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A theoretical evaluation of inelastic transition amplitudes corresponding to collisions between low-energy
electrons~up to 5 eV! and small metallic clusters is presented. The target is excited into a particle-hole state
and the cross section is obtained in the Born approximation. The formalism is applied to the Na8 cluster. Form
factors for the direct and exchange-correlation terms of the residual interaction are shown as well as angle-
integrated cross sections as a function of the energy of the incident electron. These cross sections present
resonances associated with quasibound states in the outgoing and/or incoming channels at incident energies
related to the Na8 single-particle states through theQ values of the transitions. The results also show the
importance of the inclusion of the residual exchange-correlation contribution.@S1050-2947~96!06408-6#

PACS number~s!: 36.40.2c, 34.80.2i,

I. INTRODUCTION

The simple shell structure description for the valence
electrons in metal clusters has proved to be a very useful
model for the interpretation of a wide variety of experiments
@1,2#. Indeed, cluster stabilities, relative abundances, and
ionization potentials are some of the physical magnitudes
that have been predicted and reproduced with a reasonable
level of accuracy by theories based on the shell-model de-
scription.

Other kinds of experiments are those in which photons are
absorbed by clusters. These experiments, which allow the
study and analysis of atomic polarizabilities and plasmon
resonances@3#, have shown the necessity of a theory that
goes beyond the main field assumption. These more refined
calculations take into account the residual interaction be-
tween the valence electrons and thereby are able to explain
the intrinsic structure of the plasmon excitations in terms of
the collective motion of the electrons@4#.

The scattering of low-energy electrons also can be used to
explore the cluster structure. We are particularly interested in
the knowledge that can be obtained from this kind of experi-
ment, although the data so far are very scarce.

Recently some cluster beam depletion experiments pro-
duced by low-energy electrons impinging on Na8, Na20, and
Na40 clusters have been published@5#. These experiments
allowed the measurement of integrated inelastic cross sec-
tions for processes in which the clusters suffer electron at-
tachment and/or fragmentation.

More information could be extracted from electron-
scattering experiments if experimental techniques were able
to resolve the energy and angular distributions of the outgo-
ing electrons. In particular, for very slow incoming electrons,
where processes such as cluster fragmentation are negligible,
the incident electron will interact with the cluster, leaving it
in an excited residual state. When the incident electron pro-
motes a bound valence electron from a state under the Fermi
level to a state above the Fermi level, there will be a particle-
hole excitation. If, on the other hand, the residual state is

characterized by a cloud of valence electrons moving coher-
ently, a collective state will be excited in the cluster, like the
plasmon states mentioned above.

At very low energies, the most important process taking
place in an electron-cluster collision will always be the elas-
tic scattering. We recently studied the elastic scattering of
low-energy electrons by neutral@6# and ionized@7# sodium
clusters and found that the total integrated cross section ex-
hibits strong resonances as a function of the incident electron
energy. These resonances can be correlated to the existence
of quasibound states in the electron-target system and turn
out to be sensitive to the particular choice of the electron-
cluster interaction. We conclude that an experimental study
of elastic electron scattering by clusters will be useful to gain
insight into the details and contributions of the mean-field
potential.

In this paper we go a step further and present a theoretical
analysis of inelastic collisions between electrons and metal
clusters by considering the simplest excitation, which is of
single-particle-hole character, within the framework of a
Born approximation. There are other excitations such as col-
lective states~expected for energies above 3 eV for the
Na8 cluster! and core excitations~probably very weak! that
will also contribute to the total inelastic cross section. Such
contributions, which do not affect the results for very low
incoming electron energies, once evaluated, will have to be
added incoherently to the inelastic cross section studied in
the present work. There is a complete lack of experimental
results in that direction so far, but it is our aim to stimulate
research toward this kind of experiment, in view of the in-
teresting information it may provide.

In Sec. II we present a formalism that leads to the scat-
tering amplitudes and cross section. In Sec. III the scattering
wave functions are obtained for the Na8 cluster, the only
case to which the formalism will be applied in this work.
Another important ingredient, defined in Sec. II, are the ra-
dial form factors for single-particle excitations; these are
analyzed in Sec. IV. In Sec. V the different elements are
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combined and inelastic cross sections are evaluated. The
conclusions are presented in Sec. VI.

