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The electron self-energy correction of the ordera(Za)2EF to the ground-state hyperfine splitting in hydro-
genic atoms is calculated using a semianalytical method. The correction is divided into three parts by intro-
ducing two auxiliary parameters. The low-energy part corresponds to the nonrelativistic limit, where photon
energy is of the orderma2, and the effective hyperfine interaction is given byd3(r ). In the middle-energy part
electron and photon momenta are of the orderma andm, respectively. This part is calculated using on-shell
electron form factors. The high-energy part corresponds to theS-matrix amplitude for the forward scattering.
The final value does not depend on auxiliary parameters and amounts toDE5(a/p)(Za)2EF317.122. It is
larger than the previous value of Sapirstein;15.10(29) and significantly alters theoretical predictions.
@S1050-2947~96!08209-1#

PACS number~s!: 36.10.Dr, 06.20.Jr, 12.20.Ds, 31.30.Jv

I. INTRODUCTION

The hyperfine structure~hfs! of hydrogenic atoms, behind
the Lamb shift, is one of the stringent tests of quantum elec-
trodynamics~QED!. The high precision of the measurement
of the hfs in hydrogen@1#,

Eexpt51420.405 751 766 7~9! MHz, ~1!

stimulates theorists to improve QED predictions and to cal-
culate higher-order corrections. Unfortunately, uncertainties
in the low-energy proton form factors limit the possibility of
significant progress in QED tests based on the hfs in hydro-
gen. The leading nuclear structure correction@2# as given by
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could not be calculated precisely, becauseGE andGM are
determined from the experiment. These problems do not ap-
pear in muonium, which consists of the electron and the
approximately 200 times heavier muon. This pure leptonic
atom is the ideal system for theorists, since all non-QED
effects could be accounted for. The current experimental
value of muonium hfs is@3#

Eexpt54 463 302.88~16! kHz. ~3!

On the other hand, the theoretical predictions are mostly lim-
ited by the electron-muon mass ratio. An improved measure-
ment @4# of this mass ratio and muonium hfs is in prepara-
tion, making the evaluation of higher-order QED corrections
more attractive. The review of hfs in hydrogenic systems is
presented in@5# and @6#. Recently a large class of two-loop
corrections has been calculated in@6# and @7#. In this paper
we present an improved calculation of the one-loop contri-
bution in the order ofa(Za)2. The first calculation by Brod-

sky and Ericson@8# brings a rough value of 18.36(500); later
Sapirstein@9#, applying his method used for the analogous
problem in the hydrogen Lamb shift, obtained the value
15.10(29). Our result is

DE5
a

p
~Za!2EF317.122. ~4!

Although it differs from the Sapirstein result, it is in much
better agreement with the recent calculation of Nio and
Kinoshita @10#.

It is the purpose of this paper to present a method that we
think could be extended to intrinsic two-body problems. A
widely used Bethe-Salpeter equation allows for the deriva-
tion of appropriate formulas and the subsequent calculation.
The problem appears in theO(a6) and higher-order correc-
tions to energy levels where the large number of terms make
the calculation less tractable. There are several other tech-
niques, which eliminate relative time from the Bethe-
Salpeter equation by introducing an effective interaction
Hamiltonian. It is worth mentioning here the Lepage formu-
lation of nonrelativistic quantum electrodynamics~NRQED!
@11# which simplifies the treatment of bound states. We have
introduced an approach@12#, which is similar in some as-
pects to the Lepage NRQED. In this approach, one calculates
separately corrections at different energy scales, choosing a
photon gauge and performing simplifications, which are
proper for that scale. Higher-order electron self-energy and
recoil corrections to the Lamb shift in hydrogenic atoms@12#
were calculated in this way.

II. THE METHOD OF CALCULATION

The one-loop correction to the hyperfine structure in the
nonrecoil limit and Feynman gauge are given by the follow-
ing formulas:
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For its calculation we divideDE into three parts,EL , EM ,
andEH , by introducing two auxiliary parameters,e andr.
The most important thing is that, after the expansion ina,
the expansions inr and next ine are performed. This allows
one to perform an appropriate simplification, which is spe-
cific for any part. It also preserves the gauge independence.
The parametere is the cutoff of the photon frequencyv on
the branch cut from the photon propagator. In the partEL we
have 0,v,e. We may use here a nonrelativistic approxi-
mation, where the effective hyperfine interaction is given by
thed3(r ) function. We chose a Coulomb gauge and calculate
the radiative correction to the energy shift due to thisd3(r )
function. In the remaining two partse plays the role of in-
frared cutoff. It is safe now to expand the electron propagator
in the Coulomb field; all nonperturbative effects are con-
tained inEL . We introduce here a second parameterr in the
following way:

A~q!52 i
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~9!

The magnetic field from the nucleus magnetic moment is
split into two pieces. The first piece, which will correspond
to the EM part, forces the electron momenta to be small,
namely, to be of the orderma. In this domain radiative cor-
rections are described only by the modification of electron
form factorsF1 andF2,

F1~q
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TheF1 is infrared divergent. It depends on the photon mass
m. We use a formula

ln~m!5 ln~2e!2 5
6 ~12!

to convert this dependence toe. The second term in~9!,
which corresponds toEH , forces electron momenta to be
large, of the order of the electron mass. We may put here
external momenta on mass shell, and calculate the corre-
spondingS-matrix element for the forward-scattering ampli-
tude. This matrix element is infrared divergent due to the
presence of lower-order terms, but they can be easily sub-
tracted out. The remaining term is finite due to the presence
of r. The sum of three parts,

DE5EL1EM1EH , ~13!

does not depend one andr and gives the required correc-
tion.

