Potential curves for the ground and numerous highly excited electronic states of K₂ and NaK

S. Magnier^{1,*} and Ph. Millié²

¹Laboratoire Aimé Cotton, CNRS II, Bâtiment 505, Campus d'Orsay, 91405 Orsay Cedex and ²DRECAM/SPAM, Centre d'Étude de Saclay, 91191 Gif-sur-Yvette, France (Received 16 March 1995; revised manuscript received 18 September 1995)

Potential curves of the K₂ and NaK molecules have been computed in the framework of pseudopotential methods, over a wide range of interatomic distances. At short internuclear distances, the agreement with experimental data is excellent, the mean deviation between theoretical and experimental spectroscopic constants being 1% for the two alkali dimers. At large interatomic separation, wells and avoided crossings are observed in adiabatic potential curves of highly excited states correlated to the asymptotes close to K[4p]+K[4p] and Na[3p]+K[4p]. For example, the well depths of the $^{1}\Sigma^{+}$ states reach 2650 cm⁻¹ for K_{2} and 4330 cm⁻¹ in the case of NaK. We demonstrate that they correspond to pseudocrossings between covalent states (dissociating into K[nl] + K[n'l'] or Na[nl] + K[n'l']) and ionic states (correlated to $K^+ + K^-$ for K_2 , Na^++K^- , or Na^-+K^+ for NaK, the negative ion being in the ground state or an autoionizing state). As for Na₂, these structures may play a crucial role in the interpretation of low-energy collisions. [S1050-2947(96)05905-8]

PACS number(s): 31.15.Ar; 31.50.+w; 33.20.-t

I. INTRODUCTION

During the past decade, an important experimental effort has been devoted to the laser spectroscopy of the ground and excited states of the Na2, K2, and NaK alkali dimers: spectroscopic constants and potential curves of 27 electronic states of the Na₂ molecule have been determined (see [1] and references therein), while 17 electronic states of K_2 [2–14] and nine of NaK [15-27] are presently known with a high accuracy. Recently, highly excited states of Na2 and K2, dissociating close to the Na[3p] +Na[3p] and K[4p] + K[4p] doubly excited asymptotes, were observed by Stwalley and co-workers, with optical-optical double-resonance techniques (Refs. [4, 28, 29]). Moreover, with the development of laser cooling and optical trapping techniques (Ref. [30] and references therein), the knowledge of molecular potential curves at short and mainly at large internuclear distances has become crucial in the interpretation of low-energy atomatom collisions.

These experimental activities have stimulated theoretical developments to compute relevant adiabatic potential curves, especially in the framework of model potential (Refs. [31] and [32]) or pseudopotential (Refs. [33-38]) methods. For all these methods, alkali dimers are treated as systems with two active electrons moving in a field of two ionic cores, where core valence electron interactions are represented by an effective potential. In the model potential method, the formalism of Bottcher and Dalgarno [39] has been used while in the pseudopotential methods three approaches [38,40,42] have been proposed for the calculations of corepolarization effects and of the correlation energy between the core and valence electrons. The first [40] is perturbative, and generally leads to an overestimation of the dissociation en-

ergies and an underestimation of equilibrium distances which are shorter than the experimental values by $0.6a_0$ when a large basis set is used [41]. The second approach [42] is totally different; it simply adds a semiempirical corepolarization potential to the valence electrons Hamiltonian. A cutoff function is then introduced to deal with the interaction effects at short range, and to overcome computational difficulties. The third approach [38] is derived from the preceding one using the same core-polarization potential though now with an *l*-dependent cutoff function. Calculations through this approach have recently been compared to results from a model potential method in the case of the sodium dimer for which the ground and many excited states (Refs. [1] and [43]) have been determined. A very good agreement between these two methods and with experiment has been demonstrated, the mean deviation between theoretical and available experimental spectroscopic constants being $\Delta R_e = 0.05 a_0$, $\Delta w_e = 0.86$ cm⁻¹, $\Delta T_e = 76$ cm⁻¹, and $\Delta D_e = 57$ cm⁻¹. One of the most interesting results in our investigation of Na2 is the occurrence of structures at large internuclear separation for the ${}^{1}\Sigma^{+}$ and ${}^{3}\Pi$ symmetries. For example, we predicted a well located at $R = 26a_0$, with a depth of 952 cm⁻¹ for the 5 ${}^{1}\Sigma_{g}^{+}$ excited state correlated to Na[3s]+Na[4p] [43], while Tsai, Bahns, and Stwalley [29] recently observed this minimum at $R = 26.19a_0$, and found a depth of 983 cm⁻¹. Thus their results have confirmed our predictions and the accuracy of our calculations at large interatomic separations.

Following our investigations of alkali dimers, we investigated many states of K₂ and NaK over a wide range of internuclear distances, using the same pseudopotential method [38] as previously used to describe Cs_2 , Rb_2 , and Na_2 . In contrast to Na₂, few calculations have been performed on these two molecules: Müller and Meyer [37] presented the spectroscopic constants of the ground state for these molecules and their cations, while Krauss and Stevens 44 computed the potential curves of the two states dissociating into

^{*}Present address: Laboratoire de Spectrométrie Ionique et Moléculaire, CNRS URA No. 171, Bât. 205, Université Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France.

s orbitals p orbitals d orbitals f orbitals coefficient coefficient coefficient exponent exponent exponent 0.024 63 0.133 00 0.027 54 0.015 1 1.255 00 -0.262800.005 0.051 28 1 0.443 20 0.053 91

1

1

1

TABLE I. Molecular GTO basis set used for the potassium atom.

0.109 00

0.029 94

0.010 13

0.003 70

0.001 80

K[4s]+K[4s]. Jeung and co-workers [35,36] extended their calculations to the lowest excited states correlating to asymptotes up to K[4s]+K[3d] and Na[3p]+K[4s], and Stevens, Konowalow, and Ratcliff [45] determined those of the electronic states dissociating up to the Na[3s]+K[3d]asymptote. Recently, Ilyabaev and Kaldor [46] developed an open-shell coupled-cluster method, and described the two first dissociation limits of K_2 , K[4s]+K[4s], and K[4s]+K[4p]. Nevertheless, to our knowledge no investigations have been performed for highly excited states, and their descriptions constitute a challenge for theoreticians.

0.016 42

0.005 20

0.002 20

The main purpose of this work is to report information on the highly excited states of these molecules in order to interpret collisional processes between two excited atoms, such as the energy pooling reaction studied by Allegrini and coworkers [47,48] or the associative ionization reaction only observed experimentally for K_2 [48–50]. Atomic units will be used except when otherwise stated.

II. METHOD

Basically we use the same pseudopotential method as in our previous work on Na_2 or Cs_2 and Rb_2 [1,38]. The Na and K atoms are treated through the one-electron pseudopotential proposed by Barthelat and Durand [51]. In this approach, the electron-core interaction is represented by the effective potential

$$V[r] = \sum_{l=0}^{2} U_{l}[r]P_{l}.$$
 (1)

In (1), l is the orbital angular momentum, and P_l corresponds to the projection operator on the subspace defined by the Y_m^l spherical harmonics with a given l. The pseudopotentials $U_l[r]$ are written as

$$U_{l}[r] = \sum_{i=1}^{2} c_{i} r^{ni} \exp[-\alpha_{i} r^{2}], \qquad (2)$$

where c, n, and α are adjusted to fit the energy and wave functions of the valence Hartree-Fock orbitals. Details of the sodium and potassium atoms are presented in the paper by Maynau and Daudey [52].

For Na, we used the same basis set of Gaussian-type orbitals (GTO's) as in our work on Na₂ [1]. For K, the Gaussian basis set used is built up from that defined by Jeung and Ross [35], by adding more diffuse orbitals necessary for the

description of highly excited states. Presently the basis set of the potassium atom consists of six s, five p, five d, and two f Gaussian functions which are sufficient to reproduce correctly the ten first atomic levels up to K[5d]. Data are reported in Table I for the potassium atom, while those for sodium are given in Ref. [1].

0.108 30

1

1

1

1

The core-polarization effects are described by the effective potential proposed by Müller, Flesch, and Meyer [42]:

$$V_{cpp} = \frac{-1}{2} \sum_{\lambda} \alpha_{\lambda} \mathbf{f}_{\lambda} \cdot \mathbf{f}_{\lambda} , \qquad (3)$$

where α_{λ} is the dipole polarizability of the ionic core λ . They have been taken to be equal to the experimental ones (respectively $0.9947a_0$ for Na⁺ and $5.354a_0$ for K⁺ [37]). The electric field \mathbf{f}_{λ} , which acts on the atom λ , is due to the valence electrons and the other core, and is modified by the *l*-dependent cutoff function *F* defined in Ref. [38],

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} F_l(r_{i\lambda}, \rho_{\lambda}^l) |lm\lambda\rangle \langle lm\lambda|.$$
(4)

In (4), $|lm\lambda\rangle$ corresponds to the spherical harmonic centered on the atom λ , and the cutoff function F_l is written as

$$F_l(r_{i\lambda}, \rho_{\lambda}^l) = \begin{cases} 0, & r_{i\lambda} < \rho_{\lambda}^l \\ 1, & r_{i\lambda} > \rho_{\lambda}^l \end{cases}.$$
(5)

For atoms with a single valence electron, each cutoff parameter ρ_{λ}^{l} can be independently fitted to the ionization potential and transition energies. The cutoff radii ρ_{λ}^{l} are adjusted to fit

TABLE II. Spectroscopic constants for the ground state of the K_2^+ and NaK⁺ molecular ions.

