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Hartree-Fock studies of atoms in strong magnetic fields
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We present comprehensive calculations of the electronic structure of selected first-row atoms in uniform
magnetic fields of strengti 10'° G, within a flexible implementation of the Hartree-Fock formalism. Ground-
state and low-lying excited state properties are presented for first-row atoms He, Li, C, and.idMdaredict
and describe a series of ground-state quantum transitions as a function of magnetic field strength. Due to its
astrophysical importance, highly excited states of neutral He are also computed. Comparisons are made with
previous works, where available.

PACS numbgs): 32.60:+i, 31.10:+2z, 97.10.Ld, 95.30.Ky

I. INTRODUCTION (HF) method to calculate many states of the hydrogen atom
(Z=1) in fields up toB,<1C>. In these computations, the
The behavior of atoms in very strong magnetic fields iswave function is expanded in terms of either spherical har-
not a topic limited only to theoretical interest. Studies of monics or Landau-like orbitalédiabatic basis setlepend-
atoms under these extreme conditions first intensified witling on the field strength, and the resulting Hartree-Fock
observations of excitons in semiconductors with small effecequations are then integrated numerically. This set of com-
tive masses and large dielectric constafiswhich result in  puted energies and oscillator strengths has been used to iden-
very large effective magnetic fields. For a time, standard pertify many spectral features of compact stellar remnants, and
turbative method§2], valid only in relatively small magnetic s often used as a benchmark for other meth@&js
fields, were sufficient for understanding these systems. Work For systems involving more than one electron, efforts
on quantum dot$3], observations of neutron stars possesshave largely been concentrated on the high figldiabati¢
ing fields in excess of 8 G [4], and the detection of mag- regime, where the magnetic forces dominate, and the wave
netic white dwarf stars with megagauss fiefl8$ has further  function is assumed to have cylindrical symmetry. Mueller
increased interest in this area. Our theoretical knowledge oft al. [9] used cylindrical trial wave functions to compute
the behavior of these systems has not kept pace with theariational upper bounds for the lowest energy states of
experimental work, however, and accurate calculations foH™, He, and Li" in the adiabatic approximation for fields in
multielectron atoms do not exist in the range of magneticexcess of 18 G. Vincke and Bay¢10] also obtained varia-
fields encountered in these systems. It is the primary goal afonal estimates for H and He for magnetic fields in excess
this work to help fill that gap. In a regime where Coulomb of 10'° G. Again in the adiabatic limit, with fields larger than
and magnetic effects are of nearly equal importance, ando™ G, Miller and Neuhausdrl 1] and Neuhausegt al.[12]
neither can be treated as a perturbation, lie many interestingave used HF methods on small atoms and molecular chains.
applications, both in astrophysics and condensed mattefork at such strong magnetic fields, while not complete, is
physics. Unfortunately, this regime is also very difficult to made somewhat easier by the dominance of the magnetic
solve, since the combination of the cylindrical symmetry offield in this regime. Cylindrical symmetry may be assumed
the magnetic field and the spherical symmetry of the Coufor the mathematical form of the desired wave function in
lomb potential prevents the Scliiager equation from being  this asymptotic regime. The situation at intermediate fields is
separable and integrable. Previous approaches to this profrore complex.
lem have been concentrated on the two limits, very weak At intermediate field strengths, the nearly equal impor-
magnetic fieldgwhere the magnetic field may be treated as aance of Coulomb and magnetic effects has made progress
perturbation, and very strong magnetic fieldehere cylin-  very difficult, and thus far only two electron problems have
drical symmetry is imposed on the wave function in the sobeen attempted. This range of field strengths is plagued by
called adiabatic approximatiof6]). Several recent works, the fact that neither the spherical symmetry of the Coulombic
however, have attempted to bridge this gap and deal with thgotential nor the cylindrical symmetry of the constant mag-
intermediate(or strong field regime. We can work in dimen- netic field may be assumed to dominate. Thorough HF cal-
sionless atomic units by introducing;z=ea(z)BIZhCZ2 culations using the same method as Rosner’s hydrogenic cal-
=B/ByZ?, whereB,=4.7x10° G, a, is the Bohr radius, culations[7] have been performed for heliumlike atofis)],
and Z is the atomic charge. Depending on the relativebut these results, as we shall see, have difficulty in the region
strength between Coulomb and magnetic forces, we cawhere the cylindrical and spherical expansions meet. Less
characterize three different regimes: the lg8y&10 ), the  complete variational calculations were performed for by
intermediate (strong (10 3<pB,<1), and high (super- Henryet al.[14] (8,<0.2), and for He by Surmeliaet al.
strong (Bz>1) field regimes. [15] for B8,<20. Both sets of variational calculations used a
Rosneret al. [7] have used the numerical Hartree-Fock trial wave function which was a sum of slater orbitals.
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Larsen[16] also performed variational calculations on SeV-[,(X) = a(s)® ¢,(r), where a(s) is a spin function,
eral low-lying excited states of Hand He for various fields  ¢_(r) a spatial orbital, anck=(s,r)], we obtain the usual
of B,=<5, paying particular attention to the binding energy of Hartree-Fock equations,

H ™. A treatment of diatomic hydrogen was carried out by

Ortiz et al.[17] using quantum Monte Cari@MC) methods Fia=€atba, 2
in fields ranging fromB,=0.1 to 8,=200. We have studied ) ) _

multielectron atoms in this intermediate regime, using a basi¥/hereF is the single-particle Fock operator,

set HF approach that is flexible enough to balance the com-

peting symmetries between the Coulomb and magnetic inter- F=h(r)+ E ( To— T, (3)
actions. This work is the precursor of a QMC study of elec- b

tron correlation at high magnetic fields in atomic systems.