III. LOW-ENERGY PART EL

In the nonrelativistic limit the effective hyperfine interac-
tion VF for S states is

VF5
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3memp
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Here and in the following we putZ51. TheZ dependence is
restored in the final formulas. The radiative corrections take
a form

EL5EL11EL2 , ~16!
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whereE is the nonrelativistic energyE52ma2/2. The term
that comes from the expansion of Schro¨dinger propagator
1/(H2E1v) in VF does not contribute after the angle av-
erage. By 1/(H2E)8 one denotes the reduced propagator
~i.e., without 1S state contribution! with angular momentum
l50. We use the formula

R~r 2 ,r 1!5^r 2u
1
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to convert our matrix elements to the form that is the com-
bination of
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For thev integration we subtract the terms that are divergent ine and calculate them analytically:
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whereEF58a4mr
3/(3memm) andmr is a reduced mass. The remaining termsn1 andn2 are integrated numerically with the

results
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This calculation was very similar to the nonrelativistic Lamb
shift calculation with one difference due to the presence of
the d3(r ) function.

IV. MIDDLE-ENERGY PART EM

In this partv is bounded from below bye and the mag-
netic field from the nucleus magnetic moment is regularized
according to~9!. All electron momenta are of the order
ma. In this domain radiative corrections are described effec-
tively by on-shell electron form factorsF1 andF2,

j m5gmF1~q
2!1

i

2m
smnqn F2~q

2!, ~31!

whereF1 andF2 are given by~10! and ~11!. It is in agree-
ment with the Lepage formulation of NRQED, where the
effective Hamiltonian is obtained from theS-matrix ampli-
tude. This partEL is in turn split into four subparts calculated
as follows.EM1 is a correction due to the anomalous mag-
netic momenta/(2p) on the relativistic wave function:

EM15e
a

2p

i

2m
^c̄usk j@pj ,Ak#uc&. ~32!

The result in required order, expressed in terms of corre-
spondingF, is

FM15
1

2 F12 lnS 2a

r D G . ~33!

EM2 is coming fromVF and the radiative correction to the
Coulomb interactionVRC as given byF1 andF2:

VRC5
4a2

3m2 lnSmm D d3~r !, ~34!

and could be expressed as

EM252K fUVF

1
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Using ~14!, ~34!, and~35! one obtains
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EM3 is due toq2 dependence of magnetic interaction be-
tween the electron and the nucleus as given byF1 andF2.
The hyperfine potentialVF is modified bydVF:
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The expectation value, after expanding inr, is

FM354 lnSmm D2
1

2
. ~38!

EM4 is a correction analogous toEM2 but with negative en-
ergy states between the hyperfineVF and the radiatively cor-
rected Coulomb interactions. One could not use here the
nonrelativistic approximationVF and VRC as in EM2. The
correct relativistic expression isVF52egA, and the rel-
evant part for the Coulomb interaction is

V RC52
a

2p
a

a i

2mFpi ,1r G . ~39!

The value of this correction is

FM45 lnS 2a

r D . ~40!

The complete value for the middle-energy part using~33!,
~36!, ~38!, and~40! is
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V. HIGH-ENERGY PART EH

This part is calculated from the correspondingS-matrix
forward-scattering amplitude. The magnetic potentialA is
regularized byr. It eliminates logarithmic infrared diver-
gences that could appear, putting external momenta on mass
shell. This amplitude is a one-loop radiative correction to the
scattering on the magnetic field and two Coulomb fields
coming from the nucleus, described by 13 nonequivalent
Feynman diagrams. It contains the terms that contribute to
the lower-order hfs, and they are subtracted out by removing
the pole in the relevant momentum. An expression for an
example diagram is
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where t5(m,0,0,0), p” i5g0m2pg, and q5p12p2. A similar integration is described in detail in@12#. First, the two-
momentum integralp1 andp2 is performed. The linear divergence atp150 is simply removed, because it corresponds exactly
to the lower-order term. The result could be expressed in terms of logarithmic, dilogarithmic, and rational functions. Next, the
integrals with respect tok and afterwards in respect tov are performed, leading to the result
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The final result is the sum
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The constant term is equal to~4!.

VI. CONCLUSIONS

The one-loop electron self-energy and vacuum polarization contributions to the muonium hyperfine splitting are
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The new result alters theoretical predictions by 1.1 kHz in
respect to the previous value and it is about seven times
larger than the experimental error. The uncertainty in the
theoretical predictions, apart from the electron-muon mass
ratio, is due to the unknown terms of ordera4EF and
a3me /mmEF , which are enhanced by ln(a) and ln(mm /me).
They could contribute by about 1 kHz. These corrections
have been partially treated in@6# and @13#. Since they are
currently being evaluated by Nio and Kinoshita we postpone
drawing the final conclusions, until their calculation is fin-
ished.

We think the method presented here is general, and could
be used to calculate the recoil corrections, and to study other
systems as well. Our principal interest is in the energy levels

of positronium and the helium atom. In both cases, there is
lack of some effective method like this one, which will sim-
plify the calculation compared to the Bethe-Salpeter formal-
ism and its derivatives.
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