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The effect of molecular dissociation on the exchange-correlation Kohn-Sham potentialvxc has been studied
by the construction ofvxc from the ab initio correlated densityr for the monohydridesXH ~X5Li, B! at
several bond distancesR~X—H!. The molecular dissociation manifests itself in the formation of a character-
istic peak of vxc in the bonding region. The partially integrated conditional probability amplitude
F(s1 ,xW2 ,...,xWNurW1) has been used to analyze the behavior ofvxc by means of a partitioning into various
components: the potential of the exchange-correlation holevxc

hole, the kinetic componentvc,kin, and the ‘‘re-
sponse’’ componentv resp. These components have been constructed fromab initio correlated first- and second-
order density matrices. The peak ofvxc in the bonding region has been represented as a combination of the
corresponding peak ofvc,kin and the positive buildup ofv resparound the more electronegative atom H. Using
the conditional amplitude analysis, the asymptotical expressions have been obtained forv respand its positive
buildup for the general case of a heteroatomic moleculeAB. The dependence of the Kohn-Sham energy
characteristics such as the kinetic energy of noninteracting particlesTs , the kinetic part of the exchange-
correlation energyTc , and the energy of the highest occupied molecular orbitaleN on the bond distance has
been studied. The results obtained have been compared with those for the homoatomic two-electron H2

molecule.@S1050-2947~96!03109-5#

PACS number~s!: 31.15.Ew

I. INTRODUCTION

Construction of the exchange-correlation Kohn-Sham
~KS! potentialvxc and orbitals$fi% from the correlatedab
initio electron densityr of anN-electron system becomes a
promising field within density-functional theory~DFT!.
Starting with the simple special case of the two-electron
atomic systems@1# ~and, more recently@2,3#!, examples of
vxc were subsequently constructed for the three-electron Li
atom and light closed-shell atoms Be and Ne@4–10#, and
then for all atoms He through Ar@11,12#.

The construction ofvxc was extended to molecules, start-
ing also with the special case of the two-electron H2 mol-
ecule @2#. Then,vxc was constructed for LiH@13# and for
BH, HF, and N2 @14,15#. In @2,16# a partitioning scheme was
proposed for the analysis ofvxc , which is based on the par-
tially integrated conditional probability amplitude
F(s1 ,xW2 ,...,xWNurW1) @17# of the total ground-state wave func-
tion C0(xW1 ,xW2 ,...,xWN). Various components ofvxc are ob-
tained within this scheme fromr and also from the corre-
lated first- and second-order density matricesr(rW18 ,rW1) and
r2(rW1 ,rW2). Using a combination of some components ofvxc a
scheme of construction of the exchange-correlation energy
densityexc from r,r(rW18 ,rW1) andr2(rW1 ,rW2) was proposed in
@18# and examples ofexc were obtained for He, H2 @2# and
also for LiH, BH, HF @15#.

One of the key problems of the molecular KS theory is
the effect of various molecular processes on the KS charac-
teristics. The simplest unimolecular process is the dissocia-
tion of a diatomic molecule and an interesting topic is the
evolution of the KS energy characteristics and the shape of
vxc with increasing bond distance. Hitherto,vxc has been
constructed for the diatomic molecules only at their equilib-
rium bond lengthsRe . The only exception is the special case
of the homoatomic two-electron H2 molecule, for which the

KS solution was obtained in a straightforward way fromr at
several distancesR~H—H! @2#. As a matter of fact, even in
the latter case the totalvxc has not been presented, only its
various components.

In this paper the effect of molecular dissociation onvxc is
investigated by comparison ofvxc and its components con-
structed fromab initio first- and second-order density matri-
ces for the heteroatomic molecules LiH and BH at several
bond distancesR(X—H!. Specific dissociation effects for the
heteroatomic molecules, in particular, the positive buildup of
vxc around the more electronegative atom are established and
interpreted in terms of the partially integrated conditional
probability amplitudeF(s1 ,xW2 ,...,xWNurW1). The dependence
of the KS energy characteristics such as the kinetic energy of
noninteracting particlesTs , the kinetic part of the correlation
energyTc , and the energy of the highest occupied molecular
orbital ~HOMO! eN on the bond distance is investigated. The
results for the heteroatomic molecules are compared with
those for the H2 molecule.

II. PARTITIONING OF vxc

The Kohn-Sham exchange-correlation potentialvxc~@r#;rW!
is a part of the total KS potentialvs([r]; rW)

$2 1
2¹21vs~rW !%f i~rW !5e if i~rW !, ~1!

(
i51

N

uf i~rW !u25r~rW !, ~2!

or, more precisely, a component of the potential arising from
the two-particle electron interactionvel~@r#;rW!

vs~rW !5vext~rW !1vel~rW !, ~3!
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vel~rW !5vH~rW !1vxc~rW !, ~4!

which represents the local effect of electron exchange and
Coulomb correlation in the one-electron KS equations~1!.
Herevext is the external potential,vH is the Hartree potential
of the electrostatic electron repulsion,N is the number of
electrons in the system and the occupied KS orbitalsfi yield
the total electron densityr via Eq.~2!. vxc~@r#;rW! is defined
in DFT as the functional derivative of the exchange-
correlation energyExc@r# with respect tor(rW)

vxc~@r#;rW !5
dExc@r#

dr~rW !
. ~5!

For the results of this paper it is essential to use the par-
titioning @2# of vxc in terms of the conditional probability
amplitudeF(s1 ,xW2 ,...,xWNurW1) @17# of the total ground-state
wave functionC0(xW1 ,xW2 ,...,xWN) ~$xW i%5$rW i ,si%, $rW i% are the
space and$si% are the spin variables!

F~s1 ,xW2 ,...,xWNurW1!5
C0~xW1 ,...,xWN!

Ar~rW1!/N
. ~6!

F(s1 ,xW2 ,...,xWNurW1) embodies all effects of electron correla-
tion ~exchange as well as Coulomb! in that its square is the
probability distribution of the remainingN21 electrons as-
sociated with positionsxW2 ,...,xWN when one electron is
known to be atrW1. One can define also the conditional prob-
ability amplitude Fs(s1 ,xW2 ,...,xWNurW1) of the one-
determinantal wave functionCs(xW1 ,xW2 ,...,xWN) built from the
occupied KS orbitalsf i(rW i)

Fs~s1 ,xW2 ,...,xWNurW1!5
Cs~xW1 ,...,xWN!

Ar~rW1!/N
. ~7!

To partitionvxc according to@2#, one has to start with the
stationary N-electron Schro¨dinger equations for
C(xW1 ,xW2 ,...,xWN) andCs(xW1 ,xW2 ,...,xWN)

HNC05E0
NC0 , ~8!

Hs
NCs5Es

NCs ~9!

and partition the corresponding Hamiltonians as

HN52
1

2
¹1
21vext~rW1!1(

j52

N
1

urW12rW j u
1HN21, ~10!

HN215(
j52

N H 2
1

2
¹ j
21vext~rW j !1(

k. j

N
1

urW j2rWku
J , ~11!

Hs
N52

1

2
¹1
21vext~rW1!1vel~rW1!1Hs

N21, ~12!

Hs
N215(

j52

N H 2
1

2
¹ j
21vext~rW j !1vel~rW j !J . ~13!

Inserting~6!, ~7!, and~10!–~13! into ~8! and ~9!, we get

F2
1

2
¹1
21vext~rW1!1(

j52

N
1

urW12rW j u

1HN21GAr~rW1!/NF~s1 ,xW2 ,...,xWNurW1!

5E0
NAr~rW1!/NF~s1 ,xW2 ,...,xWNurW1!, ~14!

