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The Faddeev multiple-scattering formalism in second order is modified to treat lower projectile energies.
The electronic part of the amplitude is evaluated using a Hartree-Fock approximation to the helium wave
function and a consistent screened target potential for the active electron. Off-energy-shell scattering states
appearing in the electronic part of the full amplitude are corrected for loss of normalization. The high velocity
Faddeev nuclear-scattering contribution is normalized to the eikonally transformed electronic amplitude at
large angles. An application to proton-helium collisions at 293 keV shows good agreement with the experi-
mental data. The effects of the various approximations are studied.

PACS number~s!: 34.70.1e

I. INTRODUCTION

For incident energies of a few MeV, the second-order
Faddeev treatment@1# of electron capture has been shown to
reproduce well the experimental differential cross section in
proton-helium and proton-hydrogen collisions@2#. At these
energies, the contribution of multiple scatterings is signifi-
cant because of the important role played by the Thomas
mechanism@3#. The Faddeev scattering formalism breaks the
full collision into two-body collisions, which are described
by transition operators@4#. Like the second-order Born treat-
ment, the Faddeev treatment maintains the simple double-
scattering description of the Thomas mechanism while pro-
viding quantitativeagreement with the experimental data@5#,
even at projectile scattering angles beyond 1 mrad, where
nuclear scattering dominates.

In the present paper, a modified Faddeev formalism is
applied to collisions at lower velocities which, however, are
high enough for the perturbative approach to remain valid.
At the lower velocities, the multiple-scattering treatment can
still allow for the interaction of one scattering with another.
Additionally, a more accurate representation of the ground-
state wave function of helium may improve the cross section
as a result of the redistribution of important bound-state mo-
mentum components. This question is addressed by compar-
ing cross sections calculated using single- and double-z
wave functions@6#. ~The double-z wave function approxi-
mates the Hartree-Fock limit.! Consistent with the better
wave function, a target potential is also employed which ac-
counts for the screening of the target nucleus by the other
electron. A comparison is made between the capture ampli-
tude based on a two-body Coulomb target scattering ampli-
tude with screened charge and a better one, which is the sum
of a Coulomb amplitude~with the charge of the residual ion!
and a short-range amplitude@7#.

The Faddeev treatment describes the capture of the elec-
tron by means of wave packets of virtual off-the-energy-shell
scattering states representing collisions with the projectile

and target ions. Marxer and Briggs@8# have shown that these
wave packets lose normalization as the velocity decreases. In
a strong-potential approach, they developed a modified
theory that corrects for the loss of normalization and shows
good agreement with experiment. The Marxer-Briggs
method is applied here to the wave packets used in the
electron–target-core and electron–projectile-ion scatterings
of the Faddeev formalism.

The internuclear-scattering contribution is included in the
Faddeev formalism, but an accurate evaluation is difficult at
lower velocities. It is nonetheless desirable to relate this con-
tribution to a simple picture of Rutherford-like scattering
with, however, the requisite off-shell corrections being in-
cluded, even if the norm of the amplitude is not adequate.
The internuclear contribution can also be determined by us-
ing the eikonal approach@9#, a general application of which
proceeds by transforming the electronic amplitude in the
wave picture to impact-parameter space, multiplying the
transformed amplitude by the eikonal phase factor
b2iZPZT /v, whereb is the impact parameter,ZP , ZT are the
projectile and target-nuclear charges, andv is the impact
velocity, and then transforming back to the wave picture.
The eikonal factor is derived from the transverse components
of the internuclear motion. At angles beyond 1 mrad, the
Faddeev internuclear contribution can be normalized to the
eikonal result, which is done in the present work.

An exact numerical evaluation of the rest of the amplitude
is infeasible with the use of a screened target potential. The
treatment presented here, which relies on the smallness of the
binding energy of the electron relative to its scattering en-
ergy, employs near-the-energy-shell representations of the
two-body transition matrices, and further, neglects factors of
the order ofm/MP andm/MT ~with m, MP , andMT being
the electron, projectile, and target-nuclear masses! @1#.

The above approach is applied to proton-helium collisions
at an incident energy of 293 keV, corresponding to a velocity
of 3.43 au. Calculated differential cross sections are com-
pared with the experimental data@5# and with the results of a
two-state atomic expansion~2SAE! @10# and the continuum
distorted-wave~CDW! theory @11#.

The plan of the paper is the following. The second-order
Faddeev amplitude is specified in Sec. II, including both the
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electronic and internuclear parts. In Sec. III, the use of a
better target wave function and potential, as well as the
method for the normalization of the off-shell scattering
states, are presented. Section IV compares calculated results
with experiment and other theory and gives a comparative
analysis of the effects of the various refinements. Atomic
units are used.

II. THE SECOND-ORDER FADDEEV AMPLITUDE
FOR CAPTURE

A. General setup

Within a one-electron model, a three-body collision is
considered where a projectile ionP is incident on a target
consisting of an electrone and a target ionT:

P1~T1e!→~P1e!1T,

where parentheses denote bound electron-ion aggregates. Ei-
ther the target or projectile may contain passive electrons.
Accordingly, the two-body interactions between each pair of
particles assume the general modified Coulomb form@12#.

