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Effect of molecular dissociation on the exchange-correlation Kohn-Sham potential
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The effect of molecular dissociation on the exchange-correlation Kohn-Sham potgpties been studied
by the construction ob,. from the ab initio correlated density for the monohydrideXH (X=Li, B) at
several bond distancd®X—H). The molecular dissociation manifests itself in the formation of a character-
istic peak of v,. in the bonding region. The partially integrated conditional probability amplitude
®(s1,X5,... Xn|F1) has been used to analyze the behaviow gf by means of a partitioning into various
components: the potential of the exchange-correlation hEﬂ@, the kinetic component \;,, and the “re-
sponse” component s, These components have been constructed &brinitio correlated first- and second-
order density matrices. The peak ®f; in the bonding region has been represented as a combination of the
corresponding peak af; i, and the positive buildup aof sparound the more electronegative atom H. Using
the conditional amplitude analysis, the asymptotical expressions have been obtainggfand its positive
buildup for the general case of a heteroatomic mole@i The dependence of the Kohn-Sham energy
characteristics such as the kinetic energy of noninteracting parfigleshe kinetic part of the exchange-
correlation energyl;, and the energy of the highest occupied molecular orlajjabn the bond distance has
been studied. The results obtained have been compared with those for the homoatomic two-elgctron H
molecule.[S1050-29476)03109-5

PACS numbd(s): 31.15.Ew

[. INTRODUCTION KS solution was obtained in a straightforward way frprat
several distanceBR(H—H) [2]. As a matter of fact, even in

Construction of the exchange-correlation Kohn-Shanthe latter case the total,. has not been presented, only its
(KS) potentialv,. and orbitals{¢;} from the correlatechb  various components.
initio electron density of an N-electron system becomes a  In this paper the effect of molecular dissociationgg is
promising field within density-functional theoryDFT). investigated by comparison of,. and its components con-
Starting with the simple special case of the two-electronstructed fromab initio first- and second-order density matri-
atomic system$1] (and, more recently2,3]), examples of ces for the heteroatomic molecules LiH and BH at several
v, Were subsequently constructed for the three-electron Lbond distanceR(X—H). Specific dissociation effects for the
atom and light closed-shell atoms Be and Me-10], and heteroatomic molecules, in particular, the positive buildup of

then for all atoms He through Ari1,12. v around the more electronegative atom are established and
The construction of,. was extended to molecules, start- interpreted in terms of thq parti;dllya integrated conditional
ing also with the special case of the two-electroprHol-  probability amplitude®d(s,,X,,... X\|r1). The dependence

ecule[2]. Then,v,, was constructed for LiH13] and for  of the KS energy characteristics such as the kinetic energy of

BH, HF, and N [14,15. In[2,16] a partitioning scheme was noninteracting particle$g, the kinetic part of the correlation

proposed for the analysis of,., which is based on the par- energyT,, and the energy of the highest occupied molecular

tially integrated conditional probability amplitude orbital (HOMO) € on the bond distance is investigated. The

D(s;,X,,...X\|r1) [17] of the total ground-state wave func- results for the heteroatomic molecules are compared with

tion Wy(Xy,X,,...,Xy). Various components of,. are ob-  those for the H molecule.

tained within this scheme frormp and also from the corre-

lated first- and second-order density matriggs; ,r;) and Il. PARTITIONING OF o,

po(r1,r5). Using a combination of some components gfa .

scheme of construction of the exchange-correlation energy The Kohn-Sham exchange-correlation potentia([p];r)

density e, from p,p(r},F;) andp,(f;,r,) was proposed in is a part of the total KS potentials([p];r)

[18] and examples o§,. were obtained for He, H[2] and R )

also for LiH, BH, HF[15]. {—2V2+u(N} (N =€ (1), (1)
One of the key problems of the molecular KS theory is

the effect of various molecular processes on the KS charac- N

teristics. The simplest unimolecular process is the dissocia- E | 4i(F)|?=p(F), 2

tion of a diatomic molecule and an interesting topic is the =1

evolution of the KS energy characteristics and the shape of

vy With increasing bond distance. Hitherto,, has been Or, more precisely, a component of the potential arising from

constructed for the diatomic molecules only at their equilib-the two-particle electron interactian,([p]:r)

rium bond lengthKk,. The only exception is the special case

of the homoatomic two-electron,Hnolecule, for which the V(N =V +ve(F), 3
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UeI(F):UH(F)+ch(F)7 (4)

1 - 1
{_Evi—'_vext(rl)""z [F—r]
which represents the local effect of electron exchange and =2 11177

Coulomb correlation in the one-electron KS equatiohs
Herev . is the external potential, is the Hartree potential +HN" p(r)IND(s;,Xsz,... Xn|F1)
of the electrostatic electron repulsioN, is the number of
electrons in the system and the occupied KS orbigalgield N = - -
the total electron density via EQ.(2). v ([p];r) is defined =EgVp(r)/N®(s;1,Xp,... Xn[F1), (14)
in DFT as the functional derivative of the exchange- 1
correlation energg,[p] with respect top(r) [_ = V24 (1) +ve(Fy) +HY
.. OE.lp] _ . .
ch([P];r):ﬁ- (5) ><\/p(rl)/N(I)s(Sl,Xz,...,XN|I‘1)

=ENVp(F)IN® (S, X5,... Xn|F1). 15
For the results of this paper it is essential to use the par- s VP(r) s(51.%z D) (19

titioning [2] of v, in terms of the conditional probability 14 gbtain one-electron equations, both sides of Et#.and
amplitude(l?(sl,sz...LxN|r1)*[17] of the total ground-state (159 are multiplied by ®*(s;,X,,...%X\|f1) and
wave functionWo(Xy ,X,,... Xn) (X} ={ri.sit, {ri} are the  qx(s % . %|fy), respectively, and integrated over the
space ands;} are the spin variablgs coordinatess; ,X,,... Xy. Then, the ground-state energy
EY ! of the (N—1) electron system with the same external

R L WXy, X i 7 i i
DSy 5. Kl Fy) = o(Xy N)_ ©6) potentialv,(r) is subtracted from both sides of E(L4),

fo(T1)IN while the analogous KS energyh !
d(s;,X,,...X\|F1) embodies all effects of electron correla- EN—1:f N (R, g HN N
tion (exchange as well as Coulomin that its square is the s s 2r NI s T

probability distribution of the remainindl—1 electrons as-
sociated with positionsx,,... Xy when one electron is

known to be af;. One can define also the conditional prob- . . _
ability amplitude ®y(S;,%,,... %y|f) of the one- is subtracted from both sides of E(L5). Here the(N—1)

: . S - : electronK S determinant? Y ! is generated from thi elec-
ggéirgiﬁér&alzgal OV;/;}/:I;;??F)IOWS(XLX@---,XN) builtfromthe 51 ks determinantal wave functiol’ defined above by
e the annihilation of one electron from the highest occupied
- - orbital ¢y . After these operations, making use of the normal-
D(Sy, %, KnlF1) = Ws(x(ll“)'/'XN) _ (7) ization properties of the conditional amplitudes
P rl N

