm

~ l !

3rDm8,m8
F8, f 8 sFm8, f 8m8

~ l !
2$sFm,F8m8

~ l ! ,r% D
2gg(

l51

N

(
fm, f 8m8

$s fm, f 8m8
~ l ! ,r%, ~3!

Lcollr52G1(
l51

N

(
Fm

(
fm

~sFm,Fm
~ l ! rs fm, fm

~ l ! 1s fm, fm
~ l ! rsFm,Fm

~ l ! !

2(
l51

N

(
Fm,F8m8

(
fm, f 8m8

~sFm,Fm
~ l ! rsF8m8,F8m8

~ l !

1s fm, fm
~ l ! rs f 8m8, f 8m8

~ l ! !@G0dF8ÞF1G2~d f , f 8dm8,m62

1dF,F8dm8,m62!1G4~d f , f 8dm8,m64

1dF,F8dm8,m64!#.

In ~3! ge stands for relaxation~spontaneous emission! rate
of the upper state,gg is the transit relaxation rate of the
lower ~ground! state,$ % denotes the anticommutator, e.g.,
$A,B%5AB1BA, while G r (r50,1,2,4) are the collisional
relaxation rates of optical coherences (r51), hyperfine co-
herences (FÞF8, r50), quadrupole coherences (F5F8,
m85m62, r52), and hexadecapole coherences (F5F8,
m85m64, r54!, and dm8,m6r is the Kronecker delta.
sFm, fm
( l ) 5uF,m& l^ f ,mu l is the atomic coherence operator of

atom l . Dm,m
F, f describe the angular part of the

Dm,m
F, f 5^F,muDu f ,m& matrix elements. For the assumed ge-

ometry (A•P50) we have

Dm,m
F, f

•P5 iDm,m
F, f dF, f ,

then Dm,m5m61
F, f

•A56Dm,m5m61
F, f dF, f , ~4!

wheredF, f5^Fuuduu f & stands for the reduced matrix element.
With the above definitions, making the standard rotating-
wave approximation and assuming optically thin medium
and weak magnetic field, the full Hamiltonian can be ob-
tained by summing individual Hamiltonians
H5HA1H11H2 describing the atoms in the magnetic field
(HA) and interacting with two coherent fields (H1,H2),

HA5(
l51

N F (
Fm,Fm8

sFm,Fm8
~ l !

~v0
F1mvBgF!

1 (
fm, fm8

s fm, fm8
~ l !

~v0
f 1mvBgf !G , ~5!

H15 i(
l51

N F(
F,m

(
f ,m

V1
F, f~Dm,m

F, f eik1•r lsFm, fm
~ l !

2Dm,m
f ,F e2 ik1•r ls fm,Fm

~ l ! !G , ~6!

and

H252(
l51

N S (
F,m

(
f ,m

V2
F, f@Dm,m

F, f eik2•r l~sFm, fm
~ l ! dm,m21

2sFm, fm
~ l ! dm,m11!1Dm,m

f ,F e2 ik2•r l~s fm,Fm
~ l ! dm,m21

2s fm,Fm
~ l ! dm,m11!# D , ~7!
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wherev0
F andv0

f are the energies (\51) of the upper (F)
and lower (f ) states of theF↔ f transition forB50, vL is
the laser frequency,vB5mBB is the Larmor frequency
(mB being the Bohr magneton!, gF(gf) are the Lande´ factors
of the F( f ) states, andV j

F, f5EjdF, f ( j51,2) is the Rabi
frequency associated with fieldEj and theF↔ f transition.

In this work we do not differentiate between relaxation
rates of multipoles of various ranks within the given state
except when we assume very rapid relaxation of the hexade-
capole coherences to study their specific effect on the FS
signals. As a matter of fact, such differentiation would not be
possible within theuF,m& representation. We have, neverthe-
less, chosen this basis since it allows easier interpretation of
the light-induced coherences and their relation to the trapped
states.

B. Experimental situation

Now, we consider the following two specific cases of the
scattering of the single strong beam only or of the weak
probe in the presence of a counterpropagating pump.

1. Single-beam forward scattering

In this section we investigate an experimental situation
without a weak beam (E250), i.e., when a single strong
beam generates and probes the coherences. To take fully into
account the coherent character of FS we express the positive
frequency part of the operator of the electric field radiated by
the ensemble ofN atoms and seen by the SBS detector after
passing analyzerA ~Fig. 1! by

ESBS
~1 !S 2r0 ,t1

r 0
c D52 ig(

l51

N

(
Fm, fm

~A•Dm,m
F, f !

3sFm, fm
~ l ! e2 i ~vLt2k1•r0!, ~8!

whereg is a constant and2r0 is the detector position. The
coherent nature of SBS is reflected in the above equation by
the fact that the total field in the forward direction does not
depend on positions of individual atoms@20,24,25#. For
crossed P and A only field~8! reaches the detector and the
intensity of the forward scattering is

ISBSS 2r0 ,t1
r 0
c D

5g2~N21!N(
F, f

(
F8, f 8

(
m,m

(
m8,m8

~A•Dm,m
F, f !

3~Dm8,m8
f 8,F8

•A!^sFm, fm
~1! ~ t !s f 8m8,F8m8

~2!
~ t !&av

1g2N(
F,F8

(
m,m8

(
m

~A•Dm,m
F, f !~Dm,m8

f ,F8
•A!

3^sFm,F8m8
~1!

~ t !&av. ~9!

By ^ &av we denote averages over the laser field fluctua-
tions, over the density matrix of the system, and over atomic
thermal velocities. As usual,N@1 and the first term in the
above expression dominates the scattering signal. This is the
typical coherent FS signal which, in general, depends on
two-atom averages. The second term in~9! depends on Zee-

man and hyperfine coherences. Though negligible in forward
direction, it becomes relevant in lateral scattering@24# ~it is
this term that is responsible for such single-atom interference
effects as the Hanle effect in fluorescence light@5#!.

We calculate the FS signals according to~9! for transi-
tions withF, f51,2 making several simplifying assumptions.
First, we assume that the incident fieldE1 is coherent. This
allows decorrelating two-atom averages in~9! which is a
substantial simplification, not permissible in general but pos-
sible with a coherent field:

^sFm, fm
~1! ~ t !s f 8m8,F8m8

~2!
~ t !& av

5^sFm, fm
~1! ~ t !&av̂ s f 8m8,F8m8

~2!
~ t !&av. ~10!