The Faddeev formalism, as applied to the electron-capture
problem with particular emphasis on the points relevant to
the present treatment and subsequent approximate evalua-
tion, is outlined here.~A detailed discussion is given else-
where@1#.! Splitting the collision into two-body components,
Faddeev defined the ~channel! operators T a
(a5Pe,Te,PT) that solve the matrix equation@4#

F T Te

T Pe

T PT

G5F 0

T̃ Pe

T̃ PT

G1F 0 T̃ Te T̃ Te

T̃ Pe 0 T̃ Pe

T̃ PT T̃ PT 0
GGo

1F T Te

T Pe

T PT

G ,
~1!

where theT̃ a denote transition matrices for the mutual scat-
tering of two particles while the third one propagates freely
andGo

1(E) is the free Green operator for total energyE.
Zeros along the diagonal of the square matrix ensure that
repeated multiple scatterings of thesametwo particles with
free propagation of the third do not occur, which would oth-
erwise lead to ill-defined amplitudes. Equation~1! is solved
approximately by an iterative Neumann scheme in which the
first-order solution is T a

(1)5T̃ a (a5Pe,PT) and
T Te

(1)50, and the higher-order termsT a
(n) (n.1) are ob-

tained by substitutingT a
(n21) into the right-hand side of Eq.

~1! and performing the matrix multiplication.
In terms of theT a , the transition operator for the capture

~rearrangement, in general! process is given by

T C5VPe1T Te1T PT . ~2!

In the present work, a second-order approximation to the
T a is used to obtainT C . Following Eqs.~1! and ~2!, one
finds

T C
~2!'@VPe1T̃ TeGo

1~E!T̃ Pe#

1@ T̃ PT1T̃ PTGo
1~E!T̃ Pe1T̃ TeGo

1~E!T̃ PT#

[T e1T n . ~3!

In the last part of Eq.~3!, the various contributions have been
collected into separate operatorsT e and T n , which arise,
respectively, from the direct transfer of the electron and the
internuclear scattering.

The individual two-body potentials do not have simple
coordinate dependences; however, they reduce asymptoti-
cally to

VPe~r P!;2ZP
`/r P as r P→`,

VTe~r T!;2ZT
`/r T as r T→`, ~4!

VPT~R!;ZP
`ZT

`/R as R→`.

The projectile and target nuclear charges in Eqs.~4! areZP
andZT and the corresponding asymptotic charges areZP

` and
ZT

` .The shielding of the projectile and target nuclei by the
nonactive electrons leads to the valuesZP

` andZT
` ; for neu-

tral targetsZT
` is unity.

Forming the matrix element ofT e1T n between initial
and final asymptotic scattering states, the second-order Fad-
deev approximation~F2! to the exact capture amplitude, at
energyE, is

AF2~E!5^F f uT e1T nuF i&[Ae1An , ~5!

where the asymptotic states are given by

^RT ,rTuF i&5eiK i•RTf i~rT!,

^RP ,rPuF f&5eiK f•RPf f~rP!. ~6!

In Eq. ~6!, the initial and final bound states aref i andf f ,
andK i andK f are the initial and final heavy-particle wave
vectors. The coordinates of the electron relative to the pro-
jectile and target ions are denoted byrP andrT , respectively;
the projectile coordinates relative to the target ion, byR, the
projectile-electron system coordinates relative to the target
ion, byRP , the projectile coordinates relative the target, by
RT , and the electron coordinates relative the projectile-ion–
target-ion center of mass, byr @13#.

The free Green operator is

Go
1~E!5~E2Ho1 ih!21, ~7!

where the free Hamiltonian takes the possible forms

Ho52
1

2n f
¹RP
2 2

1

2m f
¹ rP
2

52
1

2n i
¹RT
2 2

1

2m i
¹ rT
2

52
1

2nn
¹ r
22

1

2mn
¹R
2 .

The total collision energy is given by
E5(1/2n i)Ki

21« i5(1/2n f)Kf
21« f , where « i and « f are

the initial and final bound-state energies. Initial, final, and
internuclear internal and relative reduced masses and associ-
ated mass ratios for the two-body combinations are defined
asm i5mMT /(m1MT), n i5MP(m1MT)/(m1MP1MT),

2012 54STEVEN ALSTON



a5MT/(m1MT), m f5mMP/(m1MP), n f5MT(m
1MP)/(m1MP1MT), b5MP /(m1MP), mn5MPMT /
(MP1MT), nn5m(MT1MP)/(m1MP1MT), g5MT /
(MP1MT). Initial and final heavy-particle velocities are
defined in terms of the initial and final wave vectors
as vi5K i /n i and vf5K f /n f . One can show that
v f /v i511O(m/MP)1O(m/MT) and, for forward-angle
capture, thatvf•vi511O(m/MP)1O(m/MT); thus, the
projectile velocity is written asv.

If the transition matricesT̃ a in the second-order terms in
Eq. ~3! are approximated to first order by potentialsVa and
the first-order termT̃ PT is approximated to second order by
VPT1VPTGo

1(E)VPT , one obtains the second-order Born
operator@14#

T B2
~2!5VPe1VTeGo

1~E!VPe1VPT1VPTGo
1~E!VPT

1VPTGo
1~E!VPe1VTeGo

1~E!VPT . ~8!

The internuclear terms of Eq.~8! can be shown to give no
contribution to the cross section at forward scattering angles.
The amplitude derived from the electronic part is compared
with the Faddeev approximation below.

For each of the two-body collisions in the amplitude, it is
useful to integrate the third free-particle motion so that two-
body transition matrices can be obtained. Later, these transi-
tion matrices will be approximated by forms near the energy
shell.