X()zz,...,)zN)d)zz“'d)zN (16)

* v3 3 v v V3 r V] cee Vi
To partitionv,; according td 2], one has to start with the j D (81, %, Xn[T)P(S1, X, - X[ 1) A8y X"~ dXy

stationary N-electron  Schrdinger equations  for
‘I}()-()l,)-()z,...,)-()N) andqis()zl,)-()z,...,)ZN) :1' (17)

HI =BG, 8 L e
0=Eo¥o (8) J<I>§(sl,xZ,...,xNIrl)Cbs(sl,xz,...,xN|rl)dsldX2...dXN

N —gN
HyW=EJWs ©) -1 (18)

and partition the corresponding Hamiltonians as one can obtain front14) and (15) two equivalent forms of
N the Euler-Lagrange equation for the square root of the elec-
+HN-L, (10 tron density

1 -
HN:_E Vi"—vext(rl)"',

1 . . . . .
( -5 V2+vext(r)+vH(r)+vggle(r)+vkin(r)+UN_1(r)}

X \p(r)

= uNp(r), (19

S

1 R - _
HY=— > Vitvedf)+va(f)+HE, (12

N

1

1 . . . . 1,4
{_ E V2+Uext(r)+UH(r)+ch(r)+Us,kin(r)+UsN 1(”]

X \p(r)

Inserting(6), (7), and(10)—(13) into (8) and (9), we get =up(r), (20
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whereu=E ) —E}§ 1 is the first vertical ionization energy of
. .. . N—1,~\_ * vi > |7 N—1
the system, which in its turn is equal to the energy of the Us (fl)—f DZ (81, %p,... Xn|F)Hg P
highest occupied orbitgk=ey,=EY—EN"1.

In Eq. (19) v"%®, v,,, andvN~? are the local potentials X (S1,X2,... Xn|F1)ds;d%y- - - dXy—EN 1
obtained from the partially integrated conditional amplitude N
®(s;,Xp,... X\|T1), Which represent various characteristics e 2 | i(Fp)|? (26)

of the electron correlationy % is the potential of the
exchange-correlation hole

er)

Equations(19) and (20) provide a partitioning ob,. in
terms of the above-mentioned potentials. Equating the left-

hole >\ _ [ k(e < -
vxe (F1)= f C¥ (51X, Xnlry) hand sides 0f19) and(20) leads to the following expression

N for vye:
X2, | PR Xl 0o F) = V1) + v an(F) + oM 1P — 0¥ 4(D), (27)
X ds;dXy - dXy—vy(r) where
:f pZ(FTLFZ)jf(FE)p(FZ) F, Ve kin(F) =Vkin(F) = Vs kin(F). (28
ri=—ralp(ry)
CE A As was shown iff16], the potentials™~* andv Y~ can be
_f p(r2)[g(ry,rp)—1] dF (21 also expressed in terms of the “response” potentials
- AL .
r—r
o AP =R e, 29
where p,(r;,r,) andg(r,,r,) are the diagonal part of the )
second-order density matrix and the pair-correlation function o) = Ven(F). (30
with the electron interactioi/r ;, at full strengthh\=1. v,
is the kinetic component Here the potentiab [9'®"*Pis an integral of the linear “re-
sponse” ofg([p];r1, r2), 89([pl;r1.r2)/op(rs)
Ukin(T1 J|V1(I) (S1,Xa,... Xn|F1)]2dsd%,: - dXy r)p(ry) & Fi,f0) . .
in gleres?[p] l‘3) f PTr )PI:() |2) g([gf:)](Fl) 2) A, df,.
- ) 1712 3
V1:Vip(ry yr1)|Fl':Fl [Vp(r)]? (22 (31)
= = 2
2p(r) 8p™(ry) It is a measure of the sensitivity of the pair-correlation func-

tion to density variations. These density variations may be
understood in the following way. If the density changeuto
representablep+ dp, then according to the Hohenberg-Kohn
theorem this changed density corresponds uniquely to an ex-
ternal potentiab .+ v . FOr the system with external po-
tential vyt v ey We have the corresponding Kohn-Sham
system and the pair-correlation functigii[ p+ p];r.r>).
So the derivative occurring in the response potent)

EN_l(ﬂ):f D*(S1,Xy,... Xn|F) HN 1D may be regarded as the linear responsegofo density

changedp caused by potential chang® o, viG,’ andv i

X(S1,X2,... Xn|F1)d$1d% - -dXy  (23)  are the response of the potentialg, and v i, to density

wherep(r,’,ry) is the first-order density matrix., reflects
the magnitude of change i® with changingr; (so it is a
measure of thehangein the correlation hole with variations
of the reference positiory). vV "(r) is the energy expecta-
tion value EN"1(r) of the system offN—1) electrons de-
scribed by the conditional amplitude

variations
minus the ground-state energy of ttié—1) electron system
Eo s . Svwn(lplifa) .
Ukl Ftl:p] rl)_ P(rz) 6P(F ) erv (32)
oN Y =ENY)—Ef (24) !
The potential g yin andv Y1 are obtained, in complete U?Eﬁw([l)]fl):f p(Fo) M dr,. (33
analogy witho,, andyMN ! from the KS conditional ampli- Sp(ry)

tuded)s(sk 20 XNIT)- Due to the simple one-electron na-
ture of Hg ™+ and ¥, they can be expressed explicitly in
terms of the KS orbitals and orbital energies 46,19

The expression$32) and (33) are obtained from the com-
parison of Eq.27) for v, with its definition (5) as a func-
tional derivative of E,[p]. Since the difference between

1 vVt andv Y1 accumulates all the response terms, we shall
Uskin(F1)= 5 j |V 1D (S1,Xp,... Xn|T1)]|2d S 0%, - - dXy use for it the notatiom e,
1 ¢(r1) Uresr('?)zv (I’) UN l(r), (34)
= 25
25T 29 so that finally we get foo,. the expression
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V(1) = VR0(F) + Ve in(F) + Vresd T). (35 e

It should be noted that the leading term wf; is the hole
potentialy . It has been demonstrated that this is, in most
regions, the most important part of, indeed[2,18,15. The 0257
fact that the KS potential; incorporates in addition to the
potential of the Fermi hole also the potential of the Coulomb
hole distinguishes it from the effective potential in the one-
electron Hartree-Fock equations which only containgan
bital dependent Fermi-hole contribution. There are many
cases where the Hartree-Fock electron density differs
strongly from the exact density. Examples arg &i large
distance, andN, and MnQ,” at equilibrium distancg20].
This is caused primarily by the lack of a Coulomb-hole-
potential contribution in the Hartree-Fock potential. In the
case of MnQ™ it has been demonstrat¢d1] that for this o0
reason the Hartree-Fock orbitals are rather distorted, yielding
an erroneous heteropolar character to the metal-ligand bond
and wrongd-electron counts when compared to configura-
tion interaction (Cl) and complete active space self- 0.05
consistent field(CASSCH calculations. The KS orbitals,
however, do reflect the homopolar nature of the bonds and
lead to d-electron counts in agreement with the CASSCF
calculations. Quite generally it may be argued that, because 0.00
of the good physics present in the components of the KS -
potential, the KS orbitals are in no way “inferior” to, e.qg.,
Hartree-Fock orbitals and, in fact, may well be more reliable - 1 konn-Sham potential for the model one-dimensional
in qualitative molecular orbitalMO) consideration$22]. two-electron systemB.

