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We investigate the electronic absorption induced by a complex potential in one-dimensional quantum me-
chanics. By solving the Schro¨dinger equation for spatially localized and extended complex potentials, we
derive the electronic absorption coefficienta. Neither a single nor a double Dirac-d potential can represent a
totally absorbing potential (a51) for any choice of the complex amplitude of the potential. Maximum
absorption coefficients for these potential types are 0.5 and 2(A221).0.828, respectively. On the contrary,
wall and well potentials do account for total absorption at a particular limit of the potential parameters.
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PACS number~s!: 03.65.Nk, 72.10.Fk, 73.20.At

I. INTRODUCTION

Back in 1926, Schro¨dinger gave to science his equation
for the understanding of the behavior of nonrelativistic elec-
trons @1#. It is well known @2,3# that a nonvanishing imagi-
nary part of the potential (Vi) can be introduced in the
Schrödinger equation in order to describe a stationary elec-
tron sink or well~depending on the sign ofVi) for an other-
wise closed electron system.

In the past, this formulation has been successfully intro-
duced to describe electron and positron inelastic scattering
on atoms@4# and molecules@5#. More recently, complex po-
tentials have been applied to model the electron intermixing
between Shockley-type surface states and bulk states at ad-
sorbed atoms lying on the surface@6#. Despite the interest in
atomic and surface science for complex potentials in the
Schrödinger equation, there is, however, to the best of our
knowledge, no study in the literature meant to elucidate
whether any sort of complex potential can represent, for a
particular choice of its parameters, the variety of physical
situations ranging from none to full absorption. In particular,
we wish to investigate the nontrivial limit, that is, whether
any complex potential is suitable to account for total absorp-
tion by properly choosing its set of free parameters. Our aim
in this paper is to find out what is the absorption upper limit
in the case of three different types of complex potentials in
one dimension.

The outline of the paper is as follows. After introducing
the procedure for calculating the electronic absorption coef-
ficient in Sec. II, we calculate it for the simplest localized
zero-dimensional potential—a Diracd with complex
amplitude—in Sec. III. The absorption at two identical Dirac
d ’s a distancea apart is studied in Sec. IV, whereas in Sec. V
we deal with an extended potential: a one-dimensional~well

or wall! complex potential. Section VI is devoted to a dis-
cussion and conclusions.

II. SCATTERING AT COMPLEX POTENTIALS

By introducing a complex potential (V5Vr1 iVi) with a
nonvanishing imaginary part (ViÞ0) in the Schro¨dinger
equation we can describe two totally different physical situ-
ations @3#: a stationary and a nonstationary one. Next we
discuss them with the help of the conservation equation for
the density of probabilityr(x)5uc(x)u2:

]r~x!

]t
1¹J~x!5

2Vir~x!

\
, ~1!

where J(x)5(\/2mi)(c*¹c2c¹c* ) is the probability
flux andc(x), the wave-function solution of the Schro¨dinger
equation. When]r/]tÞ0, we describe nonstationary~de-
caying in time! states, while for]r/]t50 we have a station-
ary state that describes electron scattering on a constantly
leaking potential~for Vi,0) @3#. The absorption or leakage
out of the electronic system induced by the complex poten-
tial with Vi,0 is characterized by the electronic absorption
coefficienta. In one dimension, it equals minus the probabil-
ity flux lost when a plane wave, going from2` to 1`,
scatters on the potential, divided by the incident probability
flux, i.e.,

a52
J~x51`!2J~x52`!

J~x52`!

52
J~x51`!2J~x52`!

\k/m
, ~2!

where 0<a<1, corresponding toa51 ~0! for total ~no!
absorption, respectively. Integrating Eq.~1! from 2` to
1`, we obtain an expression equivalent to Eq.~2! for the
absorption coefficient:
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a5

2mE
G
uVi ur~x!dx

\2k
, ~3!

whereG is the segment of the real axis with nonvanishing
Vi .

III. ABSORPTION AT A SINGLE COMPLEX DIRAC d

The first potential to be investigated is given by

V5
\2

2m
~g r2 ig i !d~x!, ~4!

with both g r andg i.0 constant. For this potential, the so-
lution wave function equals

c~x!5H eikx1Ae2 ikx for x,0

Beikx for x.0, ~5!

wherek is the wave vector,k5A2mE/\2, andE is the en-
ergy of the incident plane wave. Using Eq.~2! or ~3! and Eq.
~5!, we derive the absorption coefficient

a5

4k

g i

S 11
2k

g i
D 21S g r

g i
D 2 . ~6!