Nonperturbative analysis of the SBS signals for various
light statistics and for a simpleF51↔ f50 transition was
performed in@26#. Secondly, we neglect the hyperfine coher-
ences. This assumption is realistic when the Rabi frequency
V1

F, f is smaller than hfs of the levels involved in the consid-
ered transition. The next simplification concerns averaging
over the Maxwell distribution of atomic velocities. Because
the FS signal decreases fast with the detuning of laser fre-
quency from the atomic resonance, the total FS field can be
taken as a sum over these atomic transitions for which the
Doppler shifted frequencies are in resonance withvL . This
allows us to calculate the radiated field~8! as a simple sum
of the contributions corresponding to resonant excitation of
the hfs componentsF↔ f of the given line with appropriate

Doppler weightse2@(vL2v0
F

1v0
f )/Dv#2, whereDv is the Dop-

pler width. However, nonresonant transitions can be very
important for the dynamics of a given density element. We
therefore calculate the optical coherences entering~8! by tak-
ing into account all nonresonant components in the master
equation~2!.

2. Two-beam forward scattering

In this subsection we consider the situation when two dif-
ferent beams, strong pump~1! for creation and weak probe
~2! for detection of atomic coherences, are used. Similarly to
the SBS case, the total electric field radiated byN atoms and
observed behind the polarizer P by the TBS detector can be
expressed as

ETBS
~1 ! S r0 ,t1 r 0

c D52 ig(
l51

N

(
Fm, fm

~P•Dm,m
F, f !

3sFm, fm
~ l ! e2 i @vLt2k2•~r l2r0!#. ~11!

In contrast to the SBS case, we have to fully account for
the different phases of the pump and probe beams at the
position of each atom, which results in the following expres-
sion for the FS intensity of the probe beam:
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I TBSS r0 ,t1 r 0
c D

5g2(
l51

N

(
jÞ l

N

(
F, f

(
F8, f 8

(
m,m

(
m8,m8

~P•Dm,m
F, f !~Dm8,m8

f 8,F8
•P!

3^sFm, fm
~ j ! ~ t j !s f 8m8,F8m8

~ l !
~ t l !&ave

2 ik2•~r j2r l !

1g2(
l51

N

(
F,F8, f

(
m,m8

(
m

~P•Dm,m
F, f !

3~Dm,m8
f ,F8

•P!^sFm,F8m8
~ l !

~ t l !&av, ~12!

where t l5r l /c. Weak intensity of the probe beam allows
expansion of the averaged density-matrix elements to the
first order inE2 but to all orders inE1:

^sFm, fm
~ l ! ~ t l !&av5rFm, fme

ik1•r l1drFm, fm
~ l ! eik2•r l,

^s fm, f 8m8
~ l ! &av5r fm, f 8m8

~ l !
1dr fm, f 8m8

~ l !
~ t l !,

^sFm,F8m8
~ l ! &av5rFm,F8m8

~ l !
1drFm,F8m8

~ l !
~ t l !, ~13!

where ther elements depend only on the pump field strength
~to all orders! just as in the SBS case, whereasdr ’s describe
contributions due to the probe field to the first order inE2
~and to all orders inE1). With such an approach and with the
assumption that the light fields are coherent, allowing the
decorrelation of two-atom averages, the total intensity of the
TBS signal can be written as

I TBSS r0 ,t1 r 0
c D5g2(

l

N

(
jÞ l

N

(
F, f

(
F8, f 8

(
m,m

(
m8,m8

~P•Dm,m
F, f !~Dm8,m8

f 8,F8
•P!@drFm, fm

~ j ! r f 8m8,F8m8e
2 i ~k12k2!•r j

1rFm, fmdr f 8m8,F8m8
~ l ! ei ~k12k2!•r l1rFm, fmr f 8m8,F8m8e

i ~k12k2!~r j2r l !1drFm, fm
~k! dr f 8m8,F8m8

~ l !
#

1g2(
l

N

(
F,F8, f

(
m,m8

(
m

~P•Dm,m
F, f !~Dm,m8

f ,F8
•P!@rFm, fmdr fm,F8m8

~ l ! ei ~k12k2!•r l

1drFm, fm
~ l ! r fm,F8m8e

2 i ~k12k2!•r l1rFm,F8m81drFm, fm
~ l ! dr fm,F8m8

~ l !
# . ~14!

From now on we leave out atomic labeling in ther ele-
ments because to the zeroth order inE2 the solutions of the
Bloch equations with a single fieldE1 do not depend on
atomic positions. On the contrary, such a dependence exists
in dr ’s and some of the terms in~14! cancel out after the
summation over statistical atomic positions. Finally, after ne-
glecting the terms linear inN, a simple formula for the TBS
signal is obtained:

I TBSS r0 ,t1 r 0
c D5g2(

l

N

(
jÞ l

N

(
F,F8

(
f , f 8

(
m,m8

(
m,m8

~P•Dm,m
F, f !

3~Dm8,m8
f 8,F8

•P!drFm, fm
~ j ! dr f 8m8,F8m8

~ l ! . ~15!

An important consequence of using two counterpropagat-
ing beams of the same frequency is Doppler-free selection of
a specific hfs component of a complex transition, which
makes Doppler averaging superfluous. Selection of a given
hfs component allows neglecting of other hfs states (f , f 8 and
F,F8) in the net TBS signal~15! and writing it in a simpli-
fied form without summation over allF,F8, f , f 8:

I TBSS r0 ,t1 r 0
c D'g2 (

m,m8
(

m,m8
~P•Dm,m

F, f !~Dm8,m8
f 8,F8

•P!

3drFm, fmdr f 8m8,F8m8, ~16!

where collective, position-averaged quantities
drFm, fm5( ldrFm, fm

( l ) are introduced. However, thedr ele-

ments in~15! and~16! are calculated taking all components,
including the nonresonant ones, into account in Eq.~2! with
substitutions~13!. Detailed discussion of the equations for
the collective variablesdr and their solutions is presented in
the Appendix.

III. CALCULATED SIGNALS

A. SBS signals

In this section we present FS signals calculated for vari-
ous specific atomic transitions and the SBS geometry~the
case of TBS will be discussed in Sec. III B!. We performed
the calculations with atomic constants~hfs, relaxation rates,
dipole moments! corresponding to the sodiumD1 line
(3 2S1/2–3

2P1/2) for a comparison with the experimental re-
sults of Ref.@6#. In particular, we takege5(2pt)21 ~with
t516 ns being the radiative lifetime of the sodium excited
3 2P3/2 state! as a common relaxation rate of populations and
Zeeman coherences off all upper-state magnetic sublevels
andgg52p30.3 MHz as a common lower-state relaxation
rate related to a typical atomic transit time across the laser
beam. In our calculations we take the values of the Rabi
frequency below 2p360 MHz which is sufficiently smaller
than the 2p3189 MHz hyperfine splitting of the3P1/2 ex-
cited state to justify neglecting the hyperfine coherences.