	(Units of R_e/a_0)	$\omega_e \ (\mathrm{cm}^{-1})$	$D_e \ (\mathrm{cm}^{-1})$
	$X^{2}\Sigma_{g}^{+}(K_{2}^{+})$		
Experiment (Ref. [54])	8.68	73.40	6670
Theory (Ref. [37])	8.60	72.40	6573
Theory (Ref. [46])	8.53	73.70	6589
Present work	8.47	73.70	6690
	$X^{2}\Sigma^{+}$ (NaK ⁺)		
Experiment (Ref. [55])			4645
Theory (Ref. [37])	7.71	91.90	4581
Present work	7.65	91.00	4645

coefficient

1

1

exponent

0.931 20

0.267 60

0.041 70

0.028 15

0.014 48

0.005 50

0.002 60

1

1

1

1

1

-

TABLE III. Spectroscopic constants and adiabatic dissociation limits for 61 electronic states of K_2 , including comparison with available experimental data.

State	Determination	R_e (units of a_0)	$T_{e} ({\rm cm}^{-1})$	$\omega_e ~(\mathrm{cm}^{-1})$	$D_{e} ({\rm cm}^{-1})$	Dissociation limit $K[nl] + K[n'l']$
$1^{1}\Sigma_{a}^{+}$						4s + 4s
8	Expt. (Ref. [2])	7.42	0	92.40	4451	
	Expt. (Ref. [3])	7.42	0	92.40	4440	
	Theory (Ref. [44])	7.44	0	88.40	4267	
	Theory (Ref. [37])	7.45	0	91.80	4331	
	Theory (Ref. [35])	7.62	0	87.17		
	Theory (Ref. [46])	7.29	0	96.68	4283	
	Present work	7.39	0	93.18	4289	
$2 {}^{1}\Sigma_{g}^{+}$						4s + 4p
	Theory (Ref. [35])	9.92	14 685	45.10		
	Present work	9.63	14 343	45.76	2969	
$3 {}^{1}\Sigma_{g}^{+}$						4s + 5s
-	Theory (Ref. [35])	9.87	20 524	32.82		
	Present work	8.61	20 319	29.55	4988	
$4 {}^{1}\Sigma_{g}^{+}$						4s + 3d
Ŭ	Theory (Ref. [35])	9.47	21 279	75.09		
	Present work	8.98	21 378	84.95	4447	
$5 {}^{1}\Sigma_{g}^{+}$						4s + 5p
0	Expt. (Ref. [4])	8.46	25 376	69.77	3793	
	Present work	8.57	25 276	71.18	3764	
$6 {}^{1}\Sigma_{g}^{+}$						4p + 4p
0	Expt. (Ref. [4])	8.40	25 882	72.75	4621	
	Present work	8.39	25 790	73.52	4545	
$7 {}^{1}\Sigma_{g}^{+}$	Descent mont	0 57	27.042	26 17	2202	4 4
inner	Present work	8.37	27 942	20.47	2392	4p+4p
$7 {}^{1}\Sigma_{g}^{+}$	Present work	10.79	27 031	68 42	2403	
outer	Tresent work	10.77	27)31	00.42	2405	
$8 \Sigma_g^+$						4s+4d
. .	Present work	8.56	28 042	71.22	3664	
9 ${}^{1}\Sigma_{g}^{+}$						4s + 6s
	Expt. (Ref. [4])	8.45	28 233	70.03	3673	
1 ¹ 5 ⁺	Present work	8.47	28 184	69.32	3557	$4s \pm 4n$
1 <i>2</i> _u	Expt (Ref [5])	8 60	11 108	70.55	6328	43 + 4 <i>p</i>
	Theory (Ref. $[50]$)	8.64	10 634	70.33	6130	
	Theory (Ref. [30])	8.04	10 034	67 57	0150	
	Present work	8.57	11 100	70.42	6302	
$2^{1}\Sigma^{+}$	Tresent work	0.57	11 010	70.42	0502	$4s \pm 5s$
$2 \Delta_u$						43 + 55
IIIICI	Theory (Ref [30])	8 86	22 028	24 30		
	Present work	0.30 0.27	22 028	24.30	3385	
$2^{1}\Sigma^{+}$	Tresent work).21	21 722	40.45	5565	
$2 = \frac{2}{u}$						
outer	Expt (Ref [6])		21 701	25.98	3772	
	Present work	14.05	21 701	29.58	3712	
3 ¹ 5 ⁺	Tresent work	14.05	21 374	29.07	5715	$4 c \pm 3 d$
5 4 _u	Fant (Ref [7])	R Q1	23 863	63 41	2123	43 + JU
	$\frac{\mathbf{D}_{\mathbf{A}}\mathbf{P}_{\mathbf{A}}}{\mathbf{T}_{\mathbf{A}}\mathbf{P}_{\mathbf{A}}\mathbf{P}_{\mathbf{A}}\mathbf{F}}$	0.71	22 002	55 06	2123	
	Present work	7.47 Q Q1	20 200 22 541	62.00	2281	
1 ¹ 5 ⁺	riesent work	0.04	25 541	02.09	2204	$4 s \pm 5 n$
<i>→ ⊥</i> μ	Present work	8 71	26 460	21.05	2571	$4s \pm 5p$
5 ¹ 5 ⁺	TICSUIL WOIK	0.74	20 407	21.03	2371	$\Delta \mathbf{s} + \Delta \mathbf{A}$
5 4 u	Present work	8 56	27 250	60 31	1118	$+ \delta + + u$
	i resent work	0.50	21 237	07.51	0	

State	Determination	R_e (units of a_0)	$T_{e} ({\rm cm}^{-1})$	$\omega_e \ (\mathrm{cm}^{-1})$	$D_{e} ({\rm cm}^{-1})$	Dissociation limit K[nl]+K[n'l']
$\overline{6^{1}\Sigma_{\mu}^{+}}$						4p + 6s
64	Present work	9.92	28 334	66.73	3407	
$1^{3}\Sigma_{a}^{+}$						4s + 4p
- <i>- g</i>	Theory (Ref. [39])	9.58	13 365	56.60		
	Present work	8.99	13 534	59.85	3778	
$2 {}^{3}\Sigma_{g}^{+}$						4s + 5s
	Theory (Ref. [39])	8.49	19 732	74.04		
2	Present work	8.07	19 350	80.91	5957	
$3 {}^{3}\Sigma_{g}^{+}$		0.02	22.2.5	60.04		4s+3d
	Theory (Ref. [39])	8.93	23 267	68.34 71.46	2280	
4 ³ 5 ⁺	Present work	8.49	25 555	/1.40	2289	$4a \pm 5n$
+ <i>4</i> g	Present work	8 33	25 666	75 37	3491	4s + 5p
$5^{3}\Sigma^{+}$	Tresent work	0.55	25 000	15.51	5471	4s+4d
- g	Present work	8.51	27 081	68.28	4625	15 - 74
$5^{3}\Sigma_{a}^{+}$		0.01	2, 001	00.20		4s + 6s
8	Present work	8.60	28 036	66.40	3705	
1 ³ 5 ⁺						1 ~ 1 4 ~
$1^{2} \Delta_{u}$	Expt (Ref [8])	10.01	4106	21.76	254	4s + 4s
	Expl. (Ref. $[\delta]$) Theory (Ref. $[46]$)	10.91	4190	21.70	234	
	Theory (Ref. $[40]$)	11.01	4192	20.50	258	
	Theory (Ref. $[44]$) Theory (Ref. $[35]$)	10.83	4043	20.50	258	
	Present work	10.84	4057	20.81	232	
	dissociative state	10.04	4057	20.01	252	
$2^{3}\Sigma_{\mu}^{+}$						4s + 4p
$3^{3}\Sigma_{\mu}^{+}$						4s + 5s
	Theory (Ref. [35])	10.78	21 727	55.79		
	Present work	9.98	21 742	72.15	3566	
$^{3}\Sigma_{u}^{+}$						4s + 3d
	Theory (Ref. [35])	9.78	23 716	70.35		
	Present work	9.32	24 158	65.65	1666	
$\int {}^{3}\Sigma_{u}^{+}$						4s + 5p
2-1-1	Present work	8.53	26 297	70.53	2743	
$5^{3}\Sigma_{u}^{+}$		0.17				4p+4p
351 +	Present work	8.60	27 349	68.72	2986	.
\sum_{u}^{+}		0.40	00 (21	70.01	1704	4p + 4p
3 √ +	Present work	8.48	28 631	72.31	1704	4 4 4 7
) 2 _u	Drogent went-	0 67	20.222	65.02	1202	4s+4d
	Present Work	8.02	29 323	65.93	2383	
$1 \Pi_u$						4s + 4p
	Expt. (Ref. [9])	8.00	15 377	74.89	2094	
	Theory (Ref. [46])	8.13	15 711	73.54	1057	
	Theory (Ref. [35])	8.40	15 684	67.85		
1	Present work	8.01	15 421	74.05	1891	
$2 \Pi_u$	= =					4s+3d
	Expt. (Ref. [10])	8.35	22 970	61.50	3016	
	Theory (Ref. [35])	9.00	23 062	48.37	2210	
	Present work	8.42	23 105	60.11	2/19	4
$5 \Pi_u$		0.04	22.027	(2.70	5029	4s+5p
	Expt. (Ket. [/])	8.84	23 927	62.70	5238	
4 ¹ Π	Present WOrk	ð.04	23 833	/4.19	5180	$4n \pm 4n$
• 11 _u	Expt $(\mathbf{D}_{of} [11])$	8 57	76 187	62 00	2001	4 <i>p</i> +4 <i>p</i>
	Expl. (Kel. [11]) Present work	0.37	20 40 / 26 417	02.08 63.00	2018	
	I IESEIII WUIK	0.30	20 41 /	03.77	3710	

