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Modified Faddeev treatment of electron capture
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The Faddeev multiple-scattering formalism in second order is modified to treat lower projectile energies.
The electronic part of the amplitude is evaluated using a Hartree-Fock approximation to the helium wave
function and a consistent screened target potential for the active electron. Off-energy-shell scattering states
appearing in the electronic part of the full amplitude are corrected for loss of normalization. The high velocity
Faddeev nuclear-scattering contribution is normalized to the eikonally transformed electronic amplitude at
large angles. An application to proton-helium collisions at 293 keV shows good agreement with the experi-
mental data. The effects of the various approximations are studied.

PACS numbes): 34.70+e

I. INTRODUCTION and target ions. Marxer and Brigf8] have shown that these
wave packets lose normalization as the velocity decreases. In
For incident energies of a few MeV, the second-ordera strong-potential approach, they developed a modified
Faddeev treatmeit] of electron capture has been shown totheory that corrects for the loss of normalization and shows
reproduce well the experimental differential cross section ijood agreement with experiment. The Marxer-Briggs
proton-helium and proton-hydrogen collisiof]. At these method is applied here to the wave packets used in the
energies, the contribution of multiple scatterings is signifi-electron—target-core and electron—projectile-ion scatterings
cant because of the important role played by the Thomasef the Faddeev formalism.
mechanisni3]. The Faddeev scattering formalism breaks the The internuclear-scattering contribution is included in the
full collision into two-body collisions, which are described Faddeev formalism, but an accurate evaluation is difficult at
by transition operatorst]. Like the second-order Born treat- lower velocities. It is nonetheless desirable to relate this con-
ment, the Faddeev treatment maintains the simple doubleribution to a simple picture of Rutherford-like scattering
scattering description of the Thomas mechanism while prowith, however, the requisite off-shell corrections being in-
viding quantitativeagreement with the experimental dga, cluded, even if the norm of the amplitude is not adequate.
even at projectile scattering angles beyond 1 mrad, wher&he internuclear contribution can also be determined by us-
nuclear scattering dominates. ing the eikonal approac®], a general application of which
In the present paper, a modified Faddeev formalism iproceeds by transforming the electronic amplitude in the
applied to collisions at lower velocities which, however, arewave picture to impact-parameter space, multiplying the
high enough for the perturbative approach to remain validiransformed amplitude by the eikonal phase factor
At the lower velocities, the multiple-scattering treatment canb?2r?T/v whereb is the impact parameteZp, Z; are the
still allow for the interaction of one scattering with another. projectile and target-nuclear charges, ands the impact
Additionally, a more accurate representation of the groundvelocity, and then transforming back to the wave picture.
state wave function of helium may improve the cross sectiorThe eikonal factor is derived from the transverse components
as a result of the redistribution of important bound-state moof the internuclear motion. At angles beyond 1 mrad, the
mentum components. This question is addressed by compafaddeev internuclear contribution can be normalized to the
ing cross sections calculated using single- and dotble-eikonal result, which is done in the present work.
wave functions[6]. (The double wave function approxi- An exact numerical evaluation of the rest of the amplitude
mates the Hartree-Fock limit.Consistent with the better is infeasible with the use of a screened target potential. The
wave function, a target potential is also employed which acireatment presented here, which relies on the smallness of the
counts for the screening of the target nucleus by the othebinding energy of the electron relative to its scattering en-
electron. A comparison is made between the capture amplergy, employs near-the-energy-shell representations of the
tude based on a two-body Coulomb target scattering ampliswo-body transition matrices, and further, neglects factors of
tude with screened charge and a better one, which is the suthe order ofm/Mp andm/M+ (with m, Mp, andM+ being
of a Coulomb amplitudéwith the charge of the residual ipn the electron, projectile, and target-nuclear masgEs
and a short-range amplitud@]. The above approach is applied to proton-helium collisions
The Faddeev treatment describes the capture of the eleat an incident energy of 293 keV, corresponding to a velocity
tron by means of wave packets of virtual off-the-energy-shelbf 3.43 au. Calculated differential cross sections are com-
scattering states representing collisions with the projectilgpared with the experimental d4dta] and with the results of a
two-state atomic expansidi2SAE) [10] and the continuum
distorted-wavg CDW) theory[11].
*Permanent address: Physics Department, The Pennsylvania State The plan of the paper is the following. The second-order
University, Wilkes-Barre Campus, Lehman, PA 18627. Faddeev amplitude is specified in Sec. Il, including both the
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electronic and internuclear parts. In Sec. lll, the use of dn the last part of Eq(3), the various contributions have been
better target wave function and potential, as well as theollected into separate operator§, and.”,,, which arise,
method for the normalization of the off-shell scattering respectively, from the direct transfer of the electron and the
states, are presented. Section IV compares calculated resuitgéernuclear scattering.

with experiment and other theory and gives a comparative The individual two-body potentials do not have simple
analysis of the effects of the various refinements. Atomiccoordinate dependences; however, they reduce asymptoti-

units are used. cally to
Il. THE SECOND-ORDER FADDEEV AMPLITUDE Vee(rp)~—Zpltp @S rp—,
FOR CAPTURE .
VTe(rT)""_ZT/rT as rT—>OO, (4)
A. General setup
Within a one-electron model, a three-body collision is Vpr(R)~ZpZ7/R as R—e.

