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We present comprehensive calculations of the electronic structure of selected first-row atoms in uniform
magnetic fields of strength<1010 G, within a flexible implementation of the Hartree-Fock formalism. Ground-
state and low-lying excited state properties are presented for first-row atoms He, Li, C, and ion H2. We predict
and describe a series of ground-state quantum transitions as a function of magnetic field strength. Due to its
astrophysical importance, highly excited states of neutral He are also computed. Comparisons are made with
previous works, where available.
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I. INTRODUCTION

The behavior of atoms in very strong magnetic fields is
not a topic limited only to theoretical interest. Studies of
atoms under these extreme conditions first intensified with
observations of excitons in semiconductors with small effec-
tive masses and large dielectric constants@1#, which result in
very large effective magnetic fields. For a time, standard per-
turbative methods@2#, valid only in relatively small magnetic
fields, were sufficient for understanding these systems. Work
on quantum dots@3#, observations of neutron stars possess-
ing fields in excess of 1012 G @4#, and the detection of mag-
netic white dwarf stars with megagauss fields@5# has further
increased interest in this area. Our theoretical knowledge of
the behavior of these systems has not kept pace with the
experimental work, however, and accurate calculations for
multielectron atoms do not exist in the range of magnetic
fields encountered in these systems. It is the primary goal of
this work to help fill that gap. In a regime where Coulomb
and magnetic effects are of nearly equal importance, and
neither can be treated as a perturbation, lie many interesting
applications, both in astrophysics and condensed matter
physics. Unfortunately, this regime is also very difficult to
solve, since the combination of the cylindrical symmetry of
the magnetic field and the spherical symmetry of the Cou-
lomb potential prevents the Schro¨dinger equation from being
separable and integrable. Previous approaches to this prob-
lem have been concentrated on the two limits, very weak
magnetic fields~where the magnetic field may be treated as a
perturbation!, and very strong magnetic fields~where cylin-
drical symmetry is imposed on the wave function in the so-
called adiabatic approximation@6#!. Several recent works,
however, have attempted to bridge this gap and deal with the
intermediate~or strong field! regime. We can work in dimen-
sionless atomic units by introducingbZ5ea0

2B/2\cZ2

5B/B0Z
2, whereB054.73109 G, a0 is the Bohr radius,

and Z is the atomic charge. Depending on the relative
strength between Coulomb and magnetic forces, we can
characterize three different regimes: the low (bZ<1023), the
intermediate ~strong! (1023<bZ<1), and high ~super-
strong! (bZ@1) field regimes.

Rosneret al. @7# have used the numerical Hartree-Fock

~HF! method to calculate many states of the hydrogen atom
(Z51) in fields up tobZ<103. In these computations, the
wave function is expanded in terms of either spherical har-
monics or Landau-like orbitals~adiabatic basis set! depend-
ing on the field strength, and the resulting Hartree-Fock
equations are then integrated numerically. This set of com-
puted energies and oscillator strengths has been used to iden-
tify many spectral features of compact stellar remnants, and
is often used as a benchmark for other methods@8#.

For systems involving more than one electron, efforts
have largely been concentrated on the high field~adiabatic!
regime, where the magnetic forces dominate, and the wave
function is assumed to have cylindrical symmetry. Mueller
et al. @9# used cylindrical trial wave functions to compute
variational upper bounds for the lowest energy states of
H2, He, and Li1 in the adiabatic approximation for fields in
excess of 1010 G. Vincke and Baye@10# also obtained varia-
tional estimates for H2 and He for magnetic fields in excess
of 1010 G. Again in the adiabatic limit, with fields larger than
1011 G, Miller and Neuhauser@11# and Neuhauseret al. @12#
have used HF methods on small atoms and molecular chains.
Work at such strong magnetic fields, while not complete, is
made somewhat easier by the dominance of the magnetic
field in this regime. Cylindrical symmetry may be assumed
for the mathematical form of the desired wave function in
this asymptotic regime. The situation at intermediate fields is
more complex.

At intermediate field strengths, the nearly equal impor-
tance of Coulomb and magnetic effects has made progress
very difficult, and thus far only two electron problems have
been attempted. This range of field strengths is plagued by
the fact that neither the spherical symmetry of the Coulombic
potential nor the cylindrical symmetry of the constant mag-
netic field may be assumed to dominate. Thorough HF cal-
culations using the same method as Rosner’s hydrogenic cal-
culations@7# have been performed for heliumlike atoms@13#,
but these results, as we shall see, have difficulty in the region
where the cylindrical and spherical expansions meet. Less
complete variational calculations were performed for H2 by
Henry et al. @14# (bZ,0.2), and for He by Surmelianet al.
@15# for bZ,20. Both sets of variational calculations used a
trial wave function which was a sum of slater orbitals.
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Larsen@16# also performed variational calculations on sev-
eral low-lying excited states of H2 and He for various fields
of bZ<5, paying particular attention to the binding energy of
H2. A treatment of diatomic hydrogen was carried out by
Ortiz et al. @17# using quantum Monte Carlo~QMC! methods
in fields ranging frombZ50.1 tobZ.200. We have studied
multielectron atoms in this intermediate regime, using a basis
set HF approach that is flexible enough to balance the com-
peting symmetries between the Coulomb and magnetic inter-
actions. This work is the precursor of a QMC study of elec-
tron correlation at high magnetic fields in atomic systems.
The QMC method requires high quality trial wave functions,
hence our immediate need for the calculations presented
here. At the same time, the method and tables presented here
may be of some use to astrophysicists analyzing unexplained
spectra from magnetic white dwarf stars, for example
GD229, for which helium has been suggested as a possible
explanation for the pronounced yet nonhydrogenic spectral
features@18#.