TABLE III. (Continued).

S. MAGNIER AND PH. MILLIÉ

TABLE III. (Continued).

Determination	R_e (units of a_0)	$T_{e} ({\rm cm}^{-1})$	$\omega_e \ (\mathrm{cm}^{-1})$	$D_{e} ({\rm cm}^{-1})$	Dissociation limit K[nl]+K[n'l']
					4s+4d
Present work	8.59	27 351	73.13	4355	
					$4 a \pm 4 n$
Expt (Ref $[12]$)	0 7/	16 204	34.04	1261	4s+4p
Theory (Ref $[35]$)	9.87	15 905	40.69	1201	
Present work	9.73	16 063	33.45	1248	
riebent work	5.15	10 005	55.15	1210	4s+3d
Theory (Ref. [35])	9.41	23 227	53,53		15 . 54
Present work	8.98	23 570	55.80	2255	
riebent work	0.00	25 570	22.00	2233	4s+5n
Expt (Ref [4])	8 75	26 433	66.04	2736	15 + 5 p
Present work	8.66	26 316	66.16	2724	
riebent work	0.00	20 510	00.10	2721	4n+4n
Present work	8 62	28 041	63 52	2294	$\neg p + \neg p$
Tresent work	0.02	20 041	05.52	2274	4s+4d
Expt (Ref [13])	8 52	28 480	71.03	3368	+5 + <i>+u</i>
Present work	8.52	28 480	71.05	3347	
riesent work	0.49	28 339	/1.10	5547	
					4s + 4p
Expt. (Ref. [5])	7.32	9912	91.54	7524	-
Theory (Ref. [46])	7.39	9278	91.82	7485	
Theory (Ref. [35])	7.54	9855	88.28		
Present work	7.34	9827	94.80	7485	
					4s+3d
Theory (Ref. [35])	8.52	21 999	59.46		
Present work	8.13	21 848	72.70	3977	
					4s+5n
Present work	8 92	23 617	58.20	5423	15 + Cp
riebent work	0.72	25 017	50.20	5125	4n+4n
Present work	8 33	26 492		3843	p + p
Tresent work	0.55	20 472		50-5	4s+4d
Present work	8 94	26 853	88 94	4853	+5 + <i>+u</i>
Tresent work	0.74	20 855	00.74	4055	
					4s + 4p
Theory (Ref. [35])	9.28	17 612	48.97		
Present work	9.02	17 817		505	
					4s + 3d
Present work	9.64	21 550	55.52	4274	
					4s + 5p
Present work	8.44	25 286	71.09	3754	1
					4p + 4p
Present work	8.58	28 048	56.83	2287	1 1
					4s + 4d
Present work	8.52	28 052	81.62	3634	
					4s+3d
Theory (Ref. [35])	7.94	19 524	72.10		
Present work	7.73	19 841	80.06	5984	
					4p + 4p
Present work	8.15	25 283	62.73	5052	
					4s + 4d
Expt. (Ref. [4])	8.34	27 954	74.21	3899	
Present work	8.30	27 868	75.10	3838	
					4s+3d
Theory (Ref. [35])	9.39	24 497	50.36		
Present work	8.77	24 685	58.22	1139	
					4p + 4p
Present work	8.61	27 559	65.67	4147	

State	Determination	R_e (units of a_0)	$T_{e} ({\rm cm}^{-1})$	$\omega_e \ (\mathrm{cm}^{-1})$	$D_{e} ({\rm cm}^{-1})$	Dissociation limit $K[nl] + K[n'l']$
$1^{3}\Delta_{\mu}$						4s+3d
	Theory (Ref. [35])	9.51	24 331	49.08		
	Present work	8.84	24 595	55.18	1230	
$2 {}^{3}\Delta_{u}$						4p + 4p
	Present work	7.99	27 613		2722	
$3 \ ^{3}\Delta_{u}$						4s + 4d
	Present work	8.62	29 109	66.34	2597	
$1^{3}\Delta_{a}$						4s + 3d
8	Theory (Ref. [35])	8.39	21 095	73.89		
	Present work	7.95	20 871	78.90	4956	
$2 {}^{3}\Delta_{g}$						4s + 4d
0	Present work	8.26	25 912	75.30	5794	
$1^{3}\Sigma_{p}^{-}$						4p + 4p
	Present work	7.55	26 813	66.64	3522	

TABLE III. (Continued).

the 4s, 4p, 3d, and 4f experimental atomic energies [53] for K. As previously observed for Na [1], the energy of the 4f atomic level appears insensitive to the choice of a corresponding cutoff radius, and we have taken it to be equal to ρ_{λ}^{d} . Finally, we obtain $\rho_{\lambda}^{l} = 2.067a_{0}$, $\rho_{\lambda}^{p} = 1.905a_{0}$, and $\rho^{d,f}\lambda = 1.960a_{0}$. For a heteronuclear molecule, the corepolarization effects of each atom are different, and two sets of parameters must be defined. For NaK, we have therefore used the values obtained for potassium and those of sodium defined in Ref. [1].

With these data, we have computed atomic energies for the 4s level up to 5d for potassium. We obtain a good agreement with experimental data [53]. The discrepancies are less than 10 cm⁻¹ for the lowest atomic levels, and less than 50 cm⁻¹ for the most highly excited states. The difference between theoretical and experimental values for highly excited levels indicates that the present basis should be increased for their description. However, all molecular states correlating to asymptotes up to K[4s]+K[5d] and Na[3s]+K[5d] may be described with a good accuracy.

Hence, to check the accuracy of our basis sets and polarization potentials, we have determined the spectroscopic constants of the ground state of the K_2^+ and NaK⁺ cations treated as one effective electron system. Results are given in Table II. Comparisons of theoretical calculations and experimental data are very consistent. Although the equilibrium distance is too short for K_2^+ , as previously found for Na_2^+ , we obtain an excellent agreement with other experimental values [54,55] especially for the dissociation energy. In both cases, comparisons with the theoretical results of Müller and Meyer [37] and those of Ref. [46] achieved by an open-shell coupled, cluster method are very good. As in Ref. [1], the energies of K₂ and NaK states are determined by a full valence configuration-interaction (CI) procedure. For K_2 , the molecular basis contains 36σ , 48π , 28δ , and 8ϕ orbitals, while this includes 34σ , 46π , 26δ , and 8ϕ orbitals for NaK.

III. SHORT-RANGE RESULTS

Adiabatic potential curves have been computed, without including the spin-orbit coupling, up to the K[4s]+K[6s]

and Na[3s]+K[5d] dissociation limits, from $5a_0$ to $70a_0$. Moreover, relevant oscillator strengths for K₂ and permanent dipole moments for NaK have been determined, and all data may be obtained upon request. In the first part of their analysis, we compare adiabatic potential curves with available experimental data.

A. Spectroscopic constants

Spectroscopic constants of K_2 are presented in Table III, whereas they are reported in Table IV for NaK. For the two alkali dimers, the ground state is reproduced very well. The error in the equilibrium distance is equal to $0.03a_0$ for K_2 and $0.04a_0$ for NaK, while those in the dissociation energy D_e are 162 and 89 cm⁻¹, respectively. Agreement between theoretical and experimental vibrational constants is also excellent. Moreover, our results are in good agreement with the previous theoretical calculations of Refs. [37] and [44]. We may note that the spectroscopic constants of the ground state of K_2 are not determined with a very good accuracy by the open-shell cluster method [46]. This demonstrates in particular the difficulty in describing with accuracy correlation effects by all electron theoretical methods.