considered where a projectile id? is incident on a target

consisting of an electros and a target iom: The projectile and target nuclear charges in EdsareZp

andZ; and the corresponding asymptotic chargeszgrand
P+(T+e)—(P+e)+T, Z7 .The shielding of the projectile and target nuclei by the

_ nonactive electrons leads to the valugsandZy ; for neu-
where parentheses denote bound electron-ion aggregates. ki targetsz? is unity.

ther the target or projectile may contain passive electrons.
Accordingly, the two-body interactions between each pair ofy, g fina| asymptotic scattering states, the second-order Fad-

particles assume the g_eneral modified Coulomb fpi@]. deev approximatiorfF2) to the exact capture amplitude, at
The Faddeev formalism, as applied to the electron-capturgnergyE is

problem with particular emphasis on the points relevant to
the present treatment and subsequent approximate evalua- Ar2(E)=(D¢|.7c+.70| D) =Ac+ A, (5
tion, is outlined here(A detailed discussion is given else-

where[1].) Splitting the collision into two-body components, where the asymptotic states are given by

Faddeev  defined the (channel operators .7, _

(a=Peg,Te,PT) that solve the matrix equatidd] (Ry,r{|®@)=€efiRrgi(rq),

Forming the matrix element o ,+.7,, between initial

TTe 0 0 Tre e TTe (Rp,rp|®)=€rRegy(rp). (6)

Tpe

_.
N

pe|=| Tpe| +| Tpe 0 Tpe|Gqy : In Eq. (6), the initial and final bound states age and ¢,
T pT Tpt _}‘PT }PT 0 T bt andK; andK; are the initial and final heavy-particle wave
(1)  vectors. The coordinates of the electron relative to the pro-

_ jectile and target ions are denotedryyandr, respectively;
where the7, denote transition matrices for the mutual scat-the projectile coordinates relative to the target ionRyythe
tering of two particles while the third one propagates freelyprojectile-electron system coordinates relative to the target
and G/ (E) is the free Green operator for total enerfy  ion, by Rp, the projectile coordinates relative the target, by
Zeros along the diagonal of the square matrix ensure tha&®y, and the electron coordinates relative the projectile-ion—
repeated multiple scatterings of tsametwo particles with  target-ion center of mass, ry[13].
free propagation of the third do not occur, which would oth-  The free Green operator is
erwise lead to ill-defined amplitudes. Equatid is solved

. . . . . + _ H -1

approximately by an iterative Neumann scheme in which the Go (BE)=(E—Hq+in) 7, (7)
first-order solution s .,7gl)=.7a (a=PePT) and

7%):0, and the higher-order term%”g”) (n>1) are ob- where the free Hamiltonian takes the possible forms

tained by substituting” "~ into the right-hand side of Eq. 1 1
(1) and performing the matrix multiplication. Ho= o, ép—z— rzp
In terms of the7,, the transition operator for the capture f i
(rearrangement, in generarocess is given by 1, 1,
=75 VR, T 5, Vi
T c=Vpet T7et Tpr. 2 2vi T 2p T
1 1
In the present work, a second-order approximation to the =—2—Vr2—2—V2R.
7, is used to obtain7.. Following Egs.(1) and (2), one Yn Hn
finds The total collision energy is  given by

_ ~ ~ E=(1/2v))K?+¢;=(1/2v{)K?+¢;, wheree; and &; are
7 (2) = + — Sl i “i flrNf f ‘ i < f
7 ¢ =Veet 77eGo (B)- 7l the initial and final bound-state energies. Initial, final, and
+[ T o1+ 701G (E) Tpet 716G (E).7p1] internuclear |n.ternal and relative reduced_ masses and associ-
ated mass ratios for the two-body combinations are defined
E7e+7n (3) aS,ui=m|\/|-|-/(m+M-|-), Vi:Mp(m+ MT)/(m+Mp+ MT)!



54 MODIFIED FADDEEV TREATMENT OF ELECTRON CAPTURE 2013
a=M+/(m+M5), pmi=mMp/(m+Mp), vi=Ms(m  the bound-state wave functions and insertion of complete
+Mp)/(m+Mp+My), B=Mp/(M+Mp), u,=MpM:/  sets of plane-wave states ip and Rp between.71, and
(Mp+My), vp=m(Mt+Mp)/(Mm+Mp+My), y=M1/  GI, lead to the expression

(Mp+Mj5). Initial and final heavy-particle velocities are

defined in terms of the initial and final wave vectors

as vi=K;/v; and v;=K;/v;. One can show that 2)_ s ~ .
vilv;=1+0(m/Mp)+O(m/M;) and, for forward-angle Ae'=(2m) J'dkfdkid’f(kf) #i(kj)
capture, thatvi-vi=1+0O(m/Mp)+O(m/M;); thus, the _
projectile velocity is written as. X Tre(Ks+V,ki+ ki —K;Ef) G, (Ej)