II. HARTREE-FOCK APPROACH TO ATOMS
IN MAGNETIC FIELDS

The Hamiltonian in atomic units for an atom in constant
magnetic field is given by

Ĥ5(
i51

N F2
¹ i
2

2
2
Z

r i
1

~Z2bZ!2

2
~xi

21yi
2!G

1Z2bZ~Lz12Sz!1 (
1< i, j<N

1

r i j
, ~1!

whereLz5( i51
N l iz andSz5( i51

N siz are thez component of
the total angular momentum and spin of the system, respec-
tively, and lengths are in units of the Bohr radiusa0 . We
have chosen the magnetic field to be parallel to thez axis,
and the symmetric gauge, which has vector potential
A5B(2y,x,0)/2. In the absence of external fields the eigen-
values ofL2, Lz , S2, Sz , and parity,P, are good quantum
numbers. When the magnetic field is turned on, the rotational
invariance is broken and the only conserved quantum num-
bers are the eigenvalues ofLz , S2, Sz , and P ~alterna-
tively, we will use thez parity,Pz). With a different choice

of gauge,Lz no longer commutes withĤ; instead one must
use a gauge-covariant form@17#. We will still use L2 to
characterize atomic orbitals coming from solutions of the
Hamiltonian, even thoughL2 is not a conserved quantity.
Although we are using the convenient spectroscopic notation
provided by theL2 operator (s,p,d, . . . ), we are in no way
biasing our results by imposing theL2 symmetry—it is sim-
ply a bookkeeping tool for tracking the electronic states over
a range of magnetic field strengths that includes zero field.
The diamagnetic term in the Hamiltonian couples states that
differ by two in l . In large fields, for example, our labeling
an electronic state as 1s denotes the first state of even parity
s1d1g1•••, which would be the familiar 1s state at zero
field. Taking our wave function to be a single Slater deter-
minant and minimizing the energy of the above Hamiltonian
with respect to the electronic spin orbitals,$ca%

@ca(x)5a(s)^ fa(r ), where a(s) is a spin function,
fa(r ) a spatial orbital, andx5(s,r )#, we obtain the usual
Hartree-Fock equations,

Fca5eaca , ~2!

whereF is the single-particle Fock operator,

F5h~r !1(
b

~J b2K b!, ~3!

and

h~r !52
1

2
¹22

Z

r
1

~Z2bZ!2

2
~x21y2!1Z2bZ~ l z12sz!,

J bca5F E dx8ur2r 8u21/2cb* ~x8!cb~x8!Gca~x!,

K bca5F E dx8ur2r 8u21/2cb* ~x8!ca~x8!Gcb~x!. ~4!

Note that we are still considering the integrals over the
spin degrees of freedom for the direct,J , and exchange,
K , integrals. Rather than integrate the Hartree-Fock equa-
tions numerically on a radial grid, we choose to expand each
electronic orbital in a basis set,$xm(r )%, of our choosing,

fa~r !5 (
m51

M

camxm~r !, ~5!

whereM is the number of basis set elements. This expansion
reduces the problem to an algebraic one, upon which well
established and robust solution methods can be brought to
bear. One is also free to choose the dominant symmetry for a
given magnetic field regime. At large fields we can use cy-
lindrical basis functions~Landau-like orbitals!, while at
lower fields strengths it is more advantageous to use basis
elements with spherical symmetry. For the intermediate
range of magnetic field strength considered here, we have
chosen to use Slater-type orbitals~STO! as our basis ele-
ments, which have the form

xm5Rm~r !Ylmmm
~u,f!, ~6!

whereRm(r )5Nmr
nm21e2amr , Ylmmm

are the usual spherical

harmonics, andNm5@(2am)
(2nm11)/(2nm)! #

1/2 is the nor-
malization constant. Note that this basis-set formulation has
a distinct advantage over the direct radial-grid integration
method in this particular application of atoms in magnetic
fields. With direct integration of the HF equations@Eq. ~2!#,
one must make an assumption about the symmetry of the
wave function to reduce the partial differential equation to a
more manageable~one-dimensional! ordinary one. At inter-
mediate field strengths, neither cylindrical nor spherical sym-
metry dominates, making such an assumption hazardous.
With the basis-set formalism, one can simply add more basis
elements of different symmetry in a systematic way. In prac-
tice, we optimize the exponents,$am%, of the basis functions
using a conjugate gradient approach, then attempt to saturate
any remaining freedom in the basis with additional basis
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elements. One should also note that the STO basis is com-
plete for any field strength, even if many terms of higher
order in l must be included. This advantage is not shared by
the adiabatic basis set, in which the wave function is as-
sumed to possess cylindrical symmetry. The individual ma-
trix elements for the STO basis, even in magnetic fields, are
straightforward @19#, with the exception of the electron-
electron interaction. We discuss our method for computing
these integrals in the Appendix.