For the two molecules and for relevant electronic states, the equilibrium distances R_e are systematically predicted to be a little shorter than the experimental values. We generally find the dissociation energy D_e and the excitation energy T_e to be lower than the experimental data, and the errors do not exceed 150 cm⁻¹. However, for many excited states the errors are lower than those obtained for the ground state for the two molecules, and previous calculations of Refs. [35] and [36–45] have been improved remarkably. For example, with the improvement of the Gaussian basis set and with the inclusion of an *l*-dependent core-polarization potential, we may determine the spectroscopic constant of the 3³ Δ NaK electronic state which was calculated as dissociative in Ref. [45].

In the case of K₂, the $2 \, {}^{1}\Sigma_{u}^{+}$ electronic state correlated to K[4s]+K[5s] presents two minima located at $R=9.27a_{0}$ and $14a_{0}$. In our work on Na₂ [1], the same situation has been observed for the $2 \, {}^{1}\Sigma_{u}^{+}$ electronic state dissociating into

=

_

TABLE IV. The same as Table III, but for 58 electronic states of NaK.

State	Determination	R_e (units of a_0)	$T_{e} ({\rm cm}^{-1})$	$\omega_e \ (\mathrm{cm}^{-1})$	$D_{e} ({\rm cm}^{-1})$	Dissociation limit Na[nl]+K[n'l']
$1^{1}\Sigma^{+}$						3s + 4s
	Expt. (Ref. [15])	6.61	0	124.01	5275	
	Theory (Ref. [37])	6.64	0	123.80	5170	
	Theory (Ref. [45])	6.45	0	127.60	5491	
	Theory (Ref. [36])	6.41	0	132.00	5000	
	Present work	6.57	0	123.44	5187	
$2 \ ^{1}\Sigma^{+}$						3s + 4p
	Expt. (Ref. [16])	7.93	12 137	81.25	6220	
	Theory (Ref. [45])	7.68	12 011	86.20	6532	
	Theory (Ref. [36])	7.96	12 300	76.00	5888	
	Present work	7.90	12 089	81.00	6121	
$3 \ ^{1}\Sigma^{+}$						3p + 4s
	Expt. (Ref. [17])	8.40	17 787	69.66	4455	
	Theory (Ref. [45])	8.39	18 368	61.70	4104	
	Theory (Ref. [36])	8.35	18 200	77.00	4114	
	Present work	8.32	17 837	68.74	4317	
$4 \ ^{1}\Sigma^{+}$						3s + 5s
	Theory (Ref. [45])	13.70	22 245		4309	
	Present work	13.57	21 874	33.92	4331	
$5 \ ^{1}\Sigma^{+}$						3s + 3d
	Theory (Ref. [45])	8.18	24 147	104.20	3279	
	Present work	8.11	23 527	112.00	3195	
$6 \Sigma^+$						3s + 5p
	Present work	7.96	25 445	84.90	4492	
$7 \ ^{1}\Sigma^{+}$						4s + 4s
	Present work	8.19	27 109	64.50	3837	
$8 \Sigma^+$						3s + 4d
	Present work	7.87	28 139	83.00	4465	
$9 \Sigma^+$						3s + 6s
1	Present work	7.67	28 562	96.20	4077	
$10 \ \Sigma^{+}$						3s+4f
1 1	Present work	7.75	29 527	84.00	3834	
$11 \Sigma^+$						3s + 6p
1 1	Present work	7.88	30 391	80.60	3847	
$12 \Sigma^{+}$						3d+4s
1 	Present work	7.74	30 869	87.00	3491	
13 ¹ Σ ¹						3p + 4p
1=+	Present work	7.64	31 101	82.20	4076	
14 ¹ Σ '					1011	3p+4p
$1^{3}\Sigma^{+}$	Present work	7.69	31 166	94.80	4011	3s + 4s
	Expt. (Ref. [15])	10.28	5066	22.99	209	
	Theory (Ref. $[45]$)	9.79	5200	26.90	291	
	Theory (Ref. [36])	10.56	4800	23.00	161	
	Present work	10.30	4990	22.65	197	
$2^{3}\Sigma^{+}$						3s + 4p
	Expt. (Ref. [18])		15 719	75.50	2580	I I
	Expt. (Ref. $[19]$)	7.75	15 998	73.79	2300	
	Expt. (Ref. [20])	8.05	16 283	68.64	2015	
	Theory (Ref. [45])	8.01	15 799	74.00	2645	
	Theory (Ref. [36])	8.20	16 100	77.00	2097	
	Present work	8.14	15 669	73.40	2541	
$3^{3}\Sigma^{+}$	Tresent work	0.11	10 000		2011	3n+4s
	Theory (Ref. [45])	7.26	21 690	88.30	782	$v_F + i v$
	Present work	7 44	21 380	94 20	774	
	a resource of our		21 000	21.20	, , F	

State	Determination	R_e (units of a_0)	$T_{e} ({\rm cm}^{-1})$	$\omega_e \ (\mathrm{cm}^{-1})$	$D_{e} ({\rm cm}^{-1})$	Dissociation limit Na[nl]+K[n'l']
$1^{3}\Sigma^{+}$						3s + 5s
	Theory (Ref. [45])	7.83	23 649	70.90	2282	
	Present work	7.96	23 850	74.00	2355	
$^{3}\Sigma^{+}$						3s + 3d
	Theory (Ref. [45])	9.89	25 381	73.70	2047	
	Present work	9.81	24 868	97.00	1855	
$5^{3}\Sigma^{+}$						3s + 5p
	Present work	8.35	26 681	110.00	3256	
$^{3}\Sigma^{+}$						4s + 4s
	Present work	8.49	27 588	106.00	3359	
$^{3}\Sigma^{+}$						3s + 4d
	Present work	7.81	28 212	166.00	4392	
$^{3}\Sigma^{+}$						3s + 6s
	Present work	7.74	29 131	92.00	3508	
$0^{3}\Sigma^{+}$						3s + 4f
	Present work	7.65	30 072	92.00	3289	-
$1^{3}\Sigma^{+}$						3s + 6p
	Present work	7.76	30 540	90.00	3698	1
$2^{3}\Sigma^{+}$						3d + 4s
,	Present work	7.61	30 989	93.00	3371	
$3^{3}\Sigma^{+}$						3n + 4n
	Present work	7 75	31 152	86.00	4025	
$4^{3}\Sigma^{+}$	Trebent work	1.15	51 152	00.00	1025	3n+4n
1 4	Present work	7 67	31 821	89.90	3356	Jp + 4p
	Tresent work	7.07	51 021	07.70	5550	
$^{1}\Pi$						3s + 4p
	Expt. (Ref. [21])	7.59	16 993	71.50	1306	
	Expt. (Ref. [22])	7.58	16 993	71.43	1306	
	Expt. (Ref. [23])	7.58	16 993	71.46	1305	
	Theory (Ref. [45])	7.69	17 365	61.30	1079	
	Theory (Ref. [36])	7.69	17 500	65.00	726	
	Present work	7.63	17 016	67.60	1193	
$^{1}\Pi$						3p + 4s
	Expt. (Ref. [24])	7.92	20 093	81.52	2149	1
	Theory (Ref. [45])	7.58	20 643	84.00	1839	
	Theory (Ref. [36])	7.69	21 000	71.00	1291	
	Present work	7.81	20 082	83.00	2072	
$^{1}\Pi$						3s+3d
	Theory (Ref. [45])	9.05	26 690	46.00	738	00.00
	Present work	8.52	25 568	47.20	1155	
¹ Π	Tresent work	0.52	25 500	47.20	1155	3s+5n
11	Present work	7 87	26 394	87.90	3544	53 + 5p
¹ Π	Tresent work	7.07	20 374	07.90	3344	$3c \pm 4d$
11	Dresent work	774	27 650	84.40	4045	53 + 4a
1 п	Present work	1.74	27 039	84.40	4945	$2a \perp 4f$
11		7.01	20.296	82.70	1075	$55 \pm 4j$
117	Present Work	/.81	29 286	82.70	4075	2
.11	D . 1		20 754	01.40		3s+6p
1	Present work	1.11	29 /56	81.40	4482	2.1 - 1
-11		7.72	20 - 500	06 50	0751	3d+4s
1	Present work	1.12	30 609	86.50	3/51	
.11		·			10.1-	3p + 4p
- 1 	Present work	7.74	31 163	87.00	4013	
) 'II						3p + 4p
	Present work	7 73	31 357	88.00	3820	

TABLE IV. (Continued).