F2
1

2
¹1
21vext~rW1!1vel~rW1!1Hs

N21G
3Ar~rW1!/NFs~s1 ,xW2 ,...,xWNurW1!

5Es
NAr~rW1!/NFs~s1 ,xW2 ,...,xWNurW1!. ~15!

To obtain one-electron equations, both sides of Eqs.~14! and
~15! are multiplied by F* (s1 ,xW2 ,...,xWNurW1) and
Fs* (s1 ,xW2 ,...,xWNurW1), respectively, and integrated over the
coordinatess1 ,xW2 ,...,xWN . Then, the ground-state energy
E 0

N21 of the ~N21! electron system with the same external
potentialvext(rW) is subtracted from both sides of Eq.~14!,
while the analogous KS energyE s

N21

Es
N215E Cs

N21* ~xW2 ,...,xWN!Hs
N21Cs

N21

3~xW2 ,...,xWN!dxW2•••dxWN ~16!

is subtracted from both sides of Eq.~15!. Here the~N21!
electronKS determinantC s

N21 is generated from theN elec-
tron KS determinantal wave functionCs defined above by
the annihilation of one electron from the highest occupied
orbitalfN . After these operations, making use of the normal-
ization properties of the conditional amplitudes

E F* ~s1 ,xW2 ,...,xWNurW1!F~s1 ,xW2 ,...,xWNurW1!ds1dxW2•••dxWN

51, ~17!

E Fs* ~s1 ,xW2 ,...,xWNurW1!Fs~s1 ,xW2 ,...,xWNurW1!ds1dxW2•••dxWN

51, ~18!

one can obtain from~14! and ~15! two equivalent forms of
the Euler-Lagrange equation for the square root of the elec-
tron density

H 2
1

2
¹21vext~rW !1vH~rW !1vxc

hole~rW !1vkin~rW !1vN21~rW !J
3Ar~rW !

5mAr~rW !, ~19!

H 2
1

2
¹21vext~rW !1vH~rW !1vxc~rW !1vs,kin~rW !1vs

N21~rW !J
3Ar~rW !

5mAr~rW !, ~20!
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wherem5E 0
N2E 0

N21 is the first vertical ionization energy of
the system, which in its turn is equal to the energy of the
highest occupied orbitalm5eN5E s

N2E s
N21.

In Eq. ~19! v xc
hole, vkin , andv

N21 are the local potentials
obtained from the partially integrated conditional amplitude
F(s1 ,xW2 ,...,xWNu r̂ 1), which represent various characteristics
of the electron correlation.v xc

hole is the potential of the
exchange-correlation hole

vxc
hole~rW1!5E F* ~s1 ,xW2 ,...,xWNurW1!

3F (
j52

N
1

urW12rW j u
GF~s1 ,xW2 ,...,xWNurW1!

3ds1dxW2•••dxWN2vH~rW !

5E r2~rW1 ,rW2!2r~rW1!r~rW2!

urW12rW2ur~rW1!
drW2

5E r~rW2!@g~rW1 ,rW2!21#

urW12rW2u
drW2 , ~21!

wherer2(rW1 ,rW2) and g(rW1 ,rW2) are the diagonal part of the
second-order density matrix and the pair-correlation function
with the electron interactionl/r 12 at full strengthl51. vkin
is the kinetic component

vkin~rW1!5
1

2 E u¹1F~s1 ,xW2 ,...,xWNurW1!u2ds1dxW2•••dxWN

5
¹18¹1r~rW18,rW1!urW185rW1

2r~rW1!
2

@¹r~rW1!#
2

8r2~rW1!
, ~22!

wherer(rW18,rW1) is the first-order density matrix.vkin reflects
the magnitude of change inF with changingrW1 ~so it is a
measure of thechangein the correlation hole with variations
of the reference positionrW1!. v

N21(rW) is the energy expecta-
tion valueEN21(rW) of the system of~N21! electrons de-
scribed by the conditional amplitude

EN21~rW1!5E F* ~s1 ,xW2 ,...,xWNurW1!HN21F

3~s1 ,xW2 ,...,xWNurW1!ds1dxW2•••dxWN ~23!

minus the ground-state energy of the~N21! electron system
E 0

N21

vN21~rW !5EN21~rW !2E0
N21. ~24!

The potentialsvs,kin andv s
N21 are obtained, in complete

analogy withvkin andv
N21, from the KS conditional ampli-

tudeFs(s1 ,xW2 ,...,xWNurW1). Due to the simple one-electron na-
ture of H s

N21 andCs , they can be expressed explicitly in
terms of the KS orbitals and orbital energies as@16,19#

vs,kin~rW1!5
1

2 E u¹1Fs~s1 ,xW2 ,...,xWNurW1!u2ds1dxW2•••dxWN

5
1

2 (
i51

N U¹1

f i~rW1!

r1/2~rW1!
U2, ~25!

vs
N21~rW1!5E Fs* ~s1 ,xW2 ,...,xWNurW1!Hs

N21Fs

3~s1 ,xW2 ,...,xWNurW1!ds1dxW2•••dxWN2Es
N21

5m2(
i51

N

e i
uf i~rW1!u2

r1/2~rW1!
. ~26!

Equations~19! and ~20! provide a partitioning ofvxc in
terms of the above-mentioned potentials. Equating the left-
hand sides of~19! and~20! leads to the following expression
for vxc :

vxc~rW !5vxc
hole~rW !1vc,kin~rW !1vN21~rW !2vs

N21~rW !, ~27!

where

vc,kin~rW !5vkin~rW !2vs,kin~rW !. ~28!

As was shown in@16#, the potentialsvN21 andv s
N21 can be

also expressed in terms of the ‘‘response’’ potentials

vN21~rW !5vxc
hole,resp~rW !1vkin

resp~rW !, ~29!

vs
N21~rW !5vs,kin

resp~rW !. ~30!

Here the potentialv xc
hole,respis an integral of the linear ‘‘re-

sponse’’ ofg([r]; rW1 , rW2), dg([r]; rW1 ,rW2)/dr(rW3)

vxc
hole,resp~@r#;rW3!5

1

2 E r~rW1!r~rW2!

urW12rW2u
dg~@r#;rW1 ,rW2!

dr~rW3!
drW1drW2 .

~31!

It is a measure of the sensitivity of the pair-correlation func-
tion to density variations. These density variations may be
understood in the following way. If the density changes to~v
representable! r1dr, then according to the Hohenberg-Kohn
theorem this changed density corresponds uniquely to an ex-
ternal potentialvext1dvext. For the system with external po-
tential vext1dvext we have the corresponding Kohn-Sham
system and the pair-correlation functiong([r1dr]; rW1 ,rW2).
So the derivative occurring in the response potential~31!
may be regarded as the linear response ofg to density
changedr caused by potential changedvext. v kin

resp andvs,kin
resp

are the response of the potentialsvkin and vs,kin to density
variations

vkin
resp~@r#;rW1!5E r~rW2!

dvkin~@r#;rW2!

dr~rW1!
drW2 , ~32!

vs,kin
resp~@r#;rW1!5E r~rW2!

dvs,kin~@r#;rW2!

dr~rW1!
drW2 . ~33!

The expressions~32! and ~33! are obtained from the com-
parison of Eq.~27! for vxc with its definition ~5! as a func-
tional derivative ofExc@r#. Since the difference between
vN21 andv s

N21 accumulates all the response terms, we shall
use for it the notationv resp

v resp~rW !5vN21~rW !2vs
N21~rW !, ~34!

so that finally we get forvxc the expression
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vxc~rW !5vxc
hole~rW !1vc,kin~rW !1v resp~rW !. ~35!