II. FORMALISM

As is often done when studying metal clusters, during the
development of the formalism we will refer to ideas from the
field of nuclear physics, in particular to the nuclear reaction
theory. The study of electrons~and also nucleons! colliding
with nuclear targets has been a powerful tool to learn about
the nuclear structure, charge distribution in nuclei, mean-
field potential, single-particle energies, excited states in nu-
clei, and many other properties. We expect that the study of
analogous collisions in the metal cluster field will also yield
useful knowledge.

We start with the premise that at sufficiently low energies
the elastic scattering is the most important process to occur
when electrons collide with a metal cluster. We furthermore
assume that at these low energies the inelastic excitation that
does appear occurs as a one-step process. In that case the
inelastic transition amplitude, in the Born approximation, can
be written as

T1→25E x f~kfW ,RW !^f2~rW !uVres~rW,RW !uf1~rW !&x i~kiW ,RW !dRW .

~2.1!

Let us describe the various components of this expression.
The wave functionsx describe the motion of the incoming
electron in the field generated by the target cluster,kiW and
kfW being the wave vectors in the initial and final channels.
These wave vectors define the orientation of the incoming
and outgoing electrons. In Sec. III we will propose a mean-
field interaction for the electron-target system and discuss
the characteristics of the wave functions for the initial and
final channels. The formalism takes into account theQ ef-
fect, that is, the kinetic-energy difference in both channels
due to the transfer of energy from the incident electron to the
target cluster. The coordinateRW describes the position of the
incoming electron, whilerW gives the position of the valence
electron, both with respect to the center of the cluster. The
internal wave functions for the valence electrons

f i~rW !5
uni l i~r !

r
Yl imi

~u,f! ~ i51,2! ~2.2!

are obtained in a shell-model approach for the clusters~see
Sec. IV!. The residual potentialVres is the interaction respon-
sible for the particle-hole excitation, while the relative wave
function in the ingoing channel can be written in a partial-
wave expansion as

x i~kiW ,RW !5
4p

kiR
(
l50

`

i l f l~ki ,R! (
m52 l

l

Ylm~R̂!Ylm* ~ k̂i !

5
A4p

kiR
(
l50

`

l̂ i l f l~ki ,R!Yl0~Q,0!, ~2.3!

where cos(Q)5R̂•k̂i . In a similar way, for the outgoing wave
function one obtains

x f~kfW ,RW !

5
4p

kfR
(
l 850

`

(
m852 l 8

l 8

i l 8 f̃ l 8~kf ,R!Yl 8m8~Q,F!Yl 8m8
* ~R̂!.

~2.4!

In the previous relations,f l(ki ,R) and f̃ l 8(kf ,R) are the par-
tial radial wave functions of angular momentuml and l 8,
respectively, and (Q,F) are the angle coordinates of the
outgoing electron.

The incoming electron-cluster residual interaction has a
direct and an exchange-correlation contribution given, in the
scope of the approximations we are using for the mean field,
by @4#

Vres~RW 2rW !5
e2

uRW 2rWu
1
dVxc~r!

dr
d~RW 2rW !. ~2.5!

Here

Vxc~r!5
dexc~r!

dr
~2.6!

is the exchange-correlation potential of Gunnarsson and
Lundqvist @8#, exc(r) is the exchange-correlation energy
density, andr is the radial density of the valence electrons of
the cluster

r~r !5
1

4p(
i

Uuni l i~r !

r
U 2. ~2.7!

Expanding the direct term of Eq.~2.5!

e2

uRW 2rWu
5(

l,m

4pe2

l̂2

r,
l

r.
l11Ylm* ~u,f!Ylm~R̂!, ~2.8!

after some algebra, the direct contributionTd to the 1→2
particle-hole transition is obtained. Using atomic units, for a
givenm1 andm2, this is given by

Td~Q,F!5
~4p!3/2

kfki
(
l l 8l

l̂ 2l̂ 8 l̂ 1l̂ 2~21!m2S l l 1 l 2

0 0 0D
3S l l 1 l 2

m m1 2m2D S l l l 8

0 0 0D
3S l l l 8

0 m 2m D Yl 82m~Q,F!