State	Determination	R_e (units of a_0)	$T_{e} ({\rm cm}^{-1})$	$\omega_e \ (\mathrm{cm}^{-1})$	$D_{e} ({\rm cm}^{-1})$	Dissociation limit $Na[nl] + K[n'l']$
$1^{1}\Delta$						3s+3d
• -	Theory (Ref. [45])	7.04	23 352	103.60	4076	
	Present work	7.17	22 961	96.60	3761	
$2 \ ^{1}\Delta$						3s + 4d
	Theory (Ref. [45])	7.90	29 905	72.80	4744	
	Present work	7.76	28 080	85.50	4524	
$3 \ ^{1}\Delta$						3s + 4f
	Theory (Ref. [45])	9.51	35 492	50.60	2089	
	Present work	7.43	28 332	98.00	5029	
$4 \ ^{1}\Delta$						3d + 4s
. 1 .	Present work	7.56	30 883	74.00	3477	
$5^{-1}\Delta$				100.00		3p + 4p
	Present work	7.66	30 920	103.00	4257	
$1 \ {}^{3}\Pi$						3s + 4p
	Expt. (Ref. [25])	6.62	11 562	120.41	6737	-
	Theory (Ref. [45])	6.50	11 534	122.20	6910	
	Theory (Ref. [36])	6.52	11 900	129.00	6291	
	Present work	6.54	11 508	121.71	6702	
$2^{3}\Pi$						3p + 4s
	Expt. (Ref. [26])	7.98	20 248	67.38	2012	
	Theory (Ref. [45])	7.84	20 508	69.30	1964	
	Theory (Ref. [36])	8.43	21 200	69.00	1049	
2	Present work	8.00	20 190	67.09	1964	
3 ³ Π						3s+3d
	Theory (Ref. [45])	10.50	25 099	51.70	2329	
. 3	Present work	7.39	25 165	101.00	1558	
4 ³ 11		0.04	05 510	1.65.00	4010	3s+5p
с ³ тт	Present work	8.24	25 718	165.00	4219	2
5 11		8.00	07.004	(0.20	5290	3s+4d
с ³ П	Present Work	8.09	27 224	69.20	5380	2 - 1 4 6
0 11	Dragant work	7.64	27.066	00.70	5205	5s+4J
7 ³ П	Flesent work	7.04	27 900	90.70	5595	$3s \pm 6n$
/ 11	Present work	7 53	20 548	03 00	4601	55+0p
8 ³ П	T TESETIL WOLK	1.55	29 540	95.90	4091	3d+4s
0 11	Present work	8.08	30 323	41.00	4037	54 + 45
9 ³ П	Tresent work	0.00	30 323	41.00	4057	3n+4n
<i>,</i> 11	Present work	7.64	30 857	90.00	4320	Sp + 1p
10 ³ П						3p+4p
	Present work	7.75	31 160	88.00	4017	
. 3.						
$1^{-3}\Delta$		5 15	24.204	07 70	2122	3s+3d
	Theory (Ref. [45])	7.17	24 296	97.70	3132	
234	Present work	1.35	23 647	93.60	3075	2 - 1 - 4 - 1
$Z^{*}\Delta$	Theory (Def [45])	רר ר	20.092	91.20	1667	5s+4a
	Dresent work	7.77	29 982	81.30	4007	
3 ³	FIESEIII WOIK	1.14	20 007	63.90	4337	$3 s \perp \Lambda f$
5 4	Theory (Ref [45])	dissociativa				55±4J
	Present work	7 53	28 834	92 70	4527	
$4^{3}\Lambda$	I ICOURT WOIK	1.55	20 004	2.10	7321	3d+4s
	Present work	7.70	30 885	87.50	3476	54 / 75
$5^{3}\Delta$			20 000	00	2.75	3p + 4p
						- r · · r

89.00

31 298

3879

7.60

Present work

TABLE IV. (Continued).

TABLE V. Estimated deviations from experimental values for spectroscopic constants of the K_2 and NaK molecules for various calculations. (Average deviations over 17 electronic states for K_2 and over nine states for NaK.)

	ΔR_e (units of a_0)	$\Delta T_e \ (\mathrm{cm}^{-1})$	$\Delta \omega_e ~({ m cm}^{-1})$	$\Delta D_e \ ({\rm cm}^{-1})$
		K ₂		
Theory (Ref. [35])	0.32	234	5.52	
Present work	0.05	111	1.78	84
		NaK		
Theory (Ref. [45])	0.20	266	4.19	198
Theory (Ref. [36])	0.18	491	5.48	481
Present work	0.05	46	1.24	72

Na[3s]+Na[4s], and Cooper *et al.* [56] have shown that this pattern was typical of an ionic-covalent interaction. Using previous studies on different alkali dimers [56-58], Kowalczyck, Katern, and Engelke [6] suggested that this state has a double-well structure due to an avoided crossing between two diabatic states, one being a Rydberg state correlated to K[4s] + K[5s], the other being ionic at large internuclear distance. Unfortunately, their experiments were insufficient to determine with accuracy the corresponding potential curve and, in particular, if it was characterized by one or two minima. Nevertheless, from their measurements they deduced some spectroscopic constants. According to a comparison of our results with experimental values, we suggest that Kowalczyck, Katern, and Engelke observed the second (outer) minimum. In Sec. IV will show that this results effectively from an interaction between ionic and covalent states.

Recently, some experiments were devoted to highly excited states [4,7,11,13] dissociating into the asymptotes close to K[4p] + K[4p]. We obtained a very good agreement with experiments for spectroscopic constants of the 5 ${}^{1}\Sigma_{g}^{+}$, 6 ${}^{1}\Sigma_{g}^{+}$, $9 {}^{1}\Sigma_{g}^{+}$, $3 {}^{1}\Delta_{g}$, $3 {}^{1}\Pi_{u}$, $4 {}^{1}\Pi_{u}$, and $3 {}^{1}\Sigma_{u}^{+}$ molecular states. Except for the $3 {}^{1}\Sigma_{u}^{+}$ and $3 {}^{1}\Pi_{u}$ states, where the errors in the excitation energy for the first state and on the equilibrium distance for the second are more important, the errors in the excitation and dissociation energies do not exceed 100 cm⁻ and those in the equilibrium distance do not exceed $0.1a_0$. Only the agreement between vibrational constants is less satisfying. Moreover, we may observe that our data on the $5 \Pi_{o}$ molecular state correlated to K[4s]+K[4d] are in good agreement with experimental values for a ${}^{1}\Pi_{o}$ state [13], thought to be diabatically dissociating into K[4s] + K[5d]. The equilibrium distances R_e differ by $0.03a_0$, and the vibrational constants w_e by 0.07 cm⁻¹, while the difference for the excitation energy T_e is equal to 121 cm^{-1} . Thus we finally suggest that the dissociation limit of this experimental state corresponds to K[4s] + K[4d]. Recent highly excited ${}^{1}\Delta_{g}$ states correlated to K[4s]+K[6d], for example, have been observed [14], but unfortunately we cannot compare our results with them.

For NaK, the agreement with experiment is often excellent except for the $2^{3}\Sigma^{+}$ molecular state correlated to Na[3p]+K[4s]. However, the agreement between all theoretical calculations [36–45] is very good. Although many experimental works have been devoted to this state [18–20], it is difficult to compare our results with the various experimental spectroscopic constants. Recently, Kowalczyck, Derouard, and Sadeghi [27] determined with accuracy the number of vibrational levels and their position. They compared with other experimental determinations and concluded that the most accurate spectroscopic constants were those of Kowalczyck [19]. They showed in particular that this state is very perturbed by the 1 $^{1}\Pi$ and 1 $^{3}\Pi$ electronic states (see below), and suggested that these data could be improved. Nevertheless if we compare our values with the various experimental ones, we may suggest that Derouard and Sadeghi [18] have reported the most accurate spectroscopic constants.

Our present results are in overall very good agreement with available experimental values. In Table V we present the estimated errors in the spectroscopic constants for previous and present theoretical works. The averaged value of the deviation between experimental and theoretical determinations has been computed for 17 states of K₂ and nine states of NaK. In both cases, our theoretical results show remarkable improvement compared to previous theory, and we again obtain the accuracy of our previous calculations on Na₂ [1] and those on Cs_2 and Rb_2 [38]. Moreover, for NaK we determined to check the accuracy of our wave functions, and the variation of the permanent dipole moment of each state versus the internuclear distance. In the case of the ground state, at the equilibrium distance we find a permanent dipole moment equal to 2.758 D, which is in good agreement with the experimental value [59], $(\mu[R_e] = 2.733(2) \text{ D})$ and with the prior theoretical value of Müller and Meyer [37] $(\mu[R_{e}]=2.735 \text{ D})$. Thus we may finally conclude that accurate results may be obtained when core-polarization effects are represented by an effective potential including *l*-dependent cutoff parameters, and that the pseudopotential method [38] is well adapted to the description of homonuclear and heteronuclear alkali dimers.