It should be noted that the leading term ofvxc is the hole
potentialv xc

hole. It has been demonstrated that this is, in most
regions, the most important part ofvxc indeed@2,18,15#. The
fact that the KS potentialvs incorporates in addition to the
potential of the Fermi hole also the potential of the Coulomb
hole distinguishes it from the effective potential in the one-
electron Hartree-Fock equations which only contains an~or-
bital dependent! Fermi-hole contribution. There are many
cases where the Hartree-Fock electron density differs
strongly from the exact density. Examples are H2 at large
distance, andN2 and MnO4

2 at equilibrium distance@20#.
This is caused primarily by the lack of a Coulomb-hole-
potential contribution in the Hartree-Fock potential. In the
case of MnO4

2 it has been demonstrated@21# that for this
reason the Hartree-Fock orbitals are rather distorted, yielding
an erroneous heteropolar character to the metal-ligand bond
and wrongd-electron counts when compared to configura-
tion interaction ~CI! and complete active space self-
consistent field~CASSCF! calculations. The KS orbitals,
however, do reflect the homopolar nature of the bonds and
lead to d-electron counts in agreement with the CASSCF
calculations. Quite generally it may be argued that, because
of the good physics present in the components of the KS
potential, the KS orbitals are in no way ‘‘inferior’’ to, e.g.,
Hartree-Fock orbitals and, in fact, may well be more reliable
in qualitative molecular orbital~MO! considerations@22#.

In the next section we shall use the presented partitioning
scheme and, in particular, formulas forvN21 and v s

N21 in
order to establish and to interpret the features ofvxc which
arise in the course of the dissociation of a heteroatomic mol-
ecule.

III. ORIGIN OF THE POSITIVE BUILDUP OF vxc
AROUND A MORE ELECTRONEGATIVE ATOM

OF A SYSTEM AB

Dissociation of the heteroatomic bondAuB produces a
spectacular effect on the Kohn-Sham potentialvs , namely, a
positive buildup ofvs around the more electronegative atom
B @23,24#. This can be illustrated with the simple example of
two interacting model ‘‘one-dimensional hydrogenlike at-
oms’’ @24#. A single electron of the model ‘‘atom’’ is bound
to the externald function potentialvext(x)52ad(x), so that
the ‘‘atomic’’ orbital isfA(x)5Aa exp(2auxu! and the ion-
ization energyI A is a

2/2. The single KS orbital of the closed-
shell systemAB is constructed as the bonding orbital

f~x!5c@Aae2auxu1Abe2bux2 l u#, ~36!

wherel is the bond length andc normalizes the total density
r(x)52f2(x) to two electrons. At large distancel this con-
struction correctly yields a sum of the ‘‘atomic’’ densities for
r(x). The energye of f(x) is equal to minus the ionization
energy of the system, which at largel values is equal to that
of the less electronegative atomA, e52a2/2.

Figure 1 represents the KS potentialvs(x) of the system
AB obtained forl53, l57 a.u. andxÞxA , xÞxB with the
insertion of~36! and2I A52a2/2 into the one-electron KS
equation

2
1

2

d2f~x!

dx2
1vs~x!f~x!5ef~x!. ~37!

The parameter valuesa50.63 andb51.0 a.u. were chosen in
order to fit the ionization energies@25# of the atoms Li and
H, respectively. One can see from Fig. 1 a distinct positive
buildup of vs(x) around the more electronegative atomB.
While in the region betweenA andB vs(x) has a similar
form for both distancesl , it differs in the outer region be-
yond theB ‘‘atom.’’ In this latter regionvs(x) gradually
decreases forl53 a.u. and it forms a rather sharp ‘‘peak’’
aroundB. On the other hand, forl57 a.u it has a much more
shallow form and forms a ‘‘step’’ with theB ‘‘atom’’ being
on its upper part. With increasingl the maximum ofvs(x)
approaches the value 0.302 a.u. of the differenceI B2I A of
the ionization energies.

Qualitative arguments were put forward in@23# and @24#
to demonstrate thatvs exhibits a similar positive shift

Dvs'I B2I A ~38!

in the general case of the real three-dimensional heteroat-
omic systemAB at large bond distances. In@24# the principle
of equalization of the KS orbital energies for the fragmentsA
andB was used and discontinuities of the derivative of the
total energyE as a function of the particle number~N1v!
were explored. In@23# arguments concerning the asymptotic
behavior in different regions of the highest occupied MO
~HOMO! were used to show~38!. In @23# the positive
buildup was attributed to the exchange-correlation partvxc of
vs .

FIG. 1. Kohn-Sham potential for the model one-dimensional
two-electron systemAB.
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In this paper we establish the existence of the positive
buildup of vxc around the more electronegative atomB of a
systemAB directly from the total many-electron wave func-
tionC(xW1 ,...,xWN) of the system. Based on the partitioning of
vxc in Sec. II we shall demonstrate that this buildup origi-
nates in the response partv respof vxc and we shall derive an
expression for it, making use of the conditional probability
amplitudeF(s1 ,xW2 ,...,xWNurW1) @Eq. ~6!#.

We start with the definition~34! of v resp~rW1! and we shall
analyze the form ofv resp~rW1! in the region of the highest
occupied MO~HOMO! fN(rW1). It follows from ~26! that
v s
N21(rW1) in this region vanishes, sincefN(rW1) constitutes

the dominant contribution tor~rW1!, so thatv resp~rW1! reduces
effectively tovN21(rW1)

v resp~rW1!'vN21~rW1!5EN21~rW1!2E0
N21, ~39!

which, according to~23!, ~24!, is determined by the function
F(s1 ,xW2 ,...,xWNurW1).

Suppose that the reference electron is in the regionVB of
the more electronegative atomB, rW1PVB . In this case the
conditional amplitudeF(s1 ,xW2 ,...,xWNurW1) describes the~N
21!-electron systemAuB1 consisting of the neutral atom
A interacting with a cationB1. This cation will not in gen-
eral be in the ground state of theB1 system, but ifrW1 is
actually at significant distance from the electronic cloud of
B1, although still by assumption much closer toB than toA,
it has been established by Katriel and Davidson@26# thatB1

is in that case in its ground state. So in that case at large bond
distancesR(AuB) the energy of this system reduces to

E~A2B1!'E0~A!1E0~B!1I B1Eint~A2B1!, ~40!

whereE0(A) andE0(B) are the ground-state energies of the
atomsA andB, respectively,I B is the ionization energy of
the atomB, andEint~A2B1! is the energy of interaction of
the atomA with the cationB1. If we allow rW1 to be in the
neighborhood of the other electrons ofB1, it is necessary to
take into account that the conditional amplitude will not de-
scribe the ground state ofB1. The fact that the system de-
scribed byF is ‘‘distorted’’ will correspond to an energy rise
DE with respect to the ground-state energy. We may there-
fore write the energyEN21(rW1PVB) in general as

EN21~rW1PVB!'E0~A!1E0~B!1EB1Eint~A2B1!

1DE~A2B1;rW1!. ~41!

If R(A2B) is large andrW1 is in the region of the HOMO
~i.e., not in the subvalence-core region ofB!, the effect of the
electron redistribution incorporated in the last term is ex-
pected to be small.

Contrary to this, the ground state of the cation (AB)1 for
large R(A2B) corresponds to the systemA1

uB of the
neutral atomB interacting with the cationA1, so thatE 0

N21

is expressed as

E0
N21'E0~A!1E0~B!1I A1Eint~A

12B!. ~42!

Inserting ~41! and ~42! into ~39!, we obtain the following
expression forv resp~rW1!:

v resp~rW1PVB!'@ I B2I A#1@Eint~A2B1!2Eint~A
12B!#

1DE~A2B1;rW1!. ~43!