For k/g i much smaller or larger than 1, the absorption van-
ishes; a complex Diracd is transparent for plane waves with
wavelength much shorter or longer thang i . Note that the
absorption coefficient for this potential type does not depend
on the sign of the real part of the potential but only on its
absolute value.

From Eq.~6!, we find out that the maximum absorption

amax5
1

11A11S g r

g i
D 2 ~7!

is obtained when

k

g i
5
1

2
A11S g r

g i
D 2. ~8!

Therefore, the absolute maximum of the absorption is 0.5,
which corresponds tog r50, i.e., an imaginary scattering
potential, andk/g i50.5. We compare the density of prob-
ability for total absorption with densities of probability for
less absorbing situations in Fig. 1. In Fig. 2 the dependence
of the absorption coefficient on the ratio between the real and
imaginary parts of the potential is shown. We observe that
increasingug r u, which means making the potential more at-
tractive or repulsive, leads to less absorption. The depen-
dence of the electronic absorption coefficient on the ratio
betweenk andg i is illustrated in Fig. 3 for different values
of the ratiog r /g i .

FIG. 1. Density of probability for solutions of the one-
dimensional complex potential in Eq.~4! with g r50. Dotted curve,
k/g i50.1; full curve, 0.5, maximum absorption; dashed curve, 1;
dot-dashed curve, 10. Note that maximum absorption is not corre-
lated with minimum transmission, but with a global minimum for
the sum of the reflected and transmitted densities of probability. For
maximum absorption (a50.5), the coefficients of the plane-wave
solution of the problem@see Eq.~5!#, correspond toA520.25 and
B50.25. Therefore, 25% of the incident probability is reflected,
50% absorbed, and the remaining 25% transmitted.

FIG. 2. Electronic absorption coefficienta as a function of the
absolute value of the ratio between real and imaginary parts
g r /g i for the single Diracd scattering potential in Eq.~4! with
k/g i50.5 ~dotted curve!, 2 ~dashed curve!, and 10 ~dot-dashed
curve!. Absolute maximum absorption is achieved whenk/g i50.5
~full curve! andg r50.

FIG. 3. Electronic absorption coefficienta as a function of the
ratio between the wave vectork and the imaginary part of the
scattering potential in Eq.~4!, g i , for g r /g i50 ~full curve!, 0.5
~dotted curve!, 2 ~dashed curve!, and 10~dot-dashed curve!.
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IV. ABSORPTION AT TWO DIRAC d ’S

In order to study how the upper limit for electronic ab-
sorption increases when scattering on more than one identi-
cal localized complex potential, we introduce the potential

V5
\2

2m
~g r2 ig i !FdS x1

a

2D1dS x2
a

2D G , ~9!

whereg r andg i.0 are constants. Later in this section we
justify why we first calculate the absorption forg r50. Using
Eqs.~2! or ~3! and the solution of the Schro¨dinger equation
for the potential in Eq.~9!,

c~x!55
eikx1Ae2 ikx for x,2

a

2

Beikx1Ce2 ikx for 2
a

2
,x,

a

2

Deikx for x.
a

2
,

~10!

we obtain:

a~gr50!5
4z@~11z!222~11z!~12y!11#

z2~21z!214~11z!2y
, ~11!

where z52k/g i5(2/g i)A2mE/\2 and y5sin2(ka)
(0<y<1). The two extreme values ofy correspond to two
different physical situations described below by means of the
associated wavelengths,l52p/k, namely:

y50→l5
2a

nr
, nr51,2,3, . . .

FIG. 4. ~a! Density of probability for thenr51, 2, and 3 reso-
nant solutions of the doubled potential in Eq.~9! with vanishing
g r . ~b! Same for thena50, 1, and 2 antiresonant solutions.
z52k/g i is taken at maximum absorption, i.e.,z52 and 21/2, for
resonant (a50.5) and antiresonant@a52(21/221)# conditions, re-
spectively. For the maximum at resonant scattering, we have
A520.5(21)nr andD50.5 in Eq.~10!, which account for 25% of
the incident probability being reflected, 50% absorbed, and 25%
transmitted. For the absolute maximum@antiresonant scattering and
a52(21/221)#, we have A52(21)nai /(2121/2) and
D51/(2121/2), which leads to the following distribution of the
impinging probability: 8.58% is reflected, another 8.58% is trans-
mitted, and the remaining 82.84% is absorbed.

FIG. 5. Electronic absorption coefficient for the potential in Eq.
~9! with g r50. ~full curve! and 51 ~dotted curve!. Each curve
corresponds to a different value ofy5sin2(ka). From bottom to top:
0.0 ~resonant condition!, 0.25, 0.5, 0.75, and 1.0~antiresonant con-
dition!.

