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Multipole moments and trap states in forward scattering of resonance light

Bogdan Mobodzirski” and Wojciech Gawlik
Instytut Fizyki Uniwersytetu Jagiellskiego, ulica Reymonta 4, PL 30-059 KrakoPoland
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We perform nonperturbative analysis of forward scattering of resonance laser light on atoms in magnetic
field when the laser drives transitions between states with total angular moRerit2 and study the role of
the induced higher-order multipole moments in the forward-scattering signal. It is shown how the multipole
moments affect these signals and why not all possible multipoles are revealed for some transitions. The
analysis is performed in terms of density-matrix formalism and in terms of coupled and unc@ugpedtates.
Evolution of the trap states in a magnetic field is found to be responsible for specific dependencies of the
forward-scattering signals on the multipoles of various ranks. The general theory is applied to the case of the
Na D, line. We also present a pump-probe method for studying multipoles in systems with states of high
angular momenta and with complex transitions overlapping within their Doppler width.
[S1050-294{@6)08108-3
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[. INTRODUCTION rules for electric dipole transitions between atomic states,
only the sublevels of a given state withm|=|m—-m’|<2
One important consequence of atom-light interactions ixan be coupled by weak beams. Thus with weak light beams
induction of various multipole moments of the atomic elec-only quadrupole moments at most could be observed. The
tron distribution. Such multipoles are generally described ifAm|<2 restriction does not hold for strong, coherent light
terms of irreducible tensor representation of the density mabeams, in which case the Rabi frequency characterizing the
trix [1—3]. The tensorial componenpék) of the density ma-  light-atom interaction might exceed the homogeneous width
trix have a very simple physical interpretation: they are re-Of the perturbed transition. In such cases many photons are
lated to populationsd=0) and phase relatioreoherences ~ coherently exchanged in a sequence of absorptions and
of the specific atomic sublevels|#0) and could be easily stimulated emissiondRabi nutation which couples the sub-

associated with experimentally determined quantities. Thi€ve!s which may differ by amAm allowed by quantum

p¥ components are also related to the density-matrix elehumbers of a given system. When the angular momenta of

mentspy, v in the |L,m) representation of atomic angular the states involved_ are sufficiently t_)ig, ind_uction of multi-
momen'?:jnr% in such a way that=Am=m-m’ and|q|<k pole moments of higher ordgrk¥4) is p055|blg. .

with k<2 L. The order of polarity of a given multipole mo- EV|_dence of SUCT a qulanmy M>hz Wasko?]talﬂed in the
ment is defined by its tensorial ramkas . Since|q|<k, experiment by Duclojet al. [4]. In this work the hexadeca-

. . . ole moment Kk=4) was detected in fluorescence light from
only the coherences with maximum possible values o . oo S S
- ; > . ; a neon cell placed in a laser cavity in a magnetic field, i.e., in
Am=q, i.e., withAm=Kk, can be associated with transverse

the nonlinear Hanle experimef§]. The use of magnetic

Zoxﬁﬁnaergtssgf;ug;?tlij:nrsng:}'f:rf Vg:gemgfrﬁﬁﬂ?rglgzegfwm?ields for studying the multipoles is possible because of their
perp P P relation to magnetic sublevels. Another experiment where

ﬁﬁgg:’ﬁgﬁ?iﬂgﬁzzﬁf' trfgrp:)nss;ﬁ)rllgerérmgm;ezo esz afr?(rj the light-induced multipole moments were reported was de-
Am=q=0+2,+4 Thé population £ m=0) cons,is:cs then voted to the study of forwa(d scattenr(E_S) of resonance _
of contribLEor,lg df longitudinal components of monopole laser "gh-t by sod!um atoms_ in a cell outside the laser c_:avny
) ) ) -~ [6]. In this experiment, which was based on the nonlinear,
po ', quadrupolep™, and hexadecapolgy”, the Am=2  (o5onant Faraday effe@iLFE), very strong nonlinear con-
c?zr;erence consists of (Er)ansverse components of quadrupgigtions to the Faraday rotation were attributed to the light-
p:; and hexadecapole'.,, and only theAm=4 coherence induced quadrupole and hexadecapole moments in the
is equivalent to a transverse compongfff, of a single mul-  ground state of sodium atoms. Hexadecapole moments were
tipole, the hexadecapole moment. In this paper we will therealso detected in experiments with fluorescence detection by
fore often use the notion of the hexadecapole moment oFischer and Hertgl7] and by McLearet al.[8]. An elegant
hexadecapole coherence, meaning the density-matrix elgvay of studying the laser-induced multipole moments has
ment withAm=4. been used by Sutet al.[9]. Using excitation modulated at a
With a weak light intensity, such as in classical light frequency of magnetic precession of a given multipole mo-
sources, only single-photon couplings of atomic sublevelsnent and phase-sensitive detection with Fourier analysis
need to be considered. Because of fre=0,= 1 selection they could selectively detect multipoles of a given order. The
method used by Yabuzaket al. [10] where the Fourier
analysis is applied to a broadband laser beam transmitted
:Electronic address: bogdan@castor.if.uj.edu.pl through an atomic vapor has similar potential. In both of
Electronic address: gawlik@castor.if.uj.edu.pl these Fourier-transform experiments the amplitudes of the
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possible hexadecapole contributions were, however, too 7 7, i B B
small to be detected. -
. . . Probe laser Pump laser

A full theoretical analysis of the forward-scattering ex- beam (2 beam (1)
periments is very complicated for the case of strong lasers j ----------- - F-A- EC-- [
and transitions with hyperfine structulefs) and large angu- Detector Detector
lar momenta, because of the wealth of states and mutual $85 TBS
couplings of their coherences and populations. For this rea- Analyzer Cell Polarizer
son the observations of FS signals by Gawdikal. [6] re- 'r (') r' -

mained without detailed, quantitative interpretation for a
long time. An attempt to provide such an interpretation was

made by Giraud-Cottost al. [11], who performed perturba- FIG. 1. Scheme of two geometries of the FS experiments con-

. . . - sidered in this papefi) SBS geometry where the same laser beam
tive, third-order calculations of the NLFE for the sodium induces and probes multipole moments. For this geometry only

lines with the aim of explalnlng the observations of Qa\{vllk beam(1) is used and FS signals are detected by the SBS detector at
e_t a_l. Indeed, the calculated I_|ne shapes were qualltatlvelyfrol (i) TBS geometry where the two roles are separated. The
similar to some of the experimental ones reported6h o0 hean(1) induces the multipole moments which affect for-
From this agreement, Giraud-Cottast al. concluded that yarq scattering of a weak, counterpropagating probe bérof

their perturbative analysis with onlAm=2 coherences, the same frequency. The probe FS signals are measured by the TBS
without invoking higher-order fm=4) ones, provides a detector atr,. P andA represent orientations of the polarizer and
satisfactory explanation. This started a long-lasting controanalyzer which are orthogonal ®and to themselves.

versy, since as pointed out by Gawlik2] the agreement

was not exact and the theory of Giragtal. was far from 4154 related to laser-induced coherengs. While CPT is
complete. In particular, the restoration of coherence andya|i known for the simpleJ=0-J=1 andJ=1<J=1

