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Kinetic-energy density functional: Atoms and shell structure
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We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density
through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the
electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the
atomic density profiles, obtained after the minimization of the total energy. Although previous results with
some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional
shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the
exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included.
The functional is also extended to spin-polarized syst¢®5050-29406)08208-X]

PACS numbds): 31.15.Ew, 71.16-w , 31.10+z

I. INTRODUCTION The well known Thomas-Fern{iTF) model[10],
The density-functional theorl—4] proves that, for any 3[37%n(r)]??
electron system under the action of an external potential Treln]= | toln(r)]n(r)dr= 10 n(r)dr,
vexd ), there is an energy functional of the electron density 3

n(r),
which is the simplest approximation fBg n], gives poor
_ results when applied to atoms: no accurate total energies,
E[n]—F[n]+f vexr)N(r)r, @ divergent density profiles at the nucleus, no exponential de-
cay whenr—o, and lack of the characteristic atomic shell
which has its minimum for the ground-state density and it isstructure.
equal to the ground energy of the system. The functional The second order gradient correction to the TF functional,
F[n] is universal[i.e., it depends on neither the external constructed by addition of the Weizdar termT,,[n] [11],

potentialv .,{r) nor the numbeN of electrong. It is usually  constitutes the family of TR()W models:
divided into three termgatomic units are used throughout

this paper. TrroowlN]= T n]+ATwln]
1 n(ryn(r’) 1 |Vn(n)|?
F[n]=TS[n]+§ff Tropp drdr+Ednl @ =Trelnl+hg | 9 4)

where T4 n] is the kinetic-energy functional of a noninter- T\y[n] is the exact kinetic energy of a system composed of
acting electron system, the second term is the classical eleonly one electron or by two electrons in the same spatial
trostatic interaction energgHartree energy andE,Jn] is  state. It guarantees the correct exponential decay of the den-
the so-called exchange-correlatiorc) energy. sity in atoms and metal surfaces, as well as the Kato cusp
TJn] can be evaluated exactly through a set of onecondition [12,13. It is also a lower bound offn] and
electron wave functions, the Kohn-ShaiS) orbitals [5], describes the leading term in the linear response of a homo-
and the minimization of the function&l) becomes the reso- geneous electron gas under short wavelength perturbations
lution of a set of coupled Schdinger-like equations for the [14,15. These functionals avoid some limitations of the TF
KS orbitals(KS method. However, the construction of func- model, e.g., the density is finite at the nucleus and the profile
tionals depending explicitly on the densitgr) (without any  has an exponential decf¥6], but the resulting ground state
reference to the wave functionBas an undoubted formal densities do not exhibit any shell structure. ket 1, there is
interest, as was pointed out in the original Hohenberg-Kohra large overestimation of the total energies. ker1/9, the
theorem. Moreover, in first-principles molecular dynamicsfunctional (4) reproduces the linear response of a homoge-
[6], the use of an approximate orbital-free kinetic-energyneous electron gas under a long wavelength perturbation,
functional, instead of the KS method, makes easier the evalgetting the conventional second order gradient expansion
ation of the forces and reduces the computational cost dfl7]. In this case, there is a large underestimation of the total
complex calculations, transforming the NB-dimensional energies obtained after minimization of the energy func-
problem into a three-dimensional ofié—9]. Accurate ex- tional. Finally, the interpolation valua =1/5 proposed by
plicit Td n] functionals, which give not only good energies Tomishima and Yon€il8] leads to a sensible improvement
but also correct density profiles for the electron ground statdn the atomic ground energies but not in the density profiles.
are clearly needed. The kinetic-energy functionals with density gradients of
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higher order{19,20] do not change appreciably the ground Concluding, several of the mentioned functionals give
energies and the densities’ profiles remain without shelgood agreement with the KS energies for atomic systems,
structure[21]. Note that the shell structure of atoms can bebut they get density profiles that cannot be compared favor-
obtained by introducing into these gradient expansion modably with the exact KS ones. Besides, all the functionals
els somead hocprocedure$22,23. which give densities with a weak shell structure have nu-
Different alternatives have been formulated in order to getnerical complications either in extended or in atomic sys-
better descriptions than those given by the gradient expartems.