B. Comparison with RKR curves

When potential curves deduced from experiments are available, we can check in detail the accuracy of our calculations. We have chosen in particular to compare our results with those known at intermediate and large internuclear distances. Potential curves of the ground state of the two molecules are compared in Figs. 1 and 2 with experimental data of Amiot [2] for K₂ and with those of Ross *et al.* [15] for NaK. In both cases, the agreement is excellent, in particular for intermediate distances, the difference being equal to 4 cm⁻¹ at $R = 17a_0$ for K₂, and to 3.5 cm⁻¹ at $R = 15a_0$ for NaK.

FIG. 1. Ground state of the K_2 molecule: comparison of the computed curve with the experimental curve of Ref. [2].

Comparison with experiment is also very good for the lowest excited states. In Fig. 3 we present our results for the $1 \,{}^{1}\Pi_{g}$ state correlated to K[4s]+K[4p]. Our calculations are very comparable with the experimental values of Ref. [12], and the long-range potential curve is reproduced with an accuracy of 10 cm⁻¹ up to $30a_{0}$. Two other potential curves dissociating into K[4s]+K[4p] are compared in Fig. 4 to recent determinations of Ref. [5]. The comparison is very consistent, and the position of the crossing between the $1 \,{}^{3}\Pi_{u}$ and $1 \,{}^{1}\Sigma_{u}^{+}$ states is reproduced with a precision of $0.04a_{0}$. We find it at $R_{c}=8.94a_{0}$ with an energy of 11 260 cm⁻¹, while the experimental crossing is located at $R_{c}=8.98a_{0}$ with $E=11\,165$ cm⁻¹.

For NaK, the present calculations are also very accurate. Potential curves of the $1 {}^{3}\Pi$, $1 {}^{1}\Pi$, and $2 {}^{3}\Sigma^{+}$ electronic states correlated to Na[3s]+K[4p] are displayed in Fig. 5

FIG. 2. Ground state of the NaK molecule: comparison of the computed curve with the experimental curve of Ref. [15].

FIG. 3. Lowest excited states of K₂: comparison of the computed curve with the experimental curve of Ref. [12] for the $1 \, {}^{1}\Pi_{g}$ state correlated to K[4*s*]+K[4*p*].

from $5a_0$ to $20a_0$. Comparison with Refs. [21] and [25] is very good, and as in Refs. [19] and [27] we may note that the $2^{3}\Sigma^{+}$ state is strongly perturbed by the 1 ¹ Π state at short distances, but also by the 1 ³ Π state at intermediate internuclear distances. We observe a crossing between the 2 ³ Σ^{+} and 1 ³ Π states located at $R_c = 10.95a_0$. These perturbations may explain the differences between various experimental spectroscopic constants.

Although comparison with experimental potential curves is excellent for the lowest states for both molecules, the major part of the present results, mainly for highly excited states, corresponds to predictions. In order to confirm or invalidate them, further experimental investigations would be very interesting. In the remainder of this paper, we now pay particular attention to adiabatic potential curves for which

FIG. 4. Lowest excited states of K₂: comparison of the computed curve with the experimental curve of Ref. [5] for the $1 {}^{3}\Pi_{u}$ and $1 {}^{1}\Sigma_{u}^{+}$ states correlated to K[4s]+K[4p].

FIG. 5. Lowest excited states of the NaK molecule dissociating into Na[3s]+K[4p]: comparison of the computed curves with the experimental curves of Refs. [21] and [25] for the 1 $^{1}\Pi$ and 1 $^{3}\Pi$ states. The 2 $^{3}\Sigma^{+}$ state is strongly perturbed by these two states (at short distance by the 1 $^{1}\Pi$ state and at intermediate internuclear distances by the 1 $^{3}\Pi$ state).

interesting structures are displayed at large interatomic separation.

IV. STRUCTURES IN LONG-RANGE POTENTIAL CURVES OF HIGHLY EXCITED STATES

As in the case of Na₂ [43], numerous avoided crossings and wells are located in the adiabatic potential curves of $^{1,3}\Sigma^+$ and $^{3}\Pi$ symmetries, at very large internuclear distances. The position and the depth of the minima are reported in Table VI. For K₂, we predict six wells in adiabatic potential curves of molecular states correlated to the asymptotes close to K[4*p*]+K[4*p*]. We find, in particular, one well in the potential curves of 5 $^{1}\Sigma_{g}^{+}$ and 4 $^{1}\Sigma_{u}^{+}$ states correlated to

TABLE VI. Position (in a_0) and depth (in cm⁻¹) of wells located at large internuclear distances for the ${}^{1,3}\Sigma^+$ and ${}^{3}\Pi$ symmetries.

Molecular state	Position (units of a_0)	Depth (cm ⁻¹)
	K2	
$5 {}^{1}\Sigma_{g}^{+} [4s + 4p]$	22.00	2651
$6 {}^{1}\Sigma_{g}^{+} [4p + 4p]$	32.00	1187
$4 {}^{1}\Sigma_{u}^{+} [4s + 4p]$	22.80	2652
$5 {}^{1}\Sigma_{u}^{+} [4s + 4d]$	32.60	2560
$5^{3}\Pi_{u}$ [4s+4d]	19.75	1396
$5^{3}\Pi_{g} [4s+4d]$	21.20	1234
0	NaK	
$4^{1}\Sigma^{+}[3s+5s]$	14.00	4334
$6^{1}\Sigma^{+}[3s+5p]$	23.10	2854
$12 {}^{1}\Sigma^{+} [3d + 4s]$	25.90	723
$14 {}^{1}\Sigma^{+} [3p + 4p]$	26.80	621
$8^{3}\Sigma^{+}[3s+4d]$	15.30	1320
$9^{3}\Pi [3p+4p]$	25.10	652

FIG. 6. Long-range adiabatic computed potential curves of the K_2 molecule for the ${}^{1}\Sigma_{u}^{+}$ electronic states correlated to asymptotes from K[4*s*]+K[5*s*] up to K[4*s*]+K[6*s*].

K[4*s*]+K[5*p*]. These minima present the same characteristics, their position and their depth being respectively $R = 22a_0$ and E = 2651 cm⁻¹ for 5 ${}^{1}\Sigma_{g}^{+}$ and $R = 22.80a_0$ and E = 2652 cm⁻¹ for 4 ${}^{1}\Sigma_{u}^{+}$. For Na₂ [43], we have demonstrated that the occurrence of structures at large internuclear separation was due to pseudocrossings between ionic and covalent states, the ionic state being correlated, respectively, to Na⁺+Na⁻[¹S] and Na⁺+Na⁻[³P_0] for the ${}^{1}\Sigma_{g}^{+}$ and ${}^{3}\Pi$ symmetries. In our case, the minima of the 5 ${}^{1}\Sigma_{g}^{+}$ and 4 ${}^{1}\Sigma_{u}^{+}$ adiabatic potential curves correspond to a pseudocrossing between the ionic state correlated to K⁺+K⁻[{}^{1}S] and the ${}^{1}\Sigma_{g,u}^{+}$ covalent states dissociating into K[4*s*]+K[5*p*], which occurs at the same internuclear distance in relevant adiabatic potential curves. Similar comments may be also made for the 5 ${}^{3}\Pi_{g}$ and 5 ${}^{3}\Pi_{u}$ states correlated to K[4*p*]+K[4*p*].

In the case of NaK, we also predict six minima and, for the first time to our knowledge, one of ${}^{3}\Sigma^{+}$ symmetry. To illustrate them, we have chosen to display, in Figs. 6–8, long-range adiabatic potential curves of ${}^{1}\Sigma_{u}^{+}$ highly excited states correlated to asymptotes from 4s + 5s up to 4s + 6sfor K₂, and those of the ${}^{1}\Sigma^{+}$ and ${}^{3}\Sigma^{+}$ excited states dissociating, respectively, to asymptotes from 3s + 5s up to 3s + 4fand from 3s + 5p up to 3p + 4p for NaK. Numerous avoided crossings are present, and we now propose to explain them.

In previous work [43] we developed, to interpret them, a diabatic procedure in which we extracted, from pseudopotential calculations, a set of covalent and ionic curves and corresponding couplings. Applying this method for K₂, we identified two ionic states responsible for these patterns. The first one is correlated to the K⁺+K⁻[¹S] limit, and has an energy of -0.495 eV in comparison with the K+K⁺ limit. The value 0.495 eV, corresponding to the electronic affinity of the potassium atom, is in good agreement with the experimental data of Ref. [60] (E.A.=0.501 eV). The second ionic state is an autoionizing state dissociating into K⁺+K⁻[³P₀].