B. Reduction of the electronic term
to two-body T-matrix form

In the electronic part of the amplitude Eq.~5!, the double-
scattering term is separated, giving

Ae5^F f uVPeuF i&1^F f uT̃ TeGo
1~E!T̃ PeuF i&

[AB11Ae
~2! , ~9!

whereAB1 is the first Born amplitude. The first Born ampli-
tude @15# takes the form

AB1524p3~K21ZP
2 !f̃ f~K !* f̃ i~2J! ~10!

for i5 f51s. The 1s hydrogenic wave function in momen-
tum space isf̃1s(k)5(23Z5)1/2/p(k21Z2)2. The partial
amplitude Eq.~10! becomes large asv→ZT , sinceJ→ZP ,
and this behavior provides the dominant feature of the cross
section. The momentum transfers that are experienced by the
target ion and projectile during the collision have been de-
fined as

J5aK i2K f , K5bK f2K i . ~11!

The components parallel tov are Kz52v/21(« i2« f)/v
and Jz52v/21(« f2« i)/v, and the components perpen-
dicular to it areK' for K and2K' for J. Momentum con-
servation for the process takes the formK1J1v50.

In the second-order term in Eq.~9!, the operation ofGo
1

andT̃ Pe to the right on theRP plane wave and ofT̃ Te to the
left on theRT plane wave, together with Fourier analyses of

the bound-state wave functions and insertion of complete
sets of plane-wave states inrP and RP betweenT̃ Te and
Go

1 , lead to the expression

Ae
~2!5~2p!23E dk fdk if̃ f~k f !* f̃ i~k i !

3TTe~k f1v,k i1k f2K ;Ef !G̃o
1~Ei !

3TPe~k f1k i1J,k i2v;Ei ! ~12!

for the partial amplitude. Thed functions arising from the
heavy-particle integrations have been used to evaluate the
momentum integrals of the complete sets. With terms of or-
derm/MP andm/MT neglected, the scattering energies

Ei'
1
2v

22v•k i1« i , Ef'
1
2v

21v•k f1« f ~13!

are obtained.
The two-body transition matrix is defined as

T~k8,k;«![ K k8UVF11H «1
1

2m
¹ r
22V1 ihJ 21

VGUkL
[^k8uVuc«,k

1 & ~14!

for a potentialV. Equation~14! defines the off-energy-shell
scattering statec«,k

1 of energy« and momentumk, satisfying
outgoing-wave boundary conditions. The transition matrices
TPe andTTe in Eq. ~12! are derived, respectively, from the
potentialsVPe andVTe ; they are completely off the energy
shell: k2Þ2m« andk82Þ2m«, with m denotingm i for TTe
or m f for TPe .

The Fourier transform of the free Green function Eq.~7!
appearing in Eq.~12! can assume either of two equivalent
forms:

G̃o
1~Ei !5@Ei2

1
2 ~k i1k f1J!21 ih#21

5@Ef2
1
2 ~k i1k f2K !21 ih#21, ~15!

which will be useful later.
Equation~12! represents an electronic ‘‘wave packet’’ of

momentum distributionf i(k i) centered about2v scattering
in the projectile frame. The energy of each component is
Ei(k i). In the collision of the wave packet with the projec-
tile, each component undergoes a momentum transfer
k f2K , as described by the transition matrixTPe . After
propagating freely~represented byG̃o

1), the packet, as seen
now from the target frame, scatters off the target ion with
each component undergoing a momentum transfer2k i2J,
as described by the transition matrixTTe . The final momen-
tum distribution centered onv is f f(k f), with energy
Ef(k f) for each component.
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C. Reduction of the internuclear term
to two-body T-matrix form

The partial amplitude

An5^F f uT̃ PTuF i&1^F f uT̃ TeGo
1~E!T̃ PTuF i&

1^F f uT̃ PTGo
1~E!T̃ PeuF i&

[An
~1!1An

~2a!1An
~2b! ~16!

containing the internuclear terms is evaluated in this section.
For the first-order term, if the bound-state wave functions are
Fourier analyzed, then the operation ofT̃ PT on ther plane
wave, along with the use of thed function arising from the
r integration ~which forcesk f5k i2v to orderm/MP and
m/MT) for performing thek f integration, gives

An
~1!5E dk i f̃ f~k i2v!* f̃ i~k i !TPT~Ui2k i2J,Ui ;En!,

~17!

where Ui5(12g)k i1@12(12g)(12a)#K i and En5E
2@k i2(12a)K i #

2/2nn .
For the first of the second-order terms in Eq.~16!, letting

T̃ Te andGo
1 operate to the left on theRT plane wave and

T̃ PT operate to the right on ther plane wave and inserting
complete sets of plane-wave states inr andR betweenGo

1

and T̃ PT , one derives the expression

An
~2a!5~2p!23E dk fdk i f̃ f~k f !* f̃ i~k i !

3TTe„k f1v,k i2~12a!~k f2K !;Ef…G̃o
1~Ef !

3TPT~Ui2k f2K ,Ui ;En!. ~18!

The d functions arising from ther andR integrations have
been used to evaluate the integrals of the complete sets. The
momentum-space Green function in this expression is given
by

G̃o
1~Ef !5HEf2

1

2m i
@k i1~12a!~K2k f !#

21 ihJ 21

.

~19!

Similarly, for the second of the second-order terms in Eq.
~16!, one finds

An
~2b!5~2p!23E dk fdk i f̃ f~k f !* f̃ i~k i !