We will use two different approaches to this Hartree-Fock
problem, which differ in their assumptions about the initial
Slater determinant used in the minimization step above. The
first is spin-restricted Hartree-Fock~RHF!, in which spin or-
bitals are pure space-spin products to be occupied in pairs,
with a common spatial orbital factor. The second method is
spin-unrestricted~UHF!, in which the orbitals corresponding
to different spins are allowed to differ. Although UHF gen-

erally obtains a better variational energy than RHF for open
shell configurations, UHF wave functions, unlike their RHF
counterparts, are not eigenstates ofS2. For trial wave func-
tions in QMC, it is desirable to begin with eigenstates of
S2, even though a broken symmetry state could have a lower
variational energy. One could also project out an eigenstate
of spin from the unrestricted calculations, but this additional
step presents a needless complication. We will briefly outline
the approach that we have taken for using UHF and RHF.

The UHF method is formally much simpler than that of
RHF. We have an eigenvalue problem for orbitals of each
spin type,

f̂ a~r !fa
a~r !5ea

afa
a~r !,

f̂ b~r !fa
b~r !5ea

bfa
b~r !, ~7!

TABLE I. UHF energies for H2, in hartree. The results from a numerical quadrature solution to the HF
equations are from Thurneret al. @13#, ETh , and the variational calculations of Larsen@16#, Elar , are also
included.ELar includes electron correlation, so it should be compared with the Monte Carlo results@22#,
EMC . Note that the Monte Carlo approach is slightly different, depending on the state; the 1s2 state used
diffusion Monte Carlo~DMC!, while the 1s2p21 state used fixed-phase Monte Carlo~FPMC!.

bZ EUHF(1s
2) EUHF(1s2p21) ETh ELar EMC

0.0001 0.4879 0.5001 0.5001
0.0005 0.4879 0.5004 0.5004
0.0010 0.4879 0.5008 0.5008 0.5286~10! 1s2

0.0030 0.4879 0.5025 0.5023
0.0070 0.4876 0.5063 0.5053
0.0100 0.4873 0.5091 0.5076 0.5270~6! 1s2

0.0300 0.4826 0.5280 0.5234
0.0500 0.4742 0.5460 0.5399 0.549~1!

0.0700 0.4629 0.5656 0.5569
0.1000 0.4417 0.5934 0.5823 0.598~1! 0.5965~4! 1s2p21

0.2000 0.3472 0.6803 0.6587
0.3000 0.2308 0.7537 0.7201 0.7606~6! 1s2p21

0.4000 0.1011 0.8177
0.5000 0.8729 0.8094 0.880~1! 0.8821~6! 1s2p21

0.6000 0.9223
0.7000 0.9684 0.8699 0.9766~9! 1s2p21

0.8000 1.0101
0.9000 1.0492
1.0000 1.0863 0.9980 1.0778~6! 1s2p21

1.1000 1.1162
1.2000 1.1467
1.3000 1.1877
1.4000 1.2175
1.5000 1.2463
1.6000 1.2723
1.7000 1.2987
1.8000 1.3236
1.9000 1.3464
2.0000 1.3688 1.3036
2.1000 1.3918
2.2000 1.4158
2.3000 1.4397
2.4000 1.4602
2.5000 1.4811
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where f̂ (r ) is the single-body operator,

f̂ a~r1!fa
a~r1!5h~r1!fa

a~r1!1 (
b51

Na

@Jb
a2Kb

a#fa
a~r1!

1 (
b51

Nb

Jb
bfa

a~r1!, ~8!

anda andb denote the two possible spin species (s51/2).
To obtain the UHF solutions, one introduces a basis and
solves simultaneously the coupled equations for the two spin
types.

In the RHF approach, there are two important cases to be
considered, closed electronic shells and open shells. The
closed shell RHF technique, developed as an algebraic prob-
lem with basis set expansions by Roothaan@19#, is one of the
simplest to implement, but suffers from limited applicability
~due to the relative prevalence of open shell systems!. For
closed electronic shells, one solves

f̂fa~r !5h~r !fa~r !1 (
b51

N/2

@2Jb2Kb#fa~r !, ~9!

where we have performed the integral over spin forJ and
K , denoting the resulting direct and exchange spatial inte-
gralsJ andK. After introducing a basis for the orbitals, one
solves the resulting matrix equation for the coefficients
$cam%. This simple sum over direct and exchange contribu-
tions when each orbital is doubly occupied becomes more
complex in the open shell case. For open shell RHF, many
different approaches have been formulated@20#. We have
settled on an approach based on that of Guest and Saunders

TABLE II. UHF Energies for low-lying He states, in hartree.ETh are the
values reported for numerical quadrature@13#.