sion models. The Weizsker termT,,[n] introduced in Eq. The absence of a clear atomic shell structure using any
(4) can be considered as an essential componefitdaf] kinetic-energy functional is probably due to an incomplete
[15]. Therefore the kinetic-energy functional can be writtendescription of nonlocal properties. In this work we present a

as kinetic-energy functional, generalizing the ADA functional
via a symmetrization procedure of the scaling used in the

Tdn]=Tw[n]+TyIn], (5) evaluation of the averaged density. That will imply a much

better description of the nonlocality of the system. In fact,
when applied to atoms, it gives not only accurate total ener-

where T,[n], as emphasized by Herrin@4], must be of : ; ; . .
high norr“E)c]al naturep y @4l gies but also density profiles with a greatly improved shell
X structure.

Several models following this procedure have been pro-
posed. The weighted density approximati¢WDA) by
Alonso and Girifalcd 25], based on the relationship between
the exchange hole and the kinetic energy within the Hartree-

Fock approximation, gives accurate total atomic energies In order to obtain a better inclusion of the nonlocal effects
[26] and an incipient shell structure for closed-shell atomsof an electron system, we propose a generalization of the
with Z>30 [27]. The internal consistency between the ex-ADA functional [29], where the nonlocal component of Eq.
change and the kinetic terms makes it unclear whether thé) is given by

appearance of oscillations in the density profiles is due to the

kinetic functional itself or is because they also use a nonlocal 8 3

exchange functional. On the other hand, the WDA model _° ~ 2

using the exact Hartree-Fock exchange hole shows numerical Taln]= SJ’ toln(r)In(rydr = g Trelnl, )
difficulties in jellium surface calculatiof28].

Chacm et al. [29] came to similar conclusions using an
averaged density approximati¢ADA) functional which re-
produces entirely the linear response of the homogeneous
electron gas. Total energies for atoms are quite good, but not _
as good as the WDA ones. A second peak in the radial den- n(r)=f n(r)Q(r,r’),|r—=r'dr’. (8)
sity 4mrrn(r) appears for the Kr and the Xe atoms, but does
not in lighter atoms. However, this functional exhibits a
long-range behavior which implies poor results for jellium () is a normalized weight function anf{r,r’) is a function
surfaceq 30] and for the chemical potential of heavy atoms. of the density at andr’. The inclusion of the TF term in Eq.
These convergence problems in extended systems can pp, explained in Ref[29], allows the proper description of
avoided by averaging the local Fermi momentumthe short wavelength limit of the linear response of a homo-
|(|:(I‘)=[37Tzl’l(r):|l/3 instead of the density30], but the geneous electron gas.
atomic density profiles do not show a clear improvement on  Wwhile in the original ADA functionalZ(r,r")=kg(r),
the previously quoted results. meaning a spherical average around the poiint Eq. (8), a

Another nonlocal functional is the one developed bygeneral functionz(r,r’) will yield a nonspherical average
Wang and Tetef31], which also reproduces the linear re- whenTi(r) is evaluated. A simple choice for the two-point

sponse of the homogeneous electron gas. Calculations @finction (r,r’) is the following symmetrized form:
atomiclike model§composed of noninteracting electrons un-

der a central Coulomb potentjashow weak oscillations in

II. THEORY

with n(r) being an average of the density,

the density, but the first functional derivative of this func- '\ = oUUB 1| 9
tional diverges whem—ce, with the correct limit for local- {rrh)= k-(r)? + k_(r'\B ' ©)
: : F(r) F(r’)
ized systems being
SToln] where the constant factor’® is included in order that
lim 5r?(r) = (6) Z(r,r') be equal to the Fermi momentum in the homoge-

r—oo

neous limit. The parameteg will be determined afterwards.
The weight function() is obtained by imposing the func-
Using the basic ideas of the ADA functional, the recenttional to reproduce the physical properties of the homoge-
kinetic-energy functionals proposed for solids by Pef8&  neous limit; in particular, its energy and its linear response.
and Smargiassi and MaddgB3] need as an input the mean The first point is merely accomplished by the normalization
densityN/V of the system and hence their implementationcondition of the weight function and the second is achieved
for atomic or molecular systems is not possible. by means of the equation
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5°T4n] The left member in(11) includes the Fourier forn}(q,ng)
(m ”0) of the weight function and its derivatives with respecito
A The right member is dimensionless and it only depends on
== Xo(d,No) ~* 7, sS0€)(q,Nny) is also scaled in the same way,
1 2m?