In the next section we shall use the presented partitioning
scheme and, in particular, formulas fo? ! andv {1 in

0.20 —

0.15 -

(a.n.)

2
order to establish and to interpret the features gfwhich _ 199K +0(X) p(X)= €h(X) (37)
arise in the course of the dissociation of a heteroatomic mol- 2 dx s '
ecule.
The parameter values=0.63 andb=1.0 a.u. were chosen in
lll. ORIGIN OF THE POSITIVE BUILDUP OF v, order to fit_ the ionization energi¢&5] pf the_ atoms Li .a}nd
AROUND A MORE ELECTRONEGATIVE ATOM H, respectively. One can see from Fifja distinct positive
OF A SYSTEM AB buildup of v((x) around the more electronegative at@n

While in the region betweei and B v (x) has a similar

Dissociation of the heteroatomic bod—B produces a form for both distances, it differs in the outer region be-
spectacular effect on the Kohn-Sham potentiginamely, a yond theB “atom.” In this latter regionv(x) gradually
positive buildup ofv s around the more electronegative atom decreases fokr=3 a.u. and it forms a rather sharp “peak”
B [23,24). This can be illustrated with the simple example of aroundB. On the other hand, fdr=7 a.u it has a much more
two interacting model “one-dimensional hydrogenlike at- shallow form and forms a “step” with th& “atom” being
oms” [24]. A single electron of the model “atom” is bound on its upper part. With increasirigthe maximum ofv ((x)
to the externab function potentiab .,(x) = —ad(x), so that  approaches the value 0.302 a.u. of the differehgcel 5 of
the “atomic” orbital is ¢5(X) =+a exp(—a|x|) and the ion-  the ionization energies.
ization energyl , is a%/2. The single KS orbital of the closed- Qualitative arguments were put forward [i23] and[24]
shell systemAB is constructed as the bonding orbital to demonstrate thatg exhibits a similar positive shift

¢(x)=c[ Jae" M+ be 1], (36 Avg~lg=Ia (38)

wherel is the bond length and normalizes the total density in the general case of the real three-dimensional heteroat-
p(X)=2¢%(x) to two electrons. At large distant¢ehis con-  omic systemAB at large bond distances. [84] the principle
struction correctly yields a sum of the “atomic” densities for of equalization of the KS orbital energies for the fragmekts
p(X). The energye of ¢(x) is equal to minus the ionization andB was used and discontinuities of the derivative of the
energy of the system, which at larg@alues is equal to that total energyE as a function of the particle numbéK + w)
of the less electronegative atofy e=—a?%2. were explored. If23] arguments concerning the asymptotic
Figure 1 represents the KS potentig{x) of the system behavior in different regions of the highest occupied MO
AB obtained forl =3, | =7 a.u. andx#x,, X# xg with the ~ (HOMO) were used to show38). In [23] the positive
insertion of(36) and —1 ,= —a?/2 into the one-electron KS buildup was attributed to the exchange-correlation parof
equation Us.
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In this paper we establish the existence of the positive Ures;{Fl‘EQB)“UB—|A]+[Eint(A—B+)—Eim(A+—B)]

buildup ofv,. around the more electronegative at@of a

systemAB directly from the total many-electron wave func-
tion U(Xy,... Xy) of the system. Based on the partitioning of

+AE(A-B;ry). (43

Uy In Sec. Il we shall demonstrate that this buildup origi- Suppose now that the reference electron is in the refign

nates in the response partg, of v, and we shall derive an

of the less electronegative atoly r; € . In this case the

expression for it, making use of the conditional probability conditional amplitude decribes th@ —1)-electron system

amplituded(s; X5, ... Xy|I1) [Eq. (6)].

We start with the definitior{34) of Uresp(F 1) and we shall
analyze the form ofvres,{ﬂ) in the region of the highest
occupied MO(HOMO) ¢y (ry). It follows from (26) that
v N7Y(F)) in this region vanishes, sincéy(r;) constitutes
the dominant contribution tp(r,), so thatv s{r;) reduces
effectively tovN ()

VresdF)~0"N M) =ENNF)-EY Y (39)
which, according td23), (24), is determined by the function
D(S;,Xp,... X\|T1).

Suppose that the reference electron is in the regigrof
the more electronegative atoBy r;e)g. In this case the
conditional amplituded(s;,X,,...,Xy|l;) describes the&N

—1)-electron systenA—B™ consisting of the neutral atom

A interacting with a catioB*. This cation will not in gen-
eral be in the ground state of ti&* system, but ifr; is

AT—B, disturbed around the reference electron position. If
R(A—B) is large and, is in the region of the HOMO, this
system is close to the ground state of the catidB)*. As a

result, only the corresponding correction term
AE(A"—B;r) contributes ta e{ry) in this region
UreSF(F]_EQA):AE(AJr_B;Fl). (44)

From (43) and (44) we can estimate the buildupv g,
around the more electronegative at@&m
AUresp:Ures;{I?leQB)_Ures;{FlEQA)
=[lg— 1Al +[Ei(A—B")—Eix(A"—B)]
+[AE(A_B+,F]_E QB)

—AE(AT—B;r1eQp)]. (45)

actually at significant distance from the electronic cloud of

B™, although still by assumption much closerBdhan toA,
it has been established by Katriel and David§a®] thatB ™

The leading term of45) at large bond distancé¥ A—B) is

just the difference of the ionization energies of atofnand

is in that case in its ground state. So in that case at large borgl Formula (45) demonstrates that the positive buildup

distanceR(A—B) the energy of this system reduces to

E(A—B")~Ey(A)+EyB)+I1g+Ein(A—B™), (40

Av,~(lg—14) emerges in the response pags,of v, or,
more precisely, in the™ ™' component ob . It originates
from the difference between the conditional amplitude distri-
bution |®(s;,X,,... Xn|F1)|? of (N—1) electrons and the

whereEy(A) andEy(B) are the ground-state energies of the ground-state electron distribution of the catigkg) ". When

atomsA and B, respectively| g is the ionization energy of
the atomB, andE;(A—B™) is the energy of interaction of
the atomA with the cationB™. If we allow r; to be in the

neighborhood of the other electronsB®f, it is necessary to

r,eQg, the conditional amplitude distribution corresponds
to the systemA—B™, while the ground state is the cation
A*—B. Thus, the conditional amplitude, embodying the
electron correlation which causes the complete exchange-

take into account that the conditional amplitude will not de-correlation hole to be located around the reference position,
scribe the ground state &*. The fact that the system de- leads to a “repulsive” effect om,. in Q. The KS potential
scribed by®d is “distorted” will correspond to an energy rise at a pointr, in the energetically favorable region, is shifted
AE with respect to the ground-state energy. We may thereupwards by a potential barrier of heighkg(1,), which

fore write the energf™"1(r, € Qg) in general as

ENY(r e Qg)~Eo(A)+Eo(B)+Eg+Ej(A—B™)

+AE(A—B*:fy). )

If R(A—B) is large andr, is in the region of the HOMO
(i.e., not in the subvalence-core regionB)f the effect of the

emerges from™N"1, to prevent a too strong localization of
electrons in that region.