3TPT~Uf ,Uf1k i1J;En!G̃o
1~Ei !

3TPe„2k f1~12b!~k i1J!,k i1v;Ei…, ~20!

with Uf52gk f1@12g(12b)#K f . The free Green func-
tion here has the form

G̃o
1~Ei !5HEi2

1

2m f
@2k f1~12b!~k i1J!#21 ihJ 21

~21!

in momentum space.

III. EVALUATION AND MODIFICATION
OF THE AMPLITUDE

A. Near-shell approximation for a screened potential

It has been shown for singly charged ions incident on
neutral atoms that the total amplitudeAF2 is well-behaved:
nonintegrable singularities are not present. Therefore, ap-
proximations to it can be made. In this section, near-shell
forms of the two-body transition matrices are used that in-
troduce errors of the order of the squares of the ratios of the
projectile and target-nuclear charges to the impact velocity;
that is, the partial amplitude ofAF2 given in Eq. ~12! is
approximated to order (ZP /v)

2 and (ZT /v)
2.

While it is true that corrections to the near-shell approxi-
mation will be expected to be larger at lower energies, it is
apparent from Figs. 7~a! and 7~b! ~discussed below in Sec.
IV ! that the second-order contribution is also relatively
smaller, making the near-shell corrections less important.
Contributing to this are the large first Born contribution@see
after Eq.~10!# and the incorporation of the electronic scat-
tering normalization, detailed below in Sec. III E.

For modified Coulomb potentials, the two-body transition
matrix reduces to a generalized elastic-scattering amplitude
multiplied by a so-called off-energy-shell factor when the
energy shell is approached. The amplitude is the sum of an
amplitude for the Coulomb potential and an amplitude for
the short-range part of the potential. Because of the presence
of the bound-state wave functions, the integral in the second-
order electronic term is dominated by momentum values in
the regionski&ZT andkf&ZP . Following previous work on
modified Coulomb potentials@12# that extends the result of
Chen and Chen@16# on pure Coulomb scattering, the ap-
proximation near the energy shell to the two-body scattering
matrix for a screened potential is found to be

TMC~k8,k;«!'22pg1~Z`,k8,«!g1~Z`,k,«!

3@ f k8,k
C`

~«!1 f k8,k
SR

~«!#, ~22!

where the off-shell factor is defined as

g6~Z`,k,k!5epn`/2G~17 in`!Fk2k

k1kG7 in`

~23!

and wheren`[Z`/k, k[(2m«1 ih)1/2, m is the reduced
mass, andG(x) is the gamma function.

Scattering in the asymptotic Coulomb-field of chargeZ`

is measured by the Coulomb scattering amplitude

f k8,k
C`

~«!5
2Z`

uk82ku2
e2is0F uk82ku

k81k G2in`

, ~24!

with s05argG(12 in`). Relative to the asymptotic Cou-
lomb scattering, the additional scattering in the short-range
part of the potential is measured by the amplitude

f k8,k
SR

~«!5
k

kk8 (
l50

`

~2l11!ei ~2s l1d l !sind l Pl~ k̂8• k̂!, ~25!

with d l the phase shift for the short-range potential@7#.
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In the present application for the electron–target-ion po-
tential only thel50 component of the short-range amplitude
is retained. Manson has compiled phase shifts@17# for an
electron scattering in an unrelaxed Herman-Skillman
~Hartree-Fock-Slater! potential@18# for the ground state of a
large sequence of atoms. Extrapolating in impact energy his
value for helium, the valued050.3860 is obtained. This
value is used here. The value ford1 is at least a factor of 5
smaller thand0 . Consequently, the phase shiftsdn , for
n.0, are not used.

B. Helium wave function and screened potential

Since the single-z ground-state wave function of helium
weights radial values differently than more accurate wave
functions, it follows that momentum components will like-
wise be weighted differently. Since the amplitude involves
an integration over the momentum distribution, results could
also be affected.

To study this possibility, the ground-state wave function
is represented by a double-z function @6#

f i~r !5$c1N1e
2z1r1c2N2e

2z2r%Y00~ r̂ !, ~26!

with c150.18069, c250.84378, z152.91093, z2
51.45363,Nj52z j

3/2 ( j51,2), andY0051/A4p. The or-
bital energy of this state is224.978 eV, and the correspond-
ing total energy is277.868 eV, which is within 231025 eV
of the Hartree-Fock limit. The experimental energy is
278.975 eV. In momentum space Eq.~26! takes the form

f̃ i~k!5$c1Ñ1~k
21z1

2!221c2Ñ2~k
21z2

2!22%Y00~ k̂!, ~27!

whereÑj5(25z j
5/p)1/2 ( j51,2). Figure 1 shows the single-

and double-z wave functions in momentum space. It is seen

that the better wave function is more peaked than the other
more approximate one. The effect of this on the cross section
is studied below.

While considerably more sophisticated helium wave func-
tions are available, the double-z function is used because the
effect on the cross section of using a better wave function
can still be investigated with a minimal impact on computa-
tional complexity. The two exponents bracket the single-z
value of 1.6875 and both of the coefficients are positive. The
relatively large value ofz1 means that, in particular, the in-
ner form of the initial bound-state charge distribution is bet-
ter represented.

With this wave function, an unrelaxed atomic potential
can be obtained that is derived from the sum of the electron-
nucleus attraction and the average electron-electron repul-
sion:

VHF~r !5E dr 8@2ZTd~r 8!1uf i~r 8!u2#ur2r 8u21. ~28!