1s2 1s2s 1s2p0 1s2p21

bZ 2EUHF 2EUHF 2ETh 2EUHF 2ETh 2EUHF 2ETh

0.0000 2.8617 2.1742 2.1314 2.1314

0.0001 2.8617 2.1751 2.1751 2.1323 2.1322 2.1326 2.1326

0.0005 2.8617 2.1782 2.1782 2.1354 2.1354 2.1374 2.1374

0.0010 2.8617 2.1821 2.1821 2.1394 2.1394 2.1433 2.1433

0.0030 2.8616 2.1972 2.1972 2.1547 2.1547 2.1659 2.1659

0.0070 2.8611 2.2245 2.2244 2.1834 2.1833 2.2076 2.2076

0.0100 2.8604 2.2429 2.2426 2.2035 2.2032 2.2365 2.2363

0.0300 2.8504 2.3381 2.3306 2.3198 2.3150 2.3992 2.3973

0.0500 2.8310 2.4112 2.3821 2.4196 2.4056 2.5366 2.5312

0.0700 2.8030 2.4771 2.4114 2.5102 2.4842 2.6606 2.6516

0.1000 2.7468 2.5712 2.4266 2.6347 2.5866 2.8299 2.8138

0.1200 2.6331 2.7114 2.9343

0.1400 2.6934 2.7842 3.0330

0.1600 2.7517 2.8534 3.1266

0.1800 2.8084 2.9196 3.2161

0.2000 2.8632 2.9828 2.8394 3.3017 3.2540

0.2200 2.9169 3.0435 3.3840

0.2400 2.9690 3.1017 3.4631

0.2600 3.0194 3.1580 3.5384

0.2800 3.0682 3.2113 3.6117

0.3000 2.0923 3.1127 3.2641 3.0033 3.6839 3.5948

0.4000 3.3303 3.5048 4.0096

0.5000 1.1762 3.5114 2.9340 3.7141 3.1728 4.2950 4.1016

0.6000 3.7001 3.8997 4.5502

0.7000 0.1275 3.8778 3.3381 4.0698 3.5665 4.7853 4.4658

0.8000 4.0296 4.2207 5.0016

0.9000 4.1671 4.3595 5.1976

1.0000 -0.168 4.2891 3.8231 4.4861 4.0609 5.3793 4.9350

TABLE III. UHF energies,2EUHF , for low-lying states of Li,
in hartree.

bZ 1s22s 1s22p21 1s2s2p21 1s2p02p21

0.0000 7.4327 7.3651 5.3583 5.2318
0.0001 7.4337 7.3669 5.3625 5.2355
0.0005 7.4371 7.3738 5.3767 5.2497
0.0010 7.4412 7.3832 5.3943 5.2673
0.0030 7.4553 7.4114 5.4617 5.3352
0.0070 7.4739 7.4565 5.5837 5.4599
0.0100 7.4814 7.4832 5.6656 5.5455
0.0300 7.4731 7.5965 6.0844 6.0159
0.0500 7.4240 7.6563 6.3993 6.3956
0.0700 7.3609 7.6820 6.6720 6.7284
0.1000 7.2446 7.6747 7.0403 7.1711
0.1200 7.6459 7.2826 7.4404
0.2000 6.6640 7.3627 8.1159 8.3564
0.2200 7.2722 8.3165 8.5578
0.2400 7.1655 8.5075 8.7526
0.2600 7.0391 8.6767 8.9371
0.2800 6.9050 8.8375 9.1160
0.3000 5.8772 6.7747 9.0035 9.2755

TABLE IV. UHF energies,2EUHF , for low-lying states of C,
in hartree.

bZ Sz521 Sz522 Sz523

0.0001 37.689 37.312 26.329
0.0005 37.701 37.380 26.439
0.0010 37.743 37.456 26.565
0.0030 37.793 37.728 26.982
0.0070 38.134 38.183 27.644
0.0100 38.325 38.470 28.059
0.0300 38.713 39.598 30.331
0.0500 38.376 40.193 32.035
0.0700 37.677 40.327 33.277
0.1000 36.239 40.361 35.092
0.1200 35.196 40.240 36.089
0.1400 39.983 36.842
0.1600 39.628 37.680
0.1800 39.283 38.154
0.2000 29.969 38.661 39.323
0.2200 38.055 39.726
0.2400 37.370 40.473
0.2600 36.676 41.042
0.2800 35.895
0.3000 21.472 35.068
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FIG. 1. Ground-state energy of
the H2 ion ~top! and the He atom
~bottom! as a function of magnetic
field strength, determined by sev-
eral different methods. The solid
and dashed lines are UHF data of
the present work. Crosses are
variational calculations of Larsen
@16#, while the dotted line repre-
sents the HF data of Thurneret al.
@13#. Open squares and triangles
are the QMC data of Jones and
Ortiz @22#.

FIG. 2. Ground-state energies
of neutral Li ~top! and C~bottom!
as a function of magnetic field
strength. Note the transitions to
states of various spin polarization
as the field increases.
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FIG. 3. Energies of some ex-
cited states of neutral He. The
points represent the data of
Thurner et al. @13#, while the
curves show our data. The present
results obtain a lower variational
energy for all excitations in the
range of fields considered here,
0<bZ<1.

FIG. 4. HF ground-state quan-
tum numbers as a function of mag-
netic field for the first-row atoms
and ion considered in the present
work; H2, He, Li, and C.
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@21#, which has the advantage of allowing for easier conver-
gence to excited states. This method formulates a generalized
matrix such that convergence is obtained when the matrix
elements between occupied and unoccupied orbitals vanish.
If T1 , T2 , andT3 denote matrices whose columns are eigen-
vectors representing closed, open, and empty orbitals, re-
spectively, then let

H̄5S T1
†HdT1 l12T1

†H3T2 l13T1
†H1T3

l12T2
†H3T1 T2

†HpT21d1I l23T2
†H2T3

l13T3
†H1T1 l23T3

†H2T2 T3
†HvT31~d11d2!I

D ,
~10!

whereI is the identity matrix,l i j , d1 , andd2 are arbitrary
parameters to improve convergence, andHn

(n51,2,3,d,p,v) is an Hermitian matrix whose form de-
pends on the electronic configuration@21#. To obtain self-
consistent solutions for the orbitals, one begins with a trial
set of solutions, then repeats the process of computing and
diagonalizingH̄ until convergence is achieved. This method
for converging open shell RHF solutions is very flexible due
to the rather large number of free parameters in Eq.~10!, and
the explicit decoupling of occupied and unoccupied orbitals.