We display diabatic ${}^{1}\Sigma_{u}^{+}$ potential curves in Fig. 9. We note that the positions of crossings between diabatic covalent curves and the ionic curve are very close to those of different structures occurring in relevant adiabatic potential curves. In

FIG. 7. Long-range adiabatic computed potential curves of the NaK molecule for the ${}^{1}\Sigma^{+}$ electronic states correlated to asymptotes from Na[3s]+K[5s] up to Na[3s]+K[4f].

particular, the crossing between the $2 \, {}^{1}\Sigma_{u}^{+}$ covalent curve and the K⁺+K⁻[${}^{1}S$] ionic curve is located at $R_{c}=21.80a_{0}$ and corresponds at the end of the second well of the adiabatic $2 \, {}^{1}\Sigma_{u}^{+}$ state correlated to K[4s]+K[5s]. Then, from an analysis of diabatic pseudopotential results, we may confirm the existence of two minima in the adiabatic $2 \, {}^{1}\Sigma_{u}^{+}$ potential curve and, in particular, the ionic character of the second (outer) well.

For the NaK molecule, the situation is more complicated, since we must take into account two ionic asymptotes $Na^{-}[{}^{1}S]+K^{+}$ and $Na^{+}+K^{-}[{}^{1}S]$ separated by 0.84 eV. There are important perturbations in the adiabatic potential curves, and we propose to explain some of the structures observed in the ${}^{1}\Sigma^{+}$ and ${}^{3}\Sigma^{+}$ symmetries by analyzing the variation of the permanent dipole moment.

In Fig. 10, we report permanent dipole moments versus the internuclear distance for the 4 ${}^{1}\Sigma^{+}$ to 8 ${}^{1}\Sigma^{+}$ states. Strong

FIG. 8. Same as Fig. 7 but for ${}^{3}\Sigma^{+}$ electronic states dissociating to asymptotes from Na[3s]+K[5p] up to Na[3p]+K[4p].

FIG. 9. Diabatic potential curves correlated to asymptotes from K[4s]+K[5s] up to K[4s]+K[6s] for the ${}^{1}\Sigma_{u}^{+}$ states. (Broken lines: covalent states; full lines: ionic states correlated to $K^{+}+K^{-}[{}^{1}S]$).

variations are observed at $R > 25a_0$ mainly for the $6^{1}\Sigma^{+}$, 7 ${}^{1}\Sigma^{+}$, and 8 ${}^{1}\Sigma^{+}$ states. They may be interpreted as a movement of the electronic charge from one core Na⁺ or K⁺ to the other one. When the charge transfer is complete, the permanent dipole moment of the molecular state is practically equal to the ionic value of Na^+K^- or Na^-K^+ (equal to μ [D]=+2.541 802 9*R*[a.u.], minus sign for Na⁺K⁻ and plus sign for Na⁻K⁺). This situation is clearly observed for 8 ${}^{1}\Sigma^{+}$ for internuclear distances in the range of $45a_0$ and $65a_0$, but also for the 6 ${}^{1}\Sigma^{+}$ and 7 ${}^{1}\Sigma^{+}$ states for smaller values of *R*, where the charge transfer is provided from K^+ to Na⁻. So we may conclude that in these various ranges of interatomic separation, the adiabatic potential curves of these states have an ionic pattern. Moreover, we may check this conclusion by determining the position of the crossings between the ionic and covalent potential curves. The energy of the ionic state

FIG. 10. Variation of the permanent dipole moment μ of the 4 to 8 ${}^{1}\Sigma^{+}$ states correlated to asymptotes from Na[3s]+K[4d] up to Na[3s]+K[5p] versus the internuclear distance.

μ [debye]

10

FIG. 11. Same as Fig. 10 but for the 8 to 13 ${}^{3}\Sigma^{+}$ states correlated to asymptotes from Na[3s] + K[4d] up to Na[3p] + K[4p].

20

versus interatomic separation is written as

15

$$E_{\text{ionic}}(R) = E_{\text{ionic}}(\infty) - \frac{1}{R} - \frac{\alpha}{2R^4}$$
(6)

25

R [a.u.]

30

35

where α is the polarizability of the negative ion.

At large internuclear distance, $-\alpha/2R^4$ becomes negligible, and the position R_n of a crossing may be finally approximated by

$$R_n = \frac{1}{E_{\text{ionic}}(\infty) - E_n},\tag{7}$$

where E_n is the energy of covalent dissociation limit. In the case of $6 {}^{1}\Sigma^{+}$, we obtain $R_n = 37.33a_0$. This is included in the range of internuclear distances where the values of the 6 ${}^{1}\Sigma^{+}$ permanent dipole moment are very close to that of Na⁻K⁺. For the 8 ¹Σ⁺ state, we find $R_n = 68.33a_0$, which shows that the relevant potential curve may be considered as ionic for internuclear distances varying from $45a_0$ to $65a_0$. Moreover, as soon as the relevant permanent dipole moment decreases, the value of the 7 ${}^{1}\Sigma^{+}$ dipole moment increases and becomes ionic for $35a_0 < R < 50a_0$ before decreasing to zero. We may note that the 5 ${}^{1}\Sigma^{+}$ permanent dipole moment stays practically equal to zero, except at $R = 25a_0$ where we observe a small variation. If we examine corresponding adiabatic potential curves, we find at $R = 25a_0$ an avoided crossing between the 4 ${}^{1}\Sigma^{+}$, 5 ${}^{1}\Sigma^{+}$, and 6 ${}^{1}\Sigma^{-}$ states, which does not modify the 5 ${}^{1}\Sigma^{+}$ potential curve. Then, as variations of the permanent dipole moments of $4 {}^{1}\Sigma^{+}$ and $6 {}^{1}\Sigma^{+}$ are ionic, respectively, just before and after this interatomic separation, we may consider that the 5 ${}^{1}\Sigma^{+}$ permanent dipole moment is finally ionic at $R = 25a_0$. Nevertheless, additional calculations should be provided to discuss in detail the modifications of the permanent dipole moment.

In Fig. 11, we report permanent dipole moments versus the internuclear distance for the 8 ${}^{3}\Sigma^{+}$ to 13 ${}^{3}\Sigma^{+}$ states. The permanent dipole moment of the 13 ${}^{3}\Sigma^{+}$ state is clearly ionic for $25a_0 < R < 30a_0$, and presumably also for those of the

 $8~^3\Sigma^+$ and 12 $^3\Sigma^+$ states for internuclear distances included between $13a_0$ and $25a_0$. As the situation is more complicated than for the ${}^{1}\Sigma^{+}$ symmetry, we suggest that the well observed in the 8 ${}^{3}\Sigma^{+}$ adiabatic potential curve is due to an ionic-covalent interaction. To confirm this remark and to identify the ionic state, diabatic calculations should be performed.

These patterns for the Li2, Cs2, and Rb2 alkali dimers have previously been predicted only for ${}^{1}\Sigma^{+}$ symmetry, to the best of our knowledge [38,58]. As for Na₂, our work demonstrates the presence of structures resulting from an excited ionic curve of ${}^{3}\Pi$ symmetry. For the first time, to our knowledge, we identify an ionic state in the ${}^{3}\Sigma^{+}$ potential curves, and suggest that an autoionizing ionic state correlated to Na⁻K⁺ is responsible for their numerous perturbations, this one being correlated to the $Na^{-3}S$ + K⁺ or $Na^{-}[^{3}P_{0}] + K^{+}$ asymptotes.

V. CONCLUSION

In this paper, we presented spectroscopic constants for the ground state and 60 excited states for K₂, 57 in the case of NaK, and relevant potential-energy curves over a wide range of internuclear distances. By comparison with available experimental data, we have discussed the accuracy of our calculations. A very good agreement with experimental determinations is obtained for the lowest excited state as well as for highly excited states correlated to the K[4p] + K[4p] and K[4s] + K[6s] asymptotes. It should now be very interesting to follow the analysis of our results on the first excited states by comparing them with long-range calculations, and this comparison will be reported in a forthcoming paper.

Important structures have been observed in the ${}^{1,3}\Sigma^+$ and ${}^{3}\Pi$ adiabatic potential curves of highly excited states. In the case of the ${}^{1}\Sigma^{+}$ and ${}^{3}\Pi$ symmetries, the ionic curves responsible for such structures are correlated, respectively, to $K^+ + K^-[^{1}S]$ and $K^+ + K^-[^{3}P_0]$ for K_2 , and to $Na^-[^{1}S] + K^+$ and $Na^-[^{3}P_0] + K^+$ for NaK. For $^{3}\Sigma^+$ symmetry, we may assume for NaK that the ionic state corresponds to the $Na^{3}S + K^{+}$ or $Na^{3}P_{0} + K^{+}$ resonances.