FIG. 6. Electronic absorption coefficient as a function of half of
the ratio between the real and the imaginary part of the scattering
potential in Eq. ~9! with k/2g i50.1 ~dotted curve!, 1 ~dashed
curve!, and 10~dot-dashed curve!. ~a! ka52p, which corresponds
to resonant scattering, whereas~b! ka5p/2 for antiresonant scat-
tering. z values are the same as in Fig. 4. Absolute maximum ab-
sorption ~full curves! is achieved forg r50 whenk/2g i50.5 and
1/21/22 for resonant and antiresonant scattering, respectively.
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y51→l5
4a

2na11
, na50,1,2, . . . . ~12!

For y50 the wavelength of the density of probability
uc(x)u2, is a/nr , either the distance between the two scatter-
ing potentialsa or a submultiple of it. We refer to this situ-
ation as resonant scattering, whereas antiresonant scattering
corresponds toy51. Intuitively, we foresee that in the case
of resonant scattering the absorption is minimum due to the
fact that the density of probability can show minima at the
positions where the two potentials are located, therefore re-
ducing absorption. The antiresonant condition represents the
opposite situation: if the density of probability happens to be
zero at one of the scatterers, it is maximum at the other and,
therefore, the absorption increases in comparison with the
situation of resonant scattering. In Figs. 4~a! and 4~b! we
show the densities of probability for three resonant and an-
tiresonant solutions of the problem. Note that the density of
probability is continuous everywhere and has a continuous
derivative everywhere but at the location of thed ’s.

We illustrate in Fig. 5 the behavior of the absorption co-
efficient forg r50 when going from resonant to antiresonant
scattering. The absorption increases monotonical when ap-
proaching the antiresonant condition. From Eq.~11!, we find
that the maximum absorption coefficient at resonant scatter-
ing is 0.5 whenz52k/g i52, while for antiresonant scatter-
ing the maximum rises to 2(A221)'0.828 whenz5A2.
For the sake of a comparison with Fig. 3, the absorption
coefficient is plotted vsk/2g i in Fig. 5, instead of vs
z52k/g i . The maximum absorption in the single-d problem
corresponds, in the present problem, to the resonant condi-
tion, assuming that theg i in Eq. ~4! equals half of the value
of g i in Eq. ~9!.

So far we have described the scattering at two Diracd ’s
for a vanishing real part of the potential, i.e.,g r50. In the
most general case (g r50), the absorption coefficient is
given by

a5
4$z412z312z2~11w2!12z2cos~ka!1@zw sin~ka!2cos~ka!~11z1w2!#%

z$z414z312z2~31w2!14z~11w2!22z@z~12w2!12~11w2!#cos~2ka!14zw~11z1w2!sin~2ka!14 sin2~ka!~11w2!2%
,~13!

wherez52k/g i andw5g r /g i . A numerical analysis of this
expression shows that the maximum absorption found when
discussing the caseg r50 can never be exceeded wheng r
Þ0 ~see Fig. 5 for a particular case!. Once the absolute
maximum of the absorption coefficient for this problem is
known, we study howa changes when varying the real part
of the scattering potential. As with the potential in Eq.~4!,
for the present case more repulsive or attractive potentials do
not lead to a larger upper limit for the absorption than the
one found forg r50. In Fig. 6 we show how the absorption
decreases for nonimaginary repulsive (g r.0) potentials.

V. WALL AND WELL COMPLEX POTENTIALS

In order to study the electronic absorption in the case of
spatially extended potentials, we choose the simplest type

V5
\2

ma
~g r2 ig i ! for uxu,

a

2
, ~14!

whereg r andg i.0 are constant. Forg r.0(,0), we have a
wall ~well! type of scattering potential. Contrary to the pre-
viously presented problems, the study of the problem for
g r50 ~imaginary potential! does not lead to a shortcut in the
mathematical formulation needed for the general case~both
g r andg i being different from zero!. Thus we deal with the
general problem directly. Due to the fact that the solution of
the Schro¨dinger equation is different depending on the value
of the incident plane-wave energy with respect to the
potential-energy level, we discuss these two cases separately.
Note that for a well potential, we only need to study the first
case discussed, whereas for a wall potential both are required
to account for the entire incident energy range.

A. Incident scattering energies larger than the potential
barrier „E>\2gr /ma…

Assuming the incident plane wave impinging from2`,
the solution of the Schro¨dinger equation for the potential in
Eq. ~14! is given by

c~x!55
eikx1Ae2 ikx for x,2

a

2
,

Beiqx1Ce2 iqx for 2
a

2
,x,

a

2

Deikx for x.
a

2
,

~15!

whereq5qr1 iqi , with

qr5Ak222g r /a1A~k222g r /a!214g i
2/a2

2
, ~16!

qi5
A2g i /a

Ak222g r /a1A~k222g r /a!214g i
2/a2

, ~17!

k5A2mE

\2 . ~18!