The terms in the second and third square brackets of Eq.
(45 provide corrections to the leading term at large
R(A—B). The second term represents a correction from the
atom-cation interaction, which is different for the pairs
A*—B andA—B™. The third term represents a difference
between the energy effects of the redistribution(Nf-1)

electron redistribution incorporated in the last term is eX-glectrons ofA—B™ and A*—B due to the presence of the

pected to be small.

Contrary to this, the ground state of the cati@xB) * for
large R(A—B) corresponds to the systel™—B of the
neutral atonB interacting with the catiol™, so thatE ) ~*
is expressed as

E) '~Eo(A)+Eo(B)+Ia+E(AT—B). (42
Inserting (41) and (42) into (39), we obtain the following
expression fow eI y):

reference electron position in the outer region of the corre-
sponding charged atom. In other words, the first term brings
the main contribution tdv s, due to the different ionization

of A and B, the second one brings a correction due to the
different polarization ofA and B by a positive charge, and
the third one brings a correction due to the different distor-
tions of the cation®—B™* andA*—B due to the different
“response” to the proximity of the reference electron posi-
tion. Since this “response” has some relation to the polariz-
ability, and since the polarizability of the less electronegative
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atomaA is, in general, higher than that 8f, both corrections In the case of the fHimolecule there is only one occupied
are expected to have a negative sign, opposite to that of th€S orbital ¢;, so that an accurate,. is obtained directly
leading term [g— 1 A]. from (1) by the replacement of, by (p/2)¥2 [2]. For XH

All the above-mentioned differences tend to decrease with () and a set of KS orbitalse;(r)} are obtained from the
decreasing electronegativity difference of atofsand B, correlated p(r) with an iterative procedurl0Q], starting
and turn into zero for the homoatomic moleclg (45), as  from some initial guess & for vy
they should. FoA, the expression . R .

03N =vu(F) +v3(r), (47)

wherev, is the Hartree potential ane®; is an approximate
which is an analogue d#@4), is valid for the HOMO region exchange-correlation potential of the form
andvresp(rl) is expected to be small and to have a flat form in
this region. This is true, in particular, fares{r;) of the vo([pLiF) =vxa(p;F)+2€8(p,|Vp|;F) + 2N (p;1),
molecule H (see[2] and also the next sectipn (48)
To sum up, using the partially integrated conditional
probability amplitude of the heteroatomic molecu\d, it both potentials being calculated with the correlated denpsity
has been shown that the positive buildupvgf around the In (48) vy, is the exchange-correlatiot potential[31], €
electronegative atorB originates in theN ! component of IS the exchange energy density gradient correction of Becke
the response part of,.. From the asymptotical formulas for [32], andey"" is the local-density approximatioi.DA) of
vN7(ry) in different regions an expression for this buildup Vosko, wilk, and Nusaif33] for the correlation energy den-
has been obtained which, in addition to the leading ternsity. The potentlal(47) has a proper long-range Coulombic
(1g—1,) contains also the polarization and correlation cor-asymptotics vy—(N—=1)/|r|. For the equilibrium bond
rections. Examples of the positive buildupwgf, constructed length the parametet, of vy, is chosen from the following
from ab initio wave functions for the monohydrides LiH and fitting condition:

BH will be presented in the next sections. I o - . .
[—2Voitvedn) tve(N]on(r)=—lpén(r), (49

wheregy is the HOMO and ,, is the experimental ionization
The scheme ob,, construction used in this paper has energy of the molecule. For larger distand@&X—H) the

been already presented and discussdd 3;18 and here we parametew is varied starting fromy,q and, finally, the value

only mention its main points. The correlated wave functionsa is used, which provides the quickest convergence of the

have been obtained with singly and doubly excited configuiterative procedure.

ration interactionSDCI) calculations of the ground states at At mth iteration KS equationgl) are solved with the

the bond distanceR,=1.401 a.u.R=3.0 a.u., andR=5.0  potentialvg]

a.u. for H; R,=3.015 a.u.R=5.0 a.u., andR=7.0 a.u. for

Ures;{f)l):AE(A+_A;F1): (46)

IV. CONSTRUCTION OF v,

LiH; R,=2.330 a.u.R=4.0 a.u., andR=5.0 a.u. for BH. va(N=fu(Dog () (50)

Calculatlons have been performed within the direct CI ap-

proach by means of thermoL packagg27]. calculated fromy " of the previous iteration with the cor-
A basis of contracted Gaussian functidi28] has been rection factorfm, the latter being defined with the density

used with fives- and twop-type functions for H, seves-,  p™ ' from the (m—1)th iteration and theab initio target

four p-type functions for Li, seves- four p- and twod-type ~ densityp

functions for B. For H an extra valence polarizatidrfunc-

tion with the exponent=1.0 and for Li two such functions f ()=
with the exponentsx=0.36 anda=0.15 have been used. m
This basis has been already used for the constructian of

for LiH at the equilibrium bond lengtfl3]. In this paper, in ~ with the parametea=0.5, which smooths out the effect of
order to better take into account the correlation effects fothe remote exponential density tails on the procedure. Then,
core electrons, this basis has been augmented for Li and B™ * in (51) is replaced withp™ obtained atmth iteration
with two localized polarizatiop and twod functions of the and this procedure continues unless further iterations cease
core size, whose exponents were set equal to those of tiewering the differencép™(r) — p(r)| in the region of non-
second most localized contracteéunction of the basi§28].  vanishing densities. Finally,(r) is obtained by subtracting
When compared with the accurate empirical estimates of thew(r) from the resulting potentia50). Construction ofv,,
Coulomb correlation energidse at the equilibrium distances has been performed in the same basis of MO’s as the SDCI
[29], the decrease in the correlation energy due to inclusioalculations by means of the above-mentioned density-
of core polarization functions amounts to 6% for LiH  functional extensior{2,30] of the ATMOL package. Matrix
and 14% for BH, so that the SDCI calculations recover 92%glements ofvg, in this basis have been calculated using a
of E ¢ for LiH and 90% for BH. The potential "°'%r’,) fora  numerical integration with grids according to RE34].

g|ven grid{r;} has been calculated by integrati(1) of the After 45-50 iterations the procedure has reached its satu-
diagonal partpz(F 1.1,) of the second-order density matrix, ration state and further several hundred iterations make
the latter has been calculated from the SDCI wave functiorthanges only within 0.001-0.003 a.u. for the obtained values
by means of a special density-functional extengi®/30] of  of g and the KS kinetic energy, and produce basically the
the ab initio ATMOL package. same KS orbital§;(r)}. However, after 200—250 iterations

p" () +a

p(F)a 5D
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TABLE |. Kohn—Sham energy characteristi@u) for LiH at
various bond distance®(Li—H) (a.u).