If the transition matrices , in the second-order terms in
Eq. (3) are approximated to first order by potentig and
the first-order terny 1 is approximated to second order by
Vp1+Vp1G, (E)Vpr, one obtains the second-order Born for the partial amplitude. Thé functions arising from the

XTpe(kf‘f'ki"‘J,ki_V;Ei) (12)

operator{ 14] heavy-particle integrations have been used to evaluate the
5 momentum integrals of the complete sets. With terms of or-
T 8=Vpe+VrGy (E)VpetVprt+ VprGy (E)Vpr derm/Mp andm/M neglected, the scattering energies
+Vp1G, (E)Vpet V1eG, (E)Vpr. 8

EiN%UZ_V'ki‘FSi, Ef”%Uz‘i‘V'kf‘i‘Sf (13)
The internuclear terms of Eq8) can be shown to give no
contribution to the cross section at forward scattering angles.
The amplitude derived from the electronic part is comparedyre obtained.
with the Faddeev approximation below. The two-body transition matrix is defined as
For each of the two-body collisions in the amplitude, it is
useful to integrate the third free-particle motion so that two-

body transition matrices can be obtained. Later, these transi- -1
tion matrices will be approximated by forms near the energy T(K'.K;&)= < Vi1+ 8+_V —V+tin VHk>
shell.

=(k'IVIy, 0 (14)

B. Reduction of the electronic term

to two-body T-matrix form . . .
for a potentialV. Equation(14) defines the off-energy-shell

scattering staw;k of energye and momentunk, satisfying
outgoing-wave boundary conditions. The transition matrices
Tpre and Tt in Eq. (12) are derived, respectively, from the

In the electronic part of the amplitude E®), the double-
scattering term is separated, giving

= . - GF 7 .
Ae=(Pi[Vre ® (177680 (E)7pel 1) potentialsVp, andV1.; they are completely off the energy
=Ag+A?, (9)  shell:k*#2ue andk'?#2ue, with 4 denotingu; for T,
or u¢ for Tpe.
whereAg; is the first Born amplitude. The first Born ampli-  The Fourier transform of the free Green function E2.
tude[15] takes the form appearing in Eq(12) can assume either of two equivalent
forms:
Ag=—4m (K2 Z)p(K)* ¢i(=3) (10

+ 1 P
for i=f=1s. The Is hydrogenic wave function in momen- Go (EN=[Ei=3(kitki+3)*+in] *
tum space is¢;(k)=(2%2%Y% w(k?+2?)2. The partial =[E— (ki +ki—K)2+in] L, (15)
amplitude Eq.(10) becomes large as—Zt, sinceJ—Zp,
and this behavior provides the dominant feature of the cross
section. The momentum transfers that are experienced by thehich will be useful later.
target ion and projectile during the collision have been de- Equation(12) represents an electronic “wave packet” of
fined as momentum distributiorp;(k;) centered about-v scattering
in the projectile frame. The energy of each component is
J=aK;—K;, K=pgK;—K;. (1)  E(k). In the collision of the wave packet with the projec-
tile, each component undergoes a momentum transfer
The components parallel te are K,= —v/2+(g;—¢)lv ki—K, as described by the transition matrbe.. After
and J,= —v/2+(es—&;)/v, and the components perpen- propagating freelyrepresented bys_), the packet, as seen
dicular to it areK, for K and —K, for J. Momentum con-  now from the target frame, scatters off the target ion with
servation for the process takes the fokirt J+v=0. each component undergoing a momentum transfley—J,
In the second-order term in E¢P), the operation oG,  as described by the transition matfix,. The final momen-
and. /Peto the right on theR, plane wave and oVTe to the tum distribution centered orv is ¢¢(ks), with energy
left on theR+ plane wave, together with Fourier analyses of E¢(k¢) for each component.
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C. Reduction of the internuclear term
to two-body T-matrix form

The partial amplitude
An=( P 7p1| @) +(P.77Gq (E).7pr| P;)
(| 7p1G, (E).7ped i)

=AM+ A2 Al20) (16)

Ill. EVALUATION AND MODIFICATION
OF THE AMPLITUDE

A. Near-shell approximation for a screened potential

It has been shown for singly charged ions incident on
neutral atoms that the total amplitude, is well-behaved:
nonintegrable singularities are not present. Therefore, ap-
proximations to it can be made. In this section, near-shell
forms of the two-body transition matrices are used that in-
troduce errors of the order of the squares of the ratios of the

containing the internuclear terms is evaluated in this sectionprojectile and target-nuclear charges to the impact velocity;
For the first-order term, if the bound-state wave functions arghat is, the partial amplitude ohg, given in Eq.(12) is

Fourier analyzed, then the operation.of+ on ther plane
wave, along with the use of thé function arising from the
r integration (which forcesk;=k;—v to orderm/Mp and
m/M+) for performing thek; integration, gives

Agl):f dk; d(ki—v)* bi(ki) Tpr(Ui—ki—3,U;Ep),
(17)

where Uj=(1—-y)k;+[1-(1—-y)(1—a)]K; and E,=E
_[ki - (1_ a)Ki]2/2vn .