population by spontaneous emission was neglected in thiggtems, much less attention has been devoted to this phe-
treatment. Moreover, under the conditions of the experimentyenon in more complex systerfis7]. In this paper we
[6] substantial saturation made the perturbative approach ingq, suggest a pump-probe approach to the studies of laser-
applicable. On the other hand, the tentative interpretation of,qyced multipole moments which should simplify identifi-
the results of Gawliket al. apparently has not been suffi- cation of individual multipoles. Though the pump-probe ar-
ciently substantiated. In particular, the resemblance of the'Fangement has already been employed in the FS studies
rgsults to those reported by Ducloy is only ;uperficial: the F‘C[9,18,lq, here we analyze a geometry which allows sensi-
signals are not composed of peaks and dips that can be rgye detection of high-order multipoles with the velocity se-
lated to the specific multipole moments ad4j, rather they |ection, j.e., sub-Doppler resolution, which is particularly
are superpositions of symmetrical contributions, all being,sefy| for such complex systems as alkali-metal atoms. In
zero atB=0. Amplitudes and widths of the contributions of gec || we specify two experimental arrangements for studies
various coherences have various intensity dependencies. A% Fs: the standard single-beam scatteri&®S and the
we will show below, this makes their unambiguous identifi- 5jtarnative two-beam scatterif@BS) with a strong pump
cation virtually impossible with a standard, single-beam ar-q 5 counterpropagating weak probe and present basic as-
rangement. . , _ _ sumptions and definitions. In Sec. Ill we calculate the FS
Despite its deficiency, third-order perturbative a“alys'ssignals with the two geometries for the whdly sodium
was performed by many authors, e.g., Jungner and CQjhe and for its various individual hfs components and we
workers[13] and Weis and co-workefd4]. These calcula-  jnerpret the calculated signals in terms of the trap states in
tions included only quadrupolar coherences, yet they were igg. v/
a good qualitative agreement with the experimental results
even though the atomic states involved had sufficiently high
angular momenta to allow the existence of higher multipoles. Il. DESCRIPTION OF THE SYSTEM
This agreement suggested that the possible hexadecapole co-
herence cannot produce dramatic changes of the signals ob-
tained with single light beams, i.e., with the NLFE-FS ar- In this paper we consider the experimental situation of the
rangement, which has been convincingly demonstrated in Raraday-effect geometry as depicted in Fig. 1. Atoms con-
thorough recent experiment by Holmes and Griffit!s]. tained in a cell are placed within a constant, homogeneous
The surprising agreement of the experimental observamagnetic fieldB. They can interact either with a single beam
tions of FS by sodium atoms with a very simple theoretical(SBS or with two light beams counterpropagating along the
description is an intriguing question that we wish to answedirection of the fieldB (TBS). In the case of SBS a single
in this work. We will also show when, if at all, the hexade- beam(pump induces coherencémultipoleg in the atomic
capole moments can be observed in forward scattering acfample and tests them as well, while in the case of TBS the
laser light and thereby solve the above-mentioned controeoherences are induced by a strong pump béBnand are
versy. sampled by the weak probe bed®). Both beams are lin-
Below we present detailed, nonperturbative analysis okarly polarized perpendicularly tB (o polarization and
the FS in thglF,m) representation, wher€ represents the beam 2 is detected after passing analyzer A crossed with
angular momentum of a given hyperfine sublevel, and irpolarizer P P-A=0). In that way only this part of the
terms of the coupled and uncoupled states in analogy witlfiorward-scattering beam 2 is detected which undergoes po-
the phenomenon of the coherent-population trapg®BT), larization change while passing the atomic sampld 0

A. Assumptions and definitions
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and no additional external perturbation is imposed on atoms, N

a single, linearly polarized light beam propagates through the\ oip=—T12, > > (o rmpot 1+ oth ool em
vapor without any modification of its polarization. Thus no =1 Fm fu

signal is seen by the detector due to symmetry between the N

o* components of the propagating beam. If, however, either > > > (o) FmPU(FI?m/ .

an additional light beam appropriately polarizédrcularly I=1p ' '

or linearly with 45° with respect t® andA), or a longitu- I M
dinal magnetic field is additionally perturbing the atoms, the +Ufu,fupof'u’,f’w)[roéF’¢F+FZ( S, Ot px2

mF'm’ fu,f’ u

o* symmetry in the forward propagation of the probe is 8 1S VT (S 6.0
broken and there will be a nonzero signal after the crossed F.rrOm me2) T La( 01,1 O s
analyzer[20,21]. In the considered case the strong pump is + Ok £/ Omr mxa) 1.

linearly polarized in the direction perpendicular to the probe

polarization, henceB#0 is necessary to observe the |n(3) v, stands for relaxatiofspontaneous emissiprate
forward-scattering signals with crossed polarizers. Since thgf the upper statey, is the transit relaxation rate of the
multipole moments we are interested in are associated witfhwer (ground state,{ } denotes the anticommutator, e.g.,
the magnetic sublevels, they are affected by the magnetica B} = AB+BA, while I, (r=0,1,2,4) are the collisional
field a}nd correspondlngly modify th'e forvyard—scattenng SI9-relaxation rates of optical coherences=(1), hyperfine co-
nals, i.e., the dependencies of FS intensityBon herences E#F’, r=0), quadrupole coherencesF’,
We assume that both bearfimp and probeare coher- /= m+2 r=2), and hexadecapole coherencés=F’,
ent fields of the same frequeney . The positive frequency m'=m+4, r=4), and S mer IS the Kronecker delta.

part of the total light field is olh ¢, =|F.my(f,ul is the atomic coherence operator of
E(r t):{[AEl(r)]eikl.r+[PEZ(r)]eikz-r}efith (1) atom |. D;L describe the angular part of the

D,FT]"L:<F,m|D’|f,,u) matrix elements. For the assumed ge-

whereE,; andE, are the amplitudes of the punip) and the ometry (A-P=0) we have

probe(2) fields, while unit vector#\, P determine their po-

Ff p_inFf
larizations andk;=—k, (Fig. 1). We neglect any possible D P=iDp 0t

nonuniform transverse distribution of the incident light fields

[22]. then DY _ oy A==DR L idey, (4)

The field given by Eq(1) interacts resonantly with atomic
transitionF — f whereF andf are the total angular momenta

: wheredg ;=(F||d||f) stands for the reduced matrix element.
of the upper and lower level, respectively. THem) and !

With the above definitions, making the standard rotating-

If.u) (u=—f,....f and m=—F, ... F) label corre- \aye approximation and assuming optically thin medium
spondmg_ Zeeman sublevels in the referencel ffame.WIt%nd weak magnetic field, the full Hamiltonian can be ob-
quantization axis alon@. Evolution of the density matrix (5ined by summing individual Hamiltonians
describing our atomic system is governed by the maste;—, 1 1,1 H, describing the atoms in the magnetic field
equation (H,) and interacting with two coherent fieldsi(,H,),

d i[H A A 2 .

—p=—i[H,p]+Arp+ , _ |

giP= " 1H.pl+ Arpt Acaip 2 Ha=> [ > ot e (0h+Mwgge)

=1 | FmFm’

whereH is the Hamiltonian of an atom in the magnetic field 0 ;
that interacts with two coherent fields afig=1. The radia- + Tt (@0 mwedr) |, ®)
tive relaxation (\rp) due to spontaneous emission is con- frtu

sidered in a standard way, see, e[@3]. The collisional
relaxation (A.qp) is described within the impact limit and ) N
ignoring collisional shiftgwe return to the case when colli- HF'E

F,f F.f Aikq- |
{ 2 Q1 (Dm,,ueI ! rI‘Tg:r)nf
" . . . 1|Fmfu
sions are important in Sec. lll)Bn a general way, allowing

fu

for different relaxation rates of various coherences. The re- .
. _Df,F —ikq-r () (6)
laxation terms are w,m€ Tt rm) |s
. d
f.E (I an
Arp=7e2, 2 (2 2 DLLol)en
=1 Fm,F'm’ fu,f’ u

SN | Ho=—>, (
XpD () _{O-E:r)‘n,F’m”p} I=1 \F,m

F.f F.f Liko-r (1)
> 5 oLLe e (ot 8umo
m/,/.LIO-Fm,,f,,LL,

fu
| f.F A—iky- |
—o uBume1) FDL e (o) 5, s

N
—792 > /{Uil,i,fr,,,up}, 3 "

=1 fu,f n _o-f,u,Fmé,u,m-%—l)]

: )
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where of, and w{, are the energiesi(=1) of the upper F) man and hyperfine coherences. Though negligible in forward

and lower () states of the=«—f transition forB=0, w,_is  direction, it becomes relevant in lateral scatteri@d] (it is

the laser frequencywg=pugB is the Larmor frequency this term that is responsible for such single-atom interference

(ug being the Bohr magnetdnge(g;) are the Landdactors  effects as the Hanle effect in fluorescence lighi.