3E
0

`

dR fl~ki ,R!R12
l ~R! f̃ l 8~kf ,R!. ~2.9!

The direct radial form factor

@R12
l ~R!#d5E drun2l2~r !

r,
l

r.
l11un1l1~r ! ~2.10!
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~as well as the exchange correlation radial form factor; see
below! has the structure information about the 1→2 transi-
tion of the cluster.

For the evaluation of the exchange-correlation amplitude
Txc , we use the exchange-correlation energy density expres-
sion of Gunnarsson and Lundqvist@8#, which leads to the
Vxc potential

Vxc52
1.222

r s~r !
20.0666 lnS 11

11.4

r s~r ! D , ~2.11!

wherer s(r )5@3/4r(r )#1/3 is the local value of the Wigner-
Seitz radius. Then

]Vxc

]r
52

2

3 S 3

2p D 2/3 1

r~r !r s„r~r !…
2

0.0222

11
r s„r~r !…

11.4
r~r !

.

~2.12!

Expanding thed function of Eq.~2.5! in angular momen-
tum components, an expression similar to Eq.~2.9! is ob-
tained for the exchange-correlation amplitudeTxc , but with a
form factor given by

@R12
l ~R!#xc5

2l11

4p
un1l1~R!

]Vxc

]P~R!
un2l2~R!. ~2.13!

The coherent sum ofTd and Txc gives the total transition
amplitude corresponding to the excitation of a valence elec-
tron from the state (n1 ,l 1 ,m1) to the state (n2 ,l 2 ,m2) with
an electron emerging with energyEf5kf

2/2. After summing
over all possible orientations and averaging over the initial
projections we get the differential cross section for the exci-
tation

ds i→ f~Q!

dV
5

1

4p2

kf
ki

1

2l 111 (
m1 ,m2

uTd1Txcu2. ~2.14!

III. INCOMING AND OUTGOING WAVE FUNCTIONS

To obtain the wave functions for the incoming and outgo-
ing channels, we must solve the radial Schro¨dinger equation
for the partial componentsf l(k,r ),

F d2dr2 2
l ~ l11!

r 2
2
2m

\2 Vopt1k2G f l~k,r !50. ~3.1!

A crucial point is the choice of the average optical potential
Vopt between the electron projectile and the cluster target.
This problem was exhaustively discussed in a previous paper
@6#. As a first approximationVopt can be assumed to be the
local-density approximation~LDA ! mean-field potential plus
a term arising from the polarization of the valence cloud due
to the incoming electron. Thus

Vopt5VLDA1Vpol , ~3.2!

whereVLDA was obtained by solving the Kohn-Sham equa-
tions within the jellium model and has the typical jellium,
Coulomb, and exchange-correlation contributions, the latter
evaluated within the Gunnarsson-Lundqvist approach. For

low bombarding energies the local adiabatic approximation
for the polarization term may be used@9,10#

Vpol~r !5
2ae2

2~d21r 2!2
, ~3.3!

wherea is the cluster polarizability andd is a cutoff param-
eter of the order of the cluster size@9,10#. In @6# it was shown
that variations ofd of about 15% affect only the fine details
of the cross section. The static polarizabilitya was obtained
from experiment@3#. Within this frame, and neglecting pos-
sible absorption effects, i.e., imaginary contributions to the
optical potential~see Ref.@6# for a discussion of this point!,
the wave functions for a given incident energy can be evalu-
ated.

Figure 1 shows the resulting optical potential for the
e-Na8 system. In order to appreciate the importance of the
polarization we display in Fig. 1 also the potential without
the polarization correction.

The asymptotic behavior of the radial wave functions
f l(r ) is

f l~k,r !→
1

2i
@e2 i ~kr2 lp/2!2e2id lei ~kr2 lp/2!#, ~3.4!

wheree2id l5Sl is the scattering matrix andd l is the phase
shift. In Fig. 2 we show the phase shifts for the elastic chan-
nel of thee-Na8 system for different angular momenta as a
function of the incident energy. The rapid increase of the
phase shifts at given energies indicates the presence of reso-
nances. These resonances can be related to the existence of
quasibound states with a definite angular momentum@6#.
Only l values less than 15 were considered in the calcula-
tions since higher-l values do not contribute to the phase
shifts for energies less than 5 eV.