ke fqng)=al(n), 12
ke 1+[(1— 52 /129]In[(1+ p)/(1—p)|’ (10 a,No)=a(7

. ) ) implying the following form for the real space weight func-
where xo(d,ne) is the Fourier form of the homogeneous o -
noninteracting electron gad.indhard susceptibility [34],
7n=0/2Kg is a dimensionless momentum, afddenotes the Qe r=r'D=[2z(r,r")Pw@i(r,r")|r=r']),
Fourier transform. Subtraction of the Weizkar term trans- (1
forms Eq.(10) into
where w(x) is the inverse Fourier transform @f(»). This
equation shows that the functiaf{r,r’) is a scaling factor
No which depends on the density at both pointandr’. We
expect that the nonspherical average in @j.will improve
3772772_ (11) the tr(_aatment of the .nonlo.cal effects.
Using these considerations, E41) becomes

8°Tyln]
on(ry)on(ry)

ka(

B 272 3
T ARl DI )]

~ ~ 2 11+’8 A7 1 Ay 2 1’* Ay 1 2~
6w(n)—w(n) - 3 nw(n)—3—6[77w(77)]+§w(77)77w(77)+g77w(77)

5 10
=—| 3+ —15%?|, 14
8" TH— gt i p] 7 (49
|
with no explicit dependence on the density. Solving this SE[N]
equation numerically, imposing the conditio$0)=1 and sn(r) =K, (15

lim,_...o(7)=0, we get the functioriv(7). The shape of

the weight functionw(x) is given in the Appendix. wherep is a Lagrange multiplier related to the conservation

_ In order to finish the construction of odi{n] we must ot the number of electrons; it can be identified with the
fix 8. For|B|>1, the first functional derivative of n] has chemical potential of the systefi3]. We have chosen for

a very slow decay for atomic density profiles. The final valueExc[n] the local density approximatiofLDA) proposed by
B=1/2 was chosen after the minimization of the total energyperdew and Wan{B5], adjusted to the Monte Carlo calcu-
of atoms for several values @f within (—1,1) and compar- |ations by Ceperley and AlddB6], which is easy to extend
ing both the ground energies and the density profiles withy spin polarized densities. All calculations in this paper,
those obtained with the KS method. Whgr-3/4 is used in  jncluding those performed with the KS method, have been
the calculations, the results are quite similar to those prégarried out using this xc functional in order to allow a proper
sented in this paper, giving better energies for heavy atomgomparison between the different kinetic-energy functionals
but, in general, poorer energies and ionization potentials fogg the exact KS method.

light atoms. For other values @ within (—1,1) the density To solve Eq(15) we have made the well known transfor-
profiles also show shell structure, but the energies worsen by,ation into a Schiinger-like equation by means of the sub-

abogt 10%. - . stitution ¥ (r) =/n(r) [37], resulting in the equation
Finally, we have to comment that it is possible to develop

a model similar to Eqs(7) and (8) by averaging a certain
power y of the density, instead of the density itself. How-
ever, the first functional derivative is not divergent only if
y=1. Prospective calculations withy=4/3 give much
poorer results than those obtained with 1.

W(r)=u¥(r), (16)

1 2
~ 5 V2V

with the effective potential

_ OTw[n] 6By {nN] _ E n(r') )
ll. RESULTS Ve(n)= on(r) sn(r) r Jrf—|r_r,|dr . (17

In this section we present the results obtained with our In Table | we compare the exact KS total energies for
functional for the ground-state energies and densities of atseveral closed-shell atoms with those obtained, after their
oms. We have minimized the total ener¢) solving the  minimization, with our new functional and with the original
Euler-Lagrange equation nonsymmetric ADA functional29] (which we will refer to
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TABLE |. Total energies for several closed-shell atofirs 12 -
atomic unit$ obtained through the Kohn-Sham method and the
kinetic-energy functionals quoted in the text.