__ For the first of the second-order terms in E&), letting
J1e and G, operate to the left on thB; plane wave and
. p1 Operate to the right on the plane wave and inserting
complete sets of plane-wave states iand R betweenG,
and.7p1, one derives the expression

Aﬁza):(Zﬂ-yBj dkdk; B(ko)* (k)

X Tre(Ks+V, K — (1= @) (k= K);E()G (Ey)
XTpr(Ui—ki—=K,U; S Ep). (18)

The ¢ functions arising from the andR integrations have

approximated to orderZp/v)? and Z1/v)2.

While it is true that corrections to the near-shell approxi-
mation will be expected to be larger at lower energies, it is
apparent from Figs. (@ and 7b) (discussed below in Sec.
IV) that the second-order contribution is also relatively
smaller, making the near-shell corrections less important.
Contributing to this are the large first Born contributi@ee
after Eq.(10)] and the incorporation of the electronic scat-
tering normalization, detailed below in Sec. Ill E.

For modified Coulomb potentials, the two-body transition
matrix reduces to a generalized elastic-scattering amplitude
multiplied by a so-called off-energy-shell factor when the
energy shell is approached. The amplitude is the sum of an
amplitude for the Coulomb potential and an amplitude for
the short-range part of the potential. Because of the presence
of the bound-state wave functions, the integral in the second-
order electronic term is dominated by momentum values in
the regionk;<Z; andk;<Zp . Following previous work on
modified Coulomb potentialgl2] that extends the result of
Chen and Cheril6] on pure Coulomb scattering, the ap-
proximation near the energy shell to the two-body scattering
matrix for a screened potential is found to be

Tuc(k' k;e)~—27g" (2" k' ,&)9"(Z" k,&)

been used to evaluate the integrals of the complete sets. The x[ff,“‘k(s) + fE,Rk(s)], (22
momentum-space Green function in this expression is given

by
- 1 -1
Gg(Ef):(Ef—z_lw[ki‘F(l_CY)(K—kf)]Z+i 77]

(19

where the off-shell factor is defined as

—:
+lv

+—w — A 2 —i
9= (Z% k,k)=e™ "I'(1Fiv") v

(23)

Similarly, for the second of the second-order terms in Eqand wherev*=2"/k, k=(2us+in)*? u is the reduced

(16), one finds

A§12b)=(277)_3f dkidk; de(ke)* (ki)

X Tpr(Ug,Us+ki+J;E) G (E)
XTpe(—ki+(1—B)(ki+J),ki+V;E), (20

with Us=—yk;+[1—y(1—B)]K;. The free Green func-
tion here has the form

Gl(E)= E-—i[—k +(1-B)(Ki+ )2 +i -
o \Ej i 21 f i 7

(21)

in momentum space.

mass, and’(x) is the gamma function.
Scattering in the asymptotic Coulomb-field of cha#je
is measured by the Coulomb scattering amplitude

2iv”

; (29)

. 27
fro (€)= | 2ia

K=k ok

k' +k

with op=argl'(1—-iv”). Relative to the asymptotic Cou-
lomb scattering, the additional scattering in the short-range
part of the potential is measured by the amplitude

LS (214 1)e@0 sing, P(K'-K), (25)

SR
fk,’k(8)= KK 2

with 8, the phase shift for the short-range potenfid|
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k(au) FIG. 2. Effective charge, defined ask®Vg(k), for the

screened potential derived from the Hartree-Foskidrget orbital

FIG. 1. Single- and doublé-Hartree-Fock & orbitals in mo-
versusk.

mentum space.

o . that the better wave function is more peaked than the other
In the present application for the electron—target-ion po-

tential only thel =0 component of the short-range amplitude more approximate one. The effect of this on the cross section

) . . X is studied below.
is retained. Manson has compiled phase sHiffg] for an . ; . .

; ; : While considerably more sophisticated helium wave func-
electron scattering in an unrelaxed Herman-Skillman

(Hartree-Fock-Slatepotential[18] for the ground state of a tions are available, the doubfefunction is used because the

SO .effect on the cross section of using a better wave function
large sequence of atoms. Extrapolating in impact energy his

value for helium, the valuss,=0.3860 is obtained. This Can still be investigated with a minimal impact on computa-

. . tional complexity. The two exponents bracket the single-
value is used here. The value 1y s at least a f_actor of 5 value of 1.6875 and both of the coefficients are positive. The
smaller thané,. Consequently, the phase shif, for

n>0. are not used relatively large \_/que ot; means that, in pqrtic_ular, th_e in-
' ' ner form of the initial bound-state charge distribution is bet-
ter represented.
B. Helium wave function and screened potential With this wave function, an unrelaxed atomic potential
Since the singles ground-state wave function of helium €&n be obtained that is derived from the sum of the electron-

weights radial values differently than more accurate wavéUcleus attraction and the average electron-electron repul-
functions, it follows that momentum components will like- SO
wise be weighted differently. Since the amplitude involves
an integration over the momentum distribution, results could v
also be affected.