The QMC method requires high quality trial wave functions, 3"

hence our immediate need for the calculations presented 1 7 (22B,)?

here. At the same time, the method and tables presented hergy(r)= — —v2— —+ —Z(x2+y2)+22ﬂz(lz+ 2s,),
may be of some use to astrophysicists analyzing unexplained 2 r 2

spectra from magnetic white dwarf stars, for example

GD229, for which helium has been suggested as a possible Y :U dx’ [ —r'1= 2% (x! /
explanation for the pronounced yet nonhydrogenic spectral Jo¥a X r=r"| 72 (X)) (X" | ha(X),
featureq18].

%‘bwa:[ f dx’[r=r"|H2yE (X ) ha(X') [ p(X). (D)

Il. HARTREE-FOCK APPROACH TO ATOMS

IN MAGNETIC FIELDS Note that we are still considering the integrals over the
spin degrees of freedom for the direct, and exchange,
77, integrals. Rather than integrate the Hartree-Fock equa-
tions numerically on a radial grid, we choose to expand each
electronic orbital in a basis sefty,(r)}, of our choosing,

The Hamiltonian in atomic units for an atom in constant
magnetic field is given by

Vi Z (Z%By)?

H=3 -5 —=+ (x+y?) M
i=1 2 I 2 _
$a(r)= 2 Cauxu(r), (5)
1 -
2 -
TPt 282)+1<i<]<N rij’ @ whereM is the number of basis set elements. This expansion

reduces the problem to an algebraic one, upon which well
, established and robust solution methods can be brought to
Where"Z:Ei'\L iz andSz=EiN: 15z aré thez component of  yo5: One is also free to choose the dominant symmetry for a
the total angular momentum and spin of the system, respegiyen magnetic field regime. At large fields we can use cy-
tively, and lengths are in units of the Bohr radiag. We  |ingrical basis functions(Landau-like orbitals while at
have chosen the magnetic field to be parallel tozfexis, |qyer fields strengths it is more advantageous to use basis
and the symmetric gauge, which has vector potentiabiements with spherical symmetry. For the intermediate
A=B(-y,x,0)/2. In the absence of external fields the eigenyange of magnetic field strength considered here, we have

2 2 i
valuesofL”, L, S°, S;, and parity]I, are good quantum  cposen to use Slater-type orbitdSTO) as our basis ele-
numbers. When the magnetic field is turned on, the rotatlon%ents, which have the form

invariance is broken and the only conserved quantum num-
bers are the eigenvalues bf,, S?, S,, andII (alterna- Xu=Ru(DY) 1 (6,6), (6)
tively, we will use thez parity, IT,). With a different choice .

of gauge,L, no longer commutes withl; instead one must WhereR,(r)=N,r"="*e~%', Y, . are the usual spherical

use a gauge-covariant forfii7]. We will still use L? to  harmonics, and\lﬂz[(ZaM)(2“#1{7(2%)!]1’2 is the nor-
characterize atomic orbitals coming from solutions of themalization constant. Note that this basis-set formulation has
Hamiltonian, even though? is not a conserved quantity. a distinct advantage over the direct radial-grid integration
Although we are using the convenient spectroscopic notatiomethod in this particular application of atoms in magnetic
provided by thel2 operator 6,p,d, ...), we are in no way fields. With direct integration of the HF equatiofsg. (2)],
biasing our results by imposing the symmetry—it is sim-  one must make an assumption about the symmetry of the
ply a bookkeeping tool for tracking the electronic states ovemwave function to reduce the partial differential equation to a
a range of magnetic field strengths that includes zero fieldnore manageabléne-dimensionalordinary one. At inter-
The diamagnetic term in the Hamiltonian couples states thanediate field strengths, neither cylindrical nor spherical sym-
differ by two inl. In large fields, for example, our labeling metry dominates, making such an assumption hazardous.
an electronic state assdenotes the first state of even parity With the basis-set formalism, one can simply add more basis
s+d-+g+ - - -, which would be the familiar & state at zero elements of different symmetry in a systematic way. In prac-
field. Taking our wave function to be a single Slater deter-tice, we optimize the exponents,,}, of the basis functions
minant and minimizing the energy of the above Hamiltonianusing a conjugate gradient approach, then attempt to saturate
with respect to the electronic spin orbitals|i,} any remaining freedom in the basis with additional basis
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elements. One should also note that the STO basis is conerally obtains a better variational energy than RHF for open

plete for any field strength, even if many terms of highershell configurations, UHF wave functions, unlike their RHF

order inl must be included. This advantage is not shared byounterparts, are not eigenstatesSdf For trial wave func-

the adiabatic basis set, in which the wave function is astions in QMC, it is desirable to begin with eigenstates of

sumed to possess cylindrical symmetry. The individual maS?, even though a broken symmetry state could have a lower

trix elements for the STO basis, even in magnetic fields, ar@ariational energy. One could also project out an eigenstate

straightforward[19], with the exception of the electron- of spin from the unrestricted calculations, but this additional

electron interaction. We discuss our method for computingstep presents a needless complication. We will briefly outline

these integrals in the Appendix. the approach that we have taken for using UHF and RHF.
We will use two different approaches to this Hartree-Fock The UHF method is formally much simpler than that of

problem, which differ in their assumptions about the initial RHF. We have an eigenvalue problem for orbitals of each

