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Electron absorption by complex potentials: One-dimensional case
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We investigate the electronic absorption induced by a complex potential in one-dimensional quantum me-
chanics. By solving the Schdinger equation for spatially localized and extended complex potentials, we
derive the electronic absorption coefficient Neither a single nor a double Diratpotential can represent a
totally absorbing potential(=1) for any choice of the complex amplitude of the potential. Maximum
absorption coefficients for these potential types are 0.5 ar@ 2(1)=0.828, respectively. On the contrary,
wall and well potentials do account for total absorption at a particular limit of the potential parameters.
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PACS numbse(s): 03.65.Nk, 72.10.Fk, 73.20.At

[. INTRODUCTION or wall) complex potential. Section VI is devoted to a dis-
cussion and conclusions.

Back in 1926, Schidinger gave to science his equation
for the understanding of the behavior of nonrelativistic elec- IIl. SCATTERING AT COMPLEX POTENTIALS
trons[1]. It is well known[2,3] that a nonvanishing imagi-
nary part of the potential\() can be introduced in the By introducing a complex potentiaM=V, +iV;) with a
Schralinger equation in order to describe a stationary elechonvanishing imaginary partV(#0) in the Schrdinger
tron sink or well(depending on the sign &f,) for an other- equation we can describe two totally different physical situ-
wise closed electron system. ations[3]: a stationary and a nonstationary one. Next we

In the past, this formulation has been successfully introdiscuss them with the help of the conservation equation for
duced to describe electron and positron inelastic scatterinie density of probability»(x) = | #(x)|?:
on atomg 4] and molecule$5]. More recently, complex po-
tentials have been applied to model the electron intermixing dp(X) 2V,p(x)
between Shockley-type surface states and bulk states at ad- at +VI(x)= B @)
sorbed atoms lying on the surfajdd. Despite the interest in

atomic and surface science for complex potentials in th%vhere J() = (A12mi) (¢* Vp— gV 4*) is the probability

Schralinger equation, t_here IS, hawever, to the best OT OUkux and ¥(x), the wave-function solution of the Scliiager
knowledge, no study in the literature meant to elucidate

. equation. Whervp/dt+0, we describe nonstationakye-
whether any sort of complex potential can represent, for q P v

articular choice of its parameters, the variety of ph sica?“aying in timg states, while forp/3t=0 we have a station-
partic ; P ' Arety of phy ary state that describes electron scattering on a constantly
situations ranging from none to full absorption. In particular

we wish to investigate the nontrivial limit, that is, whether leaking potentialfor V;<0) [3]. The absorption or leakage

N . out of the electronic system induced by the complex poten-
any complex potential is suitable to account for total absorps-. . . . . .
. A - tial with V;<<0 is characterized by the electronic absorption
tion by properly choosing its set of free parameters. Our AN oefficienta. In one dimension, it equals minus the probabil-
in this paper is to find out what is the absorption upper limit ' 1teq P

in the case of three different types of complex potentials inIty flux lost when a plane wave, going from to +,

one dimension. fslﬁitt?res on the potential, divided by the incident probability
The outline of the paper is as follows. After introducing T

the procedure for calculating the electronic absorption coef-

ficient in Sec. Il, we calculate it for the simplest localized

CJ(x=40) = J(x=—*)

a=

zero-dimensional potential—a Dirac with complex J(X=—)

amplitude—in Sec. Ill. The absorption at two identical Dirac

&'s a distance apart is studied in Sec. IV, whereas in Sec. V _ =) T Ix=) @
we deal with an extended potential: a one-dimensig¢wall fik/m ’

where Gsa<1, corresponding tax=1 (0) for total (no)

*Present address: Laboratoire de Photophysique” ddtdge,  absorption, respectively. Integrating E@l) from —o to

CNRS, Bdiment 213, University de Paris—Sud, F-91405 Orsay Ce-+, we obtain an expression equivalent to E). for the
dex, France. absorption coefficient:
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FIG. 1. Density of probability for solutions of the one- FIG. 2. Electronic absorption coefficient as a function of the

dimensional complex potential in E¢) with y,=0. Dotted curve, absolute value of the ratio between real and imaginary parts
k/y;=0.1; full curve, 0.5, maximum absorption; dashed curve, 1;y/7; for the single Diracé scattering potential in Eq4) with
dot-dashed curve, 10. Note that maximum absorption is not correk/y;=0.5 (dotted curvgy 2 (dashed curve and 10 (dot-dashed
lated with minimum transmission, but with a global minimum for curve). Absolute maximum absorption is achieved whety;=0.5

the sum of the reflected and transmitted densities of probability. Fotfull curve) andy,=0.