To study this possibility, the ground-state wave function _
is represented by a doublefunction [6] Using the Fourier transformVye(k) of this potential, a

B _ A charge for a scaled Coulomb potential can be defined as
pi(r)={ciNie 1" +coNye <2} Yool ), (26)

(0= [ A T=Zrsr )+ o Pl (29

2 ) 1/2 Zs( k) (29)

with ¢;=0.18069, c,=0.84378, (;=2.91093, ¢, VHF(k)E—(; 2
=1.45363,N;=277% (j=1,2), andYoe=1/V4m. The or-

bital energy of this state is 24.978 eV, and the correspond- whereZ is dependent on the momentum transfer. Due to the

ing total energy is- 77.868 eV, which is within X 10" ° eV : i .
of the Hartree-Fock limit. The experimental energy isgpherlcal nature of the ground-state wave function &),

—78.975 eV. In momentum space HG6) takes the form Vir de_pen_ds only ork. The behavior O.t.ZS(k) versusk is
shown in Fig. 2, where a smooth transition from a charge of

about 1 for projectile scattering angles near 0 mrad to about
2 at 1 mrad is seen. This behavior reflects the increasing
_ penetration of the target ion by the projectile.
whereN; = (2°,7/7)"? (j=1,2). Figure 1 shows the single-  Since the modified Coulomb potential is well represented
and doublet wave functions in momentum space. It is seenby a scaled pure Coulomb potential of cha#yan the inner

i(K)={CiN (K24 £2) 2+ coNo(K2+ £2) 2 Y oK), (27)
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region, the sum of the Coulomb and short-range amplitudes, (k;+k;+ J,k;—Vv;E;)
is approximated by the Coulomb amplitude for the screened

potential, _ —47re’”°5r(1+ i V°F‘j)21“(l— ivp)
I'(1+ivp)
C _ 2ZS 2ig, |k,_k| 2vs 2 _iV: 2)ivp
(8E)2G! |ki—K| 8E;
with v=puZ/(2ue+in)Y? here. Such a simplification and
works when the impact energies are large, so that the indiTTe(karv,kiJr ki—K:E;)
vidual collisions in the double scatterings are hard collisions
and the momentum transfers are large. A comparison of this B K2—2e, —ivy
amplitude with the amplitudéff:’k(s) + ff,ka(s) in the above =—4me™ Tl (1+iv])|*| ——=7+
noted| =0 approximation is shown in Fig. 3. Little differ- (8E1) G,
ence is seen in the real componéaX, whereas the imagi- - o\ i Yoo
nary componentb) is underestimated grossly by the effec- Zr [ |ki+J] (2E¢) %! %0sing,
tive amplitude. [ki+J]?| 8E; 2]k +V|[ki+ki—K]| [

(32

o _ Using these expressions, neglecting the slowly varykng
The near-shell approximations to the electronic-nucleaand k; dependences of the integrand, and introducing the
transition matrices i\(®) are 1s bound-state wave function, the amplitude becomes

C. Evaluation of the electronic amplitude

T(1+ivE)2T(1—ivp)

A= 2(21m) Zp(ZrZp) P e o 5 (07 TR E e T (L) (407
Z5 (3 2v e' %sing, . o~ e
X 2\5p] ek fdkfdki (Kf—2&;) "2 ""p(kf—2e¢) 27T [GS(Ep)]HHTmTHive, (33)
|
with the Sommerfeld parameters defined as tive eight-panel Newton-Cotes quadrature. The output of the

cross sections was explicitly checked to assure better than a

vp=Zplv, vp=Zplv, vi=Zilv, vi=Zilv. four digit accuracy.

(34
In Eq. (33), the free Green function E@L5) is approximated D. Evaluation of the internuclear amplitude
as The near-shell approximation to the transition matrix for
GL(E)=[ 202 K2+ 8 —k;- I+ ki -K the first-order internuclear term E€L7) is
Lo ) Ter(Ui—ki—=J,U;;Ep)
—s5(kf+kf)+ing] 35 o .
3 (K +K) +i 7] (39 p i DA VDT (Lt ivpr)
~4me TVPT -

where advantage is taken of the spherical symmetry of the I'(1-ivpy)

initial and final bound-state wave functions to uniformly
“average” the direction of k; relative to k; and write

[(ki—v>2—2af1[k?—28i])i”?T ZpZr

(ki—k¢)?~k?+k?. However, the quadratic dependence of % (8E,)? [k;+J|?

the free Green-function on the momentum variables is re- 2\ —ivpr

tained[14]. > [ki+J] (36)
The six-dimensional integral in E€33) is evaluated as in 8unE, !

previous work[1]. Briefly, the angular integrations ovég

andk; are performed straightforwardly. The radial variableswith  vpr=unZpZ5/(2unEn)Y2  and  vpr=punZpZs/

k; and k; are then expressed in polar coordinates. Usind2u,E,) Y The reduced massg, factor does not cancel in
Cauchy’s integral theorem, the integration pathKgralong  this expression because the inner and outer charges of the
the positive real axis is transformed to a path off the real axisnodified Coulomb potential are different.

to avoid the Green-function singularity. Tolerances were The remaining integral is evaluated by treating the two
given as 108 and 10°®, respectively, for the angul&, and  dominant peaks in the integrandkgt=0 andk;=v as inde-
radial k, integrations, which are carried out using the adappendent, with the slow; variation of the other factors about
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the peaks being neglected. This is justified if the two peaks T
are well separated in momentum space, as is true for
v>Zp andv>Zr. 0.4+ Potential Scattering |
The transition matrix approximations to the term in Eq. RN
(18) are |
r \ actual screened 1

effective Coulomb

Ter(Ui—ki+K, U Ep)