The main purpose of these calculations was to observe to
what extent the multipoles of the highest possible rank, i.e.,
the hexadecapole moments forF, f52, affect the FS signals.
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We adopt the same method as used by McLeanet al. @8#, i.e.,
we calculate the signals with the hexadecapole moments~co-
herencesr22,12) properly included in the equations and with
these moments quenched by assuming their very fast relax-
ation rates. Comparison of the signals calculated with and
without the hexadecapole moments allows direct evaluation
of the role of such multipoles in the FS. We first analyzed the
SBS signals for well resolved single transitions between lev-
els of total angular momentaF, f51,2. By considering single
transitions we were not restricted to closed atomic systems
so, unlike Refs.@11,14#, we could properly account for re-
distribution of population and coherences by spontaneous
emission within, as well as out of, the initial system. Having
analyzed the effect of the higher-order multipoles on the SBS
signals with single transitions we then study their effect on
complex transitions involving several, not necessarily re-
solved, components, e.g., hfs. As a representative example
we take here the NaD1 line.

1. Single transitions

Figures 2–5 illustrate velocity-averaged~as described in
Sec. II B 1! SBS signals for single transitions:
F52↔ f52, F51↔ f52, F52↔ f51, and
F51↔ f51. Their common features are zero values of the
FS intensity atvB50 when perfectly crossed polarizers are
used and characteristic, two-peaked shapes resembling a
squared dispersion function, symmetric aroundvB50.
Strongly simplifying, by neglecting magnetic dependence of
the optical coherences, each Zeeman coherence could be as-
sociated with a separate resonance contribution of the width

~defined by the turning points of each squared dispersive line
shape! determined byg/Dm, whereg is the relaxation rate
of a given state (ge or gg) andDm denotes the difference of
magnetic quantum numbers associated with the coherence

FIG. 2. SBS signals simulated for the singleF52↔ f52 tran-
sition and for various Rabi frequencies (V0) marked on the right
wing of each curve. Purely radiative relaxation is assumed, i.e.,
relaxation rate of optical coherencesgcoh5(ge1gg)/2 and
ge52p310 MHz, gg52p30.3 MHz. Solid lines represent the
signals calculated with all possible coherences and the dashed lines
are used for the signals without the hexadecapole moments.

FIG. 3. SBS signals simulated for the singleF51↔ f52 tran-
sition. All parameters are the same as in Fig. 2.

FIG. 4. SBS signals simulated for the singleF52↔ f51 tran-
sition. All parameters are the same as in Fig. 2.
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considered. In that way individual contributions of each co-
herence should be easily recognizable in the net FS signal,
providedge andgg differ sufficiently. In practice, however,
such a distinction is not that easy, on the one hand, because
of the magnetic dependence of optical coherences which also
contribute to the FS signals and, on the other hand, due to
power broadening which affects various coherences in vari-
ous degrees. In consequence, it is relatively easy to distin-
guish the lower-state multipoles from those of the upper state
if one of the levels is long lived, e.g., the ground state as in
the case we are interested in, but it is not possible in general
to observe clearly resolved quadrupole and hexadecapole
resonances within the same state except of some special
cases shown below.

Figures 2–4 correspond to transitions where hexadecapole
moments can be generated at least in one of the states,
whereas for the transitionF51↔ f51, associated with Fig.
5, the highest possible multipoles are quadrupoles. The solid
lines depict signals calculated with all possible coherences
while the broken lines are signals obtained after elimination
of the hexadecapole coherencesr22,12 ~in both states!.
Within the range ofvB spanned in Figs. 2–5, we see essen-
tially only the ground-state multipoles.

As shown in Fig. 2, the effect of the ground-state hexa-
decapole moment on the SBS signals is very strong in the
case of theF52↔ f52 transition. After elimination of the
hexadecapoles the signals are dominated by the ground-state
coherences withDm52 ~quadrupoles! and are clearly
broader~by nearly a factor of 2 as expected from the ratio of
theDm values!.

The very spectacular manifestation of the laser-induced
hexadecapole moment, as seen in Fig. 2, is by no means a
general feature of the SBS signals. For different transitions
with f ,F51,2 the results are quite different. In Fig. 3 we
show the SBS signals for the singleF51↔ f52 transition.
There is only a small difference between the dashed and
solid curves, i.e., the hexadecapole contributions to the SBS
signal are hardly visible although this moment can be in-
duced in thef52 ground state. The main contribution to the
SBS signal for theF51↔ f52 transition is brought by the
quadrupole coherences in the ground state. This behavior,
dramatically different from theF52↔ f52 case, is very
interesting since theF51↔ f52 energy-level structure has
often been considered as the model structure for the analysis
of the hexadecapole moments@3#. An additional unexpected
feature of the SBS signals for theF51↔ f52 transition is a
slightly narrower structure for the case when the hexadeca-
pole moment is eliminated than when it is included. The SBS
signals calculated for theF52↔ f51 transition are present
in Fig. 4. Differences between the cases with and without
hexadecapole are again hardly visible, which is easy to un-
derstand since for this transition the hexadecapole occurs
only in the upper state. The slight divergence between the
solid and dashed curves, seen for greater Rabi and Larmor
frequencies, is mainly due to the upper-state hexadecapole.

The SBS signals for theF51↔ f51 component~Fig.
Fig. 5! are very similar to those for theF52↔ f52 transi-
tion despite the fact that no hexadecapole coherence can be
induced in either of the statesf ,F51. The depicted signals
are mainly due to the quadrupole moments in the ground
state f51. This similarity between the transitions
F52↔ f52 andF51↔ f51 caused many incorrect inter-
pretations in the previous literature. We wish to stress here
the fact that despite this similarity the signals corresponding
to theF52↔ f52 transition cannot be correctly described
within the third-order perturbation theory.

2. Complex transitions

As an example of a complex transition we examine the
D1 sodium line which consists of four hfs components; each
of them has been analyzed above as a single transition. We
do not consider theD2 (3

2S1/2–3
2P3/2) transition here since

its detailed analysis is much more complex because of the
wealth of relevant atomic states~the excited state ofJ53/2
has four hfs sublevelsF50,1,2,3) and is by no means more
instructive than theD1 line. However, in the case of over-
lapping components, such calculations require not only sum-
mation of individual components and velocity averaging but
also taking into account the mutual influence of various tran-
sitions. The resulting SBS signals are presented in Fig. 6. We
calculated these signals forvL tuned to the center-of-gravity
frequency of theD1 line using our Doppler-averaging
method, described in Sec. II B 2. Similar results are obtained
when the laser frequency is varied over the range comparable
with hfs of the upper state, one order of magnitude smaller
than the Doppler width. As before, the solid lines represent
the signals calculated with all possible coherences and the
dashed lines are used for the signals without the hexadeca-
pole moments in both states (32S1/2 and 3

2P1/2). In order to
see the upper-state contributions to the FS signals for the
wholeD1 line, in Fig. 6 we extended the range ofvB with

FIG. 5. SBS signals simulated for the singleF51↔ f51 tran-
sition. All parameters are the same as in Fig. 2. There are only solid
lines as no hexadecapole contributions are possible for this transi-
tion.
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respect to the previous figures. As can be seen, in the range
of uvBu< 2p320 MHz, the resulting signals depend very
little on the hexadecapole moment. They are most similar to
those of Fig. 3 associated with a singleF51↔ f52 transi-
tion with nearly no hexadecapole contribution. Though the
F51↔ f52 and F52↔ f52 hfs components contribute
with the same strengths to theD1 line, the latter component
~which, as shown in Fig. 2, has a very pronounced hexade-
capole contribution! has very little impact on the net FS sig-
nal. The amplitude of theF52↔ f52 contribution to the
signal for the entireD1 line, B22, is about one order of
magnitude smaller than the amplitudeB12 associated with
the F51↔ f52 component. For instance, for
V052p340 MHz we have B22/B1250.13. Also the
F52↔ f51 component does not contribute much to the sig-
nals in a narrow range ofuvBu<2p320 MHz and is respon-
sible mainly for the broad structure of the signals in Fig. 6
and the component F51↔ f51 is negligible:
B11/B1250.007.