of the F(f) states, ancnjF'f=Edeyf (j=1,2) is the Rabi We calculate the FS signals according(® for transi-

frequency associated with fiel, and theF« f transition. tions withF,f= 1,2 making several simplifying assumptions.
In this work we do not differentiate between relaxation First, we assume that the incident fieid is coherent. This

rates of multipoles of various ranks within the given stateallows decorrelating two-atom averages (8) which is a

except when we assume very rapid relaxation of the hexadeubstantial simplification, not permissible in general but pos-

capole coherences to study their specific effect on the FS§jple with a coherent field:

signals. As a matter of fact, such differentiation would not be

possible within théF,m) representation. We have, neverthe-

less, chosen this basis since it allows easier interpretation of <U(1) U t)

the light-induced coherences and their relation to the trapped Fmult f' e (D) av

states. —(ameM(t)>a\,<of, cerm(Dav- (20)

B. Experimental situation

Now, we consider the following two specific cases of the  Nonperturbative analysis of the SBS signals for various
scattering of the single strong beam only or of the wealight statistics and for a simplE=1«f=0 transition was
probe in the presence of a counterpropagating pump. performed in 26]. Secondly, we neglect the hyperfine coher-
ences. This assumption is realistic when the Rabi frequency
Q7" is smaller than hfs of the levels involved in the consid-

In this section we investigate an experimental situatiorered transition. The next simplification concerns averaging
without a weak beamE,=0), i.e., when a single strong over the Maxwell distribution of atomic velocities. Because
beam generates and probes the coherences. To take fully infige FS signal decreases fast with the detuning of laser fre-
account the coherent character of FS we express the positi¢Riency from the atomic resonance, the total FS field can be

frequency part of the operator of the electric field radiated bytaken as a sum over these atomic transitions for which the
the ensemble o atoms and seen by the SBS detector aftepoppler shifted frequencies are in resonance with This

1. Single-beam forward scattering

passing analyzeh (Fig. 1) by allows us to calculate the radiated fi€®) as a simple sum
N of the contributions corresponding to resonant excitation of
E >S( ro.t+ ) igz z DFf the hfs components « f gf tt\e given line with appropriate
=1 Fmf Doppler weightse [(“L~ @0 @0)/40T? \yhereA o is the Dop-
X(T(Flgnf e ilot—ki o) (8) pler width. However, nonresonant transitions can be very
fu

important for the dynamics of a given density element. We
whereg is a constant and-r is the detector position. The therefore calculate the optical coherences enteBnby tak-
coherent nature of SBS is reflected in the above equation byg into account all nonresonant components in the master
the fact that the total field in the forward direction does notequation(2).
depend on positions of individual atonj20,24,23. For
crossed P and A only fiel(B) reaches the detector and the

intensity of the forward scattering is 2. Two-beam forward scattering

r In this subsection we consider the situation when two dif-
I S(—ro,tJr ) ferent beams, strong punift) for creation and weak probe
(2) for detection of atomic coherences, are used. Similarly to
2(N— 1)NE E 2 2 (A DF f) the SBS case, the total electric field radiated\bgtoms and
F R M observed behind the polarizer P by the TBS detector can be
or'F " 2 expressed as
X( ,u m" <UmeM Ttrwr Frmy )>av
2
e NFEFr n% 2 (ADLLIO) A E%é(ro,t+r—° =—|92 > (P-Df
c =1 Fm,fu
X<0'::1n)1,|:'m/(t)>av- 9 ><0_(I) 7i[w|_tfk2»(r|7r0)]_ (12)

By ( ),y we denote averages over the laser field fluctua-
tions, over the density matrix of the system, and over atomic
thermal velocities. As usuaN>1 and the first term in the ~In contrast to the SBS case, we have to fully account for
above expression dominates the scattering signal. This is ttibe different phases of the pump and probe beams at the
typical coherent FS signal which, in general, depends oposition of each atom, which results in the following expres-
two-atom averages. The second term@hdepends on Zee- sion for the FS intensity of the probe beam:
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| o | .
) <0-=:r)’n,f;¢(tl)>av: PEm 1€+ 5p==r)n,f;¢elk2 ",
N N
() _ M
f f'F’ <U ’ /> =p ’ r+5p ’ V(tl)l
=g°>2 X > X > X (P-DRLD, P fu PR gt S
I=1 j#I1 F,f F/of M m! '
j ) —ikg-(rj— I I I
X<U§:Jf)“vf,u(ti)o-f’,u’vF’m’(tl»a"e et <0-|(:r)n,F’m’>av:pl(=r)n,F'm’+5pg:r)n,F’m’(t|)’ (13

N
+92>, > X X (P-DR)

S1EF fmm & where thep elements depend only on the pump field strength

(to all orders just as in the SBS case, wheregss describe
P) (o) o (t))aus (12)  contributions due to the probe field to the first orderEin
' (and to all orders ifiE;). With such an approach and with the
wheret,=r,/c. Weak intensity of the probe beam allows assumption that the light fields are coherent, allowing the
expansion of the averaged density-matrix elements to thdecorrelation of two-atom averages, the total intensity of the
first order inE, but to all orders irE;: TBS signal can be written as

=
w,m’

X (D

NN
o E.f tE . I
ITBs<ro,t+; =g2> > (P-DEI DL P SpEh cuprrr prme kDT
I j#1 F,f F/of! Mum! o/ ’
0 i(ky—kg)- i(kq—Ko)(r:— k 0
+meufM5pf’,u,’,F’m’el( 17k r|+me,f,upf’;L’,F’m’el( 1 2)(r1 r')+5PE:%,fM5Perr’Frmr]

N
f.F’ | i — .
+°2 X X X (PDRLD, L PLpem 0Pl poy e 1T

F,F',f mm' &

| —i(ki—k>5)- | |
+5p==r)n,f;4pf,u,F’m’e i(kg—kp) f|+p,:my,:,m,+5p§:r)n'm5p(f;,:,m,]. (14

From now on we leave out atomic labeling in theele- ments in(15) and(16) are calculated taking all components,
ments because to the zeroth ordeEinthe solutions of the including the nonresonant ones, into account in @y with
Bloch equations with a single fiel&; do not depend on substitutions(13). Detailed discussion of the equations for
atomic positions. On the contrary, such a dependence existge collective variablesp and their solutions is presented in
in 8p’s and some of the terms ifl4) cancel out after the the Appendix.
summation over statistical atomic positions. Finally, after ne-
glecting the terms linear i, a simple formula for the TBS

signal is obtained: Ill. CALCULATED SIGNALS
N N A. SBS signals
o
ITBS( Fo.t+ = =922 > > (P-DRD) In this section we present FS signals calculated for vari-
PPLRR A mm ous specific atomic transitions and the SBS geoméitrg

f'F () ) case of TBS will be discussed in Sec. Il).BNe performed
X ’ ’” =N . . . .
(DM e P) OPEm1,,0p u',F'm (1) the calculations with atomic constar(tss, relaxation rates,

An important consequence of using two counterpropagatd'pzOle mc;ment)s corresponding to the sodiurd, line
ing beams of the same frequency is Doppler-free selection df3~Suz—3“P12) for a comparison with the experlTent'aI re-
a specific hfs component of a complex transition, whichSUlts of Ref.[6]. In particular, we takeye=(277) " (with
makes Doppler averaging superfluous. Selection of a givefi; 16 ns being the radiative Ilfet|'me of the sodlum' excited
hfs component allows neglecting of other hfs stafe$'(and 3 P, statg as a common relaxation rate of populations and

F,F’) in the net TBS signal15) and writing it in a simpli- Zeeman coherences off all upper-state magnetic sublevels
fied form without summation over aff . E’ f ' and yy=2mx0.3 MHz as a common lower-state relaxation

rate related to a typical atomic transit time across the laser

o) cro beam. In our calculations we take the values of the Rabi
Ites| fo,t+ = /~9 > X (P D) (D i P) frequency below 2-x 60 MHz which is sufficiently smaller
mm’ than the 2rx 189 MHz hyperfine splitting of the'P,,, ex-
X OPEm, 1 uOPt ' Frmis (16) cited state to justify neglecting the hyperfine coherences.
The main purpose of these calculations was to observe to
where collective, position-averaged guantitieswhat extent the multipoles of the highest possible rank, i.e.,

5me,fﬂ=E|5pﬂ2n,fM are introduced. However, thép ele- the hexadecapole moments forf =2, affect the FS signals.