maximum absorptiond=0.5), the coefficients of the plane-wave

solution of the problenisee Eq(5)], correspond t&A=—0.25 and

B=0.25. Therefore, 25% of the incident probability is reflected, = 1
50% absorbed, and the remaining 25% transmitted. max 72 )
1+/1+ —')
Yi
2mf [V;i|p(x)dx
r
a= ———z3 (3)  is obtained when
wherel is the segment of the real axis with nonvanishing K 1 WY
Vi —=>\/1+| ] . ®
Yi 2 Yi
Ill. ABSORPTION AT A SINGLE COMPLEX DIRAC é
The first potential to be investigated is given by Therefore, the absolute maximum of the absorption is 0.5,
which corresponds toy,=0, i.e., an imaginary scattering
K2 . potential, andk/y;=0.5. We compare the density of prob-
V=S (e =iy 8(x), (4)  ability for total absorption with densities of probability for

less absorbing situations in Fig. 1. In Fig. 2 the dependence
of the absorption coefficient on the ratio between the real and
imaginary parts of the potential is shown. We observe that
increasing|y,|, which means making the potential more at-
et Ae~ KX for x<0 tractive or repulsive, I_eads to Ie_ss abso_rp_tion. The depe_n-
dence of the electronic absorption coefficient on the ratio
betweenk and y; is illustrated in Fig. 3 for different values

of the ratioy, /v;.

with both y, and y;>0 constant. For this potential, the so-
lution wave function equals

p(X)=1 Bk for x>0, ©)

wherek is the wave vectork=\2mE/#2, andE is the en-
ergy of the incident plane wave. Using E@) or (3) and Eq.

(5), we derive the absorption coefficient 1.00 | T I
4k 0.75 |- |
a= " mts ©) = 0.50
w5 025
For k/y, much smaller or larger than 1, the absorption van- 0.00

ishes; a complex Diraé is transparent for plane waves with

wavelength much shorter or longer than. Note that the

absorption coefficient for this potential type does not depend FiG. 3. Electronic absorption coefficient as a function of the

on the sign of the real part of the potential but only on itsratio between the wave vectdr and the imaginary part of the

absolute value. scattering potential in Eq4), v;, for y,/y,=0 (full curve), 0.5
From Eq.(6), we find out that the maximum absorption (dotted curvg, 2 (dashed curve and 10(dot-dashed curye

kA
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FIG. 4. (a) Density of probability for then,=1, 2, and 3 reso-
nant solutions of the doublé potential in Eq.(9) with vanishing
v;. (b) Same for then,=0, 1, and 2 antiresonant solutions.
z=2kl/y; is taken at maximum absorption, i.e=2 and 2/ for
resonant &= 0.5) and antiresonafite=2 (22— 1)] conditions, re-

spectively. For the maximum at resonant scattering, we have

A=—-0.5(-1)" andD=0.5 in Eq.(10), which account for 25% of
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k/2y;

FIG. 5. Electronic absorption coefficient for the potential in Eq.
(9) with y,=0. (full curve) and =1 (dotted curvgé Each curve
corresponds to a different value p# sirf(ka). From bottom to top:
0.0 (resonant condition 0.25, 0.5, 0.75, and 1.(@ntiresonant con-
dition).

47[(1+2)°—2(1+2)(1—y)+1]
°(2+2)°+4(1+2)%y '

(11)

X(y,=0"

where  z=2k/y;=(2/y)V2mE/#? and y=sir?(ka)

(0=<y=1). The two extreme values ¢f correspond to two
different physical situations described below by means of the
associated wavelengths=27/k, namely:

the incident probability being reflected, 50% absorbed, and 25%

transmitted. For the absolute maximiientiresonant scattering and
a=2(2"?-1)], we have A=—(—1)%i/(2+2¥%) and
D=1/(2+2Y?), which leads to the following distribution of the

impinging probability: 8.58% is reflected, another 8.58% is trans-

mitted, and the remaining 82.84% is absorbed.