=
s \2 - 2 ivg 3
o« I'(1—ivpp) T (1+ivpy) [ KT—2g;\ "PT —
~4me” "UPT . )
I'(1—ivey) 8E, =
—iy W
= e Lplt |kf_K|2 Pt T
+y—iv
X(8ECo) Plef—Klz( Btk 37 =

and
Tre(ks+V, ki Ef)

A+ (1—ivy) [ K2—2e| T
~—4me™'T -
rA+ivy) 8E;
[ k= V2E o ze
K+ \2E, ke —ki+V|?
k—ki+v]? |7 38
([ki+vl+k)?) 9
where vy =Z5/(2E;)Y2 and vr=2Z;/(2E;) 2
The transition matrix approximations to the other second- =
order internuclear term in Eq20) are s
3 ,
Tpr(Us, Us+ki+JEp) \: /
e _ ) o = -02F / . ' i
s F'A-ivpp) T (1+ivey) [ Kf—2¢5 "pT = / Potential Scattering
~A4me e T(1=ivpy) 8E, L
. ,/ actual screened
X (BE, G ) i ZPAT kit 9% 7T 39 o3k 7 ective Coulomb
o1 — | ——— 03 effective Couloml —
(BEnGo ) M RIP | BneE, %9 ;ST
and [ 1 1 1 1 1 1 1 1 ]
0.0 0.2 0.4 0.6 0.8
Tre( =K, ki—VIEj) 0, ,, (mrad)
s 00N 2 i 2_ *ivw
m_4weWV;F(1+|vp) I(1-ivp) [ ki—2e g FIG. 3. Real(a) and imaginary(b) parts of the two-body scat-
F'(1+ivp) 8E; tering amplitudef,. ((E) for the screened target potential versus
laboratory scattering angle, which is related k6—k|.
ki—\2E |\ P Zp
ke + 2, [ki+k¢—v|? An=Sprf(K)+Srpf (), (41)
2\ iy
ki +k¢—V]| F (a0)  With the internuclear-scattering amplitude defined by
(Jki—v|+kp)?)
2Z2pZ: T(1+ivpr) [ Q | T2veT
S 12 _ 12 Coy= _ =ZP7T PT
wherevp=Z5/(2E;)"* andvp=2Zp/(2E;) "~ f(Q) Q2 F(l—iva)(Z,unv (42

Retaining only those terms in the integrand in which the
momentum variation is rapid, performing thkeandk; inte-
grations, combining the results, and regrouping factors, on&he constanSp+, which is independent af andK, is given
finds by
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I(1-ivpp)T(z —ivpy)

Spr=2°wZr(ZpZy) ¥ "eT (4pq?)~2er

(1=ivppVm
. ) W TG+ DA+ 1T (1=ivy) [ 2 2 p2—z2| tHiver
< Z|23'Vp'r(v2+z_|2_)72+ivp-r_ %Z_lz_”’p'r 2 T — T - vl zp 1)72+2in P ]
(1+iv)Jal(1+ivy) |\ 2v 2
(43
|
Srp is obtained fromSp by the changeP«— T, wherev7, where only the internuclear part contributes. The electronic
VOST: Z;Z?/U and VpT:ZpZT/U.
Equation(41) is symmetric in the two charges and in the E. Normalization of the electronic scattering
~ -2
momentum transfers. The dependencesort andJ~? re- The wave packets representing the virtual scattering of the

flect the nuclear Coulomb scattering. Also noteworthy is thesjectron in the initial and final channels make use of the
appearance of two terms of opposite sign in each set of larggt_shell scattering states that appear implicitly in the transi-
parentheses. Ignoring the dlfferzent multlplylgg factors andijon matrices in Eq(12) and are defined by Eq14). As

neglecting factors of ordeiZe /v)“ and (Z1/v)“, a cancel-  \arxer and Briggs have noted, the wave packets can lose

lation of contributions is expected in E@#3) (andSrp). In- normalization[8]: their procedure for normalizing them is
deed, for the second-order Born approximation, which is 0bamployed here.

tained by setting all of the Sommerfeld parameters equal to The relevant wave packets are defined as
zero, the cancellation leads to a vanishing contribution.