54 MULTIPOLE MOMENTS AND TRAP STATES IN ... 2243

—_— —— —_— y

F=2ef=2 __ __ . . __ T F=lef2 o __

Oj <\ /> x300 10
"% 20 o 1w a0
Wyg/2n [MHz]
FIG. 2. SBS signals simulated for the single=2<f=2 tran- — . . : . : ' . . .,
sition and for various Rabi frequencie€ ) marked on the right -20 -10 0 10 20
wing of each curve. Purely radiative relaxation is assumed, i.e., Wg/2n [MHz]

relaxation rate of optical coherenceg.o=/(v.t v4)/2 and

Ye=2mx10 MHz, y,=2mx0.3 MHz. Solid lines represent the g5 3 gps signals simulated for the single=1—f=2 tran-
signals calculated with all possible coherences and the dashed “ngﬁion All parameters are the same as in Fig. 2

are used for the signals without the hexadecapole moments.

We adopt the same method as used by Mcletaal.[8], i.e.,  (defined by the turning points of each squared dispersive line
we calculate the signals with the hexadecapole monfeots  shapg determined byy/Am, wherey is the relaxation rate
herenceg _, . ) properly included in the equations and with of a given state {, or y,) andAm denotes the difference of
these moments quenched by assuming their very fast relaxagnetic quantum numbers associated with the coherence
ation rates. Comparison of the signals calculated with and
without the hexadecapole moments allows direct evaluation

of the role of such multipoles in the FS. We first analyzed the 7 4 F=2ef=1
SBS signals for well resolved single transitions between lev- ~ 58S

els of total angular momentg, f = 1,2. By considering single
transitions we were not restricted to closed atomic systems
so, unlike Refs[11,14], we could properly account for re-
distribution of population and coherences by spontaneous
emission within, as well as out of, the initial system. Having
analyzed the effect of the higher-order multipoles on the SBS
signals with single transitions we then study their effect on
complex transitions involving several, not necessarily re-
solved, components, e.g., hfs. As a representative example
we take here the NB, line.

1. Single transitions

Figures 2-5 illustrate velocity-averagéals described in
Sec. 1IB) SBS signals for single transitions:
F=2-f=2, F=1-f=2, F=2of=1, and
F=1<f=1. Their common features are zero values of the
FS intensity atwg=0 when perfectly crossed polarizers are . — —— :
used and characteristic, two-peaked shapes resembling a 20 10 0 10 20
squared dispersion function, symmetric arouag;=0. Wy/2n [ MHz]

Strongly simplifying, by neglecting magnetic dependence of
the optical coherences, each Zeeman coherence could be as-FIG. 4. SBS signals simulated for the single=2«<f=1 tran-
sociated with a separate resonance contribution of the widtkition. All parameters are the same as in Fig. 2.
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N -— —— — The very spectacular manifestation of the laser-induced
ISBS F=]<->f:] hexadecapole moment, as seen in Fig. 2, is by no means a
_—_— general feature of the SBS signals. For different transitions
with f,F=1,2 the results are quite different. In Fig. 3 we
show the SBS signals for the singfe= 1< f=2 transition.
There is only a small difference between the dashed and
solid curves, i.e., the hexadecapole contributions to the SBS
signal are hardly visible although this moment can be in-
50 duced in thef =2 ground state. The main contribution to the
SBS signal for théd==1+f=2 transition is brought by the
quadrupole coherences in the ground state. This behavior,
dramatically different from th&c=2—f=2 case, is very
interesting since th& =1« f=2 energy-level structure has
often been considered as the model structure for the analysis
0. 40 of the hexadecapole momen&. An additional unexpected
feature of the SBS signals for tie= 1~ f =2 transition is a
slightly narrower structure for the case when the hexadeca-
‘d_’/\/g pole moment is eliminated than when it is included. The SBS
0- signals calculated for thE=2«f=1 transition are present

OJ A~ in Fig. 4. Differences between the cases with and without

hexadecapole are again hardly visible, which is easy to un-

OJ VI xS00 10 derstand since for this transition the hexadecapole occurs
20 a0 o 10 2 only in the upper state. The slight divergence between the
W,/ 2n [ MHAz] solid and dashed curves, seen for greater Rabi and Larmor
frequencies, is mainly due to the upper-state hexadecapole.

FIG. 5. SBS signals simulated for the single=1—f=1 tran- The SBS signals for th&#=1<~f=1 component(Fig.

sition. All parameters are the same as in Fig. 2. There are only soliffig. 5 are very similar to those for the=2—f=2 transi-

lines as no hexadecapole contributions are possible for this transtion despite the fact that no hexadecapole coherence can be

tion. induced in either of the statédsF=1. The depicted signals
are mainly due to the quadrupole moments in the ground

considered. In that way individual contributions of each co-State f=1. This similarity between the transitions

herence shod be easy recognzable n th net S sgnf % 12 P LU saees ey peres e
providedy, and y, differ sufficiently. In practice, however, b : b )

such a distinction is not that easy, on the one hand, becauthe fact that despite this similarity the signals corresponding

: : . S the F=2«-f=2 transition cannot be correctly described
of the magnetic dependence of optical coherences which alsiﬁithin the third-order perturbation theory

contribute to the FS signals and, on the other hand, due to
power broadening which affects various coherences in vari- 2. Complex transitions

ous degrees. In consequence, it is relatively easy to distin- As an example of a complex transition we examine the
guish the lower-state multipoles from those of the upper statg, g,4iym line which consists of four hfs components; each
if one of the levels is long lived, e.g., the ground state as iny them has been analyzed above as a single transition. We
the case we are interested in, but it is not possible in genergly not consider th®,, (3 2S,,~32P4,) transition here since
to observe clearly resolved quadrupole and hexadecapolgs detailed analysis is much more complex because of the
resonances within the same state except of some specigkalth of relevant atomic statéthe excited state o = 3/2
cases shown below. has four hfs sublevel6=0,1,2,3) and is by no means more
Figures 2—4 correspond to transitions where hexadecapolfstructive than théD, line. However, in the case of over-
moments can be generated at least in one of the stateigpping components, such calculations require not only sum-
whereas for the transitiof =1« f=1, associated with Fig. mation of individual components and velocity averaging but
5, the highest possible multipoles are quadrupoles. The solidlso taking into account the mutual influence of various tran-
lines depict signals calculated with all possible coherencesitions. The resulting SBS signals are presented in Fig. 6. We
while the broken lines are signals obtained after eliminatiorcalculated these signals far, tuned to the center-of-gravity
of the hexadecapole coherencps, ., (in both states  frequency of theD; line using our Doppler-averaging
Within the range olwg spanned in Figs. 2-5, we see essen-method, described in Sec. Il B 2. Similar results are obtained
tially only the ground-state multipoles. when the laser frequency is varied over the range comparable
As shown in Fig. 2, the effect of the ground-state hexa-with hfs of the upper state, one order of magnitude smaller
decapole moment on the SBS signals is very strong in théhan the Doppler width. As before, the solid lines represent
case of the= =2+ f=2 transition. After elimination of the the signals calculated with all possible coherences and the
hexadecapoles the signals are dominated by the ground-statashed lines are used for the signals without the hexadeca-
coherences withAm=2 (quadrupoles and are clearly pole moments in both states {3;,, and 3°P;,,). In order to
broader(by nearly a factor of 2 as expected from the ratio ofsee the upper-state contributions to the FS signals for the
the Am values. whole D, line, in Fig. 6 we extended the range ©f with
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FIG. 7. The TBS signals calculated for different individual com-
ponents of theD; sodium line.(The curves are symmetric around
wg=0.) Qy=27X45 MHz and relaxation rates are the same as in

FIG. 6. SBS signals simulated for the whole Ba line with Fig. 2. The solid and broken lines represent the signals with
Doppler averaging. All other parameters are as in Fig. 2. Solid line©oppler-free selection of a giveR<f hfs component from the
represent signals with hexadecapole moments and dashed linedole NaD; line, whereas the dotted lines refer to single transi-
show the signals without the hexadecapoles. tions F«— f. The solid(broken lines refer to signals witlwithout)