Slater determinant used in the minimization step above. Thspin type,

first is spin-restricted Hartree-Fo€RHF), in which spin or-

bitals are pure space-spin products to be occupied in pairs, ?“(r)¢§(r)=eg¢§(r),

with a common spatial orbital factor. The second method is

spin-unrestrictedUHF), in which the orbitals corresponding A

to different spins are allowed to differ. Although UHF gen- FA(r) ¢5(r)=ea5(r), @)

TABLE |. UHF energies for H, in hartree. The results from a numerical quadrature solution to the HF
equations are from Thurnet al. [13], E1,,, and the variational calculations of Larsgl6|, E,,, , are also
included.E_ ,, includes electron correlation, so it should be compared with the Monte Carlo rg22its
Emc. Note that the Monte Carlo approach is slightly different, depending on the statestrstate used
diffusion Monte Carlo(DMC), while the 1s2p_, state used fixed-phase Monte CaffPMC).

Bz Eunr(1s?) Eunr(1s2p-4) Emn EiLar Emc
0.0001 0.4879 0.5001 0.5001

0.0005 0.4879 0.5004 0.5004

0.0010 0.4879 0.5008 0.5008 0.5286) 1s?
0.0030 0.4879 0.5025 0.5023

0.0070 0.4876 0.5063 0.5053

0.0100 0.4873 0.5091 0.5076 0.52601s°
0.0300 0.4826 0.5280 0.5234

0.0500 0.4742 0.5460 0.5399 0.54p

0.0700 0.4629 0.5656 0.5569

0.1000 0.4417 0.5934 0.5823 0.598 0.59684) 1s2p_;
0.2000 0.3472 0.6803 0.6587

0.3000 0.2308 0.7537 0.7201 0.76661s2p_;
0.4000 0.1011 0.8177

0.5000 0.8729 0.8094 0.880 0.88216) 1s2p_;
0.6000 0.9223

0.7000 0.9684 0.8699 0.97@9 1s2p_;
0.8000 1.0101

0.9000 1.0492

1.0000 1.0863 0.9980 1.07® 1s2p_,
1.1000 1.1162

1.2000 1.1467

1.3000 1.1877

1.4000 1.2175

1.5000 1.2463

1.6000 1.2723

1.7000 1.2987

1.8000 1.3236

1.9000 1.3464

2.0000 1.3688 1.3036

2.1000 1.3918

2.2000 1.4158

2.3000 1.4397

2.4000 1.4602

2.5000 1.4811
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Where?(r) is the sing|e-b0dy Operator, TABLE Ill. UHF energies,— EUHF! for Iow-Iying states of Li,
in hartree.
2 < B 1s%22s  1s%2 1s2s2 1s2py2
fo(r) ga(r)=h(r)é5(r)+ 2 [I5—Kglga(ry) ? P P PocP-2
b=1 0.0000 7.4327 7.3651 5.3583 5.2318
Ng 0.0001 7.4337 7.3669 5.3625 5.2355
+> JEpl(ry), (80  0.0005 7.4371 7.3738 5.3767 5.2497
b=1 0.0010 7.4412 7.3832 5.3943 5.2673
0.0030 7.4553 7.4114 5.4617 5.3352
and « and B denote the two possible spin species=(L/2).  .0070 7.4739 7.4565 5.5837 5.4599
To obtain the UHF solutions, one introduces a basis ang g100 7.4814 7.4832 5.6656 5.5455
solves SimUltaneOUSly the COUpled equations for the two Sp|60300 7.4731 7.5965 6.0844 6.0159
types. , 0.0500 7.4240  7.6563 6.3993 6.3956
In the RHF approach, there are two important cases to bg ;- 73609 7 6820 6.6720 6.7284

considered, closed electronic shells and open shells. T 00

. . . 7.2446 7.6747 7.0403 7.1711

closed shell RHF technique, developed as an algebraic prola—1200 7 6459 72826 7 4404
lem with basis set expansions by Rooth&h8l, is one of the ' ' : i

simplest to implement, but suffers from limited applicability g'gggg 6.6640 77'23762227 8851116559 88;57%4

(due to the relative prevalence of open shell sysjefasr 0'2400 7l1655 8l5075 8.7526
closed electronic shells, one solves ' ' : '

0.2600 7.0391 8.6767 8.9371

N/2 0.2800 6.9050 8.8375 9.1160

z 0.3000 5.8772 6.7747 9.0035 9.2755

fga(N=h(Nga(r)+ 2, [235=Kp]da(r), (9

TABLE II. UHF Energies for low-lying He states, in hartré, are the ~ Where we have performed the integral over spin forand

values reported for numerical quadrat{its]. 7, denoting the resulting direct and exchange spatial inte-
gralsJ andK. After introducing a basis for the orbitals, one