Suppose now that the reference electron is in the regionVA
of the less electronegative atomA, rW1PVA . In this case the
conditional amplitude decribes the~N21!-electron system
A1

uB, disturbed around the reference electron position. If
R(AuB) is large andrW1 is in the region of the HOMO, this
system is close to the ground state of the cation (AB)1. As a
result, only the corresponding correction term
DE(A1

uB;rW1) contributes tov resp~rW1! in this region

v resp~rW1PVA!5DE~A12B;rW1!. ~44!

From ~43! and ~44! we can estimate the buildupDv resp
around the more electronegative atomB

Dv resp5v resp~rW1PVB!2v resp~rW1PVA!

5@ I B2I A#1@Eint~A2B1!2Eint~A
12B!#

1@DE~A2B1;rW1PVB!

2DE~A12B;rW1PVA!#. ~45!

The leading term of~45! at large bond distancesR(AuB) is
just the difference of the ionization energies of atomsA and
B. Formula ~45! demonstrates that the positive buildup
Dvxc'(I B2I A) emerges in the response partv respof vxc or,
more precisely, in thevN21 component ofv resp. It originates
from the difference between the conditional amplitude distri-
bution zF(s1 ,xW2 ,...,xWNurW1) z

2 of ~N21! electrons and the
ground-state electron distribution of the cation (AB)1. When
rW1PVB , the conditional amplitude distribution corresponds
to the systemAuB1, while the ground state is the cation
A12B. Thus, the conditional amplitude, embodying the
electron correlation which causes the complete exchange-
correlation hole to be located around the reference position,
leads to a ‘‘repulsive’’ effect onvxc in VB . The KS potential
at a pointrW1 in the energetically favorable region, is shifted
upwards by a potential barrier of height (I B2I A), which
emerges fromvN21, to prevent a too strong localization of
electrons in that region.

The terms in the second and third square brackets of Eq.
~45! provide corrections to the leading term at large
R(AuB). The second term represents a correction from the
atom-cation interaction, which is different for the pairs
A1

uB andAuB1. The third term represents a difference
between the energy effects of the redistribution of~N21!
electrons ofAuB1 andA1

uB due to the presence of the
reference electron position in the outer region of the corre-
sponding charged atom. In other words, the first term brings
the main contribution toDv respdue to the different ionization
of A andB, the second one brings a correction due to the
different polarization ofA andB by a positive charge, and
the third one brings a correction due to the different distor-
tions of the cationsAuB1 andA1

uB due to the different
‘‘response’’ to the proximity of the reference electron posi-
tion. Since this ‘‘response’’ has some relation to the polariz-
ability, and since the polarizability of the less electronegative
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atomA is, in general, higher than that ofB, both corrections
are expected to have a negative sign, opposite to that of the
leading term [I B2I A].

All the above-mentioned differences tend to decrease with
decreasing electronegativity difference of atomsA and B,
and turn into zero for the homoatomic moleculeA2 ~45!, as
they should. ForA2 the expression

v resp~rW1!5DE~A12A;rW1!, ~46!

which is an analogue of~44!, is valid for the HOMO region
andv resp~rW1! is expected to be small and to have a flat form in
this region. This is true, in particular, forv resp~rW1! of the
molecule H2 ~see@2# and also the next section!.

To sum up, using the partially integrated conditional
probability amplitude of the heteroatomic moleculeAB, it
has been shown that the positive buildup ofvxc around the
electronegative atomB originates in thevN21 component of
the response part ofvxc . From the asymptotical formulas for
vN21(rW1) in different regions an expression for this buildup
has been obtained which, in addition to the leading term
(I B2I A) contains also the polarization and correlation cor-
rections. Examples of the positive buildup ofvxc constructed
from ab initio wave functions for the monohydrides LiH and
BH will be presented in the next sections.

IV. CONSTRUCTION OF vxc

The scheme ofvxc construction used in this paper has
been already presented and discussed in@13,18# and here we
only mention its main points. The correlated wave functions
have been obtained with singly and doubly excited configu-
ration interaction~SDCI! calculations of the ground states at
the bond distancesRe51.401 a.u.,R53.0 a.u., andR55.0
a.u. for H2; Re53.015 a.u.,R55.0 a.u., andR57.0 a.u. for
LiH; Re52.330 a.u.,R54.0 a.u., andR55.0 a.u. for BH.
Calculations have been performed within the direct CI ap-
proach by means of theATMOL package@27#.

A basis of contracted Gaussian functions@28# has been
used with fives- and twop-type functions for H, sevens-,
four p-type functions for Li, sevens- four p- and twod-type
functions for B. For H an extra valence polarizationd func-
tion with the exponenta51.0 and for Li two such functions
with the exponentsa50.36 anda50.15 have been used.
This basis has been already used for the construction ofvxc
for LiH at the equilibrium bond length@13#. In this paper, in
order to better take into account the correlation effects for
core electrons, this basis has been augmented for Li and B
with two localized polarizationp and twod functions of the
core size, whose exponents were set equal to those of the
second most localized contracteds function of the basis@28#.
When compared with the accurate empirical estimates of the
Coulomb correlation energiesE c

e at the equilibrium distances
@29#, the decrease in the correlation energy due to inclusion
of core polarization functions amounts to 6% ofE c

e for LiH
and 14% for BH, so that the SDCI calculations recover 92%
of E c

e for LiH and 90% for BH. The potentialv xc
hole(rW i) for a

given grid$rW i% has been calculated by integration~21! of the
diagonal partr2(rW1 ,rW2) of the second-order density matrix,
the latter has been calculated from the SDCI wave function
by means of a special density-functional extension@2,30# of
theab initio ATMOL package.

In the case of the H2 molecule there is only one occupied
KS orbital f1, so that an accuratevxc is obtained directly
from ~1! by the replacement off1 by ~r/2!1/2 @2#. For XH
vxc(rW) and a set of KS orbitals$f i(rW)% are obtained from the
correlatedr(rW) with an iterative procedure@10#, starting
from some initial guessv el

0 for vel

vel
0 ~rW !5vH~rW !1vxc

0 ~rW !, ~47!

wherevH is the Hartree potential andv xc
0 is an approximate

exchange-correlation potential of the form

vxc
0 ~@r#;rW !5vXa~r;rW !12ex

B~r,u¹ru;rW !12ec
VWN~r;rW !,

~48!

both potentials being calculated with the correlated densityr.
In ~48! vXa is the exchange-correlationXa potential@31#, e x

B

is the exchange energy density gradient correction of Becke
@32#, andec

VWN is the local-density approximation~LDA ! of
Vosko, Wilk, and Nusair@33# for the correlation energy den-
sity. The potential~47! has a proper long-range Coulombic
asymptotics v el

0→(N21)/ur u. For the equilibrium bond
length the parameteraeq of vXa is chosen from the following
fitting condition:

@2 1
2¹21vext~rW !1vel

0 ~rW !#fN~rW !52I pfN~rW !, ~49!

wherefN is the HOMO andI p is the experimental ionization
energy of the molecule. For larger distancesR~X—H! the
parametera is varied starting fromaeq and, finally, the value
a is used, which provides the quickest convergence of the
iterative procedure.

