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We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density
through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the
electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the
atomic density profiles, obtained after the minimization of the total energy. Although previous results with
some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional
shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the
exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included.
The functional is also extended to spin-polarized systems.@S1050-2947~96!08208-X#

PACS number~s!: 31.15.Ew, 71.10.2w , 31.10.1z

I. INTRODUCTION

The density-functional theory@1–4# proves that, for any
electron system under the action of an external potential
vext(r ), there is an energy functional of the electron density
n(r ),

E@n#5F@n#1E vext~r !n~r !dr , ~1!

which has its minimum for the ground-state density and it is
equal to the ground energy of the system. The functional
F@n# is universal@i.e., it depends on neither the external
potentialvext(r ) nor the numberN of electrons#. It is usually
divided into three terms~atomic units are used throughout
this paper!:

F@n#5TS@n#1
1

2 E E n~r !n~r 8!

ur2r 8u
dr dr 81Exc@n#, ~2!

whereTS@n# is the kinetic-energy functional of a noninter-
acting electron system, the second term is the classical elec-
trostatic interaction energy~Hartree energy!, andExc@n# is
the so-called exchange-correlation~xc! energy.

TS@n# can be evaluated exactly through a set of one-
electron wave functions, the Kohn-Sham~KS! orbitals @5#,
and the minimization of the functional~1! becomes the reso-
lution of a set of coupled Schro¨dinger-like equations for the
KS orbitals~KS method!. However, the construction of func-
tionals depending explicitly on the densityn(r ) ~without any
reference to the wave functions! has an undoubted formal
interest, as was pointed out in the original Hohenberg-Kohn
theorem. Moreover, in first-principles molecular dynamics
@6#, the use of an approximate orbital-free kinetic-energy
functional, instead of the KS method, makes easier the evalu-
ation of the forces and reduces the computational cost of
complex calculations, transforming the (3N)-dimensional
problem into a three-dimensional one@7–9#. Accurate ex-
plicit TS@n# functionals, which give not only good energies
but also correct density profiles for the electron ground state,
are clearly needed.

The well known Thomas-Fermi~TF! model @10#,

TTF@n#5E t0@n~r !#n~r !dr5E 3@3p2n~r !#2/3

10
n~r !dr ,

~3!

which is the simplest approximation toTS@n#, gives poor
results when applied to atoms: no accurate total energies,
divergent density profiles at the nucleus, no exponential de-
cay whenr→`, and lack of the characteristic atomic shell
structure.

The second order gradient correction to the TF functional,
constructed by addition of the Weizsa¨cker termTW@n# @11#,
constitutes the family of TF(l)W models:

TTF~l!W@n#5TTF@n#1lTW@n#

5TTF@n#1l
1

8E u¹n~r !u2

n~r !
dr. ~4!

TW@n# is the exact kinetic energy of a system composed of
only one electron or by two electrons in the same spatial
state. It guarantees the correct exponential decay of the den-
sity in atoms and metal surfaces, as well as the Kato cusp
condition @12,13#. It is also a lower bound ofTS@n# and
describes the leading term in the linear response of a homo-
geneous electron gas under short wavelength perturbations
@14,15#. These functionals avoid some limitations of the TF
model, e.g., the density is finite at the nucleus and the profile
has an exponential decay@16#, but the resulting ground state
densities do not exhibit any shell structure. Forl51, there is
a large overestimation of the total energies. Forl51/9, the
functional ~4! reproduces the linear response of a homoge-
neous electron gas under a long wavelength perturbation,
getting the conventional second order gradient expansion
@17#. In this case, there is a large underestimation of the total
energies obtained after minimization of the energy func-
tional. Finally, the interpolation valuel51/5 proposed by
Tomishima and Yonei@18# leads to a sensible improvement
in the atomic ground energies but not in the density profiles.
The kinetic-energy functionals with density gradients of
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higher order@19,20# do not change appreciably the ground
energies and the densities’ profiles remain without shell
structure@21#. Note that the shell structure of atoms can be
obtained by introducing into these gradient expansion mod-
els somead hocprocedures@22,23#.