The fact that the net signals calculated nonperturbatively
for the whole NaD1 line with all possible multipoles are
dominated by the individual hfs componentF51↔ f52
with negligible hexadecapole contribution explains the good
agreement between the experimental results@6# and previous
third-order calculations@11,13,15#, by definition restricted to
the quadrupole coherences.

B. TBS signals

To calculate the TBS signals according to~16! one has to
find the collective variablesdrFm, fm . They can be obtained

by solving Eq. ~2! with substitutions~13! which, under
steady-state conditions and after position integration, yields
the following equation~see the Appendix for more details!:

i (
F8, f 8

V2
f 8,F8~AF8m, f 8m

~2!
1V1

f 8,F8AF8m, f 8m
~1!

!

5 ilFm, fmdrFm, fm1 (
F8, f 8

~V1
f 8,F8!2L~dr!F8m, f 8m , ~17!

where the elementsAFm, fm
(2) , AFm, fm

(1) , lFm, fm , and
L(dr)Fm, fm are defined in the Appendix. TBS signals calcu-
lated along these lines for all components of the NaD1 line
are shown in Figs. 7~a!–Fig. 7~d!. As in the SBS case, they
are symmetric aroundvB50 @the insets in Fig. 7~b! and Fig.
7~d! show expanded details of the TBS signals around zero
field#.

An important advantage of the TBS is the possibility of
selection of a given hfs component from a complex transition
whose Doppler width exceeds the hyperfine splitting. For
single transitions where no such selection is necessary the
TBS and SBS signals should be similar. This is indeed the
case, as can be seen by comparison of the signals represented
by the lines with dots in Fig. 7 with the signals in Figs. 2–5.
On the other hand, for the case of complex transitions the

FIG. 6. SBS signals simulated for the whole NaD1 line with
Doppler averaging. All other parameters are as in Fig. 2. Solid lines
represent signals with hexadecapole moments and dashed lines
show the signals without the hexadecapoles.

FIG. 7. The TBS signals calculated for different individual com-
ponents of theD1 sodium line.~The curves are symmetric around
vB50.! V052p345 MHz and relaxation rates are the same as in
Fig. 2. The solid and broken lines represent the signals with
Doppler-free selection of a givenF↔ f hfs component from the
whole NaD1 line, whereas the dotted lines refer to single transi-
tionsF↔ f . The solid~broken! lines refer to signals with~without!
hexadecapoles. The insets forF52↔ f52 andF52↔ f51 tran-
sitions show enlargement of the marked region of small Larmor
frequencies~the inset forF52↔ f52 shows only signals without
hexadecpole moments!.
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TBS and SBS signals differ dramatically. In Fig. 7 the solid
lines without dots, labeledD1, represent the TBS signals
calculated for Doppler-free selection of various hfs compo-
nents by appropriate laser tuning with all remaining, non-
resonant components of the complex transitions also taken
into account. The most significant difference between the
TBS signals calculated for complex and single transitions is
the presence of additional, very narrow structure close to
vB50 seen whenvL is tuned to any hfs component of the
Na D1 line exceptF52↔ f51. The structure is much nar-
rower than the signals for single transitions~lines with dots
in Fig. 7! and the SBS signals~Figs. 2–5!. One could expect
that, because of their small width, these structures would be
associated with the highest possible multipole rank. In such a
case, however, these narrow structures should be seen also in
the signals obtained for isolated transitions, which is not the
case.

As can be seen by comparison of the solid and broken
curves in Fig. 7~b!, there is clear evidence of the hexadeca-
pole contribution in the case of theF52↔ f52 transition.
However, in contrast to the SBS signals~Fig. 2!, the hexa-
decapole contribution is not the narrowest feature of the TBS
signals. This is caused by a substantial power broadening of
the hexadecapole resonance which, for the cases illustrated
in Fig. 7~b!, peaks aroundvB53 MHz. The narrow structure
shown by the solid line is due to the contributions of the
nonresonant hfs components of the complex line and not to
the hexadecapole in the Doppler-free-selected hfs compo-
nent. To understand the origin of this narrow feature of the
signals for complex lines seen in@Figs. 7~a!– 7~c!# around
vB50 we have to analyze solutions of Eq.~16! @given in the
Appendix by ~A2!–~A4!# in more detail. To first order in
E2 these solutions@Eq. ~A4!# consist of two distinct contri-
butions: AF8m8, f 8m8

(2) which depend on Zeeman coherences

and populations, andAF8m8, f 8m8
(1) which are related with opti-

cal coherencesr fm,Fm . TheAF8m8, f 8m8
(2) terms enter the solu-

tions ~A4! multiplied by V2
f 8,F8, whereas theAF8m8, f 8m8

(1)

terms are multiplied by V1
f 8,F8V2

f 8,F8. Since

V1
f 8,F8@V2

f 8,F8, the TBS signals are dominated by the
AF8m8, f 8m8
(1) contributions and are given by the following, ap-

proximate relation:

I TBS~r0!'N2 (
m8,m8

am,m
m8,m8uV1

f ,FAF8m8, f 8m8
~1! u2, ~18!

where coefficientsam,m
m8,m8 depend onTFm, fm

F8m8, f 8m8 introduced
in ~A4!, onV2

f ,F, and depends on transition-matrix elements.
For a complex transition Eq.~A2! for AF8m8, f 8m8

(1) involves all
hfs components, including the nonresonant ones. Thus, even
when a givenF↔ f transition is Doppler-free selected by a
proper tuning ofvL the contributions like

(
F8ÞF

(
m8,m8

1

l fm8, fm
Dm,m8
F, f r fm8,F8m8Dm8,m

F8, f

3~dm8,m212dm8,m11! ~19!