The eikonal treatment of the internuclear contribution to N ~ N
forward-angle capturg9] consists of Bessel transforming the gv,i(rP)Ef dk ¢i(k) ¢, v-«(rp)
given electronic amplitudé.(K ) [Egs.(10) and(33)], as a
function of transverse momentum transt€r, to impact- and
parameter space:

. foy(rp)= f dk Bi(K) Yo g (11),
aub)= [ aK KL IR ALK, (@9

. wheree is a function ofk, (k). These wave packets are
multiplying a.(b) by the eikonal phase fact@®'PT, and  normalized according to whether the square roots of the in-
then transforming the result back to momentum-transfetegrals over all space of the squares of the wave packets, viz.,

space
Ni(0) = ((£53 5,12 46
Acin(K)= | “db BRI, biagb), @5 gng

— — e /
wherevpy is the previously defined internuclear Sommerfeld Ni(v)= (<§v,f|§v,f>)l ? (47)

parameter. In Eq@45) for A.,,, the electronic and nuclear .
contributions are mixed together. Normalization of the&'€ unity. In Egs.(46) and (47), the dependences on the

double integration must be consistent with the definition ofinitial or final bound-state wave functions and on the velocity
the amplitude relative to its use in the differential cross sec@re noted explicitly. _ _ _ o
tion and is easily checked by setting;=0 and comparing Considering, ¢, the relevant mteractlon region, which is
the doubly transformed amplitude with the untransformedcentered around the target nucleyssZy, implies that the
amplitude. This latter procedure also provides a gauge of theff-shell wave functiony, (ry) can be approximateld 2] to
accuracy of the numerical quadratures. As a further check ogarder @p/v)? by a target continuum eigenstag (rr) mul-
errors arising from the imperfectly calculated amplitude,tiplied by an off-shell factor:

which is read in at a tabulated set of values, the double

numerzical quadrature was performed on the analytic function Yo q(r1)=09 (Z7,9,%) ¢ (r7) (48
{c+K%1 2,

Neither of the internuclear contributions above lead tofor = 3x*~ 3. As noted earlier, this approximation holds
results which agree well with the experimental data over thdor centrally modified Coulomb potentials. The wave func-
whole of the angular region. This comparison is shown betion ¢; in the matrix element ensures the validity of the
low in Fig. 6 of Sec. IV. To correct this situation, which approximation. The factog™ has been defined above in Eq.
most likely arises from the limitations in the evaluation of (23). Here, the charge dependence of the asymptotic form of
the internuclear amplitude, E¢41) is normalized to the am- the target potential means that=Z7 . An analogous argu-
plitude given by Eq.(45) at the scattering angle 1.2 mrad, ment can be made fcﬁvfi.



54 MODIFIED FADDEEV TREATMENT OF ELECTRON CAPTURE 2019

Employing the near-shell approximations for the off- e T

energy-shell scattering wave functions and making use of the .
orthonormality of the eigenfunctions; (r), one obtains U p * He. 293 keV 3
~ 12 ]
NI(U)%(J dk|¢.(k)|2|g+(Z§,q,K)|2) (49) Ffranonetal. [5]
= Moditied Faddecv, present
£ 102k E
and 2 : CDW, Rivarola et al. [11] 3
_ 12 ol o ]
Nf<v>~( f dk|¢(k)[?lg™ (27 ,0.x)| (50 S
E 4
Noting Eq.(23), it is seen that the rapidly varying parts of ,5 1013 E
g* are canceled by g*)*. Thus, since|¢;(k)|* and % : ]
| #¢(K)|? are highly localized abouk=0, accurate approxi- s 1
mations can be made: ]
_ 1/2 1014 L =
Ni(v>~|g*(2°s,q,f<>|k-o(fdqusi(k)lz) : g
2mvp v 0_0I 0|2‘ OI4I 0|6I 018I lIO’ IIZ—
:( i ) s 007 04 05 08 10
1-e P 8, ,p, (mrad)
and . _ i .
FIG. 4. Differential cross section forst- 1s electron capture in
_ 1/2 293 keV proton-helium collisions: modified second-order Faddeev
Ni(v)=~|9™(Z7.9,4)|k=0 f dk|¢f(k)|2 approximation, present calculation; experimental data, Bratton,
Cocke, and Macdonalfb]; two-state atomic expansion, Lin and
" 12 Soong [10]; continuum distorted-wave approximation, Rivarola
27y et al. [11]. The experimental results include capture into all final
= —=] . 62 &
1—e 27r7 states.
wherevp=Z5/(v?2—2¢;)Y? and vy =Z5/(v?—2¢4) Y2 the Sommerfeld parameters atg= Zp=1.0, Z;=1.6875,

For high velocitiesN;~1+wvp/2 andNg~1+7v7/2, andZ7=1.0. The agreement in magnitude and shape of the
showing that the normalizations approach unity. For lowerFaddeev cross section with the experimental data and with
velocities, however, the corrections can become significanthe two-state results is generally very good for the entire
In the present case,2r=1.917 and Zv7=2.107, and angular range considered. For angles up to 0.6 mrad, the
[N;(v)] 1'=0.6670 and N¢(v)] 1=0.6457. The product is agreement appears to be especially good; however, the inclu-
then [N;(v)N¢(v)] 1=0.4307. SinceN; and N; are not Sion of the excited-state contribution could lead to results
equal to unity, the scattering states are corre¢tedormal-  that are too large. In the 0.6-0.8 mrad region the Faddeev
ized). The use ofN;N; also reduces the importance of near-results are slightly too large, and the shape too flat. The
shell corrections at lower velocifyg]. CDW results are too small for angles below 0.2 mrad and
have a dip in 0.7-1.0 mrad region not present in the experi-
mental results.