As with the previous problems, imposing continuity and de-
rivativity conditions at the boundaries between regions, we
determine the coefficientsA, B, C, andD. Once the solution
of the Schro¨dinger equation is known, the absorption coeffi-
cient can be derived using, for example, Eq.~2!:
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a512uAu22uDu2

512
u~12K2/Q2!~eiQ2e2 iQ!u21u4K/Qu2

u~12K/Q!2eiQ2~11K/Q!2e2 iQu2
, ~19!

whereK5ka, Q5Qr1 iQi5qa, and therefore

Qr5AK22Gr1A~K22Gr !
21Gi

2

2
, ~20!

Qi5
Gi

A2AK22Gr1A~K22Gr !
21Gi

2
, ~21!

with Gr52g ra and Gi52g ia. Note that the condition
E.\2g r /ma leads toK2.Gr , whereGr is larger~smaller!
than zero for the wall~well! problems.

B. Incident scattering energies smaller than the potential
barrier „E<\2gr /ma…

The solution of the Schro¨dinger equation is formally the
same as that in Eq.~15! except for the region of the potential
(2a/2,x,a/2), where

c~x!5Beqx1Ce2qx. ~22!

In the present case, we have

qr5A2g r /a2k21A~2g r /a2k2!214g i
2/a2

2
, ~23!

qi5
2A2g i /a

A2g r /a2k21A~2g r /a2k2!214g i
2/a2

. ~24!

Using Eq.~2!, we obtain

a512uAu22uDu2

512
u~11K2/Q2!~eQ2e2Q!u21u4K/Qu2

u~11K/ iQ !2eQ2~12K/ iQ !2e2Qu2
, ~25!

where now

Qr5AGr2K21A~Gr2K2!21Gi
2

2
, ~26!

Qi5
2Gi

A2AGr2K21A~Gr2K2!21Gi
2
, ~27!

with Gr.K2 and E,\2g r /ma. These expressions corre-
spond only to the wall problem and for incident energies
smaller than the potential barrier.

C. Imaginary potential: Long- and short-wavelength limits

As in previous sections, we start our analysis of the ab-
sorption coefficient with the case of vanishingGr , i.e, when
the potential is imaginary and, therefore, the absorption is a

function of only two variables:K andGi . Using Eq.~19!,
we calculate the absorption coefficient for fixedK and vary-
ing Gi as shown in Fig. 7. The upper limit for the electronic
absorption coefficient is bound between 0~no absorption! for
1@K@Gi and 1 ~total absorption! when 1!K!Gi . We
focus our interest on the upper part of the absorption regime,
i.e., between 0.5, which occurs when 1@K50.5Gi , and to-
tal absorption (1!K!Gi). We refer to these two extreme
situations as the long- and short-wavelength limits because
they are equivalent to 2p/g i5l@a and 1/g i!l!a, respec-
tively. The corresponding wave functions for the two limits
are plotted in Fig. 8. By introducing a nonvanishing part of
the complex potential, we do not find any other situation that
produces full absorption. As in the previously discussed
cases, a complex potential with a nonvanishing real part con-
strainsa to values smaller than the upper limit for the ab-
sorption: in the present case to values smaller than 1. At the
short-wavelength limit, however, an increase of the real part

FIG. 7. Electronic absorption coefficient for the potential in Eq.
~14! with vanishingGr ~full curve! andGr55 ~dotted curve!. Each
curve corresponds to a different value ofK5ka. From bottom to
top: 0.01, 1, 2, 5, and 1000. The upper limit of the absorption
coefficient increases from 0.5 for the long-wavelength limit
(1@K50.5Gi) to 1 for the short wavelength limit (1!K!Gi).