Using the Fourier transformṼHF(k) of this potential, a
charge for a scaled Coulomb potential can be defined as

ṼHF~k![2S 2p D 1/2Zs~k!

k2
, ~29!

whereZs is dependent on the momentum transfer. Due to the
spherical nature of the ground-state wave function Eq.~26!,
ṼHF depends only onk. The behavior ofZs(k) versusk is
shown in Fig. 2, where a smooth transition from a charge of
about 1 for projectile scattering angles near 0 mrad to about
2 at 1 mrad is seen. This behavior reflects the increasing
penetration of the target ion by the projectile.

Since the modified Coulomb potential is well represented
by a scaled pure Coulomb potential of chargeZs in the inner

FIG. 1. Single- and double-z Hartree-Fock 1s orbitals in mo-
mentum space.

FIG. 2. Effective charge, defined as2k2VHF(k), for the
screened potential derived from the Hartree-Fock 1s target orbital
versusk.
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region, the sum of the Coulomb and short-range amplitudes
is approximated by the Coulomb amplitude for the screened
potential,

f k8,k
C

~«!5
2Zs

uk82ku2
e2is0F uk82ku

k81k G2ins, ~30!

with ns5mZs /(2m«1 ih)1/2 here. Such a simplification
works when the impact energies are large, so that the indi-
vidual collisions in the double scatterings are hard collisions
and the momentum transfers are large. A comparison of this
amplitude with the amplitudef k8,k

C` («)1 f k8,k
SR («) in the above

noted l50 approximation is shown in Fig. 3. Little differ-
ence is seen in the real component~a!, whereas the imagi-
nary component~b! is underestimated grossly by the effec-
tive amplitude.

C. Evaluation of the electronic amplitude

The near-shell approximations to the electronic-nuclear
transition matrices inAe

(2) are

TPe~k f1k i1J,k i2v;Ei !

'24pepnP
` G~11 inP

`!2G~12 inP!

G~11 inP!

3H ki
222« i

~8Ei !
2G̃o

1 J 2 inP
`

ZP
uk f2K u2 H uk f2K u2

8Ei
J inP

~31!

and
TTe~k f1v,k i1k f2K ;Ef !

524pepnT
`
uG~11 inT

`!u2F kf
222« f

~8Ef !
2G̃o

1G2 inT
`

3H ZT
`

uk i1Ju2 S uk i1Ju2

8Ef
D inT`1

~2Ef !
1/2eid0sind0

2uk f1vuuk i1k f2K u J .
~32!

Using these expressions, neglecting the slowly varyingk i
and k f dependences of the integrand, and introducing the
1s bound-state wave function, the amplitude becomes

Ae
252~2/p!3ZP~ZTZP!5/2epnP

` G~11 inP
`!2G~12 inP!

G~11 inP!
~4v2! i ~2nP

`
2nP!K2212inPepnT

`
uG~11 inT

`!u2~4v2!2inT
`

3FZT`
J2

S J

2v
D 2inT`1

eid0sind0
2K

G E dk fdk i ~ki
222« i !

222 inP
`
~kf

222« f !
222 inT

`
@G̃S

1~Ei !#
11 inT

`
1 inP

`
, ~33!

with the Sommerfeld parameters defined as

nP
`5ZP

`/v, nP5ZP /v, nT
`5ZT

`/v, nT5ZT /v.
~34!

In Eq. ~33!, the free Green function Eq.~15! is approximated
as

G̃S
1~Ei ![@ 1

2 ~v22K21« i !2k f•J1k i•K

2 1
2 ~ki

21kf
2!1 ih#21, ~35!

where advantage is taken of the spherical symmetry of the
initial and final bound-state wave functions to uniformly
‘‘average’’ the direction of k f relative to k i and write
(k i2k f)

2'ki
21kf

2 . However, the quadratic dependence of
the free Green-function on the momentum variables is re-
tained@14#.

The six-dimensional integral in Eq.~33! is evaluated as in
previous work@1#. Briefly, the angular integrations overk̂ i
and k̂ f are performed straightforwardly. The radial variables
ki and kf are then expressed in polar coordinates. Using
Cauchy’s integral theorem, the integration path forkr along
the positive real axis is transformed to a path off the real axis
to avoid the Green-function singularity. Tolerances were
given as 1028 and 1026, respectively, for the angularku and
radial kr integrations, which are carried out using the adap-

tive eight-panel Newton-Cotes quadrature. The output of the
cross sections was explicitly checked to assure better than a
four digit accuracy.

D. Evaluation of the internuclear amplitude

The near-shell approximation to the transition matrix for
the first-order internuclear term Eq.~17! is

TPT~Ui2k i2J,Ui ;En!

'4pe2pnPT
` G~12 inPT

` !2G~11 inPT!

G~12 inPT!

3S @~k i2v!222« f #@ki
222« i #

~8En!
2 D inPT`

ZPZT
uk i1Ju2

3S uk i1Ju2

8mnEn
D 2 inPT

, ~36!

with nPT
` 5mnZP

`ZT
`/(2mnEn)

1/2 and nPT5mnZPZT /
(2mnEn)

1/2. The reduced massmn factor does not cancel in
this expression because the inner and outer charges of the
modified Coulomb potential are different.