1s? 1s2s 1s2p, 1s2p_, solves the resulting matrix equation for the coefficients

{Ca,}- This simple sum over direct and exchange contribu-

Pz “Euwe “Eowe B ~Euue —Em —Euwe —Em tions when each orbital is doubly occupied becomes more

0.0000 2.8617 2.1742 2.1314 21314 Complex in the open shell case. For open shell RHF, many

00001 28617 21751 21751 21323 21322 21326 2.132¢different approaches have been formulaf@d]. We have
0.0005 28617 21782 21782 21354 21354 21374 213745€ttled on an approach based on that of Guest and Saunders

0.0010 2.8617 2.1821 2.1821 2.1394 2.1394 2.1433 2.1433

00030 2.8616 21972 21972 2.1547 21547 21659 2.1659 1ABLE IV. UHF energies,—Eyy, for low-lying states of C,

0.0070 2.8611 22045 22244 21834 21833 22076 220760 hartree.

0.0100 2.8604 2.2429 2.2426 2.2035 2.2032 2.2365 2.2363

00300 2.8504 23381 23306 2.3108 23150 23992 239727 S=-1 S=-2 =3
00500 2.8310 24112 23821 2.4196 2.4056 2.5366 2.53120.0001 37.689 37.312 26.329
0.0700 2.8030 24771 24114 25102 24842 2.6606 2.65160.0005 37.701 37.380 26.439
01000 27468 2.5712 24266 2.6347 25866 2.8299 2.81380.0010 37.743 37.456 26.565
0.1200 26331 2.7114 2.9343 0.0030 37.793 37.728 26.982
0.1400 26934 2.7842 3.0330 0.0070 38.134 38.183 27.644
0.1600 2.7517 2.8534 3.1266 0.0100 38.325 38.470 28.059
0.1800 2.8084 2.9196 3.2161 0.0300 38.713 39.598 30.331
0.2000 2.8632 29828 2.8394 33017 3.2540 0.0500 38.376 40.193 32.035
0.2200 2.9169 3.0435 3.3840 0.0700 37.677 40.327 33.277
0.2400 2.9690 3.1017 3.4631 0.1000 36.239 40.361 35.092
0.2600 3.0194 3.1580 3.5384 0.1200 35.196 40.240 36.089
0.2800 3.0682 3.2113 3.6117 0.1400 39.983 36.842
0.3000 2.0923 3.1127 32641 3.0033 3.6839 3.59480.1600 39.628 37.680
0.4000 3.3303 3.5048 4.0096 0.1800 39.283 38.154
05000 1.1762 3.5114 2.9340 37141 3.1728 4.2950 4.10160.2000 29.969 38.661 39.323
0.6000 3.7001 3.8997 45502 0.2200 38.055 39.726
0.7000 0.1275 3.8778 3.3381 4.0698 3.5665 4.7853 4.46580.2400 37.370 40.473
0.8000 4.0296 4.2207 5.0016 0.2600 36.676 41.042
0.9000 4.1671 4.3595 5.1976 0.2800 35.895

1.0000 -0.168 4.2891 3.8231 4.4861 4.0609 5.3793 4.93500.3000 21.472 35.068
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FIG. 1. Ground-state energy of
the H™ ion (top) and the He atom
(bottom) as a function of magnetic
field strength, determined by sev-
eral different methods. The solid
and dashed lines are UHF data of
the present work. Crosses are
variational calculations of Larsen
[16], while the dotted line repre-
sents the HF data of Thurnet al.
[13]. Open squares and triangles
are the QMC data of Jones and
Ortiz [22].

FIG. 2. Ground-state energies
of neutral Li(top) and C(bottom)
as a function of magnetic field
strength. Note the transitions to
states of various spin polarization
as the field increases.
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FIG. 3. Energies of some ex-
cited states of neutral He. The
points represent the data of
Thurner et al. [13], while the
curves show our data. The present
results obtain a lower variational
energy for all excitations in the
range of fields considered here,
0<=p8,<1.

FIG. 4. HF ground-state quan-
tum numbers as a function of mag-
netic field for the first-row atoms
and ion considered in the present
work; H™, He, Li, and C.
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TABLE V. RHF energies for excited H¥ =0 states, in har-
tree. The results from Thurnet al.[13] are given byE+,.