KS This work nsADA  TF(1/5W TF(1/9)W

He —2.834 —2.848 —2.839 —-2.917 —3.324

Ne —128.23 -128.70 —140.42 -—129.53 —140.62
Ar  —52593 -521.62 —554.03 —526.31 —563.42
Kr —2750.1 —-2742.7 —-2760.8 —2748.6 —2902.0
Xe —7228.8 —72053 —7159.4 -7218.1 —7569.0
Be —14.446 -14.786 —15.666 —-14.717 —16.399
Mg —199.13 —-198.43 —215.47 -200.05 -—216.20
Ca —-675.73 —-671.15 —-707.17 —676.73 —722.78
Sr  —-3129.4 -3120.8 —31325 -3126.5 —3297.6

as nsADA. We also include the results for the TF(1V9)
and TF(1/5W functionals. Our functional and the TF
(1/5)W functional give a clear improvement upon the
nsADA and TF(1/9YV functionals, with a very good agree-
ment with the KS results. Note that the differences between
our TF(\)W results and those found in the paper by Stich
et al. [38] are due to the absence of correlation in their cal-
culations. On the other hand, our KS results are in agreement
with previous calculation§4] performed with another LDA
parametrization of the xc functional done by Perdew and
Zunger[39].

We have not included the Hartree-Fopd0] and WDA
[26] energies because of the different treatment of the xc
energy in each case. Anyway, the differences between our
energies and the KS ones, using any LDA for the xc, are
lower than 1%; they are of the same order of magnitude as
the differences between the KS values and the Hartree-Fock
or WDA energiegsee alsd41]).

In Fig. 1 we plot the electronic density profiles of the Ne,
Ar, and Kr atoms. KS densities are compared with those
obtained with the mentioned models. The TF(W5junc-
tional smooths out the shell structure and the densities are
very similar to those obtained with any other Ny{V func-
tional. The profiles obtained with the nsADA functional
show a clear improvement in the position and height of the
first maximum K shel) but there is no structure associated
to the second ) shell for lighter atoms. However, for
heavier atoms like Kr, the nsADA functional gives a density
with a second peak, showing a trend similar to that observed
with the WDA functional(see Fig. 2. Finally, our symme-
trized model gives an excellent description of Hehell for FIG. 1. Radial density #r?n(r) for the Ne atom(a), the Ar
every atom and, besides, there is a second oscillation in th&om (b), and the Kr atorr(c). Thick solid line, Kohn-Sham; solid
Ne atom profile that represents the shell, although the line, present work; dotted line, nsADA functional; dashed line,
height and position of this second maximum are displacedF(1/5)W.
with respect to the KS one. The density of the Ar and Kr
atoms also exhibits a second peak betweenLtrand third  orbitals. As was mentioned in the Introduction, the WDA
(M) shells. Moreover, as presented in the inset, Kr andorofiles show a weak structure with two local maxima. How-
heavier atoms’ profiles show some additional weak structurever, the description of thK shell is worse than that per-
in the outer region of the atom. formed with our functional, although the positions of the

In Fig. 2 we compare the density profiles obtained withsecond maximum are very similar in both cases. Additional
our functional and the WDA resul{®5,27] for the Ar and  structure for heavy atoms is not observed in the WDA pro-
Kr atoms. We have to remark again the different treatment ofiles.
the xc term in the WDA model. But we want to include a  In Fig. 3 we plot the chemical potentials, obtained after
comparison between density profiles obtained by accurateesolution of the Euler-Lagrange equation for differéntal-
nonlocal functionals, which make no reference to the KSues. They are compared with the highest KS orbital energy,
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TABLE II. Chemical potentials an@in brackets first ionization
energieE(N—1)—E(N) in a.u. for noble gas atoms, obtained with
the Kohn-Sham method and the kinetic-energy functionals quoted
in the text.