. . . hexadecapoles. The insets fo=2—f=2 andF=2~f=1 tran-
respect to the previous figures. As can be seen, in the ranG@ions show enlargement of the marked region of small Larmor

of |wg|< 27X 20 MHz, the resulting signals depend very frequenciegthe inset forF =2« f=2 shows only signals without
little on the hexadecapole moment. They are most similar tQ,qy4decpole moments

those of Fig. 3 associated with a sindle=1—f=2 transi-
tion with nearly no hexadecapole contribution. Though th
F=1~f=2 and F=2~f=2 hfs components contribute
with the same strengths to ti¥, line, the latter component
(which, as shown in Fig. 2, has a very pronounced hexad
capole contributionhas very little impact on the net FS sig-
nal. The amplitude of th&=2<f=2 contribution to the i >, QfF'(A?
signal for the entireD, line, B,,, is about one order of Fr’ ¢’ nH
magnitude smaller than the amplitudg, associated with

the F=1~f=2 component. For instance, for =i\ K T QY FY2A(80)e e, (1
Q,=27%x40 MHz we have B,,/B,,=0.13. Also the Fm fu CPFm.fu sz (7 AGpdermer, (1D
F=2~f=1 component does not contribute much to the sig-

nals in a narrow range ¢fvg|<27X20 MHz and is respon- \here the eIementsA(Fz,%’fM, A(Fln)“w Nemiy, and

sible mainly for the broad structure of th_e signals_in Fig. 6A(5P)Fm . are defined in the Appendix. TBS signals calcu-
and the component F=1<f=1 is negligible: |ated along these lines for all components of theMaline
B11/B4,=0.007. ) _are shown in Figs. (8—-Fig. 71d). As in the SBS case, they
The fact that the net signals calculated nonperturbatively o symmetric arounag=0 [the insets in Fig. () and Fig.
for the whole NaD, line with all possible multipoles are  7(d) show expanded details of the TBS signals around zero
dominated by the individual hfs componeft=1—f=2 " fjg|q].
with negligible hexadecapole contribution explains the good A important advantage of the TBS is the possibility of
agreement between the experimental regéifand previous  sejection of a given hfs component from a complex transition
third-order calculation§11,13,15, by definition restricted to  \yhose Doppler width exceeds the hyperfine splitting. For
the quadrupole coherences. single transitions where no such selection is necessary the
B. TBS signals TBS and SBS signals should be similar. This is indeed the
: case, as can be seen by comparison of the signals represented
To calculate the TBS signals according(i®) one has to by the lines with dots in Fig. 7 with the signals in Figs. 2-5.
find the collective variable$pgn, ¢, . They can be obtained On the other hand, for the case of complex transitions the

Wy/2n [ MHz]

eby solving Eq. (2) with substitutions(13) which, under
steady-state conditions and after position integration, yields
et_he following equatior(see the Appendix for more details

+Q5 AL L)

Frmf'u
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TBS and SBS signals differ dramatically. In Fig. 7 the solidnonresonanf¥’«—f excitation, terms(19) can be relevant
lines without dots, labeled,, represent the TBS signals close towg=0 due to resonant enhancement by m*el, .
calculated for Doppler-free selection of various hfs compo+5ctors. Obviously, such an enhancementwat=0 fakgs

nents b>t/ appropnatf Ia?eirr] tuning }N'tht all r_efmalmrrg, rt‘ol?'place also for resonant components but in that case the
resonant components of the complex ansiions aiso fakep . (wg) dependence becomes saturated and strongly

into account. The most significant difference between th ower broadened. For these reasons in weak maanetic fields

TBS signals calculated for complex and single transitions i ~0) the TBS. sianals associated with com I%x transi-

the presence of additional, very narrow structure close t9.“B . 9 i

wg=0 seen whenw, is tuned to any hfs component of the ions are mainly affected by nonsaturated optical coherences
B™ L

NaD; line exceptF =2~ f=1. The structure is much nar- on nonresonant components, while for highey the TBS
rower than the signals for single transitiofises with dots signals are due to coherences on the components resonantly
in Fig. 7) and the SBS signal§igs. 2—5. One could expect selected by the probe beam. The TBS method eliminates the
that, Because of their small Width', theée structures would bneed for velocity averaging but does not allow one to neglect

associated with the highest possible multipole rank. In such ﬁwe nonresonant his components which add their harrow, not
case, however, these narrow structures should be seen also%wer-broa(_jened contributions to the net scattered "_“er!s'ty-
the signals obtained for isolated transitions, which is not thé is interesting that these narrow, nanresanant contributions
case do not occur for the SBS case. It is related to a perfect phase

As can be seen by comparison of the solid and broke'rlnatching(coherenc}eof individual atomic contributions to
curves in Fig. T), there is clear evidence of the hexadeca-the scattered light. Some of these contributions are of oppo-

pole contribution in the case of tHe=2f=2 transition site sign o those given b§19) which results in their exact
However, in contrast to the SBS signaiig. 2), the hexa.— cancellation. In the TBS case many terms average to zero

decapole contribution is not the narrowest feature of the TB f;?/rirf)osr]'gzgé?ct)egrigg)and such cancellation is not perfect,
signals. This is caused by a substantial power broadening ? 9 '

the hexadecapole resonance which, for the cases iIIustrat%% J;'fon?ggv;f\l,’g”fjnasﬁf\lggtgrﬁ:g ?;g;zst%;‘agtggn;??ﬁé
in Fig. 7(b), peaks aroundg=3 MHz. The narrow structure y

shown by the solid line is due to the contributions of theZeeman coherences and populations appearing in denomina-

nonresonant hfs components of the complex line and not dPrSAiur,ru, @S Well as to the relaxation rates of the optical
coherencey, /. For illustration of the dependence of

the hexadecapole in the Doppler-free-selected hfs compq: . . . -
nent. To understand the origin of this narrow feature of th(ca%he TES signals on collisional relaxation we show in Fig. 8 a

signals for complex lines seen [fFigs. Ta)— 7(c)] around series of the TBS signals caIcuIa_lted for Doppler—free selec-

wg=0 we have to analyze solutions of E46) [given in the tion of various his components in the N, line and _for .

Appendix by (A2)—(A4)] in more detail. To first order in various collisional relaxation rates. For the sake of simplic-

E, these solution$Eq. (A4)] consist of two distinct contri ity, we have assumed that the collisions affect the coherences
2 . -

) . in the lower and upper states in the same way:
but|ons:A(F2,)m,’f,M, which depend on Zeeman coherences PP y

m,m’#m__ wo FE _
: (1) - - Ve =vetl, v =ygt+l, and y=(yg+ ve)/2
and populations, andgy, ,,, which are related with opti- - 'r ' \yhere T is the collisional relaxation rate. Figure 8

cal coherencepy,, - TheAl(Zz’)m’,f’,u’ terms enter the solu-  shows a very strong dependence of the TBS signalE tor

tions (A4) multiplied by Q5 F', whereas theA(Flf)m',f',u all hfs components. Wheli> 27 x 1 MHz the narrow struc-

terms are  multiplied by Qfl',F'QfZ',F'_ Since tures attr_lbuted above io the_nonresonant comppr(eralls
toE toE ) , row maxima aroundvg=0) disappear and the signals de-

Q(ll) >0; ", .the. TBS S|gnals. are dominated .by the crease monotonically with'. In the range off <2mx1

Ag i 11, CONtributions and are given by the following, ap- MHz, the TBS signals depend very sensitively on changes of

proximate relation: I' as small as X 10 kHz. Such a strong dependence sug-

gests application of the TBS for studies of collisions, particu-
’ ’ 1 H H
Itas(Fo) ~NZ >, am - |Qf1'FA(Fr)mr,f/,u|21 (18 larly in the cases of low pressure or low cross section.
m’,u
A m/’ ! F’m’,f’ ro,

yvhere coeﬁlglgntmmyﬂ“ depend onTFm]_fM " mFroduced IV. ROLE OF THE TRAP STATES

in (A4), onQ5", and depends on transition-matrix elements. _ . . . .