2.5 1.0 0.3 0.28
A 1s3s+1s3d, 1s3pg
)
0 @ ] o
BZ _ERHF _ETh _ERHF _ETh
(‘"1*(;'1) (”(':7"” (’1"0';3/ 2) (‘2;'2"3) 0.0000 2.0685 2.0576
: ) ’ ’ 0.0001 2.0693 2.0693 2.0584 2.0584
@ @ 0.0005 2.0723 2.0723 2.0615 2.0615
Y, 0.0010 2.0758 2.0758 2.0651 2.0651
(—1.4.-1) (-1.4-1) (-1.-.-3/2) (-2.4.-3) 0.0030 2.0869 2.0863 2.0774 2.0771
o1 05 o2 018 0.0070 2.1052 2.0961 2.0969 2.0930
0.0100 2.1179 2.1035 2.1094 2.1007
® @ 9 0.0300 2.1927 2.1381 2.1906 2.1148
0.0500 2.2615 2.1487 2.2701
(-1,+,-1) (-1,+,-1) (-1,+,-1/2) (-2,+,-2) 0.0700 2.3220 2.3383
0.03 0.1 0.03 0.01 0.1000 2.4071 2.4401
0.1200 2.4694 2.5112
0.1400 2.5122 2.5675
0.1600 2.5723 2.6335
(-1+.-1) (-1+.-1) (-1,+.-1/2) (-2.+.-2) 0.1800 2.6199 2.6885
0.01 0.07 0.007 0.003 0.2000 2.6746 2.7447
0.2200 2.7192 2.7947
0.2400 2.7606 2.8468
0.2600 2.8177 2.8966
(©.+.9) 0.+.0) ©+-1/3) | (1--1) 0.2800 2.8555 2.9439
B,=0 L 0 L 0 L 0
- 0.3000 2.8969 2.9932
I I i 0.4000 3.1186 3.1847
- . - @ -
L L © i 0.5000 3.3228 2.8034 3.3786 2.8405
C0+0) [ 040 [ ©+-1/2) [ (-1mm1) 0.6000 3.4927 3.5505
~ - 0.7000 3.6475 3.2012 3.6908 3.2392
H He Li C 0.8000 3.7841 3.8196
0.9000 3.9005 3.9324
FIG. 5. HF electron densities for the ground-state configurationt-0000 3.9942 3.6796 4.0202 3.7183

for H™, He, Li, and C. The field is in the plane of the page, in the
vertical direction. Field strength is given by the number at the top of
each panel, and the triplet of numbers at the bottom of each set @fhere| is the identity matrix\;;, 81, and 8, are arbitrary

conto_ur Iinefs Leplr)esents thehquantumfnuml;oM_sl‘(z,SZ)a TP:;? di- parameters  to improve convergence, andH,
mensions of the boxes are the same for abscissa and ordinate, w H=1,2,3d,p,v) is an Hermitian matrix whose form de-

the scale in Bohr radiiag, indicated on the leftmost axis. The large . . . .
ticks correspond to ten bohr radii. The contour lines are drawn apend_s on the e.Iectronlc conﬂggratuﬁﬁl]. To (.)btam. self- .
the same values of the electron density for each atom, and for aﬁonS|stent _f,oluuons for the orbitals, one begins with -a trial
field strengths. set of solutions, then repeats the process of computing and
diagonalizingH until convergence is achieved. This method
for converging open shell RHF solutions is very flexible due
[21], which has the advantage of allowing for easier conver{o the rather large number of free parameters in(EQ), and
gence to excited states. This method formulates a generalizéde explicit decoupling of occupied and unoccupied orbitals.
matrix such that convergence is obtained when the matrix With UHF one does not need elaborate procedures to ac-
elements between occupied and unoccupied orbitals vanishommodate different open shell situations; all electronic con-
If T4, T,, andT; denote matrices whose columns are eigendigurations are treated within the same formalism as given
vectors representing closed, open, and empty orbitals, rezbove in Eqs(7). We have used UHF for all of the ground-
spectively, then let state calculations performed in this work, and RHF for the
higher excited states of neutral He. The reason behind this
choice of method is stability; we have found the RHF
TIHgT:  AoTiHT, AaTiH T, method much more stable than UHF for highly excited
— + t t states. The possible mixing of occupied and unoccupied
H=| Ai2ToHsTy ToHpTo+ 44l A2sT2HoTs ' states in UHIE solutions oft%n resultspin convergence 'E)o a
ANsTEHITL  NpaTiHLT,  TIH, To+(81+ 8)l state of lower energy. In the discussion of results presented
below, we will be careful to label which HF method was
(100 used to obtain the presented numbers.
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TABLE VI. RHF energies for excited HM = —1 states, in TABLE VII. RHF energies for excited HM =—2 andM = — 3 states,

hartree. The results from Thurnet al. [13], are given byEry,. in hartree. The results from Thurnet al.[13], are given byE+,,. Note

that, for 8,=0.0001, the value oEq, for the 1s3d_, state is
1s3p_; 1s3d_; considerably lower thaEry. A discontinuity in the slope of the

Eqy, data atB,=0.0001 shows that this value is in error.

Bz —Ernur —Emm —Ernr —Emm

0.0000 2.0576 2.0556 1s3d_, 147, 1s4f 4

0.0001 2.0588 2.0588 2.0568 2.0568 B, —Erue —Eqp —Erue —Eqp —Erue —Eqp

0.0005 2.0633 2.0633 2.0614 2.0614

0.0010 2.0685 2.0685 2.0670 2.0670 00000 2.0556 2.0313 2.0313

0.0030 2.0851 2.0851 2.0869 2.0868 0.0001 2.0572 2.0578 2.0328 2.0328 2.0332 2.0332

0.0070 2.1078 2.1054 2.1196 2.1187 0.0005 2.0634 2.0634 2.0388 2.0388 2.0406 2.0406

0.0100 2.1208 2.1149 2.1408 2.1387 0.0010 2.0707 2.0707 2.0455 2.0455 2.0489 2.0489

0.0300 2.2044 2.1332 2.2548 22384 0.0030 2.0968 2.0967 2.0666 2.0666 2.0753 2.0753