FIG. 1. Mean-field potentials for Na8 in the local-density ap-
proximation ~LDA ! to density-functional theory. The dashed line
shows the polarization contribution, the dot-dashed line corresponds
only to the LDA contribution, while the solid line displays the total
potential~LDA plus polarization!. Distances are expressed ina0 the
Bohr radius. On the right-hand side of the figure, the energies of the
single-particle bound states are shown for the total potential~polar-
ization included!.
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IV. THE FORM FACTOR

To evaluate the radial form factors we must first deter-
mine the intrinsic bound wave functionsf i(rW)5uni l i(r )/r ,

i51,2. These wave functions were obtained by diagonalizing
the self-consistent potential arising from the Kohn-Sham
equations in the local-density approximation plus the polar-
ization contribution. The single-particle energies for all the
bound states of the system, for the total LDA plus polariza-
tion potential, are also shown in Fig. 1.

It can be argued than a better single-particle wave func-
tion is obtained by taking into account self-interaction cor-
rections~SICs! @11# in the Kohn-Sham equations, which in-
troduce state-dependent potentials to the formalism. This,
however, for the present calculations, is only a minor correc-
tion, as can be observed from the following. In Fig. 3 the five
bound wave functionsun,l , obtained within the LDA, are
shown. Also displayed are the wave functions resulting by
introducing SICs in the calculation. Figure 3~a! shows the
wave functions for the initially occupied states. For the other
bound states, there exist two sets of SIC wave functions, one
set coming from the diagonalization of the 1s potential@Fig.
3~b!# and the other for the case that the initial state of the
valence electron is 1p @Fig. 3~c!#. As can be seen from the
figures, the SIC and LDA wave functions do not differ sig-
nificantly and therefore in the following we will use the sim-
pler LDA set.

As discussed in Sec. II, the residual interaction consists of
a direct and an exchange-correlation term, each leading to a
corresponding contribution to the form factor. As can be
seen from expressions~2.9!, ~2.10!, and ~2.13!, the formal-
ism also separates the contributions coming from the differ-
ent multipolarities of the residual potential. In the following
we will consider the allowed particle-hole transitions 1→2
of the Na8 cluster: 1s→1d, 1s→2p, 1s→2s, 1p→1d,
1p→2s, and 1p→2p ~see also Fig. 1!. From the Clebsch-
Gordan coefficients in Eq.~2.9! we deduce that all transitions
occur for a single multipolarityl, except the fourth of these,
for whichl51,3, and the sixth, for whichl50,2. We there-
fore have eight form factorsR1→2

l (R), which are shown in

Fig. 4. Figure 4~a! displays the form factors associated with
the direct part of the residual interaction. The transitions
1s→2s and 1p→2p with l50 are dominant near the origin
and for these cases the excitation has a larger probability of
taking place inside the cluster.

Figure 4~b! corresponds to the total~direct plus exchange
correlation! form factors. The inclusion of the exchange-
correlation generally reduces the magnitude of the form fac-
tors and shifts the curves towards larger distances.

The form factor for the 1p→2p transition, withl52,
which has its maximum at aroundR526 a.u., seems to be
the dominant term. However, once the integration with the
oscillating ingoing and outgoing wave functions is per-
formed, its contribution to the final inelastic cross section
turns out to be negligible. Even though it is not shown in Fig.
4, for very large distances all the form factors converge to
zero.

FIG. 2. Phase shifts froml50 up to l56 as a function of the
incident electron energy for thee2-Na8 system using the total po-
tential of Fig. 1.

FIG. 3. Electron valence bound wave functions obtained in two
different approaches. For the two occupied states of Na8 we show
~a! the result of the LDA calculation compared with a calculation
including self-interaction corrections~SICs!. The LDA results are
compared with the SIC wave functions of~b! the 1s potential and
~c! the 1p potential. As can be seen, results are very similar for both
approaches.
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V. THE TOTAL CROSS SECTION

In Fig. 5~a! we show the total angle-integrated cross sec-
tion for the collisione-Na8 as a function of the energy of the
incoming electron, using only the direct residual interaction
~i.e., without considering the exchange-correlation part!. The
contribution of the 1p→1d transition, which almost ex-
hausts the total cross section for the considered incoming
energy range, is also shown. The small differences between
the two curves in Fig. 5~a! come from the contribution of all
the other single-particle-hole transitions, which are plotted in
detail in Fig. 5~b! ~note the changes in the scale between the
two figures!.