TABLE II. Kohn-Sham energy characteristi¢a.u) for BH at
various bond distanceé’(B—H) (a.u).

R(Li—H) 3.015 5.0 7.0 R(B—H) 2.33 4.0 5.0
€HOMO —0.284 —0.238 —0.206 €HOMO —0.359 —0.346 —-0.334

—lp —-0.283 —0.198 —l, —0.359 —-0.305

Te 8.001 7.823 7.826 Te 25.153 24.883 24.893
THF 7.993 7.787 7.747 THF 25.119 24.793 24.757
T 8.058 7.880 7.876 TC 25.252 24.980 24.985
Te 0.057 0.057 0.050 Te 0.099 0.097 0.092
Tenr 0.065 0.093 0.129 Tenr 0.133 0.187 0.228

(depending on the type of system and the bond disjancesy values obtained forXH at the equilibrium distance
visible and(presumably artificial long-range oscillations are R.(X—H) are indeed very close to the experimental,
developed inv,., which do not alter the above-mentioned values(the latter quantities are placed in Tables | and Il just
KS characteristics but disturb the form of.. For larger below the former ongs For both systemsg, decreasesin
bond distances these oscillations arise at earlier iterationsbsolute magnitudewith increasingR and for the largesR
than forR,. value it is not far from—1, value of theX atom (the latter

The development of théspurious long-range oscillations quantities are also placed just below the former ¢nes
of v, after several hundred iterations seems to be an artifact Tables | and Il also present the kinetic energy of the KS
of the finite basis set used in the molecular calculationssystemT
since no such effect appears in the numerical atomic calcu-
lations with the procedur&t?),(50),(51) [10]. The effect of 1 .
the finite basis restriction on the constructed has been Ts=—5 21 f ¢; (r)Vagi(r)dr (53
mentioned in[35]. The possibility of these oscillations fol-
can be added to,., such that its addition does not change
matrix elements ob,. in a given finite basis. Though not
disturbing the integral characteristics, the development of
these oscillations can be recognized by the increasing of the
maximal local relative difference T, is compared with the CT' and the Hartree-Fock""

. . kinetic energies, whild . is compared with the kinetic part
lp (r)(j)P(r)| (529  Tenr Of the conventional correlation energy

p(r

(Q is the region of nonvanishing densitidsetween the tar-
get densityp and the densityp™ starting from a certain In Table Ill the same kinetic characteristics are presented for
(m,+1)th iteration. In our present calculations, in order tothe H, molecule.
prevent the development of the spurious oscillations, we ter- In all cases theT, value is placed in between the
minate the iterative procedure at thegth iteration, at which  corresponding™" and T¢' ones
the difference(52) attains its minimum fop>0.1 a.u. The

. max L 0 THF<T <TCI (56)
correspondmgspmt values are within 0.1-0.2%. s :

The potentiab ¢ in(r) has been calculated from the SDCI 1,4 ight-hand inequality of56) follows from the fact that

firs:t-oIder c’i\‘ensi;cyématri@(r*’ r) .and th? KS d(_ensity matrix  ph T, and T correspond to the same correlated dengity
p(r',r)=32i_1¢{ (r") #i(r) obtained with the iterative pro- g7 _ by its definition[40], delivers the minimal kinetic
cedure discussed above. Iimaliyesp(rﬁ)hglasﬁ been obtained anergy for this density. The left-hand inequality reflects the
by subtraction of veyin(f) and vyd(r) from the gitterence between the Hartree-Fock and correlated densi-

constructedv,(r). The results of the scheme presented inties. |t is well known that the correlated density is more
this section will be discussed in the next sections.

Tc:TC'—TS=f P(Nvc in(F)dT. (54)

Apfp=ma; .o
Tepe=TC—TH (55)

TABLE lll. Kinetic energy characteristic&.u) for H, at vari-

V. KOHN-SHAM ENERGY CHARACTERISTICS ous bond distanceR(H—H) (a.u).

Tables I. and Il present various energy charactgristics foh(H_H) 1.401 3.0 5.0
the KS orbitalg ¢;(r)} of the LiH and BH for three different
bond distance®(X—H). The first is the HOMO energy, . T, 1.140 0.831 0.955
According to[36—39 an accurate HOMO energy; is equal ~ T"F 1.125 0.713 0.650
to minus the ionization potential of the systdm. In the T 1.172 0.872 0.977
dissociation limit the ionization potential 0fH approaches T, 0.032 0.041 0.022
that of the less electronegative atofy so thatey should T, 0.047 0.159 0.327

follow the same trend. One can see from Tables | and Il that &
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contracted around the nuclei than the Hartree-Fock oneyherea(r) andb(r) are the k-type atomic orbitals located
which is extremely so in poor Hartree-Fock cases like dissoen the H atom# andB, «(i) and3(i) are the one-electron
ciating H, [2,20]. Due to this contraction effect of correla- spin functions and,, is the overlap integral
tion, the minimal engrgyfs is still higher thanT"".

For H, and BH T-' value at the intermediate bond dis- _ *(P\h(Vd 7
tance is 2Iower than those at the larger and equilibrium dis- Sab_f a*(r)b(rdr. (59
tances, while for LiHT®' values atR=5.0 and 7.0 a.u. are

close to each other, both being appreciably lower than that & convenient feature of the Kohn-Sham theory is that even

R.=3.015 a.u. It is an anticipated trend since, according td" the dissociation limit the Kohn-Sham system of I$
the virial theorem formuld41] properly described with the one-determinantal wave function

¥ (X7,%;) formed from the & orbitalsa(r) andb(r)

dEN B T :[a*(F1)+b*(F1)][a(F2)+b(FZ)]
T=-E}-R—2, (57) (R %) 2v2(1+ S.p)

X[a(s1)B(s2) —a(sy) B(s1) ], (60

the exact kinetic energy has a negative contribution from sinceW¥ ((x3,X;) still generates the ground-state dengify)
the Hellmann-Feynman forces at larger distances, which varin this limit. Subtracting the kinetic energy obtained with
ishes at bottR=R, andR—x, so thatT as a function oR ¥ (x7,X;) from that obtained with?''(x7,X3), one can de-
passes through a minimum BRt>R,. For the restricted Cl rive an asymptotic expression fo,

the virial theorem holds only approximately, siit' exhibits

a similar behavior. The virial theorem is accomplished — (AT Y — () = 2(TaSap— Tap)(1—Sap)
through a lowering of the gradient of the wave function "¢ S S (1+Sup)(1+S5y)
(more precisely, itg component in the bond axis directjon (61)
which entails a lowering of the corresponding comporignt o

[42—-44. As a consequence, tilecomponent of the density WhereT, and T, are the kinetic integrals

gradient also decreases afid has a similar behavior as 1

T for all three systems th&; value at intermediat® is T,=—= f a* (F)V2a(f)dr, (62)
lower than those at larger and equilibriug For T"F Eq. 2