For a complex transition EGA2) for AI(:l’)m’,f’M’ involves all Standard interpretation of FS signals is based on analysis

éﬂ the evolution of Zeeman and optical coherences in a mag-
netic field. Due to mutual couplings between all elements of

the density matrix, Zeeman coherences associated with a
given multipole order can be detected by changes of the op-

hfs components, including the nonresonant ones. Thus, ev
when a givenF«f transition is Doppler-free selected by a
proper tuning ofw, the contributions like

1 Ff oy tical coherences which, according to E¢®). and (16), de-
2 2 N Do prPiu FrovDi termine the FS signals. It is important that even with a weak
Fr#f m o Siul probe beam these couplings between density-matrix ele-
X (O =1 Omr p+1) (199 ments allow detection of contributions arising from Zeeman

o ) ) coherences witlhm>2, i.e., from multipole moments of
(and similarly with denominatohgm rny) cannot be ne-  pigher than quadrupole rank.

glected inA(Fl,)m,’f,M,. It is important that even when the  The standard interpretation explains resonant changes of
amplitude of theps, ¢y €lements is small because of a the forward-scattered light aroungs; =0 in a similar way to
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FIG. 8. The TBS spectra for various N&y components versus relaxation rdteand for Qy=2mx45 MHz. For simplicity, in these

simulations we do not distinguish between relaxation rates of the Zeeman coherences related to hexadecapole and quadrupole multipoles.
The relaxation rates of optical coherences pre(y.+ yy)/2+T.

the Hanle effect in fluorescence, i.e., as destruction of theorrelated with a number of possible states and with their
light-induced Zeeman coherences by the Larmor precessicevolution in a magnetic field. This not only simplifies inter-
(magnetic mixing [5]. The frequency of this precessigor  pretation of the FS signals but also allows studies of the role
the magnetic mixing rajeequalsgugAmB. The coherences of trap states in atomic systems of higher angular momenta.
are maximal wherB=0 (zero-field level crossingand the Depending on the particular configuration of the system
magnitude of the precession frequency, or the intensity of thender consideration, and specifically on whetHer f,
magnetic field, necessary for coherence destruction depenés=f, or F<f, there are, respectively, 0, 2, or 1 stable traps
on relaxation rateswidth of the crossing levelsAs pointed  in the ground statfl7]. We are here interested mainly in the
out in Sec. Il A, since the precession frequency is proporground-state traps as they are not destroyed by spontaneous
tional to Am it should be feasible to distinguish the contri- emission and are ideal traps fBr=0. In the excited states
butions of various coherencésultipoles owing to various  stable traps can be created only when the Rabi frequency is
widths of their resonances ihes. When wg#0, the o™ sufficiently big with respect to the spontaneous emission
components of light transmitted are phase shifted in oppositeate. Having defined the appropriate basis of coupled and
senses, which causes rotation of the polarization plaoe-  trap states we can use it for representation of all relevant
linear Faraday effettand nonzero signdleg(B#0)+#0. operators and their expectation values such as, e.g., the
Such an approach allows correct calculation of FS signalslamiltonian and the intensity of the forward-scattered light.
but is not very physically comprehensive, particularly in theThis intensity depends on optical coherences between trap
nonperturbative regime. For instance, it does not explairand coupled states. Such coherences are zero when the traps
such signal features as the striking difference between thare perfect, i.e., wheB=0, hencel . (B=0)=0. Nonzero
hexadecapole contributions to thé&=2—~f=2 and intensity of the forward-scattered light is due to imperfec-
F=1«f=2 transitions demonstrated above in Sec. lll. Be-tions of the traps resulting from transitiofs.g., magnetic-
low, we shall present the interpretation of FS in terms of tragfield induced between coupled and uncoupled states.
states that allows relating FS signals to such fundamental The properties and form of the forward-scattering signals
characteristics as the symmetry of given atomic transitionsan thus be related to the dynamics of the coupling of the
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trap and coupled states. For specific angular momenta trap () F=j < f=1 (b) F=2+>f=2
states can be associated with superpositions of various mag- /ol /o2
netic sublevels, i.e., with given Zeeman coherences and mul- 1 1
tipole moments. When symmetry of the transition allows ex- .
istence of two trap states, an external magnetic field couples § ‘g
them and causes their competition. It is due to this competi- pe
tion that FS signals can be dominated by the quadrupole trap, © S
even in systems where generation of the hexadecapole traps ‘
is possible. Below, we discuss such effects in a detailed way S w20
for each of the above analyzed transitiofexcept of the o, /2n [ MHz ] 0,/2n [ MHz ]
F=2—~f=1 one, which has trap states similar to
F=1<f=2 but unstable with respect to spontaneous emis- F=l<f=2
sion) . (d)
, i
A. Transition F=1~f=1
2 £
Neglecting spontaneous emission, we can define the new § g
basis for theF=1«<f=1 transition in a standard way as - S
composed of coupled and uncoupled stafes17), s N
1 0
s ) 40 -20 0 20 40 40 -20 0 20 40
[t)= \/§(|f, 1)+|f,+1)) (uncoupled-trap state o,/ [ MHz] o, /2n [ MH: ]
(20)
FIG. 9. Calculated populations of trap states for different single
1 transitions versus Larmor frequenays . (c) and(d) are plotted in
)= E(|f'_1>_|f’+1>) (coupled state  (21) e same scale. Solid and dotted lines represent the populations
calculated with and without hexadecapole moments, respectively.
Resonant excitation witk) =27 X 25 MHz is assumed.
|f,0) (coupled state (22

. a full analogy between the scattering signals and the

flczr (;h? Ioi[/;/]er state art]dt analogously with staff€s, |S), and coherent-population trappifd 6]. For wg# 0, however, the

| ,S>t tor i € u;()jp_le_r st i’\' hil dls led structure of the forward-scattering sigridkggB)] will be
atedt) and|T) are traps, whilgs) and|S) are couple determined by magnetic precession of the quadrupolar coher-

states. However, with spontaneous emission taken into ag; o< in both lower and upper levels, ie., th-|t)

count, the upper state becomes unstable and so does supagHT» magnetic mixing. Statelt), |T) remain efficient

po;ition |T). State|t) associated with the gr(_)L_md state re- traps for suchwg which allow existence of these coherences
mains then as the only stable trap. Superpositions defined ty

. ; ut lose their trapping characteristics when the precession
(20)_(25.) gm.a assc_)t(;]la;:]ed W'tg Ze(Tman coh;ar;iancles %T th%ecomes faster than appropriate relaxation rates. When the
é;lfl Ind, 1.€., wi € quadrupole momentsiis= 1 an lower state is a long-lived ground state, the width of a result-

. . . . ing FS resonance arounes=0 will be mainly determined
Haﬂil;[gr?iarrzeevt\:eba&s atomic and interaction parts of theby the atomic transit time and power broadeniffig. 5).
Because the upper-state tid[) is quenched by spontaneous
Eg emission, the contribution of the upper-state quadrupole can
H11= — - 10p(|t)(s| = [s)}t]) —9r—108(IT)(S|=|SXTI)  pe seen only when the light beam is sufficiently strong that

1 ), is comparable to the spontaneous emission rate. When

iQ \ﬁ(|s><|:,0|_|f,0><3|)+|_|_c_ ) (23)  the lower- and upper-state relaxation rates are sufficiently
12 different, the FS signals exhibit a clear double structure aris-

ing from the quadrupole moments induced in both states. For

Using Eq.(9) and transformatiori20)—(22) the intensity  the range ofvg used for Fig. 5 the excited-state contribution
of the forward-scattered light in our geometry with crossedis not apparent.

—+

polarizers can be expressed as To illustrate the analogy between FS signals and CPT it is
interesting to compare thdgg{wg) signal with the
| s N2(|F,00(t| — | T){(f,0])|? . (24)  magnetic-field dependence of the population of the trap state

pi=t=Tr{|t)(t|}. Such a dependence, calculated for resonant
Equation (24) relates the forward-scattering signals to €xcitation, is shown in Fig. @), which illustrates a very
mixing between trap superpositioft$, | T) and coupled sub-  strong increase of the{, * populations arouneg=0. Com-
levels |F,0), |f,0). As long as the traps are perfect, i.e., asparing Figs. 5 and(@) we see that thﬁ{fl(wB) dependence
long aswg=0 and there is no magnetic coupling betweenresembles an inverted FS signal and the ranges of efficient
[t) and|s) (|T) and|S)) represented by the first two terms in population trapping correspond well to the range of strong
(23), no such mixing is possible arldgs=0. We have here variation ofl ggs.