The remaining integral is evaluated by treating the two
dominant peaks in the integrand atk i50 andk i5v as inde-
pendent, with the slowk i variation of the other factors about
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the peaks being neglected. This is justified if the two peaks
are well separated in momentum space, as is true for
v@ZP andv@ZT .

The transition matrix approximations to the term in Eq.
~18! are

TPT~Ui2k f1K ,Ui ;En!

'4pe2pnPT
` G~12 inPT

` !2G~11 inPT!

G~12 inPT!
S ki222« i

8En
D inPT`

3~8EnG̃o
1!2 inPT

` ZPZT
uk f2K u2 S uk f2K u2

8mnEn
D 2 inPT

~37!

and

TTe~k f1v,k i ;Ef !

'24pepnT
` G~11 inT

`!2G~12 inT!

G~11 inT! S kf222« f

8Ef
D 2 inT

`

3S ki2A2Ef

ki1A2Ef
D 2 inT

`

ZT
uk f2k i1vu2

3S uk f2k i1vu2

~ uk f1vu1ki !
2D inT, ~38!

wherenT
`5ZT

`/(2Ef)
1/2 andnT5ZT /(2Ef)

1/2.
The transition matrix approximations to the other second-

order internuclear term in Eq.~20! are

TPT~Uf ,Uf1k i1J;En!

'4pe2pnPT
` G~12 inPT

` !2G~11 inPT!

G~12 inPT!
S kf222« f

8En
D inPT`

3~8EnG̃o
1!2 inPT

` ZPZT
uk i1Ju2 S uk i1Ju2

8mnEn
D 2 inPT

~39!

and

TPe~2k f ,k i2v;Ei !

'24pepnP
` G~11 inP

`!2G~12 inP!

G~11 inP! S ki222« i
8Ei

D 2 inP
`

3S kf2A2Ei

kf1A2Ei
D 2 inP

`

ZP
uk i1k f2vu2

3S uk i1k f2vu2

~ uk i2vu1kf !
2D inP, ~40!

wherenP
`5ZP

`/(2Ei)
1/2 andnP5ZP /(2Ei)

1/2.
Retaining only those terms in the integrand in which the

momentum variation is rapid, performing thek i andk f inte-
grations, combining the results, and regrouping factors, one
finds

An5SPTf n
C~K !1STPf n

C~J!, ~41!

with the internuclear-scattering amplitude defined by

f n
C~Q!52

2ZPZT
Q2

G~11 inPT!

G~12 inPT!
S Q

2mnv
D 12inPT

. ~42!

The constantSPT , which is independent ofJ andK, is given
by

FIG. 3. Real~a! and imaginary~b! parts of the two-body scat-
tering amplitudef k8,k(E) for the screened target potential versus
laboratory scattering angle, which is related touk82ku.
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SPT525pZT~ZPZT!3/2e2pnPT
` G~12 inPT

` !G~ 1
2 2 inPT

` !

~12 inPT
` !Ap

~4mnv
2!22inPT

`

3FZP2inPT`

~v21ZT
2!221 inPT

`
2 1

2ZT
2inPT

` G~ 1
2 1 inT

`!G~11 inT
`!G~12 inT!

~11 inT
`!ApG~11 inT!

S ZP2v D 22inT
`

v2212inTS v22ZP
2

2 D 211 inPT
` G .

~43!

STP is obtained fromSPT by the changeP↔T, wherenT
` ,

nT , nP
` , and nP are given by Eqs.~34! and where now

nPT
` 5ZP

`ZT
`/v andnPT5ZPZT /v.

Equation~41! is symmetric in the two charges and in the
momentum transfers. The dependences onK22 andJ22 re-
flect the nuclear Coulomb scattering. Also noteworthy is the
appearance of two terms of opposite sign in each set of large
parentheses. Ignoring the different multiplying factors and
neglecting factors of order (ZP /v)

2 and (ZT /v)
2, a cancel-

lation of contributions is expected in Eq.~43! ~andSTP!. In-
deed, for the second-order Born approximation, which is ob-
tained by setting all of the Sommerfeld parameters equal to
zero, the cancellation leads to a vanishing contribution.

The eikonal treatment of the internuclear contribution to
forward-angle capture@9# consists of Bessel transforming the
given electronic amplitudeAe(K') @Eqs.~10! and~33!#, as a
function of transverse momentum transferK' , to impact-
parameter spaceb:

ae~b!5E
0

`

dK'K'J0~bK'!Ae~K'!, ~44!

multiplying ae(b) by the eikonal phase factore2inPT, and
then transforming the result back to momentum-transfer
space

Ae1n~K'!5E
0

`

db b112inPTJ0~K'b!ae~b!, ~45!

wherenPT is the previously defined internuclear Sommerfeld
parameter. In Eq.~45! for Ae1n , the electronic and nuclear
contributions are mixed together. Normalization of the
double integration must be consistent with the definition of
the amplitude relative to its use in the differential cross sec-
tion and is easily checked by settingnPT50 and comparing
the doubly transformed amplitude with the untransformed
amplitude. This latter procedure also provides a gauge of the
accuracy of the numerical quadratures. As a further check on
errors arising from the imperfectly calculated amplitude,
which is read in at a tabulated set of values, the double
numerical quadrature was performed on the analytic function
$c1K'

2 %22.
Neither of the internuclear contributions above lead to

results which agree well with the experimental data over the
whole of the angular region. This comparison is shown be-
low in Fig. 6 of Sec. IV. To correct this situation, which
most likely arises from the limitations in the evaluation of
the internuclear amplitude, Eq.~41! is normalized to the am-
plitude given by Eq.~45! at the scattering angle 1.2 mrad,

where only the internuclear part contributes. The electronic
part of the amplitude is left unaltered.