With UHF one does not need elaborate procedures to ac-
commodate different open shell situations; all electronic con-
figurations are treated within the same formalism as given
above in Eqs.~7!. We have used UHF for all of the ground-
state calculations performed in this work, and RHF for the
higher excited states of neutral He. The reason behind this
choice of method is stability; we have found the RHF
method much more stable than UHF for highly excited
states. The possible mixing of occupied and unoccupied
states in UHF solutions often results in convergence to a
state of lower energy. In the discussion of results presented
below, we will be careful to label which HF method was
used to obtain the presented numbers.

FIG. 5. HF electron densities for the ground-state configuration
for H2, He, Li, and C. The field is in the plane of the page, in the
vertical direction. Field strength is given by the number at the top of
each panel, and the triplet of numbers at the bottom of each set of
contour lines represents the quantum numbers (M ,Pz ,Sz). The di-
mensions of the boxes are the same for abscissa and ordinate, with
the scale in Bohr radii,a0 , indicated on the leftmost axis. The large
ticks correspond to ten bohr radii. The contour lines are drawn at
the same values of the electron density for each atom, and for all
field strengths.

TABLE V. RHF energies for excited HeM50 states, in har-
tree. The results from Thurneret al. @13# are given byETh .

1s3s11s3d0 1s3p0

bZ 2ERHF 2ETh 2ERHF 2ETh

0.0000 2.0685 2.0576
0.0001 2.0693 2.0693 2.0584 2.0584
0.0005 2.0723 2.0723 2.0615 2.0615
0.0010 2.0758 2.0758 2.0651 2.0651
0.0030 2.0869 2.0863 2.0774 2.0771
0.0070 2.1052 2.0961 2.0969 2.0930
0.0100 2.1179 2.1035 2.1094 2.1007
0.0300 2.1927 2.1381 2.1906 2.1148
0.0500 2.2615 2.1487 2.2701
0.0700 2.3220 2.3383
0.1000 2.4071 2.4401
0.1200 2.4694 2.5112
0.1400 2.5122 2.5675
0.1600 2.5723 2.6335
0.1800 2.6199 2.6885
0.2000 2.6746 2.7447
0.2200 2.7192 2.7947
0.2400 2.7606 2.8468
0.2600 2.8177 2.8966
0.2800 2.8555 2.9439
0.3000 2.8969 2.9932
0.4000 3.1186 3.1847
0.5000 3.3228 2.8034 3.3786 2.8405
0.6000 3.4927 3.5505
0.7000 3.6475 3.2012 3.6908 3.2392
0.8000 3.7841 3.8196
0.9000 3.9005 3.9324
1.0000 3.9942 3.6796 4.0202 3.7183
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III. APPLICATION TO SMALL ATOMS

A. Ground state and low-lying excitations

Tables I–IV contain the total energy as a function of mag-
netic field strength for the low-lying electronic states of
H2, He, Li, and C. We also list, for H2 and He, the results
from other methods of calculation. For Li and C no compari-
sons are made, as we have found no computations performed
in this range of magnetic fields for atoms with more than two
electrons. As far as we know, these are the first calculations
for these atoms for intermediate magnetic field strengths.

We wish to understand the spectral properties of light
atoms in this range of magnetic fields, where many astro-
physical applications can be found. Figures 1–3, therefore,
show the computed energy spectrum for all of the atoms that
we have considered thus far. Figure 1 shows the results listed
in Tables I and II for low-lying excitations of H2 and He.
The HF calculations of Thurneret al. @13#, ETh , are always
slightly higher than the present results. This discrepancy is
due to the ansatz used in the Thurneret al.method, where
the wave function was expanded in spherical harmonics for
small fields, and Landau-like orbitals for large fields. The
two expansions meet in the intermediate range of field
strength. Note that the H2 comparison between the two HF

methods, shown in Fig. 1, demonstrates that the results of
Thurneret al. are getting better as the field increases. The
convergence of the two HF methods as we enter the super-
strong regime is expected, since the assumption of cylindri-
cal symmetry becomes more accurate as we approach the
adiabatic regime. The variational energies of Larsen@16#,
ELar , which include electron correlation, are slightly lower
than our HF numbers, as expected, and match very well with
previous QMC calculations@22#, which used HF trial wave
functions. Note that HF does not obtain the correct ground
state for H2 at small fields. The electron correlation~the
difference between the HF and the exact energies! is suffi-
ciently large to reorder the spin singlet and triplet states. At
zero field, it has been shown that H2 has only a single bound
state @23#, while in nonzero fields~even infinitesimally
small!, there are an infinite number of bound states@24#. This
sudden plethora of bound states arises from the fact that the
constant field pins the extra electron, and thus enhances the
attraction between the neutral atom and the additional elec-
tron. The QMC results for the 1s2 state are exact, due to the
bosonic nature of the spatial component of the singlet wave
function.