The opening of each inelastic channel occurs when the
incoming energy coincides with theQ value of the corre-
sponding particle-hole transition. TheseQ values~or thresh-
old energies! are summarized in Table I. It is interesting to
remark that these values depend on the details of the mean
field used in the calculation.

Another general feature of each transition contribution is
that they present two maxima~resonances! at approximately
0.08 and 0.62 eV above their threshold enery. These reso-
nances can be explained by analyzing the radial integrals

A1,2,l ,l 8,l5E
0

`

dR fl~ki ,R!R12
l ~R! f̃ l 8~kf ,R!, ~5.1!

which appear in the expression~2.9! for the direct transition
amplitude.

In these radial integrals, an overlap is performed between
the form factor and ingoing and outgoing relative wave func-
tions. It is well known that the magnitude of the radial wave
functions, in the interior of the cluster, increases significantly
when the bombarding energy coincides with~or is close to! a
quasistationary resonant state@6#. Two of these resonances
can clearly be identified from the phase shifts shown in Fig.
2: one forl52 at 0.08 eV and another forl54 at 0.62 eV.
These two energies plus the transitions thresholds energies
constitute the incoming energies at which the peaks in Figs.
5~a! and 5~b! are observed~see also Table I!.

FIG. 4. Radial form factors for the~a! direct and~b! direct plus
exchange-correlation contributions to the residual interaction. We
display the form factors corresponding to all the possible transitions
and we also detail the angular momentum of the multipolar expan-
sion in Eq.~2.9!.

FIG. 5. ~a! Direct angle-integrated cross sections for the system
e-Na8 as a function of the energy of the incident electron. The
different contributions of the particle-hole transitions are added in-
coherently to obtain the total cross section~full line!. The dashed
line shows the individual contribution of the dominant 1p→1d
transition.~b! Direct angle-integrated cross sections for each of the
other ~different of 1p→1d) particle-hole transitions. The scale is
magnified with respect to~a! to appreciate how channels open pro-
gressively when the incoming energy increases. Each transition
shows two resonances: the first at an energy ofQ1 0.08 eV and the
second one atQ1 0.62 eV.
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We illustrate the previous discussion analyzing in detail
the most important contribution to the inelastic cross section:
the 1p→1d transition@see Fig. 5~a!#. The resonances of this
contribution occur for bombarding energies~which are the
energies of the ingoing wave function! in the vicinity of 1.65
and 2.2 eV, respectively~see Table I!. For the corresponding
outgoing radial wave functions, the energies~after substract-
ing theQ value! are 0.08 and 0.62 eV. This suggests strongly
that the two peaks are due to thel 852 and l 854 outgoing
radial wave functions, respectively. This is confirmed when
the radial integralsA1,2,l ,l 8,l are evaluated. Figure 6 shows
these for the second resonance andl51. It is found that the
largest term indeed occurs forl 854 ~and l55).

Using a similar argument, it is possible to understand the
resonances for all particle-hole transitions. In Table I the
dominant ingoingl and outgoingl 8 values, as well as the
multipolarity l, are given for all resonances.

It is also possible to understand why the inelastic
1p→1d transition is particularly strong. From the discussion
in the previous paragraph it was found that, for the 2.2-eV
resonance, the most important ingoing angular momentum of
the radial wave function isl55. As can be seen from Fig. 2,
a large wave function in the interior of the cluster is ex-
pected, due to a wide resonance that occurs at precisely that
ingoing energy andl value. The large maximum in the in-
elastic cross section for the 1p→1d transition is therefore
due to al51 well-matched condition with resonances in the
ingoing as well as outgoing wave functions.

Another ingredient that contributes to the dominance of
the 1p→1d transition is its particularly large form factor
~see Fig. 4!, which arises from the strong overlap of the
involved single-particle wave functions.