0.0500 22839 2.3508 23131 0.0070 2.1390 2.1387 2.0965 2.0973 2.1157 2.1151

0.0700 23686 2.4366 23755 0.0100 2.1663 2.1655 2.1197 2.1159 2.1412 2.1400

0.1000 24812 25525 2.4540 0.0300 2.3110 2.3063 2.2212 2.2063 2.2783 2.2700

0.1200 2.5500 2.6257 0.0500 2.4310 2.4194 2.3118 2.2728 2.3916 2.3747

0.1400 2.6110 2.6913 0.0700 2.5380 2.5193 2.4063 2.3278 2.4938 2.4671

0.1600 2.6739 2.7575 0.1000 2.6824  2.6532 25253 2.3958 2.6344  2.5907

0.1800 2.7356 2.8188 0.1200 2.7675 2.5928 2.7208

0.2000 2.7936 2.8741 2.634g 01400 2.8446 26616 28022

0.2200 2.8438 29331 0.1600 2.9223 2.7263 2.8809

0.2400 2.8984 2.9968 0.1800 3.0019 2.7957 2.9551

0.2600 2.9507 3.0496 0.2000 3.0801 3.0146 2.8503 2.5447 3.0270 2.9222

0.2800 2.9931 3.1061 0.2200 3.1656 2.9184 3.0955

0.3000 3.0357 3.1559 2.7358 02400 32326 29721 31611

0.4000 3.2699 3.4004 0.2600 3.2959 3.0250 3.2246

0.5000 3.4663 2.8952 3.6053 3.0261 02800 3.3556 3.0837 3.2871

0.6000 3.6441 3.7845 0.3000 3.4121 3.2929 3.1347 2.6170 3.3484 3.1753

0.7000 3.8099 3.2998 3.9507 3.4405 04000  3.6961 3.3691 3.6235

0.8000 3.9561 4.0919 0.5000 3.9611 3.7016 3.5648 2.9874 3.8689 3.5421

0.9000 4.0838 4.2235 0.6000 4.1664 3.7489 4.0914

1.0000 4.2065 3.7853 4.3470 3.9355 0.7000 4.3600 3.9871 3.9155 3.4024 4.2853 3.7930
0.8000 4.5429 4.0714 4.4590
0.9000 4.7069 4.2050 4.6322

IIl. APPLICATION TO SMALL ATOMS 1.0000 48724 45145 4.3398 3.8987 4.7802  4.3488

A. Ground state and low-lying excitations . .
ying methods, shown in Fig. 1, demonstrates that the results of

Tables -1V contain the total energy as a function of mag-Thurneret al. are getting better as the field increases. The
netic field strength for the low-lying electronic states of convergence of the two HF methods as we enter the super-
H™, He, Li, and C. We also list, for H and He, the results strong regime is expected, since the assumption of cylindri-
from other methods of calculation. For Li and C no compari-cal symmetry becomes more accurate as we approach the
sons are made, as we have found no computations performediabatic regime. The variational energies of Lar§®6],
in this range of magnetic fields for atoms with more than twoE, ,,, which include electron correlation, are slightly lower
electrons. As far as we know, these are the first calculationthan our HF numbers, as expected, and match very well with
for these atoms for intermediate magnetic field strengths. previous QMC calculationg22], which used HF trial wave

We wish to understand the spectral properties of lightfunctions. Note that HF does not obtain the correct ground
atoms in this range of magnetic fields, where many astrostate for H at small fields. The electron correlatigthe
physical applications can be found. Figures 1-3, thereforajifference between the HF and the exact enejgesuffi-
show the computed energy spectrum for all of the atoms thatiently large to reorder the spin singlet and triplet states. At
we have considered thus far. Figure 1 shows the results listexkro field, it has been shown that Hhas only a single bound
in Tables | and Il for low-lying excitations of H and He. state [23], while in nonzero fields(even infinitesimally
The HF calculations of Thurnest al. [13], E1,,, are always small, there are an infinite number of bound std@4]. This
slightly higher than the present results. This discrepancy isudden plethora of bound states arises from the fact that the
due to the ansatz used in the Thure¢ral. method, where constant field pins the extra electron, and thus enhances the
the wave function was expanded in spherical harmonics foattraction between the neutral atom and the additional elec-
small fields, and Landau-like orbitals for large fields. Thetron. The QMC results for thesf state are exact, due to the
two expansions meet in the intermediate range of fieldosonic nature of the spatial component of the singlet wave
strength. Note that the H comparison between the two HF function.
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The case of He, a second benchmark of our calculationgM =0 to M = — 1, I, unchanged, an8, unchangey while

is also shown in Fig. 1, where we again compare our resultthe second, neaB,=0.16, is the expected transition to a

with those of Thurneet al, Larsen, and the QMC calcula- completely spin polarized stateM( is unchanged, but

tions. Again, note that the asymptotic expansion HF ap{il,=+1 toIl,= —1, andS,= — 1/2 toS,= — 3/2). A similar

proach is clearly inferior to our calculations, and again im—p|ot can be drawn for C, also shown in Fig. 2. In the case of

proves as the field strength gets very large, i&a# 1. AlsO ¢ however, there are two spin transitions. The first, near
note that the correlation energy is much larger for the S'”gleBZzO.OOS fromS,=—1 to S,=—2 (with M=—1 to

state than for the triplet, since the singlet state is much MO — _ 2 andIL. from —1 to +1), and the second, at
compact than the triplet. We will consider more highly ex- B,~0 18 to thze completely spin p;olarized staB= 3

cited states for neutral He in the next section. SNith both M and I1, unchangell Figure 4 displays the