TABLE VI. RHF energies for excited HeM521 states, in
hartree. The results from Thurneret al. @13#, are given byETh .

1s3p21 1s3d21

bZ 2ERHF 2ETh 2ERHF 2ETh

0.0000 2.0576 2.0556
0.0001 2.0588 2.0588 2.0568 2.0568
0.0005 2.0633 2.0633 2.0614 2.0614
0.0010 2.0685 2.0685 2.0670 2.0670
0.0030 2.0851 2.0851 2.0869 2.0868
0.0070 2.1078 2.1054 2.1196 2.1187
0.0100 2.1208 2.1149 2.1408 2.1387
0.0300 2.2044 2.1332 2.2548 2.2384
0.0500 2.2839 2.3508 2.3131
0.0700 2.3686 2.4366 2.3755
0.1000 2.4812 2.5525 2.4540
0.1200 2.5500 2.6257
0.1400 2.6110 2.6913
0.1600 2.6739 2.7575
0.1800 2.7356 2.8188
0.2000 2.7936 2.8741 2.6348
0.2200 2.8438 2.9331
0.2400 2.8984 2.9968
0.2600 2.9507 3.0496
0.2800 2.9931 3.1061
0.3000 3.0357 3.1559 2.7358
0.4000 3.2699 3.4004
0.5000 3.4663 2.8952 3.6053 3.0261
0.6000 3.6441 3.7845
0.7000 3.8099 3.2998 3.9507 3.4405
0.8000 3.9561 4.0919
0.9000 4.0838 4.2235
1.0000 4.2065 3.7853 4.3470 3.9355

TABLE VII. RHF energies for excited HeM522 andM523 states,
in hartree. The results from Thurneret al. @13#, are given byETh . Note
that, for bZ50.0001, the value ofETh for the 1s3d22 state is
considerably lower thanERHF . A discontinuity in the slope of the
ETh data atbZ50.0001 shows that this value is in error.

1s3d22 1s4 f22 1s4 f23

bZ 2ERHF 2ETh 2ERHF 2ETh 2ERHF 2ETh

0.0000 2.0556 2.0313 2.0313

0.0001 2.0572 2.0578 2.0328 2.0328 2.0332 2.0332

0.0005 2.0634 2.0634 2.0388 2.0388 2.0406 2.0406

0.0010 2.0707 2.0707 2.0455 2.0455 2.0489 2.0489

0.0030 2.0968 2.0967 2.0666 2.0666 2.0753 2.0753

0.0070 2.1390 2.1387 2.0965 2.0973 2.1157 2.1151

0.0100 2.1663 2.1655 2.1197 2.1159 2.1412 2.1400

0.0300 2.3110 2.3063 2.2212 2.2063 2.2783 2.2700

0.0500 2.4310 2.4194 2.3118 2.2728 2.3916 2.3747

0.0700 2.5380 2.5193 2.4063 2.3278 2.4938 2.4671

0.1000 2.6824 2.6532 2.5253 2.3958 2.6344 2.5907

0.1200 2.7675 2.5928 2.7208

0.1400 2.8446 2.6616 2.8022

0.1600 2.9223 2.7263 2.8809

0.1800 3.0019 2.7957 2.9551

0.2000 3.0801 3.0146 2.8503 2.5447 3.0270 2.9222

0.2200 3.1656 2.9184 3.0955

0.2400 3.2326 2.9721 3.1611

0.2600 3.2959 3.0250 3.2246

0.2800 3.3556 3.0837 3.2871

0.3000 3.4121 3.2929 3.1347 2.6170 3.3484 3.1753

0.4000 3.6961 3.3691 3.6235

0.5000 3.9611 3.7016 3.5648 2.9874 3.8689 3.5421

0.6000 4.1664 3.7489 4.0914

0.7000 4.3600 3.9871 3.9155 3.4024 4.2853 3.7930

0.8000 4.5429 4.0714 4.4590

0.9000 4.7069 4.2050 4.6322

1.0000 4.8724 4.5145 4.3398 3.8987 4.7802 4.3488
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The case of He, a second benchmark of our calculations,
is also shown in Fig. 1, where we again compare our results
with those of Thurneret al., Larsen, and the QMC calcula-
tions. Again, note that the asymptotic expansion HF ap-
proach is clearly inferior to our calculations, and again im-
proves as the field strength gets very large, nearbZ>1. Also
note that the correlation energy is much larger for the singlet
state than for the triplet, since the singlet state is much more
compact than the triplet. We will consider more highly ex-
cited states for neutral He in the next section.