In Fig. 7~a! we show the total calculation using the LDA
potential when also the exchange and correlation parts of the
residual interactions are included. The cross section de-

creases considerably, indicating the importance of the
exchange-correlation effects, as is usually found in metal
cluster physics. The general features persist and the interpre-
tation given above remains valid for this case. The order of
magnitude of the obtained cross section is about 500
bohrs2, which is of the order of the inelastic cross section
obtained in Ref.@5# for other processes such as fragmenta-
tion or electron attachment. A comparison of this magnitude
with the 4000 bohrs2 obtained in Ref.@6# ~see Fig. 6 of@6#!
for the elastic scattering justifies the use of the Born approxi-
mation in the present paper. We also show in Fig. 7~b! re-
sults of a more complicated calculation using the SIC to the

FIG. 6. Relative magnitudes of theA1,2,l ,l 8,l integrals for an
incident energy of 2.2 eV and for the outgoing angular momenta
l 85 l11 andl 85 l21. The transition displayed is the 1p→1d with
l51. As can be seen, the dominant contribution corresponds to
l55 andl 854.

TABLE I. Summary of the relevant magnitudes corresponding to the resonances of the integrated cross sections. An asterisk denotes a
weak contribution.

Inelastic Outgoing electron Dominant Dominant Multipolarity
Transition Q ~eV! resonance~eV! energy~eV! incoming l outgoingl 8 l

1p→1d 1.57 1.65 0.08 3* 2 1
5 2 3

2.19 0.62 5 4 1
6* 3* 3*

1p→2s 2.00 2.08 0.08 2 1
2.62 0.62 5* 4 1

1s→1d 2.91 2.99 0.08 4* 2 2
3.53 0.62 6 4 2

1p→2p 3.28 3.36 0.08 2 0–2
3.90 0.62 6 4 2

1s→2s 3.34 3.42 0.08 2 0
3.96 0.62 4 0

1s→2p 4.62 4.70 0.08 2 1
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LDA for the wave functions of the single-particle states. Es-
sentially, an overall energy shift of about20.25 eV is ob-
served. This shift is a consequence of the differences be-
tween the single-particle energies obtained in each
approximation.

Finally, we show in Fig. 8 a differential cross section
corresponding to the incident energyE52.2 eV. The calcu-
lation performed includes the direct and exchange-
correlation contributions. The results reflect the influence of
the partial waves mentioned above. At this incoming energy
the angular distribution oscillates in a pattern reminiscent of
Pl 854, which has been shown to dominate the 1p→1d tran-
sition. This indicates that an experimental angular distribu-
tion, if performed, could yield valuable information. Summa-
rizing, the interesting feature of the present analysis is that
inelastic electron scattering could provide an experimental
tool to learn about the single-particle transition energies and
to explore the shell structure of metal clusters.

VI. CONCLUSION

In this paper we present an approach to the calculation of
inelastic cross sections in low-energy electron-cluster colli-

sions when the excited state of the cluster is of particle-hole
type. We show that very interesting information can be ex-
tracted concerning the structure of the cluster and in this
sense the experiment would be an indirect measurement of
the energies of the particle-hole transitions and, as a conse-
quence, a test for the validity of a given mean field.

We show that the total cross section has maxima associ-
ated with resonances in the elastic channels, also reflected in
the angular distributions. The dominant resonances of the
1p→1d transition can be explained in terms of a well-
matched inelastic transition in which resonances occur in
both the incoming and outgoing elastic channels. We also
observe that to have a correct description of the inelastic
process at these low incoming energies, we must consider in
the theory theQ values of the transitions, i.e., the energy
difference between the single-particle levels involved in the
reaction. The total calculation including the exchange and
correlation contribution to the residual potential indicates the
relevance of these terms in the total cross section. The ex-
perimental results in this field so far are scarce, although we
hope to stimulate, through this paper, experimental research
on electron-cluster collisions.
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FIG. 7. ~a! Comparison between total angle-integrated cross sec-
tions. The solid line displays the calculation including direct and
exchange correlations terms and the dashed line shows only the
direct case.~b! Same as~a!, but using the SIC to the LDA potential
for the single-particle wave functions.

FIG. 8. Differential cross section as a function of the scattering
angle for the dominant transition 1p→1d. The incident energy is
2.2 eV at which a resonance in the total cross section appears. The
angular distribution has four minima following the zeros ofPl54

2 ,
which is also shown in the figure by a dashed line.
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