~and similarly with denominatorlFm,Fm8) cannot be ne-
glected inAF8m8, f 8m8

(1) . It is important that even when the
amplitude of ther fm,F8m8 elements is small because of a

nonresonantF8↔ f excitation, terms~19! can be relevant
close tovB50 due to resonant enhancement by thel fm8, fm

21

factors. Obviously, such an enhancement atvB'0 takes
place also for resonant components but in that case the
r fm,F8m8(vB) dependence becomes saturated and strongly
power broadened. For these reasons in weak magnetic fields
(vB'0) the TBS signals associated with complex transi-
tions are mainly affected by nonsaturated optical coherences
on nonresonant components, while for highervB the TBS
signals are due to coherences on the components resonantly
selected by the probe beam. The TBS method eliminates the
need for velocity averaging but does not allow one to neglect
the nonresonant hfs components which add their narrow, not
power-broadened contributions to the net scattered intensity.
It is interesting that these narrow, nonresonant contributions
do not occur for the SBS case. It is related to a perfect phase
matching~coherence! of individual atomic contributions to
the scattered light. Some of these contributions are of oppo-
site sign to those given by~19! which results in their exact
cancellation. In the TBS case many terms average to zero
after position integration and such cancellation is not perfect,
leaving nonzero terms~19!.

The narrow structures arising from nonresonant contribu-
tions to TBS are very sensitive to the relaxation rates of the
Zeeman coherences and populations appearing in denomina-
torsl fm8, fm , as well as to the relaxation rates of the optical
coherencesr fm,F8m8. For illustration of the dependence of
the TBS signals on collisional relaxation we show in Fig. 8 a
series of the TBS signals calculated for Doppler-free selec-
tion of various hfs components in the NaD1 line and for
various collisional relaxation rates. For the sake of simplic-
ity, we have assumed that the collisions affect the coherences
in the lower and upper states in the same way:

ge
m,m8Þm5ge1G, gg

m,m8Þm5gg1G, and g5(gg1ge)/2
1G, where G is the collisional relaxation rate. Figure 8
shows a very strong dependence of the TBS signals onG for
all hfs components. WhenG.2p31 MHz the narrow struc-
tures attributed above to the nonresonant components~nar-
row maxima aroundvB50) disappear and the signals de-
crease monotonically withG. In the range ofG<2p31
MHz, the TBS signals depend very sensitively on changes of
G as small as 2p310 kHz. Such a strong dependence sug-
gests application of the TBS for studies of collisions, particu-
larly in the cases of low pressure or low cross section.

IV. ROLE OF THE TRAP STATES

Standard interpretation of FS signals is based on analysis
of the evolution of Zeeman and optical coherences in a mag-
netic field. Due to mutual couplings between all elements of
the density matrix, Zeeman coherences associated with a
given multipole order can be detected by changes of the op-
tical coherences which, according to Eqs.~9! and ~16!, de-
termine the FS signals. It is important that even with a weak
probe beam these couplings between density-matrix ele-
ments allow detection of contributions arising from Zeeman
coherences withDm.2, i.e., from multipole moments of
higher than quadrupole rank.

The standard interpretation explains resonant changes of
the forward-scattered light aroundvB50 in a similar way to
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the Hanle effect in fluorescence, i.e., as destruction of the
light-induced Zeeman coherences by the Larmor precession
~magnetic mixing! @5#. The frequency of this precession~or
the magnetic mixing rate! equalsgmBDmB. The coherences
are maximal whenB50 ~zero-field level crossing! and the
magnitude of the precession frequency, or the intensity of the
magnetic field, necessary for coherence destruction depends
on relaxation rates~width of the crossing levels!. As pointed
out in Sec. III A, since the precession frequency is propor-
tional toDm it should be feasible to distinguish the contri-
butions of various coherences~multipoles! owing to various
widths of their resonances inI FS. When vBÞ0, the s6

components of light transmitted are phase shifted in opposite
senses, which causes rotation of the polarization plane~non-
linear Faraday effect! and nonzero signalI FS(BÞ0)Þ0.

Such an approach allows correct calculation of FS signals
but is not very physically comprehensive, particularly in the
nonperturbative regime. For instance, it does not explain
such signal features as the striking difference between the
hexadecapole contributions to theF52↔ f52 and
F51↔ f52 transitions demonstrated above in Sec. III. Be-
low, we shall present the interpretation of FS in terms of trap
states that allows relating FS signals to such fundamental
characteristics as the symmetry of given atomic transitions

correlated with a number of possible states and with their
evolution in a magnetic field. This not only simplifies inter-
pretation of the FS signals but also allows studies of the role
of trap states in atomic systems of higher angular momenta.

Depending on the particular configuration of the system
under consideration, and specifically on whetherF. f ,
F5 f , or F, f , there are, respectively, 0, 2, or 1 stable traps
in the ground state@17#. We are here interested mainly in the
ground-state traps as they are not destroyed by spontaneous
emission and are ideal traps forB50. In the excited states
stable traps can be created only when the Rabi frequency is
sufficiently big with respect to the spontaneous emission
rate. Having defined the appropriate basis of coupled and
trap states we can use it for representation of all relevant
operators and their expectation values such as, e.g., the
Hamiltonian and the intensity of the forward-scattered light.
This intensity depends on optical coherences between trap
and coupled states. Such coherences are zero when the traps
are perfect, i.e., whenB50, henceI FS(B50)50. Nonzero
intensity of the forward-scattered light is due to imperfec-
tions of the traps resulting from transitions~e.g., magnetic-
field induced! between coupled and uncoupled states.

The properties and form of the forward-scattering signals
can thus be related to the dynamics of the coupling of the

FIG. 8. The TBS spectra for various NaD1 components versus relaxation rateG and forV052p345 MHz. For simplicity, in these
simulations we do not distinguish between relaxation rates of the Zeeman coherences related to hexadecapole and quadrupole multipoles.
The relaxation rates of optical coherences areg5(ge1gg)/21G.
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trap and coupled states. For specific angular momenta trap
states can be associated with superpositions of various mag-
netic sublevels, i.e., with given Zeeman coherences and mul-
tipole moments. When symmetry of the transition allows ex-
istence of two trap states, an external magnetic field couples
them and causes their competition. It is due to this competi-
tion that FS signals can be dominated by the quadrupole trap,
even in systems where generation of the hexadecapole traps
is possible. Below, we discuss such effects in a detailed way
for each of the above analyzed transitions~except of the
F52↔ f51 one, which has trap states similar to
F51↔ f52 but unstable with respect to spontaneous emis-
sion! .

A. Transition F51↔f51

Neglecting spontaneous emission, we can define the new
basis for theF51↔ f51 transition in a standard way as
composed of coupled and uncoupled states@16,17#,

ut&5
1

A2
~ u f ,21&1u f ,11&) ~uncoupled-trap state!,

~20!

us&5
1

A2
~ u f ,21&2u f ,11&) ~coupled state!, ~21!

u f ,0& ~coupled state! ~22!

for the lower state and analogously with statesuT&, uS&, and
uF,0& for the upper state.