IV. ABSORPTION AT TWO DIRAC 'S

In order to study how the upper limit for electronic ab-

sorption increases when scattering on more than one identi-

cal localized complex potential, we introduce the potential

<3l

where y, and ;>0 are constants. Later in this section we
justify why we first calculate the absorption fegr=0. Using
Egs.(2) or (3) and the solution of the Schidinger equation
for the potential in Eq(9),

ﬁZ

V= ﬁ(%—i%) o 9

i P
XT2

[ 4 a
gkxp pe ikx for X<—5
Be*+Ce K for —E<x<E
(X)) = 2 2 (10
. a
De** for x>—,
2
\
we obtain:

2a
y=0—\A=—, n=123...
nl’
resonant (@)
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FIG. 6. Electronic absorption coefficient as a function of half of
the ratio between the real and the imaginary part of the scattering
potential in Eqg.(9) with k/2y,=0.1 (dotted curvg, 1 (dashed
curve), and 10(dot-dashed curye(a) ka= 24, which corresponds
to resonant scattering, whered® ka= /2 for antiresonant scat-
tering. z values are the same as in Fig. 4. Absolute maximum ab-
sorption (full curves is achieved fory,=0 whenk/2y;=0.5 and
1/2Y22 for resonant and antiresonant scattering, respectively.
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a We illustrate in Fig. 5 the behavior of the absorption co-
y=l-k=5-—7, N=012.... (12)  efficient for y,=0 when going from resonant to antiresonant
a scattering. The absorption increases monotonical when ap-

For y=0 the wavelength of the density of probability proaching the antiresonant condition. From Exf), we find
|4(x)|?, isa/n,, either the distance between the two scatterthat the maximum absorption coefficient at resonant scatter-
ing potentialsa or a submultiple of it. We refer to this situ- ing is 0.5 wherz=2k/y;= 2, while for antiresonant scatter-
ation as resonant scattering, whereas antiresonant scatteriipgy the maximum rises to 2,@—1)~0.828 whenz= 2.
corresponds ty=1. Intuitively, we foresee that in the case For the sake of a comparison with Fig. 3, the absorption
of resonant scattering the absorption is minimum due to thgoefficient is plotted vsk/2y; in Fig. 5, instead of vs
fact_ t_hat the density of probabl_hty can show minima at theZ:2k/),i . The maximum absorption in the singisroblem
positions where the two potentials are located, therefore r€&orresponds, in the present problem, to the resonant condi-

ducing absorption. The antiresonant condition represents t%n assuming that the; in Eq. (4) equals half of the value
opposite situation: if the density of probability happens to be f y in Eq. (9) ' '
i .(9).

zero at one of the scatterers, it is maximum at the other ané), . . .
therefore, the absorption increases in comparison with th? So far'ws have (Ijescrlb?dhthe scatt.erlmlg at_two Dﬁfc
situation of resonant scattering. In Figgdayand 4b) we or a vanishing real part of the potentla_, '-%‘0-."? t €
show the densities of probability for three resonant and anMOSt general casey(=0), the absorption coefficient is
tiresonant solutions of the problem. Note that the density ofiVe€n bY

probability is continuous everywhere and has a continuous

derivative everywhere but at the location of this.

B 4{7%+272°+ 272%(1+ w?) + 27°cog ka) + [ zw sin(ka) — cog ka) (1+z+w?) ]} .
O A+ A+ 2223+ WD) + dz(1+wWP) — 27 2(1— W) + 2(1+ w?) Jcod 2ka) + 4zw( 1+ z+ w2)sin(2ka) + 4 sir?(ka)(1+w2)2}\'13)

wherez=2k/y; andw= vy, /y; . A numerical analysis of this A. Incident scattering energies larger than the potential
expression shows that the maximum absorption found when barrier (E>%*y, /ma)
discussing the case,=0 can never be exceeded whep Assuming the incident plane wave impinging froave,

#0 (see Fig. 5 for a particular caseOnce the absolute he solution of the Sciinger equation for the potential in
maximum of the absorption coefficient for this problem is Eq. (14) is given by

known, we study howr changes when varying the real part

of the scattering potential. As with the potential in E4), ( x ik a
for the present case more repulsive or attractive potentials do e+ Ae for x<-— CE
not lead to a larger upper limit for the absorption than the
one found fory,=0. In Fig. 6 we show how the absorption B “igx a a
: . ) ; _ ! BE¥+Ce '™ for — -<x<z
decreases for nonimaginary repulsive £ 0) potentials. P(x) =4 2 2 (19