As one would expect, as the field is increased, the groun round-state quantum numbers for the entire series of tran-
state of the system becomes spin polarized in order to mini2' quan . X .
jtions, as determined by our calculations. As the field is

mize the Zeeman energy, and reduce electron repulsion. FS

the two electron systems considered thus far, there has bedifreased, the spatial extent of the ground states for these
only one such transition, from a spin singl&=0) to a spin atoms becomes smaller, and there is a competition between

triplet (S=1). This transition occurs nea@,=0.02 for H™ the mutual repulsion of the electrons and the Zeeman energy.
and 8,=0.1 for He, and is also a transition iy, but notin ~ Just as for the two electron systems, the Iarger atoms in-
z parity. This type of transition is not difficult to understand. crease the rotational energy of the electrons in order to de-
As the field gets larger, the system tends to shrink, and bgrease the electron repulsion. Figure 5 shows the electron
raising the angular momentum of the most exterior electrongensity profiles for the ground state of each atom at several
the atom is able to increase the electronic separation. Figufferent values of the field strength. Atoms that in small

2 shows the energy of the first four electronic states of neufields are almost spherically symmetric acquire very compact
tral Li. In this case there are two transitions, the first neabutterfly or needlelike shapes as the field strength increases.
Bz=0.01 is a transition to a state of lower Zeeman energyAlso note the needlelike structure of the final completely

C 1s? 1s2s Is2p,
NN
1s2p_, 1s3s 1s3p_,

FIG. 6. Electronic density profiles for various
He excitations at zero magnetic field. This figure
is to be compared with Fig. 7, which shows the
same density profile at a large applied field. The
scale on both axes is the same, and corresponds
ISSd—l 153d—2 to —40ay=<x,z<40a,. The ordering of the states
with respect to energy is from left to right, top to

@ bottom.

€)

@ ;' B,=0
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1sRp,

1s3s

FIG. 7. Electronic density profiles for the he-
lium excitation spectrum aB,=0.2. The same
density values are contoured as in Fig. 6, but the
scale is twice as small, from 20a, to 208,. The
correct ordering of the states according to varia-
tional energy is given by the key in the bottom
right panel, with the $2p_, state as the lowest,
and the ¥ state as the highest.

1s4f_, 182
183s
s
AA 1s4f
Cm@ 1s2s
N 1s3d_,
A/ 132?0
1sdf_4
1s3d,, (,=0.2
1s2p_,

spin-polarized ground state at the largest magnetic field

value for each atom. IEI9Bz=(V |13 V)

=(Z%(L,+2S) + Z*Bz(X*+Y?))y ,

B. Spectrum of neutral He . .
P whereV is the HF many-body wave functiofSlater deter-
Due to its importance in astrophysical settings, we preserffinand, and(<” ) is the expectation value of operator.

in Tables V-VII RHF energies for more highly excited states':igure 8 considers two of the excited states of H&2d. ,

of neutral He. In Fig. 3 we compare these energies with thélnd 1s3p_,, in comparison with that taken from the results

HF calculations of Thurneet al. [13]. Thurneret al’s cal- of Thurneret al. Aside from the noise that originates with

culations have difficulty at intermediate field strength,b"’ls's's(at deficiencies, we note that the slope of our energy

) . curves is generally lower than the HF numerical quadrature
whereas our STO basis set calculations are much more flex- 9 y q

) X . ._Pprediction, and the difference grows with more highly ex-
ible. In Figs. 6 and 7 we compare the electronic densit 9 gny

i i i . cited levels. This difference points out the fact that the as-
profiles for a series of excited states of He =0 and  ymnotic expansion HF method has a more difficult time