Nevertheless the present results constitute a strong start for theoretical studies of collisional processes. In a recent work on Na₂ [61], using a multichannel Landau-Zener model we estimated the dynamical effects of all avoided crossings present in adiabatic excited potential curves. We established that the structures located at large interatomic separation played a major role in the dynamics of atom-atom collisions at low energy. Furthermore, with the improvement of other previous calculations [31,32], we recently showed that, as well as the ${}^{3}\Sigma_{u}^{+}$ state, four other molecular channels $({}^{3}\Pi_{u}, {}^{1}\Pi_{g}, {}^{1}\Sigma_{g}^{+}, \text{ and } {}^{1}\Delta_{g})$ were involved in the associative ionization reaction [62]. The effects of all avoided crossings on the energy pooling process and on the associative ionization reaction between two excited potassium atoms $K^{*}[4p]$ and between Na^{*}[3p] and K^{*}[4p] will be discussed in two forthcoming papers.

ACKNOWLEDGMENTS

We want to thank M. Aubert-Frécon for a careful reading of this manuscript, and F. Masnou-Seeuws and O. Dulieu for stimulating discussions.

- S. Magnier, Ph. Millié, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993).
- [2] C. Amiot, J. Mol. Spectrosc. 146, 370 (1991).
- [3] A. J. Ross, P. Crozet, J. D'Incan, and C. Effantin, J. Phys. B 19, L145 (1986).
- [4] J. T. Kiu, C. C. Tsai, and W. C. Stwalley, J. Mol. Spectrosc. 171, 200 (1995).
- [5] G. Jong, L. Li, T.-J. Whang, W. C. Stwalley, J. A. Coxon, M. Li, and A. M. Lyyra, J. Mol. Spectrosc. **155**, 115 (1992).
- [6] P. Kowalczyk, A. Katern, and F. Engelke, Z. Phys. D 17, 47 (1990).
- [7] W. Jastrezebski and P. Kowalczyk, Chem. Phys. Lett. 206, 69 (1993).
- [8] L. Li, A. M. Lyyra, W. T. Luh, and W. C. Stwalley, J. Chem. Phys. 93, 8452 (1990).
- [9] J. Heinze, U. Schühle, F. Engelke, and C. D. Caldwell, J. Chem. Phys. 87, 45 (1987).
- [10] K. P. Huber and G. Herzberg, Spectroscopic Constants of Diatomic Molecules (Van Nostrand Rheinhold, New York, 1979).
- [11] W. Jastrezebski and P. Kowalczyk, Chem. Phys. Lett. **227**, 283 (1994).
- [12] A. J. Ross, C. Effantin, J. D'Incan, R. F. Barrow, and J. Vergès, Ind. J. Phys. **60B**, 309 (1986).
- [13] G. Jong and W. C. Stwalley, J. Mol. Spectrosc. 154, 229 (1992).
- [14] G. Jong, H. Wang, C.-C. Tsai, W. C. Stwalley, and A. M. Lyyra, J. Mol. Spectrosc. 154, 324 (1992).
- [15] A. J. Ross, C. Effantin, J. D'Incan, R. F. Barrow, and J. Vergès, Ind. Mol. Phys. 56, 903 (1985); A. J. Ross, C. Effantin, J. D'Incan, and R. F. Barrow Mol. Spectrosc. 56, 903 (1985).
- [16] A. J. Ross, R. M. Clements, and R. F. Barrow, J. Mol. Spectrosc. 127, L546 (1988).
- [17] R. F. Barrow, R. M. Clements, G. Delacrétaz, C. Effantin, J. D'Incan, A. J. Ross, J. Vergès, and L. Wöste, J. Phys. B 20, 3047 (1987).
- [18] J. Derouard and N. Sadeghi, J. Chem. Phys. 88, 2891 (1988).
- [19] P. Kowalczyk, J. Chem. Phys. 91, 2779 (1989).
- [20] H. Katô, M. Sakano, N. Yoshie, M. Baba, and K. Ishikawa, J. Chem. Phys. 93, 2228 (1990).
- [21] M. Baba, S. Tanaka, and H. Katô, J. Chem. Phys. 89, 7049 (1988).
- [22] S. Kasahara, M. Baba, and H. Katô, J. Chem. Phys. 94, 7049 (1991).
- [23] A. J. Ross, Ph.D. thesis, Université Claude Bernard Lyon I, 1987 (unpublished).
- [24] A. J. Ross, C. Effantin, J. D'Incan, and R. F. Barrow, J. Phys. B 19, 1449 (1986).
- [25] P. Kowalczyk, J. Mol. Spectros. 136, 1 (1989).
- [26] S. Kasahara, H. Hikoma, and H. Katô, J. Chem. Phys. 100, 63 (1994).
- [27] P. Kowalczyk, J. Derouard, and N. Sadeghi, J. Mol. Spectrosc. 151, 303 (1992).
- [28] C. C. Tsai, T. J. Whang, J. T. Bahns, and W. C. Stwalley, J. Chem. Phys. 99, 8480 (1993).

- [29] C. C. Tsai, J. T. Bahns, and W. C. Stwalley, J. Chem. Phys. 100, 768 (1994).
- [30] T. Walker and P. Feng (unpublished).
- [31] A. Henriet and F. Masnou-Seeuws, J. Phys. B **21**, L339 (1988).
- [32] A. Henriet and F. Masnou-Seeuws, J. Phys. B 23, 219 (1990).
- [33] G. H. Jeung, J. Phys. B 16, 4289 (1983).
- [34] G. H. Jeung, Phys. Rev. A 35, 26 (1987).
- [35] G. H. Jeung and A. J. Ross, J. Phys. B 21, 1473 (1988).
- [36] G. H. Jeung, J. P. Daudey, and J. P. Malrieu, Chem. Phys. Lett. 94, 300 (1983).
- [37] W. Müller and W. Meyer, J. Chem. Phys. 80, 3311 (1984).
- [38] M. Foucrault, Ph. Millié, and J. P. Daudey, J. Chem. Phys. 96, 1257 (1992).
- [39] C. Bottcher and A. Dalgarno, Proc. R. Soc. London Ser. A 340, 187 (1974).
- [40] G. H. Jeung, J. P. Malrieu, and J. P. Daudey, J. Chem. Phys. 77, 3571 (1982).
- [41] F. Spiegelmann, D. Pavolini, and J. P. Daudey, J. Phys. B 22, 2465 (1989).
- [42] W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80, 3297 (1984).
- [43] S. Magnier, M. Aubert-Frécon, O. Bouty, F. Masnou-Seeuws, Ph. Millié, and V. N. Ostrovskii, J. Phys. B 27, 1723 (1994).
- [44] K. Krauss and W. J. Stevens, J. Chem. Phys. 93, 4236 (1990).
- [45] W. J. Stevens, D. D. Konowalow, and L. B. Ratcliff, J. Chem. Phys. 80, 1215 (1984).
- [46] E. Ilyabaev and U. Kaldor, J. Chem. Phys. 98, 7126 (1993).
- [47] S. Gozzini, S. A. Abdullah, M. Allegrini, A. Cremoncini, and L. Moi, Opt. Commun. 63, 97 (1987).
- [48] M. Allegrini, S. Gozzini, I. Longo, and P. Savino, Nuovo Cimento 1D, 49 (1982).
- [49] Y. T. Lee and B. H.. Mahan, J. Chem. Phys. 42, 2893 (1965).
- [50] L. Brencher et al., Z. Phys. D 10, 211 (1988).
- [51] J. C. Barthelat and Ph. Durand, Theor. Chim. Acta **38**, 283 (1975).
- [52] D. Maynau and J. P. Daudey, Chem. Phys. Lett. **81**, 273 (1981).
- [53] C. E. Moore, in *Atomic Energy Levels*, edited by Editors, Natl. Bur. Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1949).
- [54] M. Broyer, J. Chevaleyre, G. Delacrétaz, S. Martin, and L. Wöste, Chem. Phys. Lett. 99, 206 (1983).
- [55] S. Leytweyler, A. Herrmann, L. Wöste, and E. Schumacher, Chem. Phys. 48, 253 (1980).
- [56] D. L. Cooper, R. F. Barrow, J. Vergès, C. Effantin, and J. D'Incan, Can. J. Phys. 62, 1543 (1984).
- [57] C. Linton, F. Martin, R. Bacis, and J. Vergès, J. Mol. Spectrosc. 137, 235 (1989).
- [58] D. D. Konowalow and J. L. Fish, Chem. Phys. 77, 435 (1983).
- [59] F. Engelke, Faraday Discuss. Chem. Soc. 71, 357 (1981).
- [60] T. A. Patterson, H. Hotop, A. Kasdan, D. W. Norcross, and W. C. Lineberger, Phys. Rev. Lett. 32, 189 (1974).
- [61] I. Yurova, O. Dulieu, S. Magnier, F. Masnou-Seeuws, and V. N. Ostrovskii, J. Phys. B 27, 3659 (1994).
- [62] O. Dulieu, S. Magnier, and F. Masnou-Seeuws, Z. Phys. D 32, 229 (1994).