(57) holds true ifEQ is replaced with the Hartree-Fock total 1

energyE, . However, in this case a negative contribution of _ = N P

the secg;d term is overcompensated with the gradual Tan= 2 j a*(NV7b(rydr. 63
decrease ofE,- at larger distances, so that for the

distances considere@™ monotonically decreases with the The difference between total energies obtained with
increasingR. WHL(x7,%5) and W(X7,%5), the correlation energ§,, ap-

The comparative features af,, T, and T® discussed _p_roaches with increasing-HH distance its exact finite lim-
above determine those of their differencEs and T, . iting value —0.3125 a.u.[31]. On the other hand’; the
Because of Eq(56), both T, and T, 4+ are always positive dlfference(61) between the porrespondlng kinetic energies
and because of the left-side inequality (66) T, is consis- decreases with the decreasig, and T, at longer bond
tently lower thanT .. The molecular dissociation has a distances and it becomes zero in the infinite separation limit
strikingly different effect onl andT,. Due to the near-
degen%?/acy effectwhich is ri’oHtFtaken Cinto account in the Te=0, R(H—H)—e. (64)
restricted Hartree-Fock methpdhe left-right correlation is  The results of the calculations presented in Tables I-III
strengthened at larger bond distances, which causes an iggree with the asymptotics derived theoretically. Forthe
crease off ¢ . Contrary to this, in the dissociation liml, T value calculated aR(H—H)=5.0 a.u. is nearly twice as
approaches to the sum of tAg contributions of the atomic  gmg|l as the corresponding valueRH—H)=3.0 a.u.(See
fragments, which is lower than the molecularvalue atR..  Taple I1l). In a similar way, forXH the T, values calculated

In particular, for the one-electron H atom=0, since in ¢ the largest distance considered are the least (Bes
this case the KS system coincides with the exact one, so thatgples | and I and they are rather close to te values
for the H, moleculeT, should approach zero in the dissocia- 9038 a.u. and 0.095 a.u. obtained for the atoms Li and B,
tion limit and for XH T, should approach the corresponding respectively, if12]. As a consequence, in all cases the ratio
value for the individual atonX. This zero asymptotics forH T _/T_, .- gradually decreases with increasing bond distance.
can be easily derl\(ed, if we employ the fact. that in thls'I|m|t-|-he local behavior of the potential, ., which determines
the H, molecule is described properly with the Heitler- T yia the integrai(54), as well as the form of other poten-
London wave function?"'-(x3,%3) tials will be discussed in the next section.

R R R N VI. AND ITS COMPONENTS
a* (F1)b(f,) +a* (F,)b(Fy)

W (53, %) = 201+ %) 12 Figures 2-4 compare the molecular Kohn-Sham
ab exchange-correlation potentialg. and the potentials of the
X[a(s))B(sy) —a(s,)B(s;)], (58  exchange-correlation hole % constructed for K and XH
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02 derstandable, sinceQS'e represents the main correlation ef-

fect of reduction of the electron-electron repulsion due to the
formation of the exchange-correlation hole. According to Eq.
(35), vy is formed by the addition ¢ ki, aNd espto vLE,

and the former potentials represent the repulsive effect of the
“perturbation” of the (N—1)-electron system by the refer-
ence electron and the repulsive kinetic effect, respectively.

As expected, the molecular dissociation has relatively
little effect on the form ob,, andv !%®in the inner region of
atom X (See Figs. 3, % Both v,. and v in this region
have a deep well around the nucleXiswhich represents the
self-interaction part of the exchange potential of ttseelec-
tron. At positionsr within the 1s shell the exchange hole
surrounding is very close to minus thesldensity. Between
the core and valence regiong, exhibits characteristic local
maxima (intershell peaks For BH one can see these peaks
on both inner(with respect to the bondand outer sides of
the B atom and dissociation makes the outer-side peak more
pronouncedSee Fig. 4.

vy for LiH exhibits a similar peak only on the inner side
of the Li atom (See Fig. 3, while on the outer side the
intershell region is characterized only by a change of the
slope ofv,.. Dissociation makes this “peak” smaller, so
that at large distanc®=7.0 a.u.v,. in this region looks
more likev,. of the individual Li atom, which virtually lacks
the intershell peakSee Fig. 2 of Ref[12]). Unlike v, vho"®
is a more smooth potential: for botkH systemsv %€ is a
monotonical function of in the intershell regions for larger
R, while for R, it exhibits much more shallow local maxima,
which are displaced towards the bond midpoint.

The molecular dissociation manifests itself in the forma-
tion of a characteristic peak af,. near (or ap the bond
midpoint z=0. The H molecule provides an extreme ex-
ample of such a peafSee Fig. 2. In this casev,. already
has a small bond midpoint peak fBg=1.401 a.u. However,
it increases dramatically with increasing bond length, the
corresponding maximum af,. is close to zero. The peak
grows both in absolute value and with respecwt'®, so
that one can consider a formation of the bond midpoint peak
on top ofv %

In the case ofXH dissociation also creates, though visu-
ally less spectacular, a rather shallow peakwvgf in the
bonding region. It is displaced from=0 towards the H
nucleus: for LiH atR=7.0 a.u.v,. reaches a local maxi-
mum atz=0.70 a.u., while for BH aR=>5.0 a.u. this maxi-
mum is atz=0.59 a.u.. Unlike for the Fimolecule, for both
XH molecules the position of the peak does not coincide
with the corresponding local minimum of the densityfor
the interatomic part of the bond axis, the latter being placed
atz=-0.05 a.u. for LiH and ar=0.41 a.u. for BH.

Formation of the peak is accompanied with formation of a
local well of v, just beyond the inner-side intershell peak.

FIG. 2. Kohn-Sham exchange-correlation potential and the poj_he corresponding minimum af, is placed az=-0.86

tential of the exchange-correlation hole fop.Ha) R,=1.401 a.u. &.U. for LiH atR=7.0 a.u. and 322;1-16 a.u. for BH at

and(b) R=5.0 a.u. R=5.0 a.u. and, nearly touche® . " at these points. One
can see from Figs.(B) and 4b) that the above-mentioned
(X=Li, B) for the equilibriumR, and larger bond distances. structure ofv,. in the bonding region is built up on top of
The potentials are plotted along the bond axis as functions af, the latter potential being a rather smooth function in
the distance from the bond midpoint. In all cases bath,  this region. From this it follows that other parts of.,
andvﬂg'e are negative functions, with,. being consistently namely,v i, andv .spare responsible for this structure and

less attractive than the correspondinj®. This is quite un- we shall proceed with the analysis of these parts.

(a.u)

(au.)

z(a.u.)
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FIG. 3. Kohn-Sham exchange-correlation potential and the po- FIG. 4. Kohn-Sham exchange-correlation potential and the po-

tential of the exchange-correlation hole for Litd) R,=3.015 a.u.
and(b) R=7.0 a.u.