At mth iteration KS equations~1! are solved with the
potentialvel

m

vel
m~rW !5 f m~rW !vel

m21~rW ! ~50!

calculated fromvel
m21 of the previous iteration with the cor-

rection factorf m , the latter being defined with the density
rm21 from the ~m21!th iteration and theab initio target
densityr

f m~rW !5
rm21~rW !1a

r~rW !1a
~51!

with the parametera50.5, which smooths out the effect of
the remote exponential density tails on the procedure. Then,
rm21 in ~51! is replaced withrm obtained atmth iteration
and this procedure continues unless further iterations cease
lowering the differenceurm(rW)2r(rW)u in the region of non-
vanishing densities. Finally,vxc(rW) is obtained by subtracting
vH(rW) from the resulting potential~50!. Construction ofvxc
has been performed in the same basis of MO’s as the SDCI
calculations by means of the above-mentioned density-
functional extension@2,30# of the ATMOL package. Matrix
elements ofvel

m in this basis have been calculated using a
numerical integration with grids according to Ref.@34#.

After 45–50 iterations the procedure has reached its satu-
ration state and further several hundred iterations make
changes only within 0.001–0.003 a.u. for the obtained values
of eN and the KS kinetic energyTs and produce basically the
same KS orbitals$f i(rW)%. However, after 200–250 iterations
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~depending on the type of system and the bond distance!
visible and~presumably! artificial long-range oscillations are
developed invxc , which do not alter the above-mentioned
KS characteristics but disturb the form ofvxc . For larger
bond distances these oscillations arise at earlier iterations
than forRe .

The development of the~spurious! long-range oscillations
of vxc after several hundred iterations seems to be an artifact
of the finite basis set used in the molecular calculations,
since no such effect appears in the numerical atomic calcu-
lations with the procedure~47!,~50!,~51! @10#. The effect of
the finite basis restriction on the constructedvxc has been
mentioned in@35#. The possibility of these oscillations fol-
lows from the fact that, in principle, an oscillating function
can be added tovxc , such that its addition does not change
matrix elements ofvxc in a given finite basis. Though not
disturbing the integral characteristics, the development of
these oscillations can be recognized by the increasing of the
maximal local relative difference

Drm
max5maxrWPV

urm~rW !2r~rW !u
r~rW !

~52!

~V is the region of nonvanishing densities! between the tar-
get densityr and the densityrm starting from a certain
~mt11!th iteration. In our present calculations, in order to
prevent the development of the spurious oscillations, we ter-
minate the iterative procedure at themtth iteration, at which
the difference~52! attains its minimum forr.0.1 a.u. The
correspondingDrmt

max values are within 0.1–0.2%.

The potentialvc,kin(rW) has been calculated from the SDCI
first-order density matrixr(rW8,rW) and the KS density matrix
r(rW8,rW)5S i51

N f i* (rW8)f i(rW) obtained with the iterative pro-
cedure discussed above. Finally,v resp(rW) has been obtained
by subtraction of vc,kin(rW) and v xc

hole(rW) from the
constructedvxc(rW). The results of the scheme presented in
this section will be discussed in the next sections.

V. KOHN-SHAM ENERGY CHARACTERISTICS

Tables I and II present various energy characteristics for
the KS orbitals$f i(rW)% of the LiH and BH for three different
bond distancesR~X—H!. The first is the HOMO energyeN .
According to@36–39# an accurate HOMO energyeN is equal
to minus the ionization potential of the systemI p . In the
dissociation limit the ionization potential ofXH approaches
that of the less electronegative atomX, so thateN should
follow the same trend. One can see from Tables I and II that

eN values obtained forXH at the equilibrium distance
Re~X—H! are indeed very close to the experimental2I p
values~the latter quantities are placed in Tables I and II just
below the former ones!. For both systemseN decreases~in
absolute magnitude! with increasingR and for the largestR
value it is not far from2I p value of theX atom ~the latter
quantities are also placed just below the former ones!.

Tables I and II also present the kinetic energy of the KS
systemTs

Ts52
1

2 (
i51

N E f i* ~rW !¹2f i~rW !drW ~53!

and the kinetic part of the exchange-correlation energyTc

Tc5TCI2Ts5E r~rW !vc,kin~rW !drW. ~54!

Ts is compared with the CITCI and the Hartree-FockTHF

kinetic energies, whileTc is compared with the kinetic part
Tc,HF of the conventional correlation energy

Tc,HF5TCI2THF. ~55!

In Table III the same kinetic characteristics are presented for
the H2 molecule.

In all cases theTs value is placed in between the
correspondingTHF andTCI ones

THF,Ts,TCI. ~56!

The right-hand inequality of~56! follows from the fact that
bothTs andT

CI correspond to the same correlated densityr
andTs , by its definition@40#, delivers the minimal kinetic
energy for this density. The left-hand inequality reflects the
difference between the Hartree-Fock and correlated densi-
ties. It is well known that the correlated density is more

TABLE I. Kohn–Sham energy characteristics~a.u.! for LiH at
various bond distancesR~Li—H! ~a.u.!.

R~Li—H! 3.015 5.0 7.0

eHOMO 20.284 20.238 20.206
2I p 20.283 20.198
Ts 8.001 7.823 7.826
THF 7.993 7.787 7.747
TCI 8.058 7.880 7.876
Tc 0.057 0.057 0.050
Tc,HF 0.065 0.093 0.129

TABLE II. Kohn-Sham energy characteristics~a.u.! for BH at
various bond distancesR~B—H! ~a.u.!.

R~B—H! 2.33 4.0 5.0

eHOMO 20.359 20.346 20.334
2I p 20.359 20.305
Ts 25.153 24.883 24.893
THF 25.119 24.793 24.757
TCI 25.252 24.980 24.985
Tc 0.099 0.097 0.092
Tc,HF 0.133 0.187 0.228

TABLE III. Kinetic energy characteristics~a.u.! for H2 at vari-
ous bond distancesR~H—H! ~a.u.!.

R~H—H! 1.401 3.0 5.0

Ts 1.140 0.831 0.955
THF 1.125 0.713 0.650
TCI 1.172 0.872 0.977
Tc 0.032 0.041 0.022
Tc,HF 0.047 0.159 0.327
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contracted around the nuclei than the Hartree-Fock one,
which is extremely so in poor Hartree-Fock cases like disso-
ciating H2 @2,20#. Due to this contraction effect of correla-
tion, the minimal energyTs is still higher thanT

HF.
For H2 and BH TCI value at the intermediate bond dis-

tance is lower than those at the larger and equilibrium dis-
tances, while for LiHTCI values atR55.0 and 7.0 a.u. are
close to each other, both being appreciably lower than that at
Re53.015 a.u. It is an anticipated trend since, according to
the virial theorem formula@41#

T52E0
N2R

dE0
N

dR
, ~57!

the exact kinetic energyT has a negative contribution from
the Hellmann-Feynman forces at larger distances, which van-
ishes at bothR5Re andR→`, so thatT as a function ofR
passes through a minimum atR.Re . For the restricted CI
the virial theorem holds only approximately, stillTCI exhibits
a similar behavior. The virial theorem is accomplished
through a lowering of the gradient of the wave function
~more precisely, itsz component in the bond axis direction!
which entails a lowering of the corresponding componentTi

@42–44#. As a consequence, thez component of the density
gradient also decreases andTs has a similar behavior as
TCI: for all three systems theTs value at intermediateR is
lower than those at larger and equilibriumR. For THF Eq.
~57! holds true ifE 0

N is replaced with the Hartree-Fock total
energyEHF. However, in this case a negative contribution of
the second term is overcompensated with the gradual
decrease ofEHF at larger distances, so that for the
distances consideredTHF monotonically decreases with the
increasingR.