E. Normalization of the electronic scattering

The wave packets representing the virtual scattering of the
electron in the initial and final channels make use of the
off-shell scattering states that appear implicitly in the transi-
tion matrices in Eq.~12! and are defined by Eq.~14!. As
Marxer and Briggs have noted, the wave packets can lose
normalization@8#; their procedure for normalizing them is
employed here.

The relevant wave packets are defined as

jv,i
1 ~rP![E dk f̃ i~k!c«,v2k

1 ~rP!

and

jv,f
2 ~rT![E dk f̃ f~k!c«,v1k

2 ~rT!,

where« is a function ofk, «(k). These wave packets are
normalized according to whether the square roots of the in-
tegrals over all space of the squares of the wave packets, viz.,

Ni~v !5~^jv,i
1 ujv,i

1 &!1/2 ~46!

and

Nf~v !5~^jv,f
2 ujv,f

2 &!1/2, ~47!

are unity. In Eqs.~46! and ~47!, the dependences on the
initial or final bound-state wave functions and on the velocity
are noted explicitly.

Consideringjv, f
2 , the relevant interaction region, which is

centered around the target nucleusr T&ZT , implies that the
off-shell wave functionc«,q

2 (rT) can be approximated@12# to
order (ZP /v)

2 by a target continuum eigenstatecq
2(rT) mul-

tiplied by an off-shell factor:

c«,q
2 ~rT!'g2~ZT

` ,q,k!cq
2~rT! ~48!

for «[ 1
2k

2' 1
2q

2. As noted earlier, this approximation holds
for centrally modified Coulomb potentials. The wave func-
tion f i in the matrix element ensures the validity of the
approximation. The factorg2 has been defined above in Eq.
~23!. Here, the charge dependence of the asymptotic form of
the target potential means thatZ`5ZT

` . An analogous argu-
ment can be made forjv,i

1 .
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Employing the near-shell approximations for the off-
energy-shell scattering wave functions and making use of the
orthonormality of the eigenfunctionscq

6(r ), one obtains

Ni~v !'S E dkuf̃ i~k!u2ug1~ZP
` ,q,k!u2D 1/2 ~49!

and

Nf~v !'S E dkuf̃ f~k!u2ug2~ZT
` ,q,k!u2D 1/2. ~50!

Noting Eq. ~23!, it is seen that the rapidly varying parts of
g6 are canceled by (g6)* . Thus, since uf̃ i(k)u2 and
uf̃ f(k)u2 arehighly localized aboutk50, accurate approxi-
mations can be made:

Ni~v !'ug1~ZP
` ,q,k!uk50 S E dkuf̃ i~k!u2D 1/2

5S 2pnP
`

12e22pnP
`D 1/2 ~51!

and

Nf~v !'ug2~ZT
` ,q,k!uk50 S E dkuf̃ f~k!u2D 1/2

5S 2pnT
`

12e22pnT
`D 1/2, ~52!

wherenP
`5ZP

`/(v222« i)
1/2 andnT

`5ZT
`/(v222« f)

1/2.
For high velocities,Ni'11pnP

`/2 andNf'11pnT
`/2,

showing that the normalizations approach unity. For lower
velocities, however, the corrections can become significant.
In the present case, 2pnP

`51.917 and 2pnT
`52.107, and

@Ni(v)#
2150.6670 and@Nf(v)#

2150.6457. The product is
then @Ni(v)Nf(v)#

2150.4307. SinceNi and Nf are not
equal to unity, the scattering states are corrected~renormal-
ized!. The use ofNiNf also reduces the importance of near-
shell corrections at lower velocity@8#.

IV. RESULTS AND DISCUSSION

Results calculated using the modified second-order Fad-
deev formalism are compared first with other theoretical re-
sults and with the experimental results. An analysis is then
made of the effect on the cross section of the various refine-
ments to the amplitude. Differential cross sections for elec-
tron capture in proton-helium collisions at 293 keV are pre-
sented in Fig. 4. The calculated 1s→1s results are obtained
using the present modified second-order Faddeev approxima-
tion @i.e., the sum ofAe in Eq. ~33! andAn in Eq. ~41!#, the
two-state atomic expansion of Lin and Soong@10#, and the
continuum distorted-wave approximation of Rivarolaet al.
@11#. The experimental results of Bratton, Cocke, and Mac-
donald @5# include capture into all final states. First Born
~Brinkman-Kramers! results of Rogers and McGuire@20# are
not shown, as they are generally a factor 3.5 too large. In the
Faddeev calculations, the values assumed for the charges in

the Sommerfeld parameters areZP5 ZP
`51.0, ZT51.6875,

andZT
`51.0. The agreement in magnitude and shape of the

Faddeev cross section with the experimental data and with
the two-state results is generally very good for the entire
angular range considered. For angles up to 0.6 mrad, the
agreement appears to be especially good; however, the inclu-
sion of the excited-state contribution could lead to results
that are too large. In the 0.6–0.8 mrad region the Faddeev
results are slightly too large, and the shape too flat. The
CDW results are too small for angles below 0.2 mrad and
have a dip in 0.7–1.0 mrad region not present in the experi-
mental results.