54 MULTIPOLE MOMENTS AND TRAP STATES IN ...

B. Transition F=2«f=2
The new basis is taken in the form

|t)y= %@( If,—2)+|f,+2)+ \/%H,O)) (trap state,
(25)
1
|s1)= \[5(

1
|s2) = \[§(|f,—2>+|f,+2>— V6|f,0)) (coupled statg

f,—2)—|f,+2)) (coupled statg (26)

2249

(superposition of f,=2) and |f,0)), so the corresponding
resonance aroundg=0 is narrower(nearly by a factor 2 if
power broadening could be ignopetthan in the case of the
F=1<f=1 transition. The analogy between the scattering
signal and coherent-population trapping is seen, by compari-
son of Fig. 9b) where we plot population of the traqift:2

for f=2 versuswg with thel g wg) dependence in Fig. 2.

As for the F=1~f=1 case the magnetic dependence of
pi 2 resembles the inverted FS signal. Moreover, both de-
pendencies are dramatically sensitive on the hexadecapole
coherence: its elimination yields CPT and scattering reso-
nanced depicted in Figs. @) and 2 by dashed lingsnuch
broader and weaker than when they are properly accounted

(27)  for (solid lines.

C. Transition F=1-f=2

|53>=\/§(|f,—1>—|f,+1>) (coupled state  (28)

For this transition the elements of the new basis are

1
|s4>=\/;(|f,—l>+|f,+1)) (coupled state (29) |t1>=\/§(|f,—1>—|f,+1)) (rap state,  (32)

for the lower statd =2 and analogously for the upper state 1
F=2 where capital letter3, S, F replacet, s, f to distin-

guish between the two sets of states. (&9)—(29) states Itz)= \[§(|f’_2>+|f’+2>_\/€|f’o>) (trap statg,
[t), |T) are trap states that are related to the hexadecapole (33
coherences. The atomic and interaction parts of the Hamil-
tonian transformed to the above representation are 1

|s1)= \[E(lf,—l)+|f,+1>) (coupled statg (34
H5 5=~ r=208(V3[t)(S1| +[s1)(Sa| +|S3)(S4 + H.C)

— Or - 20a(N3| TYS1|+[S1)(S,| +[S3)(Sal + H.C))

—[iﬂo \/§(|53><32|_|52><S3|)

N \/112(|51><S4|_|S4><81|)

H57 has a very similar structure t87{ in that it consists
of terms representing magnetic mixing between tt&p
(IT)) with |s;) (|S1)) and between other coupled states or a 1
coherent coupling of coupled superpositions in the lower  [S1)= \[§(|F,_1>+|F:+1>) (coupled statg
state with coupled superpositions in the upper state. Simi- (37)
larly, the intensity of forward-scattered light can be ex-
pressed as the result of mixing between various states:

|s2) = \[%(If,—2>—|f,+2>) (coupled statg (35)

1 /3 2
|33>:§\/;(|f,—2>+|f,+2>+ \/%If,O))(coupled state

(36)

+H.c.l. (30)

for the lower statd =2 and

1S,) = \[%(|F,—l>—|F,+1>) (coupled state

1 1
| sgscN? <§(|S4><t|+|T><S4|)— \[§(|S4><52|+|32><34|) (39
1 2 |F,0) (coupled state (39
+ \/1:2(|31><53|+|33><51|)> : (31

for the upper stat€& =1. With transformatior(32)—(39) the
For wg~0 the relevant term of expressi¢®1l) is the first ~atomic and interaction part of the Hamiltonian is
one, proportional to the trap state in groufvd 2 level. For
nearly zero magnetic field, the trafty and|T) are nearly Hi’zfz — 01— p0g[ V3|S2)(Sa| +|Sp){to] + t1){s1| + H.C]
perfect, ye{T) is unstable because of spontaneous emission. 1
Spontaneous emission results in decay ©f and in zero :
P A of lﬂo( NERY
. (40

population of all coupled states, so, similarly as for the ~Or-108(|S1)(S +H.c) -

F=1+f=1 transition it is only statét) whose dynamics is
decisive for properties of the scattering signal. This time,

; : ; +H.c.
however,|t) is associated with the hexadecapole moment

1
+§(|52><Sz|+|51><':10|)
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Similarly as in the previous cases we express the forwardthat the signals with the hexadecapole coherences are

scattered light intensity in terms of the new staf@®)—(39) slightly broader than those without the hexadecapole, with

which yields only the quadrupole coherence. This is due to the fact that

I sps> N2
2
. (41

when the hexadecapole is not quenched ttapis efficient
<|S )(s5| + | F,0) (14| and not much _of its population is transferred|tg). On the .
1742 AN other hand, without the hexadecapole coherence population
il of |t;) increases, so the FS signals are narrower without than
with the hexadecapole. Thus, for the= 1— f =2 transition,
+ \[§|Sz>( \/§<t2| +<S3|)> where no direct signature of the hexadecapole moment in the
FS signals is seen, it is the indirect effect of this multipole on
In the region of small magnetic fields, most interesting forthe signal width that can be used as its possible evidence.
the FS signals, the traps are nearly perfect and accumulate
most of the atomic populations. Equati¢hl) can then be
approximated to yield D. The complex transition with hfs-Na D, line

Again we focus here on th@,; component of the sodium

2 2 1

I s N F,0)(ta] +[So)(ta] )% (42 fine structure doublet. For a complex transition contributions

of all individual hfs components must obviously be ac-

is determined by contributions of both trap states existing fmcounted for. Th's pecomes a very simple addltlon of mde-
pendent contributions, analyzed above, with appropriate

the F=1cf=2 transition. Since trapt;) and|t,) are re- weights determined by laser frequency and atomic velocit
lated to different ground-state sublevels and different multi- 9 y q y y

pole moments, it would be natural to expect contributions oplstnbunon for the case when the hfs is well resolved with

different (quadrupole and hexadecapolaultipoles to the respect to the Doppler width. In the opposite case the indi-
scattering signals. However, as seen in Fig. 3, the forwar vidual hfs components cannot be considered individually,

scattering signals for thE=1<f=2 transition have only because of their mutual coupling by nonresonant laser exci-

one resonant contribution arouags=0, not much different tation and spontaneous emission.
from the signals characteristic for tie=1«<f=1 transition For the NaD, transition the decisive contributions to the

dominated by a single, quadrupole téfg. 3. scattering signal come from only two hfs components which

This unexpected insensitivity of the=1<>f=2 transi- are associated with thef=2 ground-state sublevel:

tions on the hexadecapole coherence is caused by the exigt-:l’z_)fzz' Two components witti =1 are at least one

ence of two subsystems containitig) and [t,) and their or(_ier of mag_nltude weaker and can be neglected in a quali-
. o tative analysis. The two relevant components share the same
coupling by spontaneous emission. As we see fi@i®),

lower level where, in principle, the quadrupole as well as
there are two sets of statd#t,),|s,),|ss),|Si),|S)}, and .
(115,17 0} coupled wihin sach S by the magnet "Xadecabae conercnces, can be | dced by e
and laser fields, each of them involving one of the traps. The. P : gnt. B _ o
two sets are independent wheg=0 and Hamiltoniar(40) S|gnals| aSS?]CIat%d with lthé—2<—>f—2 cor:nponentthexhlbltl ted
: : very clear hexadecapole resonance whereas those relate
represents the only relevant interaction. Wheg+0, |t,)

. . ; . with the F=1-~f=2 component are dominated by the
and|t,) are mixed with coupled states and their pOpUI""t'onsquadrupole moment. The two components differ only in their
after subsequent excitation, are again redistributed by spon: er levels which .are split by onlv 189 MHz. which is
taneous emission, among trap and coupled states of both et Pt by only '

Such redistribution leads to equalization of population OfmUCh_Iess than thg Doppler width of about 1 GHz for typ_lcgl
It,) and|t,) which can be seen in Figs(@ and 9d) where experimental conditions. Thus for any laser frequency within
1 2