As one would expect, as the field is increased, the ground
state of the system becomes spin polarized in order to mini-
mize the Zeeman energy, and reduce electron repulsion. For
the two electron systems considered thus far, there has been
only one such transition, from a spin singlet (S50) to a spin
triplet (S51). This transition occurs nearbZ.0.02 for H2

andbZ.0.1 for He, and is also a transition inLz , but not in
z parity. This type of transition is not difficult to understand.
As the field gets larger, the system tends to shrink, and by
raising the angular momentum of the most exterior electron,
the atom is able to increase the electronic separation. Figure
2 shows the energy of the first four electronic states of neu-
tral Li. In this case there are two transitions, the first near
bZ.0.01 is a transition to a state of lower Zeeman energy

(M50 toM521,Pz unchanged, andSz unchanged!, while
the second, nearbZ.0.16, is the expected transition to a
completely spin polarized state (M is unchanged, but
Pz511 toPz521, andSz521/2 toSz523/2). A similar
plot can be drawn for C, also shown in Fig. 2. In the case of
C, however, there are two spin transitions. The first, near
bZ.0.005, from Sz521 to Sz522 ~with M521 to
M522, and Pz from 21 to 11), and the second, at
bZ.0.18, to the completely spin polarized state,Sz523
~with both M and Pz unchanged!. Figure 4 displays the
ground-state quantum numbers for the entire series of tran-
sitions, as determined by our calculations. As the field is
increased, the spatial extent of the ground states for these
atoms becomes smaller, and there is a competition between
the mutual repulsion of the electrons and the Zeeman energy.
Just as for the two electron systems, the larger atoms in-
crease the rotational energy of the electrons in order to de-
crease the electron repulsion. Figure 5 shows the electron
density profiles for the ground state of each atom at several
different values of the field strength. Atoms that in small
fields are almost spherically symmetric acquire very compact
butterfly or needlelike shapes as the field strength increases.
Also note the needlelike structure of the final completely

FIG. 6. Electronic density profiles for various
He excitations at zero magnetic field. This figure
is to be compared with Fig. 7, which shows the
same density profile at a large applied field. The
scale on both axes is the same, and corresponds
to240a0<x,z<40a0 . The ordering of the states
with respect to energy is from left to right, top to
bottom.
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spin-polarized ground state at the largest magnetic field
value for each atom.

B. Spectrum of neutral He

Due to its importance in astrophysical settings, we present
in Tables V–VII RHF energies for more highly excited states
of neutral He. In Fig. 3 we compare these energies with the
HF calculations of Thurneret al. @13#. Thurneret al.’s cal-
culations have difficulty at intermediate field strength,
whereas our STO basis set calculations are much more flex-
ible. In Figs. 6 and 7 we compare the electronic density
profiles for a series of excited states of He forbZ50 and
bZ50.2. Note that the applied field has completely reor-
dered the energy spectrum, as well as compressing the atom
to less than half its zero field size.

A quantity which is more sensitive to deficiencies in the
applied basis set is the derivative of the energy with respect
to the magnetic field. Figure 8 shows the derivative of our
variational energy as a function of field strength, as deter-
mined by the Hellman-Feynman theorem,

]E/]bZ5^Cu]Ĥ/]bZuC&

5^Z2~Lz12Sz!1Z4bZ~x
21y2!&C ,

whereC is the HF many-body wave function~Slater deter-
minant!, and ^O &C is the expectation value of operatorO .
Figure 8 considers two of the excited states of He, 1s2p21
and 1s3p21 , in comparison with that taken from the results
of Thurneret al. Aside from the noise that originates with
basis-set deficiencies, we note that the slope of our energy
curves is generally lower than the HF numerical quadrature
prediction, and the difference grows with more highly ex-
cited levels. This difference points out the fact that the as-
ymptotic expansion HF method has a more difficult time
representing the spatially extended excited states, but im-
proves as the states shrink, further evidence that the asymp-
totic method is best used in the adiabatic field regime, with
intermediate field strengths treated by a more flexible tech-
nique.

One issue that arises in working with STO~or similar!
basis-set representations for the atomic wave function is the
uncertain nature of convergence to the HF variational en-

FIG. 7. Electronic density profiles for the he-
lium excitation spectrum atbZ50.2. The same
density values are contoured as in Fig. 6, but the
scale is twice as small, from220a0 to 20a0 . The
correct ordering of the states according to varia-
tional energy is given by the key in the bottom
right panel, with the 1s2p21 state as the lowest,
and the 1s2 state as the highest.
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ergy. Ideally, one simply adds more basis elements or opti-
mizes the exponents of the basis further until a limiting value
is achieved. In practice, however, one encounters limitations
in the amount of resources available, either in time or com-
puter memory. Figure 9 shows a typical set of calculations to
get the lowest possible HF energy for the 1s2p21 state of He
at bZ51. Note that convergence is achieved when the num-
ber of basis elements,M , is greater than 35, and the maxi-
mum l used~in the spherical harmonics!, Lmax, is greater
than 9. For more highly excited states~or outer shell elec-
trons in larger atoms!, one must generally increaseLmax fur-
ther, which also increasesM . We have usedM<70 in all of
our calculations, which introduces a truncation error. This
truncation error increases with bothZ andbZ .

IV. SUMMARY AND CONCLUSIONS

We have presented a series of HF calculations of ground-
and excited-state properties for selected first-row neutral at-
oms and negative ions in magnetic fields in excess of 1010 G,
using a flexible STO basis set within the HF formalism. Os-
cillator strengths present no difficulty for this method, and
are available upon request. Previous applications of the HF
method to atoms in intermediate strength magnetic fields
have been limited to hydrogen and helium, and have relied
on numerical quadrature methods, resulting in higher ener-
gies and a less accurate wave function. The use of more

general basis sets allows a greater flexibility in representing
the atomic wave function as the magnetic field increases and
the cylindrical symmetry associated with the magnetic field
becomes important, and indeed, dominant.