The comparative features ofTs , T
HF, andTCI discussed

above determine those of their differencesTc and Tc,HF.
Because of Eq.~56!, bothTc andTc,HF are always positive
and because of the left-side inequality of~56! Tc is consis-
tently lower thanTc,HF. The molecular dissociation has a
strikingly different effect onTc,HF andTc . Due to the near-
degeneracy effect~which is not taken into account in the
restricted Hartree-Fock method!, the left-right correlation is
strengthened at larger bond distances, which causes an in-
crease ofTc,HF. Contrary to this, in the dissociation limitTc
approaches to the sum of theTc contributions of the atomic
fragments, which is lower than the molecularTc value atRe .

In particular, for the one-electron H atomTc50, since in
this case the KS system coincides with the exact one, so that
for the H2 moleculeTc should approach zero in the dissocia-
tion limit and forXH Tc should approach the corresponding
value for the individual atomX. This zero asymptotics for H2
can be easily derived, if we employ the fact that in this limit
the H2 molecule is described properly with the Heitler-
London wave functionCHL(x1W ,x2W )

CHL~x1W ,x2W !5
a* ~rW1!b~rW2!1a* ~rW2!b~rW1!

2~11Sab
2 !1/2

3@a~s1!b~s2!2a~s2!b~s1!#, ~58!

wherea(rW) andb(rW) are the 1s-type atomic orbitals located
on the H atomsA andB, a( i ) andb( i ) are the one-electron
spin functions andSab is the overlap integral

Sab5E a* ~rW !b~rW !drW. ~59!

A convenient feature of the Kohn-Sham theory is that even
in the dissociation limit the Kohn-Sham system of H2 is
properly described with the one-determinantal wave function
Cs(x1W ,x2W ) formed from the 1s orbitalsa(rW) andb(rW)

Cs~x1W ,x2W !5
@a* ~rW1!1b* ~rW1!#@a~rW2!1b~rW2!#

2&~11Sab!

3@a~s1!b~s2!2a~s2!b~s1!#, ~60!

sinceCs(x1W ,x2W ) still generates the ground-state densityr(rW)
in this limit. Subtracting the kinetic energy obtained with
Cs(x1W ,x2W ) from that obtained withCHL(x1W ,x2W ), one can de-
rive an asymptotic expression forTc

Tc5^CHLuT̂uCHL&2^CsuT̂uCs&5
2~TaSab2Tab!~12Sab!

~11Sab!~11Sab
2 !

,

~61!

whereTa andTab are the kinetic integrals

Ta52
1

2 E a* ~rW !¹2a~rW !drW, ~62!

Tab52
1

2 E a* ~rW !¹2b~rW !drW. ~63!

The difference between total energies obtained with
CHL(x1W ,x2W ) andCs(x1W ,x2W ), the correlation energyEc , ap-
proaches with increasing H—H distance its exact finite lim-
iting value 20.3125 a.u.@31#. On the other handTc the
difference~61! between the corresponding kinetic energies
decreases with the decreasingSab and Tab at longer bond
distances and it becomes zero in the infinite separation limit

Tc→0, R~H—H!→`. ~64!

The results of the calculations presented in Tables I–III
agree with the asymptotics derived theoretically. For H2 the
Tc value calculated atR~H—H!55.0 a.u. is nearly twice as
small as the corresponding value atR~H—H!53.0 a.u.~See
Table III!. In a similar way, forXH theTc values calculated
at the largest distance considered are the least ones~See
Tables I and II! and they are rather close to theTc values
0.038 a.u. and 0.095 a.u. obtained for the atoms Li and B,
respectively, in@12#. As a consequence, in all cases the ratio
Tc /Tc,HF gradually decreases with increasing bond distance.
The local behavior of the potentialvc,kin which determines
Tc via the integral~54!, as well as the form of other poten-
tials will be discussed in the next section.

VI. vxc AND ITS COMPONENTS

Figures 2–4 compare the molecular Kohn-Sham
exchange-correlation potentialsvxc and the potentials of the
exchange-correlation holev xc

hole constructed for H2 andXH
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~X5Li, B! for the equilibriumRe and larger bond distances.
The potentials are plotted along the bond axis as functions of
the distancez from the bond midpoint. In all cases bothvxc
andv xc

hole are negative functions, withvxc being consistently
less attractive than the correspondingv xc

hole. This is quite un-

derstandable, sincev xc
hole represents the main correlation ef-

fect of reduction of the electron-electron repulsion due to the
formation of the exchange-correlation hole. According to Eq.
~35!, vxc is formed by the addition ofvc,kin andv respto v xc

hole,
and the former potentials represent the repulsive effect of the
‘‘perturbation’’ of the ~N21!-electron system by the refer-
ence electron and the repulsive kinetic effect, respectively.

As expected, the molecular dissociation has relatively
little effect on the form ofvxc andv xc

hole in the inner region of
atomX ~See Figs. 3, 4!. Both vxc and v xc

hole in this region
have a deep well around the nucleusX, which represents the
self-interaction part of the exchange potential of the 1s elec-
tron. At positionsr within the 1s shell the exchange hole
surroundingr is very close to minus the 1s density. Between
the core and valence regionsvxc exhibits characteristic local
maxima~intershell peaks!. For BH one can see these peaks
on both inner~with respect to the bond! and outer sides of
the B atom and dissociation makes the outer-side peak more
pronounced~See Fig. 4!.

vxc for LiH exhibits a similar peak only on the inner side
of the Li atom ~See Fig. 3!, while on the outer side the
intershell region is characterized only by a change of the
slope of vxc . Dissociation makes this ‘‘peak’’ smaller, so
that at large distanceR57.0 a.u.vxc in this region looks
more likevxc of the individual Li atom, which virtually lacks
the intershell peak~See Fig. 2 of Ref.@12#!. Unlike vxc , v xc

hole

is a more smooth potential: for bothXH systemsv xc
hole is a

monotonical function ofz in the intershell regions for larger
R, while forRe it exhibits much more shallow local maxima,
which are displaced towards the bond midpoint.

The molecular dissociation manifests itself in the forma-
tion of a characteristic peak ofvxc near ~or at! the bond
midpoint z50. The H2 molecule provides an extreme ex-
ample of such a peak~See Fig. 2!. In this casevxc already
has a small bond midpoint peak forRe51.401 a.u. However,
it increases dramatically with increasing bond length, the
corresponding maximum ofvxc is close to zero. The peak
grows both in absolute value and with respect tov xc

hole, so
that one can consider a formation of the bond midpoint peak
on top ofv xc

hole.
In the case ofXH dissociation also creates, though visu-

ally less spectacular, a rather shallow peak ofvxc in the
bonding region. It is displaced fromz50 towards the H
nucleus: for LiH atR57.0 a.u.vxc reaches a local maxi-
mum atz50.70 a.u., while for BH atR55.0 a.u. this maxi-
mum is atz50.59 a.u.. Unlike for the H2 molecule, for both
XH molecules the position of the peak does not coincide
with the corresponding local minimum of the densityr for
the interatomic part of the bond axis, the latter being placed
at z520.05 a.u. for LiH and atz50.41 a.u. for BH.

Formation of the peak is accompanied with formation of a
local well of vxc just beyond the inner-side intershell peak.
The corresponding minimum ofvxc is placed atz520.86
a.u. for LiH atR57.0 a.u. and atz521.16 a.u. for BH at
R55.0 a.u. andvxc nearly touchesv xc

hole at these points. One
can see from Figs. 3~b! and 4~b! that the above-mentioned
structure ofvxc in the bonding region is built up on top of
v xc
hole, the latter potential being a rather smooth function in

this region. From this it follows that other parts ofvxc ,
namely,vc,kin andv respare responsible for this structure and
we shall proceed with the analysis of these parts.