In Fig. 5, Faddeev cross sections obtained using various
Results calculated using the modified second-order Fadapproximations with the internuclear contribution omitted
deev formalism are compared first with other theoretical reare compared among themselves over the angular region
sults and with the experimental results. An analysis is thenvhere the electronic amplitude contributes appreciably. This
made of the effect on the cross section of the various refinefigure shows the relative importance of the individual correc-

ments to the amplitude. Differential cross sections for elections. The cross section derived from a singjleelium wave
tron capture in proton-helium collisions at 293 keV are pre-function shows small differences with the one derived from
sented in Fig. 4. The calculated® 1s results are obtained the double¢ wave function, being roughly 5% larger at 0.0
using the present modified second-order Faddeev approximairad and up to 5% smaller at 0.5 mrad. Thus, the form of the
tion [i.e., the sum ofA, in Eqg. (33) andA,, in Eq. (41)], the  bound-state wave function has a minimal effect on the am-
two-state atomic expansion of Lin and Sodrg], and the plitude calculation(The effect is largest in the two regions
continuum distorted-wave approximation of Rivar@hal.  where the most cancellation occurs among the various partial
[11]. The experimental results of Bratton, Cocke, and Mac-amplitudes—first Born, second-order electronic, and internu-
donald [5] include capture into all final states. First Born clear) The use of an amplitude derived using an effective
(Brinkman-Kramersresults of Rogers and McGuifg0] are ~ Coulomb potential with a scalgdcreeneficharge Eqgs.(29)

not shown, as they are generally a factor 3.5 too large. In thand (30)] instead of the amplitude with the actual screened
Faddeev calculations, the values assumed for the charges potential, however, leads to larger differences. For angles

IV. RESULTS AND DISCUSSION
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FIG. 6. Differential cross sections forst>1s capture in 293
keV proton-helium collisions calculated using the modified Faddeevthe scattering states in the second-order term are not normal-
approximation with normalized and unnormalized internuclear amized according to Eq951) and (52) is shown. This cross
plitudes and using an eikonally transformed electronic amplitude. section is larger, some 30% at 0.0 mrad, even more beyond
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FIG. 7. Moduli of partial amplitudes of the full capture ampli-
tude for(a) first Born, second-order electronic, and nuclear contri-
butions andb) second-order Born and modified Faddeev contribu-
tions.

less than 0.3 mrad, the effective-potential cross section is
consistently 30% smaller, and at larger angles where the in-
ternuclear part dominates it is significantly in error. The be-
havior in these regions can be attributed to the decreased
scattering allowed by the effective-potential amplitude, as
was already pointed out in Fig. 3. Beyond 0.3 mrad, the
enhancement arises because of decreased cancellation with
the internuclear amplitude. The cross section obtained when
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0.4 mrad where, however, the effect is hardly noticeable relainternuclear part of the amplitude dominates in the outer re-
tive to the contribution of the internuclear amplitude. Overallgion with little interaction between them.
the larger cross section is a result of the second-order ampli- In Fig. 7(b), the modulus of the second-order Faddeev
tude having a larger absolute magnitude. partial amplitude[Eq. (33)] is compared with the corre-
Cross sections calculated using the F2 formalism with unsponding second-order Born partial amplitude, which is ob-
modified internuclear amplitud&q. (41)] and with the same  tained by setting the Sommerfeld paramefelefined in Eq.
internuclear contribution normalized to the eikonally trans-(34)] equal to zero in the Faddeev calculation. Itis seen that
formed electronic amplitud@i.e., Eq.(33) transformed ac- & Proper treatment of the two-body_ scattering significantly
cording to Eqgs(44) and (45)] are all shown in Fig. 6. All re_du_ces the chance of capture by this m_echanlsm. The unre-
curves exhibit &~ # (or J-%) momentum dependence be- alistically large second-order Born contribution at lower en-

yond 0.6 mrad, which is consistent with the Coulomb scatFrdes Is a well-known feature of this approximation.

. A . In summary, it has been shown that a modified second-
tering of the projectile off the target nucleus and with Eq. ' o o
(41). Since A, exhibits aK® dependence at the larger order Faddeev approximation to the transition operator for

| hat i ibuti b | d. it foll electron capture at forward angles with a normalized inter-
angles, so that its contribution can be neglected, it 1ollows, ,cear contribution leads to a differential cross section in
that the total cross section factors into the product of elecgood agreement with experimental data for proton-helium

tronic and nuclear parts. It is to be noted that in proton-ojjisions at lower energy. An explanation has been given for
helium collisions at MeV energies the F2 cross sectiongyow the contribution of the internuclear potential arises and
agree very well with the experimental data in the region befits within a time-independent scattering formalism. Finally,
yond 0.6 mradthe Thomas peak regipn a direct and explicit relation of the F2 theory to the second
Figure 7a) compares the moduli of the first Born ampli- Born theory has been derived: A simple picture of capture
tude Ag;, the normalized second-order Faddeev partial aminvolving the interaction of separate scatterings is maintained
plitude A® [Eq. (33)], and the internuclear partial amplitude while a much more accurate treatment of each of the scatter-
A, [Eq. (41)]. Below 0.4 mrad, the first Born contribution is ings is employed.
seen to be from two to four times larger than that of the
normalized second-order partial amplitude. Significantly, it ACKNOWLEDGMENTS
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