Statesut& anduT& are traps, whileus& anduS& are coupled
states. However, with spontaneous emission taken into ac-
count, the upper state becomes unstable and so does super-
position uT&. Stateut& associated with the ground state re-
mains then as the only stable trap. Superpositions defined by
~20!–~22! are associated with Zeeman coherences of the
r21,11 kind, i.e., with the quadrupole moments inf51 and
F51.

In the new basis atomic and interaction parts of the
Hamiltonian are

H1,1
F, f52gf51vB~ ut&^su2us&^tu!2gF51vB~ uT&^Su2uS&^Tu!

1F iV0A 1

12
~ us&^F,0u2u f ,0&^Su!1H.c.G . ~23!

Using Eq.~9! and transformation~20!–~22! the intensity
of the forward-scattered light in our geometry with crossed
polarizers can be expressed as

ISBS}N
2z^uF,0&^tu2uT&^ f ,0z&u2 . ~24!

Equation ~24! relates the forward-scattering signals to
mixing between trap superpositionsut&, uT& and coupled sub-
levels uF,0&, u f ,0&. As long as the traps are perfect, i.e., as
long asvB50 and there is no magnetic coupling between
ut& andus& (uT& anduS&) represented by the first two terms in
~23!, no such mixing is possible andISBS50. We have here

a full analogy between the scattering signals and the
coherent-population trapping@16#. ForvBÞ0, however, the
structure of the forward-scattering signal@ ISBS(B)# will be
determined by magnetic precession of the quadrupolar coher-
ences in both lower and upper levels, i.e., theus&-ut&
(uS&-uT&) magnetic mixing. Statesut&, uT& remain efficient
traps for suchvB which allow existence of these coherences
but lose their trapping characteristics when the precession
becomes faster than appropriate relaxation rates. When the
lower state is a long-lived ground state, the width of a result-
ing FS resonance aroundvB50 will be mainly determined
by the atomic transit time and power broadening~Fig. 5!.
Because the upper-state trapuT& is quenched by spontaneous
emission, the contribution of the upper-state quadrupole can
be seen only when the light beam is sufficiently strong that
V0 is comparable to the spontaneous emission rate. When
the lower- and upper-state relaxation rates are sufficiently
different, the FS signals exhibit a clear double structure aris-
ing from the quadrupole moments induced in both states. For
the range ofvB used for Fig. 5 the excited-state contribution
is not apparent.

To illustrate the analogy between FS signals and CPT it is
interesting to compare theISBS(vB) signal with the
magnetic-field dependence of the population of the trap state
r tt
f515Tr$ut&^tu%. Such a dependence, calculated for resonant

excitation, is shown in Fig. 9~a!, which illustrates a very
strong increase of ther tt

f51 populations aroundvB50. Com-
paring Figs. 5 and 9~a! we see that ther tt

f51(vB) dependence
resembles an inverted FS signal and the ranges of efficient
population trapping correspond well to the range of strong
variation of ISBS.

FIG. 9. Calculated populations of trap states for different single
transitions versus Larmor frequencyvB . ~c! and ~d! are plotted in
the same scale. Solid and dotted lines represent the populations
calculated with and without hexadecapole moments, respectively.
Resonant excitation withV052p325 MHz is assumed.
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B. Transition F52↔f52

The new basis is taken in the form

ut&5
1

2
A3

2S u f ,22&1u f ,12&1A2

3
u f ,0& D ~ trap state!,

~25!

us1&5A1

2
~ u f ,22&2u f ,12&) ~coupled state!, ~26!

us2&5A1

8
~ u f ,22&1u f ,12&2A6u f ,0&) ~coupled state!,

~27!

us3&5A1

2
~ u f ,21&2u f ,11&) ~coupled state!, ~28!

us4&5A1

2
~ u f ,21&1u f ,11&) ~coupled state! ~29!

for the lower statef52 and analogously for the upper state
F52 where capital lettersT, S, F replacet, s, f to distin-
guish between the two sets of states. In~25!–~29! states
ut&, uT& are trap states that are related to the hexadecapole
coherences. The atomic and interaction parts of the Hamil-
tonian transformed to the above representation are

H2,2
F, f52gf52vB~A3ut&^s1u1us1&^s2u1us3&^s4u1H.c.!

2gF52vB~A3uT&^S1u1uS1&^S2u1uS3&^S4u1H.c.!

2F iV0FA1

3
~ us3&^S2u2us2&^S3u!

2A 1

12
~ us1&^S4u2us4&^S1u!G1H.c.G . ~30!

H2,2
F, f has a very similar structure toH1,1

F, f in that it consists
of terms representing magnetic mixing between traput&
(uT&) with us1& (uS1&) and between other coupled states or a
coherent coupling of coupled superpositions in the lower
state with coupled superpositions in the upper state. Simi-
larly, the intensity of forward-scattered light can be ex-
pressed as the result of mixing between various states:

ISBS}N
2U K 12 ~ uS4&^tu1uT&^s4u!2A1

3
~ uS4&^s2u1uS2&^s4u!

1A 1

12
~ uS1&^s3u1uS3&^s1u!L U2. ~31!

ForvB'0 the relevant term of expression~31! is the first
one, proportional to the trap state in groundf52 level. For
nearly zero magnetic field, the trapsut& and uT& are nearly
perfect, yetuT& is unstable because of spontaneous emission.
Spontaneous emission results in decay ofuT& and in zero
population of all coupled states, so, similarly as for the
F51↔ f51 transition it is only stateut& whose dynamics is
decisive for properties of the scattering signal. This time,
however, ut& is associated with the hexadecapole moment

~superposition ofu f ,62& and u f ,0&), so the corresponding
resonance aroundvB50 is narrower~nearly by a factor 2 if
power broadening could be ignored! than in the case of the
F51↔ f51 transition. The analogy between the scattering
signal and coherent-population trapping is seen, by compari-
son of Fig. 9~b! where we plot population of the trapr tt

f52

for f52 versusvB with the ISBS(vB) dependence in Fig. 2.
As for the F51↔ f51 case the magnetic dependence of
r tt
f52 resembles the inverted FS signal. Moreover, both de-

pendencies are dramatically sensitive on the hexadecapole
coherence: its elimination yields CPT and scattering reso-
nances@depicted in Figs. 9~b! and 2 by dashed lines# much
broader and weaker than when they are properly accounted
for ~solid lines!.

C. Transition F51↔f52

For this transition the elements of the new basis are

ut1&5A1

2
~ u f ,21&2u f ,11&) ~ trap state!, ~32!

ut2&5A1

8
~ u f ,22&1u f ,12&2A6u f ,0&) ~ trap state!,

~33!

us1&5A1

2
~ u f ,21&1u f ,11&) ~coupled state!, ~34!

us2&5A1

2
~ u f ,22&2u f ,12&) ~coupled state!, ~35!

us3&5
1

2
A3

2S u f ,22&1u f ,12&1A2

3
u f ,0& D ~coupled state!