FIG. 2. Kohn-Sham exchange-correlation potential and the po-
tential of the exchange-correlation hole for H2. ~a! Re51.401 a.u.
and ~b! R55.0 a.u.
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Figure 5 compares the potentialsvc,kin obtained for H2,
LiH, and BH at the same elongated bond distanceR55.0 a.u.
@note that for the two-electron system H2 vc,kin reduces to the
potentialvkin of Eq. ~22!#. In all casesvc,kin exhibits a posi-
tive peak in the bonding region, though forXH these

peaks are much smaller than that for H2. The peak grows
higher with increasing bond length. One can see this from
Fig. 6 wherevc,kin constructed at two different bond dis-
tancesR are compared in the region of the bond peak for H2
and LiH.

FIG. 3. Kohn-Sham exchange-correlation potential and the po-
tential of the exchange-correlation hole for LiH.~a! Re53.015 a.u.
and ~b! R57.0 a.u.

FIG. 4. Kohn-Sham exchange-correlation potential and the po-
tential of the exchange-correlation hole for BH.~a! Re52.33 a.u.
and ~b! R55.0 a.u.
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The behavior ofvc,kin in the bonding region reflects
the effect of the left-right correlation of electrons of a
single bond X—H on the conditional amplitude
F(s1 , xW2 ,...,xWNurW1). According to its definition~28!, the
relatively smallvc,kin(rW1) is a difference of two bigger po-
tentialsvkin~rW1! andvs,kin(rW1). In its turn, the latter difference
is determined according to Eqs.~22!, ~25! by the integrated
difference of the conditional amplitude gradients
z¹1F(s1 ,xW2,...,xWNurW1) z2 and z¹1Fs(s1 ,xW2,...,xWNurW1) z2 or, in
other words, by the relative sensitivity of the exchange-
correlation and exchange~Fermi! holes in the distribution of
other electrons to the displacement of the reference electron
from rW1. If rW1 is in the bonding region and the reference
electron is displaced fromrW1 towards a certain atom, another
electron of the single bond gets an increase of its probability
distribution on the other atom due to the left-right Coulomb
correlation. This causes a change of the exchange-correlation
hole associated withF(s1 ,xW2 ,...,xWNurW1) and produces a cer-
tain positive value of the amplitude gradient
z¹1F(s1 ,xW2 ,...,xWNurW1) z

2. Since there is no analogous ex-
change effect, the resultingvc,kin is definitely positive in this
region. For the homoatomic H2 molecule vc,kin attains a
maximum just at the bond midpointz50, while for XH the
corresponding maxima are displaced towards the H atom.

The left-right correlation is strengthened at larger bond
distances by the strong near-degeneracy effect. As a conse-
quence, the bond peak ofvc,kin grows higher and Fig. 6
clearly illustrates this trend. In the case of H2 vc,kin provides
a dominating contribution to the bond peak ofvxc at large
distancesR. ForXH vc,kin also makes a substantial contribu-
tion to the bond peak ofvxc , though in this case the corre-
sponding contribution of the response potentialv respis some-

what larger ~see the discussion below!. In spite of the
development of a high peak,vc,kin yields, after the multipli-
cation byr and integration~Eq. 54!, a lower value of the
correlation kinetic energyTc for R~H—H!55.0 a.u. than that

FIG. 5. Comparison of the potentialsvc,kin for H2, LiH, and BH
at R55.0 a.u.

FIG. 6. Comparison of the potentialsvc,kin constructed at vari-
ous bond distances.~a! H2, Re51.401 a.u. andR55.0 a.u. and~b!
LiH, R55.0 a.u. andR57.0 a.u.
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for Re ~See Table III!. An evident reason for this is that the
peak arises in the bond midpoint region, which is the region
of a low densityr at largeR~H—H!. The same trend, though
not so spectacularly expressed, holds true also for the mono-
hydridesXH.

While for all systemsvc,kin vanishes in the region of the H
atoms, it displays an oscillating behavior in the region of the
X atoms ofXH ~See Fig. 5!. The oscillations tend to be more
contracted for the heavier atomB, the most visible feature
being the positive peaks in the intershell regions. This oscil-
lating behavior reflects different relative sensitivity of the
exchange-correlation and Fermi holes associated with
F(s1 ,xW2 ,...,xWNurW1) andFs(s1 ,xW2 ,...,xWNurW1) to the displace-
ment of the reference electron fromrW1 for different positions
rW1 in this region. The interpretation of this complicated be-
havior will be given elsewhere. We have no explanation for
the sharp dip at the nuclei, which is possibly caused by the
unphysical Gaussian shape of our CI density at the nucleus.

In Figs. 7, 8 the response potentialsv resp are plotted,
which have been obtained by subtraction ofv xc

hole and
vc,kin from vxc . To make the interpretation of its form more
clear, in Fig. 7v resp is compared with the model potential
v resp
mod @45#

v resp
mod~rW !5(

i51

N

wi

uf i~rW !u2

r~rW !
, ~65!

the latter being the statistical average of the orbital contribu-
tionswi

wi5KAm2e i . ~66!

The potential~65,66! with K50.38 models the response part
of the Krieger-Li-Iafrate~KLI ! @46# approximationvx

KLI to
the exchange potentialvx

OPM of the optimized potential
model ~OPM! @47–49#

vx
KLI ~rW !5vx

hole~rW !1(
i51

N

wi

uf i~rW !u2

r~rW !
. ~67!

The parameterswi were defined within the KLI approxima-
tion in a self-consistent way as the difference between the
expectation values of the potential~67! and the Hartree-Fock
exchange operatorvxi for the orbitalfi

wi5E uf i~rW !u2@vx
KLI ~rW !2vxi~rW !#drW, ~68!

vxi~rW1!52
1

f i~rW1!
(
j51

N

f j~rW1!E f i~rW2!f j~rW2!

urW12rW2u
drW2 ,

~69!

and vx
hole(rW) in ~67! is the potential of the Fermi hole, the

exchange-only analogue ofv xc
hole(rW)

vx
hole~rW !5(

i51

N

vxi~rW !
uf i~rW !u2

r~rW !
. ~70!

The model~65,66! has the same orbital structure as the KLI
construction and it satisfies the same condition@46# of zero
contribution of the HOMO to the numerator of~65!

wN50. ~71!

As was shown in@45#, for atomic systemsv resp
mod reproduces

the characteristic stepped form of the response part ofvx
OPM

and its KLI approximation.
Due to its construction~65!, v resp

modhas a clear stepped form
that helps to visualize the regions of various MO’s~See Fig.
7!. The region of the core 1s electrons of atomX is charac-
terized by a high plateau ofv resp

mod, while beyond this region
v resp
mod has a steep descent to low values and it vanishes in the

region of the HOMO around the H atom. This short-range
behavior ofv resp

mod follows from the KLI condition ~71!, so
that all KLI-like potentials of the form~65! with ~71! are
expected to vanish in a similar way in the region of the
HOMO. v resp

mod displays the above-mentioned features at
both equilibrium and larger distances@Compare Figs. 7~a!
and 7~c!#. When comparing the form of the potential for LiH
and BH, one can note in the latter case an additional ‘‘shoul-
der’’ of v resp

mod in between the core and the HOMO regions.
This can be attributed to the occupied nonbonding MO of
BH formed, mainly, from the 2s orbital of theB atom.

In the region of atomX v resp
mod agrees qualitatively with the

constructedv resp. Though far from perfect, the one-step
structure can be recognized forv resp with higher values for
the core electrons and lower values for other
electrons. v resp and v resp

mod display a steep descent to low
values in the same regions, which is especially true for larger
bond distances@See Figs. 7~a! and 7~b!#. The average height
of v respin the core region appears to be somewhat lower than
the step height ofv resp

mod calculated withK50.38, the corre-
sponding relative difference is larger for LiH.