: g U the Doppler profile of thé®; transition both components are
we have depicted magnetic-field dependenC|e$t9f12 and excited with comparable efficiency. Simple addition of the

pi. With (solid line3 and without(dashed lineshexadeca-  contributions of these two componentise recall that the
pole coherences. The fact that populationgdtgf and|t,)  nonresonant components are taken into account when calcu-
depend very little on the hexadecapole moment correspondating elements ofp) should then yield scattering signals
to the very weak dependence of the scattering signals for theontaining signatures of the quadrupole and hexadecapole
F=1~f=2 transition on the hexadecapolfig. 3 dis- moments aroundz=0. However, as was shown in Fig. 6,
cussed above. As seen from Figéc)%and 9d) not only the  the FS signal calculated for the whdlg transition is domi-
amplitudes but also the width of the population dependenciesated by the quadrupole moment only, the=2—f=2
on wg are similar for|t;) and|t,). This might seem to be component with its hexadecapole contribution constitutes
inconsistent with the expectation to see hexadecapole resonly about 10% of the total signal.
nances around zero magnetic field about two times narrower Explanation of this surprising fact is based on the cou-
than the quadrupole ones. However, due to the coupling bepling by spontaneous emission between the and |t,)
tween the subsystems involvifig) and|t,) by spontaneous traps found in thé== 1< f=2 dynamics which destroys any
emission, populations are equalized between these two trap®ssible hexadecapole contribution|tg). Additionally, as
for any nonzero value abg, which is responsible for nearly seen by comparison of Eq&5) and (36), the superposition
equal width of the curves in Figs(® and 9d). which represents trap stae for F=2«f=2 transition is

The mixing betweent;) and |t,) explains also a small almost equal to coupled stafts;) for the F=1«f=2 tran-
difference in the width of solid and broken curves seen insition, and vice versa, the states which are traps for the
Fig. 3. Though the difference is rather small it is interestingF =1+ f=2 component |t;), |t,)) became coupled states

As we see from Eq42), for wg=~0, the scattering signal
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(Is3), |sy)) for F=2+f=2. When both components are ACKNOWLEDGMENTS
excited with comparable efficiency, the above coupling be- We are very grateful to Dr. Jerzy Zachorowski for numer-

tween trap gnd c_oupled states results in domination of _th8us detailed discussions. This work was supported by the EU
total scattering signal by the lowest-order coherences, .8(Grant No. COST CIPA-CT93-0094and by the Polish
quadrupole moments. The higher-order coherences, like thegmmittee of Scientific Research KBNGrant No.
hexadecapole in our example, do not survive such competbpn3g113-1p
tion, which explains why theD; signals are associated
mainly with the quadrupole moment. APPENDIX
V. CONCLUSIONS As seen from Eq(16), calculation of the TBS signals
) ) requires finding thedpgn, ¢, elements. Equations for these
We have performed nonperturbative analysis of the rolggjlective variables are obtained from E4®)—(7) in the
of multipole moments in the forward scattering of resonancesteady-state limit with several approximations. In particular,
light on atoms in a magnetic field. Its results solved the longexcept for studies of collisional effectfig. 8 we consider
lasting controversy around the observability of the hexadethe case of radiative relaxation and negleG) all
capole moment in FS on sodium atoms. By simulating the Felements with the atomic position dependence,
signals on single transitions between levels with angular moe .,  =,pp,, fMeti(krkzm; (i)  couplings  with
menta 1 and 2 we have shown that, unlike fluorescence e&l5pr,Fme“(2"1‘k2)'”, i.e., couplings with four-wave-

periments, the FS signals on the= 1+ f=2 transition very mixing contributions; andiii) couplings of thedpg, 1, ele-
weakly depend on the hexadecapole moment whereas thfents for theF« f transition with elementspg. 7,/ be-

When the laser is tuned to the Il line with its unresolved  5,_, ., , elements introduce the 1/(i y+ A /) weight
hfs components the FS signals are dominated by the contr]i— L '

. . _ = _ f’_ .
butions of theF =1+ f=2 component which has almost no actors into the equations{A.1,;/ =wo —wo — ) which

hexadecapole signature. This explains why no evidence dire negligible for big detuningghfs splittings. Neglecting

the hexadecapole moment was found in the recent experg) is justified by destructive interference in integration over

ment of Holmes and Griffitil5] and proves that also in the ?éo?glsceﬁ?z';“%gsr’_ovrvggre t:)iecsosrggbg;'gnssmrgﬁenrt'gpne?i(tﬂ) de
early experiment of Gawlilet al. [6] there was no hexade- P 9 P . P :

capole contribution to thB; signals. This clearly shows that in ti)é EX‘)&TS'FS tf}igl]nglned-ahtgm dﬁ]résg%/er;ﬁtrgé?eflgst ?giir
there is very little influence of the hexadecapole moment in. .~ 2 q . 9 ) Y . bp
ation, algebraic equations for th#pg,, ¢, corrections to

the FS experiments with a single light beam tuned to the N . .
D, line [6]. Another interesting finding is that the optical coherences can be obtained after straightforward, yet

F=2f=2 signals which are significantly affected by the (€dious, algebra. After position averaging, &47) is ob-
hexadecapole are very similar to those for Fre 1-f=1  tained  for (I)the averaged,  collective  quantities
component where the quadrupoles are the highest-rank mufPFm.ix=Z19p¢m,1, The coefficients appearing i17) are
tipoles. This conclusion, however, does not justify using thefefined below by EqSAL)—(A3).

perturbative approach for analysis of the FS signals with ,

strong laser light. Comparison of the signals calculated for A(8p)Fm =1 DY

1 ! ’ !

DF,f Df JF

H . . . fIM! Flml )\f,ﬂ,vfﬂ
single F=2«~f=2 transitions with its strong hexadecapole

'O s OPE v 10

signature with theF=1<f=1 one where quadrupoles are 1 FtEf
the highest-rank multipoles indicates that the simple line- +m5PFm,f’u’Du',m' m,u
shape similarity could be very misleading. For this reason it ’

is very unlikely that the FS experiments of Blizerg et al. 1 Ff

[13] with well resolved neon transitiokR=2«f=2 could +27€2 2 Dm,u’

. o : _ (o N g
be properly interpreted within the third-order perturbation
theory involving only quadrupole moments. 1

In addition to the single-beam scattering we have also X E E N
analyzed the pump-probe TBS method which allows
Doppler-free selection of a given hfs component of a com- X Df’,";;, 5pF’m’,f",u”Df”f;';~|”" ;f ’ (A1)
plex line. The TBS simulations revealed narrow structure of me me H
the FS signals around zero magnetic field which, contrary t oo e o
the intuitive expectations, is not related to the highest-ordefFm.F'm = !7e (m, mws, ?‘fﬂvf’#’ =1 (u
multipole but is rather due to the nonresonant hfs compo—u')wg, Where yg'™ and y4* are relaxation rates of
nents. These narrow structures are very sensitive to collision®atrix elementspgy, gy and py, ¢,» With respect to colli-
which could find practical spectroscopic applications. sions, respectively.

We have interpreted the calculated results in terms of the Agm,= —1y—Ap t—(Mge— ugs) g
trap states. We showed that the number and mutual cou-
plings between various traps and between traps and coupl@d‘d
states determine the character of the FS signals. Symmetry of
a transition is directly related to the number of traps and _ (et 79)
allows determination of the scattering signals. Y 2 '

E'm’ E'm" )\F!mr JF'm”

Ap = o~ o~ o,
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1 2)  _ F.f
==n)1 f/.L_I 2 z e mp/pf,u.’ F’m'D ﬂ Al(:r’zl,f,u,_Z Dm,/_ﬂpf,u’,fp,(b‘p,’,mfl_5;/,’,m+1)
r mr'#r f’u f’u :“,
X (O y—1— Omy
(Om wol m ’#+1) +E PFm, Fm’D (5m’ 1T 5m’,,u,—1)-
s 1 ey
B )\—Dm,u’pf’ 4 Fm’Dm’ (AS)
' m' ' NFmFmM’
The general solution of Eq&L7) can be written in a compact
X(Ourm-1=0ur m-1) form:
OPEm fu= 2 E TIEr,nmf,f f F
293 ¥ DL 3 o o T
7w Ml fM F' m'm" @ R
1 ! ”n X(AF’m’,f’ ’+Q AF’m’f, ’) (A4)
v fF Ff DF.f
)\F/m/ F'm” ,u, ;m’ m’ "pf/, el o~ ’ rogr ’
’ where coefficientsE, 7y, # = (TE " m-" ~#")* are related

X(g;/,”,m’—l_5;/,”,m’+l)! (AZ)

t0 Ngm, . @Nd A(Sp)gm s, ,» @nd depend on the Larmor fre-
quency, relaxation rates, detuning, and Rabi frequencies.
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