KS  Thiswork nsADA TF(1/5\W TF(1/9)W

He -0570 -0.155 -0.271 -0.101 —-0.092
[0.83] [0.50] [0.60] [0.22] [0.20]
Ne —-0.497 -0.087 —0.063 —0.109 —0.096
[0.82] [0.29] [0.18] [0.30] [0.28]
Ar —0.382 —0.072 —0.037 —0.111 —0.097
[0.59 [0.22] [0.17] [0.29] [0.25]
Kr —0.345 —0.153 —0.020 —0.113 —0.098
[0.53] [0.30] [0.06] [0.27] [0.25]
60- Xe -0.309 -0.140 -0.017 -0.114 —0.099
50 [0.47] [0.28] [0.05] [0.26] [0.24]
~ :
& 40 _ o _
() g of noble gas atoms and their relaxed ionization energies
L 30+ I =E(N—1)—E(N), with E(N) andE(N—1) being the to-
20— \ tal energies of the neutral atom and the first positive ion,
B | ies of th | d the fi itive i
< 104 respectively. Except for He, we get better results than with
the nsADA functional.
0 T T T \ Figure 4 shows the behavior of the Ca ato&®=20)
0 0.5 1 1.5 2 density near the nucleus. The inclusion of the Weikea
12 term provides a good description of the density when
(b) r (a°u-) r—0 for both symmetrized and nonsymmetrized ADA func-

FIG. 2. Radial densities obtained with the symmetrized ADA
functional (solid line), with the WDA functional(dotted ling, and
with the Kohn-Sham metho(thick solid line. (a) Ar atom; (b) Kr
atom.

which equals the chemical potential in the KS metiéd].
We can observe that the TF(1¥) chemical potential is
practically constant for all atoms and that the nsADA values
increase monotonously, an indication of stability problems.
In contrast, the values obtained with our functional are not
monotonic, according to the exact behavior, although for 0 T T ]
light atoms these values are overestimated. For atoms with 0 0.01 0.02 0.03
Z>20 our results are better than the TF(IABpnes.

In Table Il we present the results of the chemical potential (a) r (a-u-)

eV}

-0.6-"4 101520 36 51
i L I 1

T T T i T ] T ]
2 7 12 18 3'338 54 5 10 15 20 25
Z (b) r (a.u.)

FIG. 3. Chemical potential for several atoms with spherical FIG. 4. Behavior of the densitg(r) for the Ca atom, near the
symmetry. Solid line with points, Kohn-Sham; solid line, presentnucleus(a) and for large values af (b). Notation is the same as in
work; dotted line, nsADA functional; dashed line, TF(1V8) Fig. 1.
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15- TABLE IIl. Total energies in a.u. for group Vb atoms. Between
brackets, total energies when the polarizability is forced to be equal
to &ks in the minimization.

~~

= 10—

E/ 10 KS  Thiswork nsADA  TF(1/5WW TF(1/9W
[o\]

= N -54.134 -55326 —60.307 -55.407 —60.773
5_ 5 [-55.261 [—59.533 [—55.001 [—60.349

P —340.00 -337.53 —362.87 —340.67 —366.27
[—337.4] [362.59 [-340.47 [365.97

0- As —2232.6 —2227.1 —22541 —22339 —2362.3
0.01 0.1 1 10 [—2227.1 [-2254.0 [-2233.7 [-2362.1
(a) r (a.u.) Sb —6310.3 —6295.0 —6256.1 —6300.1 —6612.8
[-6295.0 [—6256.] [—6300.0 [—6612.3
15+ 5
/ )7
n(r)TF()\)W"‘eX[{ -2 - Tr for r—oo, (19)
—_
& 104
c\E This expression shows that, for the NjWV functional and
B 54 N#1, the better the chemical potential, the worse the decay
< of the density, as can be clearly seen in Fig. 4. For the Ca
atom the KS chemical potential almost coincides both with
0- that obtained with the TF(1/8Y functional and with our
functional, but the decay of our density is much closer to the
0.01 0.1 1 10 KS one; the bad behavior of the TF (1¥8)decay reflects the
(b) r (a.u.) value of\. On the other hand, the slow decay of the nsADA
profile is related to the small absolute value of its chemical
potential.
Finally, in Fig. 5 we plot the density profile for the neutral
157 Mg atom (Z=12) and several of its ions, as obtained with
our functional and with the TF(1/8y approximation. We
o 10 see the progressive smearing off of the shells as we remove
\a/ the electrons of the ions. For our functional, and according to
L the exact KS behavior, the position of the second peak does
B 5- not change substantially when the number of electrons is
<t greater than ten and the inner shell remains invariant until
the number of electrons is less than four. This trend is not
0 described at all by the TF(1/8) model.
0.01 0.1 1 10
(C) r (a.u) IV. EXTENSION TO SPIN-POLARIZED SYSTEMS