Basis-set HF calculations, however, are not a panacea,
since they suffer from several shortcomings. The most im-
portant disadvantage is the lack of certainty in the complete-
ness of a basis set for a given calculation. The only system-
atic approach, and the one that we have used here, involves
optimizing a set of basis elements with respect to the varia-
tional energy~the largest set that can be optimized in a rea-
sonable length of time!, then adding more elements until the
energy no longer changes. The drawback of this approach is
that one may end up in a local minimum of the energy sur-
face, and not at the true HF result of lowest energy. Another
disadvantage of using STO or similar basis sets is the non-
negligible amount of computer time and memory required to
diagonalize and store large matrices, whereas on a radial grid
the matrices may be sparse. For atomic calculations in the
absence of magnetic fields, numerical quadrature is generally
simpler and more accurate. In the presence of strong mag-
netic fields, however, the flexibility of a basis-set approach is
unparalleled.

Future efforts will use these accurate HF wave functions
as the starting point for a series of quantum Monte Carlo
~QMC! calculations on small atoms in strong magnetic
fields, for which we will examine the behavior of electron

FIG. 8. The slope of the total
energy curve is more sensitive to
deficiencies in the HF approach.
Here we compare the present re-
sults ~open squares and triangles!
with those of Thurneret al. @13#,
for the 2p21 and 3p21 states of
He. Note the larger~in absolute
value! slope for the present results.
Irregularities in our data are
caused by basis-set truncation.
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correlation as a function of magnetic field strength and
atomic number. These efforts are part of a project to develop
exchange-correlation functionals in the context of current-
density functional theory@25#.
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APPENDIX: ELECTRON-ELECTRON MATRIX
ELEMENT

We now consider the form of our matrix element for the
electron-electron interaction matrix element in the STO ba-
sis. The usual approach@19# becomes numerically unstable
at large values ofl in the spherical harmonicsYlm(u,f), and
is therefore inadequate for very strong fields. One can instead
use a numerical evaluation of the integral which is inherently
stable for most reasonable choices of basis elements.

The electron-electron matrix element in the STO basis is
given by

Imnls
ee 5E dV1dV2xm~r1!xn~r1!r 12

21xl~r2!xs~r2!,

~A1!

where xm5Rm(r )Ylmmm
(u,f), r 12 is the interelectron dis-

tance, Rm(r )5Nmr
nm21e2amr , and Nm5@(2am)

(2nm11)/
(2nm)!]

1/2 is the normalization factor for basis elementm.

We expand the interelectron distance in terms of spherical
harmonics and perform the angular integrals, yielding

Imnls
ee 5 (

l eSV

IV
l ~Gmnls

l 1Glsmn
l !, ~A2!

Gmnls
l 5E

0

`

u12 lRm~u!Rn~u!duE
0

u

v21 lRl~v !Rs~v !dv,

~A3!

where

SV5$u lm2 l nu,u lm2 l nu12, . . . ,lm1 l n%

ù$u l l2 l su,u l l2 l su12, . . . ,l l1 l s%, ~A4!

is the set ofl values over which we need to sum, and

IV
l 5~21!mm1msF ~2lm11!~2l n11!~2l l11!~2l s11!

~2l11!4 G1/2
3^ lm ,l n ;0,0u l ,0&^ lm ,l n ;2mm ,mnu l ,mn2mm&

3^ l l ,l s ;0,0u l ,0&

3^ l l ,l s ;2ml ,msu l ,ms2ml&dms2ml ,mm2mn
, ~A5!

is the value of the angular integrals for a givenl , and
^ l 1 ,l 2 ;m1 ,m2u l ,m& are Clebsch-Gordan coefficients. The
Clebsch-Gordan coefficients may be tabulated for a given
calculation, and present no difficulty, even for very largel .

FIG. 9. The convergence of the
variational energy~solid line! as a
function of the size of the basis,
for a typical data point, in this case
for the 1s2p21 state of He at
bZ51. The dashed line indicates
the largest l value used in the
basis-set expansion.
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The problem arises in evaluating the radial integrals in Eq.
~A3! when the individuall ’s can be quite large. Changing
variables on the inner integral, and usingt5(al1as)v
yields a standard form,

Gmnls
l 5N̄mnlsE

0

`

unm1nn2 l21e2~am1an!u

3g~11nl1ns1 l ,~al1as!u!, ~A6!

whereg is the incomplete gamma function and

N̄mnls5
NmNnNlNs

~al1as!nl1ns1 l11 . ~A7!

The integral in Eq.~16! is in standard tables@26#. Let
m5nm1nn2 l , n511 l1nl1ns , a5al1as , and
b5am1an . The radial integral can now be expressed in
terms of a confluent hypergeometric function,2F1 ,

Gmnls
l 5N̄mnls

amG~m1n!

n~a1b!m1n

32F1„1,m1n;n11;a/~a1b!…, ~A8!

whereG( i )5( i21)! is the usual gamma function. For this
particular application, it is actually advantageous to sum the
hypergeometric function directly. After using the series ex-
pansion for 2F1 and performing some algebraic manipula-
tions, we obtain

Gmnls
l 5NmNnNlNs

~n21!!

~a1b!m1n

3 (
k50

`
~m1n1k21!!

~n1k!! S a

a1b D k. ~A9!

In general the sum for a hypergeometric function may not
converge, but for this situation the sum is well-behaved and
convergent. In practice, one can express the terms in Eq.~19!
recursively and quickly evaluate the sum to a desired toler-
ance.
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