The step pattern ofv resp in the region of atomX is dis-
turbed, mainly, by the cusps and wiggles near the nuclei.
One of the possible reasons for these features can be the
inclusion of the correlation effects. Other reasons can be the
deficiency of the Gaussian basis set representation of the CI
density at the nucleus and the performance of the numerical
procedure ofvxc construction. Because of the singularity of
the derivative ofr at nuclei, it appears to be somewhat dif-
ficult, in general, to achieve high accuracy close to nuclei,
which of course is virtually impossible with Gaussian orbital
based densities@4,11,13,14#.

Unlike in the core regions,v resp and v resp
mod have a very

different behavior in the HOMO region. As was discussed
above,v resp

mod vanishes in this region. Contrary to this,v resp
passes through a local minimum and then develops a positive
buildup around the H atom, which is a more electronegative
atom for both LiH and BH. One can draw the conclusion that
the constructedv resppossesses a true feature, which has been
established forv respof the heteroatomic molecule in Sec. III,
namely, the positive buildup ofv resp around the more elec-
tronegative atom. Though the theoretical results of Sec. III
have been obtained for the asymptotical case of large dis-
tancesR(AuB), the same qualitative picture holds true for
both larger and equilibrium distances@compare Figs. 7~a!
and 7~c!#.

Based on the present analysis, one can expect that the KLI
potential ~67! lacks the positive buildup around the more
electronegative atom. Indeed, thevx

hole term of ~67! has a
similar smooth form asv xc

hole presented here, while the sec-
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ond term of~67! has the same structure asv resp
mod and the latter

potential demonstrates the absence of the above-mentioned
feature. When comparingvxc andvx

KLI , the positive build-up
appears as a correlation effect for the heteroatomic mol-
ecules, which is present in the exchange-correlation potential
vxc and is absent in the exchange-only potentialvx

KLI . Also

the bond midpoint peak due tovc,kin would be absent in
vx
KLI .
The inclusion of the positive buildup is essential in order

to provide the proper energieseN of the HOMO. Because of
its absence, the HOMO energies obtained for LiH and BH
with the combined potential

FIG. 7. Comparison of the potentialsv respandv resp
mod ~a! LiH, R57.0 a.u. and~b! BH, R55.0 a.u. and~c! LiH, Re53.015 a.u.
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vxc
mod~rW !5vxc

hole~rW !1K(
i51

N

Am2e i
uf i~rW !u2

r~rW !
~72!

appear to be always at more negative energies than the cor-
respondingeN values obtained with the constructedvxc ~the

latter being presented in Tables I and II!. Variation of the
parameterK within reasonable limits failed to improve this
deficiency.

Figure 8~a! compares the potentialsv respobtained for H2,
LiH, and BH at the same elongated bond lengthR55.0 a.u.
It can serve as an illustration to the formulas~43!–~46! de-
rived for v resp in Sec. III. For both LiH and BHv resp(rW) in
the region around the H atom displays the positive buildup
which, according to Eqs.~43! and~45!, is represented by the
first three terms of Eq.~43!. When the positionrW of the
reference electron moves to the region of the HOMO near
the bond midpointz50, the above-mentioned terms vanish
and v resp displays a minimum, which is represented by Eq.
~44!. When the reference electron moves further into the in-
ner region of atomX, one has subtract from the single term
of Eq. 44 the analogous contribution fromv s

N21 of Eq. 34.
However, the energetical effectDE(A1

uB;rW) of the elec-
tron redistribution inA1B due to the presence of the refer-
ence electron in this inner region is much larger than that for
the HOMO region and, as a result, the stepped structure of
v resp is created in the former region. Contrary to this, in the
case of the two-electron homoatomic H2 moleculev resp is
rather small everywhere and it has a flat form with very
shallow maxima at the H nuclei. This flat form is anticipated,
since in all regions the same formula~46! is valid for H2.

In Fig. 8~b! v resp obtained for LiH atR55.0 a.u. and
R57.0 a.u. is plotted in the region of the H atom, the latter
being placed atz50. One can see from Fig. 8~b! that the
positive buildup around the H atom has a similar form for
both distances. In accordance with the one-dimensional
model and theoretical considerations of Sec. III, the positive
buildup grows higher with the increasingR and its maximum
comes closer to the differenceDI p50.302 a.u. between the
ionization energies of the H and Li atoms.

VII. CONCLUSIONS

In this paper the effect of molecular dissociation on the
exchange-correlation Kohn-Sham potentialvxc has been es-
tablished and analyzed.vxc and its components have been
constructed fromab initio correlated first- and second-order
density matrices for the heteroatomic molecules LiH and BH
at several bond distancesR~X—H!. The results have been
compared with those for the two-electron homoatomic mol-
ecule H2.

The molecular dissociation manifests itself in the forma-
tion of a characteristic peak ofvxc in the bonding region. In
order to interpret this behavior, a partitioning ofvxc has been
used employing the partially integrated conditional probabil-
ity amplitude F(s1 ,xW2 ,...,xWNurW1). This partitioning repre-
sents vxc as a sum of the potential of the exchange-
correlation holev xc

hole, the kinetic componentvc,kin and the
‘‘response’’ potentialv resp. For the homoatomic H2 molecule
the peak ofvxc is determined by the bond midpoint peak of
vc,kin ~which in this case reduces tovkin!, while for the het-
eroatomicXH molecule the peak ofvxc is a combination of
the bonding peak ofvc,kin and the positive buildup ofv resp
around the more electronegative atom H. In all cases the
peak ofvxc and the corresponding features ofvc,kin andv resp
grow higher with increasing bond distance.

FIG. 8. Comparison of the potentialsv resp~a! H2, LiH, and BH,
R55.0 a.u. and~b! LiH, R55.0 a.u. andR57.0 a.u.
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It has been established, using the representation ofv respin
terms of the effective potentialvN21 of the ~N21! electron
system introduced in@2#, that the positive buildup ofv resp
originates from the difference between the electron distribu-
tion of ~N21! electrons associated with the conditional am-
plitudeF(s1 ,xW2 ,...,xWNurW1) of the heteroatomic moleculeAB
and that corresponding to the ground-state wave function of
the cation (AB)1. From the conditional amplitude analysis
the asymptotical expressions forv respand its positive buildup
have been obtained. The latter is represented as a leading
term [I B2I A], which arises due to the different ionization
energies of atomsA andB, plus corrections due to the dif-
ferent polarization ofA andB by a positive charge and dif-
ferent ‘‘response’’ of electrons of the cationsAuB1 and
A1

uB to the presence of the additional reference electron.
The dependence of the kinetic energy of noninteracting

particlesTs , the kinetic part of the correlation energyTc ,
and the energy of the HOMOeN on the bond distanceR has

been studied. In all casesTs as a function ofR passes
through a minimum, whileTc andeN decreases for largeR,
both approaching the corresponding values for the individual
atomsX. In the particular case of the H2 molecule an accu-
rate asymptotic formula forTc has been obtained, according
to which it approaches zero in the bond dissociation limit.

An important problem that still remains is how to increase
further the numerical accuracy and stability of the molecular
vxc construction. As has been discussed above, construction
in the finite Gaussian basis suffers from the eventual devel-
opment of artificial oscillations ofvxc and from an inad-
equacy of a Gaussian basis both at nuclei and at molecular
density tails. These difficulties can be, at least in principle,
overcome by the construction ofvxc within a basis-set-free
numerical molecular program. This problem, as well as the
construction ofvxc and the exchange-correlation densityexc
for more complex molecular processes will be addressed in
our further work.
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