The kinetic-energy functional presented in the previous

FIG. 5. Radial density for the neutral Mg & 12) atom and for Ise?tlo.ns C.an be generihzed .m ﬁrder to ISCMde the spin po-
several of its ions =10, 8, 6, 4, 2 obtained with(a) the KS arization in systems where, in the ground state,

method,(b) the TF(1/5NV approximation,(c) our functional.

n,.(ry=n_(r), (20)
tionals. In contrast, the TF(1/8) density is clearly overes- . o o .
timated. n,(r) being the electron density with spin orientatienWe
The asymptotic behavior of the density is related to themust remark that only the inclusion of a suitable xc func-
chemical potential of the atom through the equation tional can describe spin-polarized systems, but the corre-

sponding extension for the kinetic functional must be done in
order to describe any electronic system within a functional
n(r)~exd —2y—2ur] for r—e (18)  theory for the spin density.
Because of theoninteractingcharacter of the system rep-
resented byl { n], the mentioned extension is made directly

when the exact kinetic functional is us@d]. The relation by means of the definitiofd3]

(18) is verified by those kinetic-energy functionals con-
structed using Eq(5) and verifying the additional condition
(6). For the TFQ)W model, the correct lawl8) is substi-

1 1
tuted by Tdn,.n_]=5Td2n, ]+ 5Td2n-], (21
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-54.00- 20-
-54.05- ~ 15-

_-54.10- =

S -54.15- o 10

< .

E -55.254 / 5— 5
-55.30—w .
zzig: -7 001 01 1 10

' ' ' ' ' (a) r (a.u.)

FIG. 6. Total energy vs polarizability for the N atom. Dashed
line, TF(1/5W; solid line, this work; thick solid line, KS.

whereT4 n] is the non-spin-polarized kinetic-energy func-
tional. (This easy extension cannot be made for the correla-
tion energy functional, which describes properties ofitie
teracting electron gag.Inserting our functional7) into Eqg.
(21) we get the definitive expression of the nonlocal kinetic-
energy functional. Of course, for non-spin-polarized systems ‘
like those described in the preceding section, both formula- 0.01 0.1 1 10
tions are completely equivalent. (b) r (a.u.)

To minimize the new functional we solve the two coupled
Euler-Lagrange equations for both spin densities,

FIG. 7. Radial total densitythick solid line and spin densities

SE[n.,n_] 6Tdn.,n_] Z n(r’) (solid and dotted linedfor the P atom obtained with the KS method
ong(r) B on,(r) T mdr (@) and with our spin-polarized functionéb).
OExdn..,n_] 22 (the KS values are, respectively/cs=0.429 and

on,(r) Mo {ks=0.200). In Fig. 6 we plot the functiong(&) obtained
with our functional, with the TF(1/3) functional, and with
where theE,Jn] is, in our calculations, the extension to the KS method for the N atom. On the other hand, for the
spin-polarized systems of the functiorf85] we have used heavier atoms of group Viwith a weaker KS polarizability;
previously. Conserving the number of electrons with each¢s=0.091 for the As andxs=0.059 for the Sh our func-
spin orientation we obtain the energy minimum for a giventional yields unpolarized ground states.
polarization é&=(N,—N_)/(N,+N_), where N, is the Note that if we calculate the differences between the
number of electrons with spin orientatien By varying the  atomic energywith the KS polarizationand the final
distribution of particles between the two possible spin statesgground state energy obtained with each functional, the results
we get the final energy of the ground state of the system, itfor our functional are much lower than the ones obtained
density profile, and its spin polarization. At this point, we with any of the other functionaléee Fig. 6 and also Table
must have chemical equilibrium between both spin orientedll, where the total energies of several group Vb atoms are
electron gases, i.ey, = u_. presentef] That means the energy versus polarization curve

Group Vb of the periodic table is a good test for thein our symmetrized functional is much flatter than for the
spin-polarized functionals. The nsADA and all the squareother ones.
gradient based functionals give a non-spin-polarized ground The total and spin densities for the P atom using the new
state, i.e.£=0, for every atom of the group. However, the functional are plotted in Fig. 7. We can see that the total
symmetrized ADA functional gives a spin-polarized grounddensity profile exhibits two inner shells with a practically
state withé=0.272 for the N atom ang=0.077 for the P equal contribution from both spin densities, in complete

TABLE IV. Values of the parameters for the fitting of the weight functio(x).