Bz=0.2. Note that the applied field has completely reor-representing the spatially extended excited states, but im-
dered the energy spectrum, as well as compressing the atofioves as the states shrink, further evidence that the asymp-
to less than half its zero field size. totic method is best used in the adiabatic field regime, with
A quantity which is more sensitive to deficiencies in theintermediate field strengths treated by a more flexible tech-
applied basis set is the derivative of the energy with respediique.
to the magnetic field. Figure 8 shows the derivative of our One issue that arises in working with ST©Or similar
variational energy as a function of field strength, as deterbasis-set representations for the atomic wave function is the
mined by the Hellman-Feynman theorem, uncertain nature of convergence to the HF variational en-
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ergy. Ideally, one simply adds more basis elements or optigeneral basis sets allows a greater flexibility in representing
mizes the exponents of the basis further until a limiting valuethe atomic wave function as the magnetic field increases and
is achieved. In practice, however, one encounters limitationghe cylindrical symmetry associated with the magnetic field
in the amount of resources available, either in time or compecomes important, and indeed, dominant.
puter memory. Figure 9 shows a typical set of calculations to Basis-set HF calculations, however, are not a panacea,
get the lowest possible HF energy for the2p _, state of He  since they suffer from several shortcomings. The most im-
at Bz=1. Note that convergence is achieved when the numportant disadvantage is the lack of certainty in the complete-
ber of basis elementd/, is greater than 35, and the maxi- ness of a basis set for a given calculation. The only system-
mum | used(in the spherical harmonigsL ., iS greater atic approach, and the one that we have used here, involves
than 9. For more highly excited statésr outer shell elec- optimizing a set of basis elements with respect to the varia-
trons in larger atoms one must generally increasg,,, fur-  tional energy(the largest set that can be optimized in a rea-
ther, which also increaséd. We have usedli<70in all of  sonable length of timethen adding more elements until the
our calculations, which introduces a truncation error. Thisenergy no longer changes. The drawback of this approach is
truncation error increases with bothand 35 . that one may end up in a local minimum of the energy sur-
face, and not at the true HF result of lowest energy. Another
disadvantage of using STO or similar basis sets is the non-
negligible amount of computer time and memory required to
We have presented a series of HF calculations of grounddiagonalize and store large matrices, whereas on a radial grid
and excited-state properties for selected first-row neutral athe matrices may be sparse. For atomic calculations in the
oms and negative ions in magnetic fields in excess #G&)  absence of magnetic fields, numerical quadrature is generally
using a flexible STO basis set within the HF formalism. Os-simpler and more accurate. In the presence of strong mag-
cillator strengths present no difficulty for this method, andnetic fields, however, the flexibility of a basis-set approach is
are available upon request. Previous applications of the HEnparalleled.
method to atoms in intermediate strength magnetic fields Future efforts will use these accurate HF wave functions
have been limited to hydrogen and helium, and have relieds the starting point for a series of quantum Monte Carlo
on numerical quadrature methods, resulting in higher enetQMC) calculations on small atoms in strong magnetic
gies and a less accurate wave function. The use of morkelds, for which we will examine the behavior of electron

IV. SUMMARY AND CONCLUSIONS
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FIG. 9. The convergence of the
variational energysolid line) as a
function of the size of the basis,
— for a typical data point, in this case
. for the 1s2p_; state of He at
Bz=1. The dashed line indicates
the largestl value used in the
basis-set expansion.

E,, [hartree]
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20 30 40 50
Number of Basis Elements

correlation as a function of magnetic field strength andWe expand the interelectron distance in terms of spherical
atomic number. These efforts are part of a project to developarmonics and perform the angular integrals, yielding
exchange-correlation functionals in the context of current-
density functional theory25].
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APPENDIX: ELECTRON-ELECTRON MATRIX where
ELEMENT

So={ll ,—1,|l,—1 |+2,...], +I

We now consider the form of our matrix element for the o ={l =Ll pthd

electron-electron interaction matrix element in the STO ba- N{h =1, Ih=1+2, ... Ih+1},  (Ad)
sis. The usual approadi9] becomes numerically unstable )

at large values df in the spherical harmonic§,(6,¢), and S the set ofl values over which we need to sum, and
is therefore inadequate for very strong fields. One can instead (21,+1)(21,+1)(21,+1)(2l ,+1) 112

use a numerical evaluation of the integral which is inherently |I =(—1)™" Mo 7
stable for most reasonable choices of basis elements. (21+1)
The electron-electron matrix element in the STO basis is . .
given by X(1,,1,:;0,001,0¢1 ,,l,;—m, ,m,[l,m,—m,)
x{l\,1,;0,01,0)
lone= JdVldszM(rl)Xy(rl)r521Xx(r2)Xa(r2), X(y i =My Ml My =M 8 . (A5)
o L2 v
(A1)

is the value of the angular integrals for a givén and
where x,=R,(r)Y, mﬂ(i9 #), 1z is the interelectron dis- (|, |,:m;,m,|l,m) are Clebsch-Gordan coefficients. The
tance, R, (r)=N,r" “lema%  and N =[(2a, ). *1) Clebsch-Gordan coefficients may be tabulated for a given
(2n )1 12 | is the normallza'uon factor for ba3|s elememt  calculation, and present no difficulty, even for very laige
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The problem arises in evaluating the radial integrals in Eq. | —  a"T(m+n)
(A3) when the individuall's can be quite large. Changing GMMZNMMW
variables on the inner integral, and using (a,+a,)v
yields a standard form, XoFi(Am+n;n+1;a/(at B)), (A8)
whereI'(i)=(i—1)! is the usual gamma function. For this
G -N_ fwunﬂ+np—|—1e—(a#+ay>u particular application, it is actually advantageous to sum the
pyko pvNe | o hypergeometric function directly. After using the series ex-
pansion for,F; and performing some algebraic manipula-
Xy(1+n+n,+l,(ay+a,)u),  (A6) tions, we obtain
. ) . | (n—1)!
wherey is the incomplete gamma function and GMW,:NMNVNANUW
_ N,N,N\N,, " “(mtn+k=1)!{ a \K A0
Nﬂvko_(a}\+a(r)n}\+n”+l+l- (A7) e (I’H— k)! a+ ' ( )

] . o In general the sum for a hypergeometric function may not
The integral in Eq.(16) is in standard table$26]. Let  converge, but for this situation the sum is well-behaved and

m=n,+n,—l, n=1+l+n+n,, a=a+a,, and convergent. In practice, one can express the terms if1Ey.
B=a,+a,. The radial integral can now be expressed inrecursively and quickly evaluate the sum to a desired toler-
terms of a confluent hypergeometric functiosfr, 4, ance.
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