Figure 5 compares the potentialg i, obtained for H,
LiH, and BH at the same elongated bond distaRee5.0 a.u.
[note that for the two-electron system b, i, reduces to the
potentialv;, of Eq. (22)]. In all cases 4, exhibits a posi-
tive peak in the bonding region, though fofH these

tential of the exchange-correlation hole for B#) R.=2.33 a.u.
and(b) R=5.0 a.u.

peaks are much smaller than that foy.H'he peak grows
higher with increasing bond length. One can see this from
Fig. 6 wherev i, constructed at two different bond dis-
tancesR are compared in the region of the bond peak for H
and LiH.
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FIG. 5. Comparison of the potentialg y;, for H,, LiH, and BH 60x10”
atR=5.0 a.u.
The behavior ofv, i, in the bonding region reflects 3
the effect of the left-right correlation of electrons of a 504

single bond X—H on the conditional amplitude
®(s;, Xp,...X\|l1). According to its definition(28), the
relatively smallv (1) is a difference of two bigger po-
tentialsv i (ry) andvs in(r'1). In its turn, the latter difference 409 ¥ |
is determined according to Eq&2), (25) by the integrated LiH
difference of the conditional amplitude gradients ! \
[V1®(S1,X,... Xn|F1)|? and |V @ ¢(S;,X5,... Xn|F1)[? oOr, in
other words, by the relative sensitivity of the exchange-
correlation and exchang&ermi holes in the distribution of
other electrons to the displacement of the reference electron
from ry. If r; is in the bonding region and the reference
electron is displaced from, towards a certain atom, another
electron of the single bond gets an increase of its probability
distribution on the other atom due to the left-right Coulomb
correlation. This causes a change of the exchange-correlation
hole associated witth(s; ,X,,...,Xy|;) and produces a cer-
tain positive value of the amplitude gradient
[V, ®(S;,X5,...Xy|F1)[>. Since there is no analogous ex-

(a.u.)

30

20

change effect, the resulting, \;, is definitely positive in this 0 : : : : . :
region. For the homoatomic Hmolecule v i, attains a 00 05 10 L5 20 25 30
maximum just at the bond midpoimt=0, while for XH the o)

corresponding maxima are displaced towards the H atom.

The left-right correlation is strengthened at larger bond FIG. 6. Comparison of the potentialg i, constructed at vari-
distances by the strong near-degeneracy effect. As a cons@s bond distance¢a) H,, R.=1.401 a.u. andk=5.0 a.u. andb)
quence, the bond peak of, i, grows higher and Fig. 6 LH. R=5.0au. anR=7.0 a.u.
clearly illustrates this trend. In the case of ¥ i, provides
a dominating contribution to the bond peakwof. at large  what larger (see the discussion belpwin spite of the
distancesR. For XH v i, also makes a substantial contribu- development of a high peak i, yields, after the multipli-
tion to the bond peak of ., though in this case the corre- cation byp and integration(Eq. 54, a lower value of the
sponding contribution of the response potential,is some- correlation kinetic energy, for R(H—H)=5.0 a.u. than that
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for R, (See Table Ill. An evident reason for this is that the wy=0. (71)
peak arises in the bond midpoint region, which is the region
of a low densityp at largeR(H—H). The same trend, though

not so spectacularly expressed, holds true also for the mongs was shown if45], for atomic systems {223 reproduces

hydridesXH. _ _ _ the characteristic stepped form of the response pasf6}
While for all systems ¢ i, vanishes in the region of the H 5 its KLI approximation.
atoms, it displays an oscillating behavior in the region of the ' p ¢ g its constructiof65), U:ggg has a clear stepped form
X atoms ofXH (See Fig. 3. The oscillations tend to be more {hat helps to visualize the regions of various MQ&ee Fig.
contracted for the heavier atoBy, the most visible feature 7) The region of the coreslelectrons of atonX is charac-
being the positive peaks in the intershell regions. This osciligrizeq by a high plateau %, while beyond this region
lating behavior reflects different relative sensitivity of the vM9has a steep descent to Io?/v values and it vanishes in the
exchange-correlation and Fermi holes associated Withegion of the HOMO around the H atom. This short-range
B(sy,Xp,... X|r1) andD(S1,X,, ... Xy|Fy) to the displace-  pehayior ofv rood follows from the KLI condition(71), so
ment of the reference electron framfor different positions  hat 4|l KLI-like potentials of the form(65) with (71) are
r, in this region. The interpretation of this complicated be'expected to vanish in a similar way in the region of the

havior will be given elsewhere. We have no explanation foryonmo. v{‘;‘s’S displays the above-mentioned features at

the sharp dip at the nuclei, which is possibly caused by thgoth equilibrium and larger distancé€ompare Figs. (8)
unphysical Gaussian shape of our CI density at the nucleug,,q 70)]. When comparing the form of the potential for LiH

In Figs. 7, 8 the response potentialg,, are 0F|>E!0tt9d, and BH, one can note in the latter case an additional “shoul-

which have been obtained by subtraction of¢® and  ger of vfass in between the core and the HOMO regions.

Ve kin from vyc. To make the interpretation of its form more Thjs can be attributed to the occupied nonbonding MO of
clear, in Fig. 7v e, is compared with the model potential g formed, mainly, from the & orbital of theB atom.

d . . .
U resp [45] In the region of atonX v {2‘;3 agrees qualitatively with the
N . constructedv s, Though far from perfect, the one-step
o™= w, | i(1)] (65) structure can be recognized fof.g, with higher values for
resp( . | )y !
i=1 p(r) the core electrons and Ilower values for other

. o . . electrons. v, and uﬁggg display a steep descent to low
the latter being the statistical average of the orbital contribuyajues in the same regions, which is especially true for larger

tionsw; bond distancefSee Figs. #@) and 1b)]. The average height
_ of v,espin the core region appears to be somewhat lower than
Wi =Kyu—e;. 66 the step height of ngg calculated withk =0.38, the corre-

sponding relative difference is larger for LiH.

The step pattern o g, in the region of atonX is dis-
turbed, mainly, by the cusps and wiggles near the nuclei.
One of the possible reasons for these features can be the
inclusion of the correlation effects. Other reasons can be the

N . T deficiency of the Gaussian basis set representation of the ClI
KLl () = ,,hole ¢ _ M density at the nucleus and the performance of the numerical
ok (D) =00+ 2w — = (67 . the nur
i= p(r) procedure ofv,. construction. Because of the singularity of
_ o ) the derivative ofp at nuclei, it appears to be somewhat dif-
The parameters/; were defined within the KLI approxima- ficylt, in general, to achieve high accuracy close to nuclei,
tion in a self-consistent way as the difference between theyhich of course is virtually impossible with Gaussian orbital
expectation values of the potent{&l7) and the Hartree-Fock pased densitieft,11,13,13.
exchange operatar,; for the orbital ¢ Unlike in the core regionsy s, and vses have a very
different behavior in the HOMO region. As was discussed
Wi:f | i(1) 2o (F) = v,i(F)]dF, (68  above,u 2 vanishes in this region. Contrary to thiges,
passes through a local minimum and then develops a positive