~36!

for the lower statef52 and

uS1&5A1

2
~ uF,21&1uF,11&) ~coupled state!,

~37!

uS2&5A1

2
~ uF,21&2uF,11&) ~coupled state!,

~38!

uF,0& ~coupled state! ~39!

for the upper stateF51. With transformation~32!–~39! the
atomic and interaction part of the Hamiltonian is

H1,2
F, f52gf52vB@A3us2&^s3u1us2&^t2u1ut1&^s1u1H.c.#

2gF51vB~ uS1&^S2u1H.c.!2F iV0SA1

3
us3&^S1u

1
1

2
~ us2&^S2u1us1&^F,0u! D 1H.c.G . ~40!
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Similarly as in the previous cases we express the forward-
scattered light intensity in terms of the new states~32!–~39!
which yields

ISBS}N
2ZK uS1&^s2u1uF,0&^t1u

1A1

3
uS2&~A3^t2u1^s3u! L Z2. ~41!

In the region of small magnetic fields, most interesting for
the FS signals, the traps are nearly perfect and accumulate
most of the atomic populations. Equation~41! can then be
approximated to yield

ISBS}N
2z^uF,0&^t1u1uS2&^t2u& z2. ~42!

As we see from Eq.~42!, for vB'0, the scattering signal
is determined by contributions of both trap states existing for
the F51↔ f52 transition. Since trapsut1& and ut2& are re-
lated to different ground-state sublevels and different multi-
pole moments, it would be natural to expect contributions of
different ~quadrupole and hexadecapole! multipoles to the
scattering signals. However, as seen in Fig. 3, the forward-
scattering signals for theF51↔ f52 transition have only
one resonant contribution aroundvB50, not much different
from the signals characteristic for theF51↔ f51 transition
dominated by a single, quadrupole trap~Fig. 3!.

This unexpected insensitivity of theF51↔ f52 transi-
tions on the hexadecapole coherence is caused by the exist-
ence of two subsystems containingut1& and ut2& and their
coupling by spontaneous emission. As we see from~40!,
there are two sets of states$ut2&,us2&,us3&,uS1&,uS2&%, and
$ut1&,us1&,uF,0&%, coupled within each set by the magnetic
and laser fields, each of them involving one of the traps. The
two sets are independent whenvB50 and Hamiltonian~40!
represents the only relevant interaction. WhenvBÞ0, ut1&
andut2& are mixed with coupled states and their populations,
after subsequent excitation, are again redistributed by spon-
taneous emission, among trap and coupled states of both sets.
Such redistribution leads to equalization of population of
ut1& and ut2& which can be seen in Figs. 9~c! and 9~d! where
we have depicted magnetic-field dependencies ofr t1t1

f52 and

r t2t2
f52 with ~solid lines! and without~dashed lines! hexadeca-

pole coherences. The fact that populations ofut1& and ut2&
depend very little on the hexadecapole moment corresponds
to the very weak dependence of the scattering signals for the
F51↔ f52 transition on the hexadecapole~Fig. 3! dis-
cussed above. As seen from Figs. 9~c! and 9~d! not only the
amplitudes but also the width of the population dependencies
on vB are similar forut1& and ut2&. This might seem to be
inconsistent with the expectation to see hexadecapole reso-
nances around zero magnetic field about two times narrower
than the quadrupole ones. However, due to the coupling be-
tween the subsystems involvingut1& andut2& by spontaneous
emission, populations are equalized between these two traps
for any nonzero value ofvB , which is responsible for nearly
equal width of the curves in Figs. 9~c! and 9~d!.

The mixing betweenut1& and ut2& explains also a small
difference in the width of solid and broken curves seen in
Fig. 3. Though the difference is rather small it is interesting

that the signals with the hexadecapole coherences are
slightly broader than those without the hexadecapole, with
only the quadrupole coherence. This is due to the fact that
when the hexadecapole is not quenched traput2& is efficient
and not much of its population is transferred tout1&. On the
other hand, without the hexadecapole coherence population
of ut1& increases, so the FS signals are narrower without than
with the hexadecapole. Thus, for theF51↔ f52 transition,
where no direct signature of the hexadecapole moment in the
FS signals is seen, it is the indirect effect of this multipole on
the signal width that can be used as its possible evidence.

D. The complex transition with hfs-NaD1 line

Again we focus here on theD1 component of the sodium
fine structure doublet. For a complex transition contributions
of all individual hfs components must obviously be ac-
counted for. This becomes a very simple addition of inde-
pendent contributions, analyzed above, with appropriate
weights determined by laser frequency and atomic velocity
distribution for the case when the hfs is well resolved with
respect to the Doppler width. In the opposite case the indi-
vidual hfs components cannot be considered individually,
because of their mutual coupling by nonresonant laser exci-
tation and spontaneous emission.

For the NaD1 transition the decisive contributions to the
scattering signal come from only two hfs components which
are associated with thef52 ground-state sublevel:
F51,2↔ f52. Two components withf51 are at least one
order of magnitude weaker and can be neglected in a quali-
tative analysis. The two relevant components share the same
lower level where, in principle, the quadrupole as well as
hexadecapole coherences can be induced by the
s-polarized laser light. We have shown above that the FS
signals associated with theF52↔ f52 component exhibit
very clear hexadecapole resonance whereas those related
with the F51↔ f52 component are dominated by the
quadrupole moment. The two components differ only in their
upper levels which are split by only 189 MHz, which is
much less than the Doppler width of about 1 GHz for typical
experimental conditions. Thus for any laser frequency within
the Doppler profile of theD1 transition both components are
excited with comparable efficiency. Simple addition of the
contributions of these two components~we recall that the
nonresonant components are taken into account when calcu-
lating elements ofr) should then yield scattering signals
containing signatures of the quadrupole and hexadecapole
moments aroundvB50. However, as was shown in Fig. 6,
the FS signal calculated for the wholeD1 transition is domi-
nated by the quadrupole moment only, theF52↔ f52
component with its hexadecapole contribution constitutes
only about 10% of the total signal.

Explanation of this surprising fact is based on the cou-
pling by spontaneous emission between theut1& and ut2&
traps found in theF51↔ f52 dynamics which destroys any
possible hexadecapole contribution tout2&. Additionally, as
seen by comparison of Eqs.~25! and ~36!, the superposition
which represents trap stateut& for F52↔ f52 transition is
almost equal to coupled stateus3& for theF51↔ f52 tran-
sition, and vice versa, the states which are traps for the
F51↔ f52 component (ut1&, ut2&) became coupled states
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(us3&, us2&) for F52↔ f52. When both components are
excited with comparable efficiency, the above coupling be-
tween trap and coupled states results in domination of the
total scattering signal by the lowest-order coherences, i.e.,
quadrupole moments. The higher-order coherences, like the
hexadecapole in our example, do not survive such competi-
tion, which explains why theD1 signals are associated
mainly with the quadrupole moment.