FIG. 8. Density of probability for the complex potential in Eq.
~14! and vanishingg r . The dashed and solid curves correspond to
solutions close to the short and long wavelength limits, respec-
tively. The dashed line was obtained withK5100 andGi52000,
being a50.9975. The second curve represents the caseK50.5
3Gi50.2, which givesa50.5060. Whereas the long-wavelength
limit corresponds to an absorption of 50%, total absorption is ob-
tained at the short-wavelength limit. Note that the scale forx/a at
the bottom~top! corresponds to density of probability for the short-
~long-! wavelength limits.
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of the complex potential reduces the absorption very little
compared to situations far away from the limit, as shown in
Fig. 9.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have discussed the maximum possible
electronic absorption in one dimension for the cases of three
complex potential types: a single Diracd, two Dirac d ’s
separated by a distancea, and a flat positive or negative
potential of lengtha. For a single Diracd, the absorption
induced by the imaginary part of the potential cannot exceed
0.5 of the incoming probability flux. The absorption coeffi-
cient (a), defined as the ratio between the absorbed vs the
incident flux of probability, is 0.5 at maximum absorption,
which occurs when the real part of the potentialg r vanishes
and k/g i50.5. Under these conditions, the incoming prob-
ability flux is distributed in the following way: 25% is back-
scattered, 50% absorbed, and the remaining 25% transmitted.
For a nonvanishing real part of the scattering potential,a
does not depend on the sign of the real part of the potential
but only on its magnitude. Therefore twod-like potentials
with the sameug r u absorb the same electronic density of

probability independent of its repulsive or attractive charac-
ter.

For the case of twod ’s separated a distancea, the upper
limit for a appears to be higher, 2(A221)'0.828, but again
the incoming flux of probability cannot be totally absorbed
for any particular complex amplitude of the potential. The
highest absorption that can be expected for such a potential
is reached when the real part of the potential vanishes—as
for a singled potential—and when the wavelength of the
incident plane wave is given byl54a/(2na11) with
na50,1,2, . . . . This corresponds to the aforementioned anti-
resonance condition, for whichucu2 is maximum at oned
and zero at the other. A nonvanishing part of the potential
does not increase the upper limit for absorption for any
choice of the parameters in the potential.

The third sort of potential discussed in this work, a con-
stant complex potential that extends along a finite segment of
length a, does describe total absorption for the short-
wavelength limit described in Sec. V C. For this limit, the
wavelength of the incident electronl is much smaller than
the extent of the potentiala, but much larger than the inverse
of the complex amplitude 1/g i , i.e., 1/g i!l!a. We have
found numerically for any set of free parameters in the po-
tential no other situation wherea51 but at the mentioned
short-wavelength limit.

To sum up, we have shown thatd-like localized potentials
do not account for total absorption for any particular choice
of the complex amplitude, whereas extended wall or well
potentials can describe a physical situation where total ab-
sorption occurs.

ACKNOWLEDGMENTS

We are thankful to M. Fischetti for fruitful discussions
and L. Mijares for a careful reading of a draft of this paper.
Patrici M.-M. acknowledges the financial support of the
Ministerio de Educacio´n y Ciencia of the Spanish Govern-
ment. His work was done under a joint-study agreement be-
tween the Institut de Cie`ncia de Materials de Barcelona
~Consejo Superior de Investigaciones Cientı´ficas, Spain!
and IBM. Pau M.-M. thanks the Centre Europeu de
Paral• lelisme de Barcelona for computer support at the Uni-
versitat Polite`cnica de Catalunya.

@1# E. Schrödinger, Ann. Phys.~Leipzig! 81, 109 ~1926!.
@2# K. Gottfried, in Quantum Mechanics, 3rd ed. ~Addison-

Wesley, New York, 1989!, p. 75; A. Das and A.C. Melissinos,
Quantum Mechanics: A Modern Introduction~Gordon and
Breach, New York, 1986!, p. 548ff.

@3# A. Das and A.C Melissinos,Quantum Mechanics: A Modern
Introduction ~Ref. @2#!, p. 550ff.

@4# G. Staszewska, D.W. Schwenke, and D.G. Truhlar, Phys. Rev.
A 29, 3078 ~1984!; K.L. Baluja and A. Jain,ibid. 46, 1279

~1992!, and references therein.
@5# A. Jain and K.L. Baluja, Phys. Rev. A45, 202 ~1992!; K.L.

Baluja and A. Jain,ibid. 45, 7838 ~1992!, and references
therein.

@6# E.J. Heller, M.F. Crommie, C.P. Lutz, and D.M. Eigler, Nature
369, 464 ~1994!; Ph. Avouris, I.-W. Lyo, and P. Molina`s-
Mata, in Electronic Surface and Interface States on Metallic
Systems, edited by E. Bertel and M. Donath~World Scientific,
Singapore, 1995!, p. 217.

FIG. 9. Electronic absorption coefficient as a function of the
ratio between the real and the imaginary part of the scattering po-
tential in Eq.~14!. Each curve corresponds to a fixed value ofK and
Gi . From bottom to top:K5ka50.01, 1, 2, 5, and 1000. The value
for Gi is fixed for each curve and is such thata is maximum at
Gr50 for the given K values. Full curves start at the long-
~bottom-! and short-~top! wavelength limits.
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