The potential 65,66 with K=0.38 models the response part
of the Krieger-Li-lafrate(KLI) [46] approximationv.- to
the exchange potentiad O™ of the optimized potential
model (OPM) [47-49

N . . buildup around the H atom, which is a more electronegative
.1 S o (F J ¢i(r2) ¢i(ro) dF atom for both LiH and BH. One can draw the conclusion that
Uyiry)= bi(F) =4 $j(ra) =1 f2, the constructed ., possesses a true feature, which has been
(69)  established fov g, 0f the heteroatomic molecule in Sec. Il
namely, the positive buildup af s, around the more elec-
and v"°(r) in (67) is the potential of the Fermi hole, the tronegative atom. Though the theoretical results of Sec. IlI

exchange-only analogue ot;g'e(F) have been obtained for the asymptotical case of large dis-
N 2 tancesR(A—B), the same qualitative picture holds true for
R . | i(r) both larger and equilibrium distancésompare Figs. (&)
hole, =\ _ .
00 =2, v,(F) o (70 and 7o)

Based on the present analysis, one can expect that the KLI

The model(65,66 has the same orbital structure as the KLI potential (67) lacks the positive buildup around the more
construction and it satisfies the same condifié6] of zero  electronegative atom. Indeed, th&® term of (67) has a

contribution of the HOMO to the numerator (85) similar smooth form a® %' presented here, while the sec-
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FIG. 7. Comparison of the potentials.s,andvfaes (a) LiH, R=7.0 a.u. andb) BH, R=5.0 a.u. andc) LiH, R,=3.015 a.u.

ond term of(67) has the same structure ‘;g and the latter  the bond midpoint peak due to. in Would be absent in

potential demonstrates the absence of the above-mentiongdf-'

feature. When comparing,. andvX"', the positive build-up The inclusion of the positive buildup is essential in order

appears as a correlation effect for the heteroatomic molto provide the proper energieg of the HOMO. Because of
ecules, which is present in the exchange-correlation potentidgls absence, the HOMO energies obtained for LiH and BH
vy and is absent in the exchange-only potemziﬁl' . Also  with the combined potential
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N

N
vQ“c°"<F>=v';é"e(F>+KZl Ju—e % (72)

latter being presented in Tables | and. Variation of the
parameteiK within reasonable limits failed to improve this
deficiency.

Figure 8a) compares the potentialg,s, obtained for H,

LiH, and BH at the same elongated bond lenBth5.0 a.u.

It can serve as an illustration to the formul@ks)—(46) de-
rived for v eg,in Sec. lIl. For both LiH and BHy eg{r) in

the region around the H atom displays the positive buildup
which, according to Eqg43) and(45), is represented by the
first three terms of Eq(43). When the positior of the
reference electron moves to the region of the HOMO near
the bond midpoinz=0, the above-mentioned terms vanish
and v ¢ displays a minimum, which is represented by Eqg.
(44). When the reference electron moves further into the in-
ner region of atonX, one has subtract from the single term
of Eq. 44 the analogous contribution from' ™! of Eq. 34.
However, the energetical effedtE(A"—B;r) of the elec-
tron redistribution inA*B due to the presence of the refer-
ence electron in this inner region is much larger than that for
the HOMO region and, as a result, the stepped structure of
Uyesp IS Created in the former region. Contrary to this, in the
case of the two-electron homoatomic, Fholeculev ., is
rather small everywhere and it has a flat form with very
shallow maxima at the H nuclei. This flat form is anticipated,
since in all regions the same formul46) is valid for H,.

In Fig. 8b) v e, Obtained for LiH atR=5.0 a.u. and
R=7.0 a.u. is plotted in the region of the H atom, the latter
being placed az=0. One can see from Fig.(l® that the
positive buildup around the H atom has a similar form for
both distances. In accordance with the one-dimensional
model and theoretical considerations of Sec. Ill, the positive
buildup grows higher with the increasifgand its maximum
comes closer to the differencel ,=0.302 a.u. between the
ionization energies of the H and Li atoms.

VII. CONCLUSIONS

In this paper the effect of molecular dissociation on the
exchange-correlation Kohn-Sham potentigl has been es-
tablished and analyzed.,. and its components have been
constructed fromab initio correlated first- and second-order
density matrices for the heteroatomic molecules LiH and BH
at several bond distancé® X—H). The results have been
compared with those for the two-electron homoatomic mol-
ecule H.

The molecular dissociation manifests itself in the forma-
tion of a characteristic peak of in the bonding region. In
order to interpret this behavior, a partitioningwgf. has been
used employing the partially integrated conditional probabil-
ity amplitude ®(s;,X,,....Xy|F;). This partitioning repre-
sentsv,. as a sum of the potential of the exchange-
correlation holev 2", the kinetic componeni.. i, and the
“response” potentiab .s,. For the homoatomic gimolecule
the peak ofv,. is determined by the bond midpoint peak of
ve kin (Which in this case reduces tq,), while for the het-
eroatomicXH molecule the peak af,. is a combination of
the bonding peak of . i, and the positive buildup 0f gy
around the more electronegative atom H. In all cases the

appear to be always at more negative energies than the cgreak ofv,. and the corresponding featureswqfy;, andv e

respondingey values obtained with the constructeg. (the

grow higher with increasing bond distance.
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It has been established, using the representation.gfin been studied. In all cases; as a function ofR passes
terms of the effective potential™ * of the (N—1) electron  through a minimum, whil&, and ¢, decreases for large,
system introduced 2], that the positive buildup ob s, both approaching the corresponding values for the individual
originates from the difference between the electron distribuatomsX. In the particular case of the,Hnolecule an accu-
tion of (N—1) electrons associated with the conditional am-rate asymptotic formula fof; has been obtained, according
plitude ®(s;,Xs,... Xy|F1) Of the heteroatomic molecul®B  to which it approaches zero in the bond dissociation limit.
and that corresponding to the ground-state wave function of An important problem that still remains is how to increase
the cation AB)™. From the conditional amplitude analysis further the numerical accuracy and stability of the molecular
the asymptotical expressions fggg,and its positive buildup v, construction. As has been discussed above, construction
have been obtained. The latter is represented as a leadiingthe finite Gaussian basis suffers from the eventual devel-
term [Ig—1,4], which arises due to the different ionization opment of artificial oscillations ob,. and from an inad-
energies of atom# andB, plus corrections due to the dif- equacy of a Gaussian basis both at nuclei and at molecular
ferent polarization oA andB by a positive charge and dif- density tails. These difficulties can be, at least in principle,
ferent “response” of electrons of the catiods—B™ and  overcome by the construction of. within a basis-set-free
AT—B to the presence of the additional reference electronnumerical molecular program. This problem, as well as the
The dependence of the kinetic energy of noninteractingonstruction ofv,. and the exchange-correlation density

particles T, the kinetic part of the correlation enerdy,
and the energy of the HOM@, on the bond distanck has

for more complex molecular processes will be addressed in
our further work.
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