V. CONCLUSIONS

We have performed nonperturbative analysis of the role
of multipole moments in the forward scattering of resonance
light on atoms in a magnetic field. Its results solved the long-
lasting controversy around the observability of the hexade-
capole moment in FS on sodium atoms. By simulating the FS
signals on single transitions between levels with angular mo-
menta 1 and 2 we have shown that, unlike fluorescence ex-
periments, the FS signals on theF51↔ f52 transition very
weakly depend on the hexadecapole moment whereas the
F52↔ f52 one is very strongly affected by this multipole.
When the laser is tuned to the NaD1 line with its unresolved
hfs components the FS signals are dominated by the contri-
butions of theF51↔ f52 component which has almost no
hexadecapole signature. This explains why no evidence of
the hexadecapole moment was found in the recent experi-
ment of Holmes and Griffith@15# and proves that also in the
early experiment of Gawliket al. @6# there was no hexade-
capole contribution to theD1 signals. This clearly shows that
there is very little influence of the hexadecapole moment in
the FS experiments with a single light beam tuned to the Na
D1 line @6#. Another interesting finding is that the
F52↔ f52 signals which are significantly affected by the
hexadecapole are very similar to those for theF51↔ f51
component where the quadrupoles are the highest-rank mul-
tipoles. This conclusion, however, does not justify using the
perturbative approach for analysis of the FS signals with
strong laser light. Comparison of the signals calculated for
singleF52↔ f52 transitions with its strong hexadecapole
signature with theF51↔ f51 one where quadrupoles are
the highest-rank multipoles indicates that the simple line-
shape similarity could be very misleading. For this reason it
is very unlikely that the FS experiments of Sta˚hlberget al.
@13# with well resolved neon transitionF52↔ f52 could
be properly interpreted within the third-order perturbation
theory involving only quadrupole moments.

In addition to the single-beam scattering we have also
analyzed the pump-probe TBS method which allows
Doppler-free selection of a given hfs component of a com-
plex line. The TBS simulations revealed narrow structure of
the FS signals around zero magnetic field which, contrary to
the intuitive expectations, is not related to the highest-order
multipole but is rather due to the nonresonant hfs compo-
nents. These narrow structures are very sensitive to collisions
which could find practical spectroscopic applications.

We have interpreted the calculated results in terms of the
trap states. We showed that the number and mutual cou-
plings between various traps and between traps and coupled
states determine the character of the FS signals. Symmetry of
a transition is directly related to the number of traps and
allows determination of the scattering signals.
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APPENDIX

As seen from Eq.~16!, calculation of the TBS signals
requires finding thedrFm, fm elements. Equations for these
collective variables are obtained from Eqs.~2!–~7! in the
steady-state limit with several approximations. In particular,
except for studies of collisional effects~Fig. 8! we consider
the case of radiative relaxation and neglect~i! all
elements with the atomic position dependence,
e.g., ( lrFm, fme

6 i (k12k2)•r l; ~ii ! couplings with
( ldr fm,Fme

2 i (2k12k2)•r l, i.e., couplings with four-wave-
mixing contributions; and~iii ! couplings of thedrFm, fm ele-
ments for theF↔ f transition with elementsdrF8m8, f 8m8 be-
longing to different transitions (FÞF8 and fÞ f 8). The
drF8m8, f 8m8 elements introduce the;1/(ig1DF8, f 8) weight

factors into the equations (;DF8, f 85v0
F82v0

f 82vL) which
are negligible for big detunings~hfs splittings!. Neglecting
~i! is justified by destructive interference in integration over
atomic positions, while the contributions mentioned in~ii !
represent higher-order processes, of a smaller amplitude.

By expanding the single-atom density matrix to first order
in theE2 field @Eq. ~13!# and using the steady-state approxi-
mation, algebraic equations for thedrFm, fm

( l ) corrections to
optical coherences can be obtained after straightforward, yet
tedious, algebra. After position averaging, Eq.~17! is ob-
tained for the averaged, collective quantities
drFm, fm5( ldrFm, fm

( l ) The coefficients appearing in~17! are
defined below by Eqs.~A1!–~A3!.

L~dr!Fm, fm5 i (
f 8m8

(
F8m8

S 1

l f 8m8, fm
Dm,m8
F, f 8 Dm8,m8

f 8,F8 drF8m8, fm

1
1

lFm,F8m8
drFm, f 8m8Dm8,m8

F8, f 8 Dm8,m
F8, f D

12ge(
f 8m8

(
f 9m9

1

l f 8m8, fm
Dm,m8
F, f 8

3 (
F8m8

(
F9m9

1

lF8m8,F9m9

3Dm8,m8
f 8,F8 drF8m8, f 9m9Dm9,m9

f 9,F9 Dm9,m
F9, f , ~A1!

lFm,F8m85 ige
m,m82 (m2m8)vB , l fm, f 8m8 5 igg

m,m8 2 (m

2m8)vB , where ge
m,m8 and gg

m,m8 are relaxation rates of
matrix elementsrFm,Fm8 and r fm, fm8 with respect to colli-
sions, respectively.

lFm, fm52 ig2DF, f2(mgF2mgf)vB

and

g5
~ge1gg!

2
, DF, f5vF2v f2vL ,
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AFm, fm
~1! 5 i F(

F8
(

m8,m8

1

l fm8, fm
Dm,m8
F, f r fm8,F8m8Dm8,m

F8, f

3~dm8,m212dm8,m11!

2(
f 8

(
m8,m8

1

lFm,Fm8
Dm,m8
F, f 8 r f 8m8,Fm8Dm8,m

F, f

3~dm8,m212dm8,m21!G
22ge(

f 9
(

m8,m9

1

l fm8, fm
Dm,m8
F, f (

F8
(

m8,m9

3
1

lF8m8,F8m9
Dm8,m8

f ,F8 Dm8,m9
F8, f 9 r f 9m9,F8m9Dm9,m

F8, f

3~dm9,m8212dm9,m811!, ~A2!

AFm, fm
~2! 5(

m8
Dm,m8
F, f r fm8, fm~dm8,m212dm8,m11!

1(
m8

rFm,Fm8Dm8,m
F, f

~dm8,m112dm8,m21!.

~A3!

The general solution of Eqs.~17! can be written in a compact
form:

drFm, fm5 (
F8, f 8

(
m8,m8

TFm, fm
F8m8, f 8m8V2

f 8,F8

3~AF8m8, f 8m8
~2!

1V1
f 8,F8AF8m8, f 8m8

~1!
!, ~A4!

where coefficientsTFm, fm
F8m8, f 8m85(TF2m, f2m

F82m8, f 82m8)* are related
to lFm, fm andL(dr)Fm, fm , and depend on the Larmor fre-
quency, relaxation rates, detuning, and Rabi frequencies.
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