. a
De** for x>—,

V. WALL AND WELL COMPLEX POTENTIALS 2
\
In order to study the electronic absorption in the case of
spatially extended potentials, we choose the simplest type whereq=q,+ig;, with
52 a \/kz—Zy,/a+ J(K2=27, 1a)%+ 442 a2 s
V= E(Yr_l')’i) for |X|<El (14 A 2 !

wherey, andy;>0 are constant. Foy,>0(<0), we have a \/5% la
wall (well) type of scattering potential. Contrary to the pre- ai= 5 > > ' (17)
viously presented problems, the study of the problem for \/k —27,/a+\/(k —2y/a)*+4yila
v,= 0 (imaginary potentialdoes not lead to a shortcut in the
mathematical formulation needed for the general cas¢h >mME
v, andv; being different from zerp Thus we deal with the k= /?_ (18)

general problem directly. Due to the fact that the solution of
the Schrdinger equation is different depending on the value
of the incident plane-wave energy with respect to theAs with the previous problems, imposing continuity and de-
potential-energy level, we discuss these two cases separatefjuativity conditions at the boundaries between regions, we
Note that for a well potential, we only need to study the firstdetermine the coefficienss, B, C, andD. Once the solution
case discussed, whereas for a wall potential both are required the Schrdinger equation is known, the absorption coeffi-
to account for the entire incident energy range. cient can be derived using, for example, E2):
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a=1—|A|?>-|D|? 1.00

_,_l(a-KQ*) (e )2 +]4KIQ[?
- |(1_K/Q)2e'Q—(1+K/Q)Ze—|Q|2 , (19

whereK=ka, Q=Q,+iQ;=qa, and therefore

o \/KZ—Gr+ J(KZ=G,)2+G?

: (20)
2 0.00
0 1 2 3 4 5
KIG;
Gi
Qi= , (21 FIG. 7. Electronic absorption coefficient for the potential in Eq.
\/E\/KZ_ G, +(K?=G,)?+ Gi2 (14) with vanishingG, (full curve) andG, =5 (dotted curvg Each

curve corresponds to a different value K& ka. From bottom to
with G,=2y,a and G;=2v;a. Note that the condition top: 0.01, 1, 2, 5, and 1000. The upper limit of the absorption
E>#%2y, /maleads tok?>G, , whereG, is larger(smallej  coefficient increases from 0.5 for the long-wavelength limit

than zero for the wal{well) problems. (1>K=0.5G;) to 1 for the short wavelength limit EK<G;).
B. Incident scattering energies smaller than the potential function of only two variablesK and G;. Using Eq.(19),
barrier (E<#?y, /ma) we calculate the absorption coefficient for fixikdand vary-

The solution of the Schiinger equation is formally the ing G; as shown in Fig. 7. The upper limit for the electronic

same as that in Eq15) except for the region of the potential 2Psorption coefficient is bound betweeitr® absorptiopfor
(—al2<x<al2), where 1>K>G; _and 1 (total absorptiop when 1< K<G;. We
focus our interest on the upper part of the absorption regime,
Y(x)=BeT*+Ce 9% (22) i.e., between 0.5, which occurs whes-K=0.5G;, and to-
tal absorption (8¥K<G,). We refer to these two extreme
In the present case, we have situations as the long- and short-wavelength limits because
they are equivalent to2/ y;=\>a and 1k;<<\<<a, respec-
2y, la— K2+ (2, la—k?)?>+4y’|a> tively. The corresponding wave functions for the two limits
= 2 . (23 are plotted in Fig. 8. By introducing a nonvanishing part of
the complex potential, we do not find any other situation that
produces full absorption. As in the previously discussed
- \/EVi /a cases, a complex potential with a nonvanishing real part con-
i~ 5 = —- (24)  strainsa to values smaller than the upper limit for the ab-
2y la—k +\(2y,la—k})2+4yila sorption: in the present case to values smaller than 1. At the
short-wavelength limit, however, an increase of the real part

r

q

Using Eq.(2), we obtain

a=1-|AP-|D]

x/a

-1 |(1+K?/Q%)(eR—e™ )|+ |4K/Q[? (25) 2.52(.)||_:§|u_1|2u|'_|8'|'_|4'|'?'|"|1'|'?'|'1|2'|'1F'|'20
|(1+K/iQ)ZeQ—(l—K/iQ)2e7Q|2 ' 2ok /"\ — short wavelength limit _|