B ) A a a, as
5.22594 4.23212 —0.0303061 0.276801 1.47097 0.458380

0.375101 —0.0372670 0.0100745 0.765885 0.405737




1904 GARCIA-GONZALEZ, ALVARELLOS, AND CHACON 54

agreement with the exact behavior. On the other hand, the 0.3 -
M shell, mainly due to the |3 electrons, is clearly polarized A
and our result shows a major presence of electrons of one of ]
the spin orientations in a region aroung 3 a.u. 0.2 ]

In this paper we have presented a nonlocal ADA kinetic-
energy functional which includes the Weizkar term(4)
and a nonlocal terni7) with an averaged density calculated R
through a universal weight function. We have symmetrized
via Eq. (9) the evaluation of the averaged density and this
symmetrization has clearly increased the nonlocal character
of the functional by the inclusion of a nonspherical averaging 0 10 20 30
procedure. X

The functional has given very accurate total and kinetic
atomic energies, when compared to those obtained with the FIG. 8. Weight functionw(x) for 8=1/2. Dots: numerical val-
exact KS method, as well as acceptable first ionization enetses; solid line: parametrized function.
gies and polarized ground states for the lighter atoms of
group Vb . APPENDIX: PARAMETRIZATION

The present kinetic-energy functional gives a clear shell OF THE WEIGHT FUNCTION

structure in all the atoms, except for Li and Be. Although Due to th herical v of the functie
some of the previous nonlocal kinetic functionals have ue 1o the spherical Symmetry ot the func m;rQr;) _[see
iq. (14)], the functionw(x) introduced in Eq(13) is given

<
e
V. CONCLUSIONS NS 0.1 ]
>
4
q—

shown incipient structures for heavy atoms, only when usin

the present nonspherical average procedure is a clear str

ture for most of the atoms obtained. Moreover, the polarized

version of the functional has been able not only to show the 1 (=

outer shell of polarized atoms but even to distinguish unam- w(X)= 2—2;f 7 sin(pX) (7). (A1)

biguously the spin density of that shell. So, we confirm the mrJo

idea that only when using highly nonlocal models for the

kinetic-energy functional is it possible to obtain results closg; is easy to see that the asymptotic decayasfy) for

to the exact ones, both for energies and for density profiles,, ... js proportional to 2. That implies an integrable
We have constructed our functional with no reference Wsingularity inw(x)of the typea/x whenx—0. On the other

the specific properties of atomic systems, except in the finglanq, the nonanalytical behavior of the Lindhard function at

choice of the paramete8 which appears in Eq9). How- —1 induces a nonanalyticity i(7) at 7=1. Conse-

ever, when digcussing the'ap_pearan_ce or not of the sh ently, the decay ab(x) is not exponential but of the type
structure, the important point is the inclusion of the two-

point symmetrized functiod(r,r’) and the specific value of
would be of minor importance. Bcogx+ 6) _

g The main limitations gf our functional are the absence of o(X)= T+°(X ®), x>0. (A2)

polarization in some heavy atoms of group Vb and that the

values of the first ionization energy for light atoms do not

clearly improve upon the results obtained with the nsADAThis behavior has a minor contribution when using the func-

and TF(1/5V functionals. The use of the linear response oftional in localized systems as atoms, however, it is important

the homogeneous electron gas to construct our functiona¥hen calculating properties of extended systems like metal

could affect the correct description of electronic systems irsurfaceq30].

regions where either the collective effects or the inhomoge- In order to simplify the use of the functional we present a

neity of the density are extremely high. parametrization of the weight function f@=1/2. Any ana-
Iytical parametrization ofv(%) will not include the above
mentioned nonanalyticity fomp=1. For that reason, it is
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normalization ofw(x) and the continuity ofw(x) and its  (x) are negligible(see Fig. 8 Although we have used the
derivative atx=16. The parameters of the fitting are showennumerical weight function in the present paper, we have not
in Table IV. Differences between the parametrized formfound any difference in the results when the parametrized

given in Egs.(A2) and (A3) and the numerical values of w(x) is used in the calculations.
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