In Fig. 5, Faddeev cross sections obtained using various
approximations with the internuclear contribution omitted
are compared among themselves over the angular region
where the electronic amplitude contributes appreciably. This
figure shows the relative importance of the individual correc-
tions. The cross section derived from a single-z helium wave
function shows small differences with the one derived from
the double-z wave function, being roughly 5% larger at 0.0
mrad and up to 5% smaller at 0.5 mrad. Thus, the form of the
bound-state wave function has a minimal effect on the am-
plitude calculation.~The effect is largest in the two regions
where the most cancellation occurs among the various partial
amplitudes—first Born, second-order electronic, and internu-
clear.! The use of an amplitude derived using an effective
Coulomb potential with a scaled~screened! charge@Eqs.~29!
and ~30!# instead of the amplitude with the actual screened
potential, however, leads to larger differences. For angles

FIG. 4. Differential cross section for 1s→1s electron capture in
293 keV proton-helium collisions: modified second-order Faddeev
approximation, present calculation; experimental data, Bratton,
Cocke, and Macdonald@5#; two-state atomic expansion, Lin and
Soong @10#; continuum distorted-wave approximation, Rivarola
et al. @11#. The experimental results include capture into all final
states.
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less than 0.3 mrad, the effective-potential cross section is
consistently 30% smaller, and at larger angles where the in-
ternuclear part dominates it is significantly in error. The be-
havior in these regions can be attributed to the decreased
scattering allowed by the effective-potential amplitude, as
was already pointed out in Fig. 3. Beyond 0.3 mrad, the
enhancement arises because of decreased cancellation with
the internuclear amplitude. The cross section obtained when
the scattering states in the second-order term are not normal-
ized according to Eqs.~51! and ~52! is shown. This cross
section is larger, some 30% at 0.0 mrad, even more beyond

FIG. 5. Differential capture cross sections obtained with the
modified Faddeev approximation employing single- or double-z he-
lium wave functions or a two-body scattering amplitude derived
from an effective Coulomb approximation to the actual electron–
target-ion potential or unnormalized electronic scattering states, all
with the internuclear contribution omitted.

FIG. 6. Differential cross sections for 1s→1s capture in 293
keV proton-helium collisions calculated using the modified Faddeev
approximation with normalized and unnormalized internuclear am-
plitudes and using an eikonally transformed electronic amplitude.

FIG. 7. Moduli of partial amplitudes of the full capture ampli-
tude for ~a! first Born, second-order electronic, and nuclear contri-
butions and~b! second-order Born and modified Faddeev contribu-
tions.
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0.4 mrad where, however, the effect is hardly noticeable rela-
tive to the contribution of the internuclear amplitude. Overall
the larger cross section is a result of the second-order ampli-
tude having a larger absolute magnitude.

Cross sections calculated using the F2 formalism with un-
modified internuclear amplitude@Eq. ~41!# and with the same
internuclear contribution normalized to the eikonally trans-
formed electronic amplitude@i.e., Eq. ~33! transformed ac-
cording to Eqs.~44! and ~45!# are all shown in Fig. 6. All
curves exhibit aK24 ~or J24) momentum dependence be-
yond 0.6 mrad, which is consistent with the Coulomb scat-
tering of the projectile off the target nucleus and with Eq.
~41!. Since Ae exhibits a K26 dependence at the larger
angles, so that its contribution can be neglected, it follows
that the total cross section factors into the product of elec-
tronic and nuclear parts. It is to be noted that in proton-
helium collisions at MeV energies the F2 cross sections
agree very well with the experimental data in the region be-
yond 0.6 mrad~the Thomas peak region!.

Figure 7~a! compares the moduli of the first Born ampli-
tudeAB1 , the normalized second-order Faddeev partial am-
plitudeAe

(2) @Eq. ~33!#, and the internuclear partial amplitude
An @Eq. ~41!#. Below 0.4 mrad, the first Born contribution is
seen to be from two to four times larger than that of the
normalized second-order partial amplitude. Significantly, it
is seen that the moduli of the first Born and internuclear
contributions become equal just beyond 0.4 mrad, precisely
the angle where the modified Faddeev cross section and ex-
perimental data radically change slope~see Fig. 4!. Other-
wise, the internuclear modulus is comparatively very small,
being a factor of 8 smaller at 0 mrad. That is, the electronic
part of the amplitude dominates in the inner region and the

internuclear part of the amplitude dominates in the outer re-
gion with little interaction between them.

In Fig. 7~b!, the modulus of the second-order Faddeev
partial amplitude@Eq. ~33!# is compared with the corre-
sponding second-order Born partial amplitude, which is ob-
tained by setting the Sommerfeld parameters@defined in Eq.
~34!# equal to zero in the Faddeev calculation. It is seen that
a proper treatment of the two-body scattering significantly
reduces the chance of capture by this mechanism. The unre-
alistically large second-order Born contribution at lower en-
ergies is a well-known feature of this approximation.

In summary, it has been shown that a modified second-
order Faddeev approximation to the transition operator for
electron capture at forward angles with a normalized inter-
nuclear contribution leads to a differential cross section in
good agreement with experimental data for proton-helium
collisions at lower energy. An explanation has been given for
how the contribution of the internuclear potential arises and
fits within a time-independent scattering formalism. Finally,
a direct and explicit relation of the F2 theory to the second
Born theory has been derived: A simple picture of capture
involving the interaction of separate scatterings is maintained
while a much more accurate treatment of each of the scatter-
ings is employed.
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