' /" \ —- long wavelength limit
where now o 15 ! \ %=0

3
G, — K2+ (G, —K?)?+G? = 1.0 -
Q= \/ : ’ (28
2 05 _
0.0 L .

-G -2 1 2

Q= (27
V26— K+ [(G,—K?)?+G?
FIG. 8. Density of probability for the complex potential in Eq.

with G,>K?2 and E<#2y,/ma. These expressions corre- (14) and vanishingy, . The dashed and solid curves correspond to
spond only to the wall problem and for incident energiessolutions close to the short and long wavelength limits, respec-

smaller than the potential barrier. tively. The dashed line was obtained with=100 andG;= 2000,
being «=0.9975. The second curve represents the dése).5
C. Imaginary potential: Long- and short-wavelength limits X G;=0.2, which givesa=0.5060. Whereas the long-wavelength

limit corresponds to an absorption of 50%, total absorption is ob-
As in previous sections, we start our analysis of the abtained at the short-wavelength limit. Note that the scalexfer at
sorption coefficient with the case of vanishi@g, i.e, when the bottom(top) corresponds to density of probability for the short-
the potential is imaginary and, therefore, the absorption is @#ong-) wavelength limits.
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T T T T probability independent of its repulsive or attractive charac-
ter.

For the case of tw@'s separated a distaneg the upper
limit for « appears to be higher, 22— 1)~0.828, but again
the incoming flux of probability cannot be totally absorbed
for any particular complex amplitude of the potential. The
highest absorption that can be expected for such a potential
is reached when the real part of the potential vanishes—as
for a single § potential—and when the wavelength of the
incident plane wave is given bw=4a/(2n,+1) with

G/G; n,=0,1,2 ....This corresponds to the aforementioned anti-
resonance condition, for whichy|? is maximum at ones

FIG. 9. Electronic absorption coefficient as a function of theand zero at the other. A nonvanishing part of the potential
ratio between the real and the imaginary part of the scattering podoes not increase the upper limit for absorption for any
tential in Eq.(14). Each curve corresponds to a fixed valu&kadind  choice of the parameters in the potential.
G; . From bottom to topk =ka=0.01, 1, 2, 5, and 1000. The value  The third sort of potential discussed in this work, a con-
for G; is fixed for each curve and is such thatis maximum at  stant complex potential that extends along a finite segment of
G,=0 for the givenK values. Full curves start at the 10ng- |ength a, does describe total absorption for the short-
(bottom) and short{top) wavelength limits. wavelength limit described in Sec. V C. For this limit, the
... wavelength of the incident electron is much smaller than
o - Cthe extent of the potential, but much larger than the inverse
cc_)mpared to situations far away from the limit, as shown NGt the complex amplitude %, i.e., 1fy;<\<a. We have
Fig. 9. found numerically for any set of free parameters in the po-

tential no other situation where=1 but at the mentioned
VI. DISCUSSION AND CONCLUSIONS short-wavelength limit.

In this paper we have discussed the maximum possible T0 Sum up, we have shown thadike localized potentials
electronic absorption in one dimension for the cases of thref0 Not account for total absorption for any particular choice
complex potential types: a single Dirag two Dirac &'s of the_complex amp_lltude, Whe_reas_exte_nded wall or well
separated by a distan@ and a flat positive or negative potermals can describe a physical situation where total ab-
potential of lengtha. For a single Diracs, the absorption ~SOrption occurs.
induced by the imaginary part of the potential cannot exceed
0.5 of the incoming probability flux. The absorption coeffi-
cient (a), defined as the ratio between the absorbed vs the We are thankful to M. Fischetti for fruitful discussions
incident flux of probability, is 0.5 at maximum absorption, and L. Mijares for a careful reading of a draft of this paper.
which occurs when the real part of the potentialvanishes  Patrici M.-M. acknowledges the financial support of the
and k/y;=0.5. Under these conditions, the incoming prob-Ministerio de Educacio y Ciencia of the Spanish Govern-
ability flux is distributed in the following way: 25% is back- ment. His work was done under a joint-study agreement be-
scattered, 50% absorbed, and the remaining 25% transmittetiveen the Institut de Cieia de Materials de Barcelona
For a nonvanishing real part of the scattering potential, (Consejo Superior de Investigaciones Cificas, Spaih
does not depend on the sign of the real part of the potentisind IBM. Pau M.-M. thanks the Centre Europeu de
but only on its magnitude. Therefore twlike potentials  Parallelisme de Barcelona for computer support at the Uni-
with the samel|y,| absorb the same electronic density of versitat Politenica de Catalunya.
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