Different alternatives have been formulated in order to get
better descriptions than those given by the gradient expan-
sion models. The Weizsa¨cker termTW@n# introduced in Eq.
~4! can be considered as an essential component ofTS@n#
@15#. Therefore the kinetic-energy functional can be written
as

TS@n#5TW@n#1Tnl@n#, ~5!

whereTnl@n#, as emphasized by Herring@24#, must be of
high nonlocal nature.

Several models following this procedure have been pro-
posed. The weighted density approximation~WDA! by
Alonso and Girifalco@25#, based on the relationship between
the exchange hole and the kinetic energy within the Hartree-
Fock approximation, gives accurate total atomic energies
@26# and an incipient shell structure for closed-shell atoms
with Z.30 @27#. The internal consistency between the ex-
change and the kinetic terms makes it unclear whether the
appearance of oscillations in the density profiles is due to the
kinetic functional itself or is because they also use a nonlocal
exchange functional. On the other hand, the WDA model
using the exact Hartree-Fock exchange hole shows numerical
difficulties in jellium surface calculation@28#.

Chacón et al. @29# came to similar conclusions using an
averaged density approximation~ADA ! functional which re-
produces entirely the linear response of the homogeneous
electron gas. Total energies for atoms are quite good, but not
as good as the WDA ones. A second peak in the radial den-
sity 4pr 2n(r ) appears for the Kr and the Xe atoms, but does
not in lighter atoms. However, this functional exhibits a
long-range behavior which implies poor results for jellium
surfaces@30# and for the chemical potential of heavy atoms.
These convergence problems in extended systems can be
avoided by averaging the local Fermi momentum
kF(r )5@3p2n(r )#1/3 instead of the density@30#, but the
atomic density profiles do not show a clear improvement on
the previously quoted results.

Another nonlocal functional is the one developed by
Wang and Teter@31#, which also reproduces the linear re-
sponse of the homogeneous electron gas. Calculations of
atomiclike models~composed of noninteracting electrons un-
der a central Coulomb potential! show weak oscillations in
the density, but the first functional derivative of this func-
tional diverges whenr→`, with the correct limit for local-
ized systems being

lim
r→`

dTnl@n#

dn~r !
50. ~6!

Using the basic ideas of the ADA functional, the recent
kinetic-energy functionals proposed for solids by Perrot@32#
and Smargiassi and Madden@33# need as an input the mean
densityN/V of the system and hence their implementation
for atomic or molecular systems is not possible.

Concluding, several of the mentioned functionals give
good agreement with the KS energies for atomic systems,
but they get density profiles that cannot be compared favor-
ably with the exact KS ones. Besides, all the functionals
which give densities with a weak shell structure have nu-
merical complications either in extended or in atomic sys-
tems.

The absence of a clear atomic shell structure using any
kinetic-energy functional is probably due to an incomplete
description of nonlocal properties. In this work we present a
kinetic-energy functional, generalizing the ADA functional
via a symmetrization procedure of the scaling used in the
evaluation of the averaged density. That will imply a much
better description of the nonlocality of the system. In fact,
when applied to atoms, it gives not only accurate total ener-
gies but also density profiles with a greatly improved shell
structure.

II. THEORY

In order to obtain a better inclusion of the nonlocal effects
of an electron system, we propose a generalization of the
ADA functional @29#, where the nonlocal component of Eq.
~5! is given by

Tnl@n#5
8

5E t0@ ñ~r !#n~r !dr2
3

5
TTF@n#, ~7!

with ñ(r ) being an average of the density,

ñ~r !5E n~r 8!V„z~r ,r 8!,ur2r 8u…dr 8. ~8!

V is a normalized weight function andz(r ,r 8) is a function
of the density atr andr 8. The inclusion of the TF term in Eq.
~7!, explained in Ref.@29#, allows the proper description of
the short wavelength limit of the linear response of a homo-
geneous electron gas.

While in the original ADA functionalz(r ,r 8)5kF(r ),
meaning a spherical average around the pointr in Eq. ~8!, a
general functionz(r ,r 8) will yield a nonspherical average
when ñ(r ) is evaluated. A simple choice for the two-point
function z(r ,r 8) is the following symmetrized form:

z~r ,r 8!521/bF 1

kF~r !b 1
1

kF~r 8!bG21/b

, ~9!

where the constant factor 21/b is included in order that
z(r ,r 8) be equal to the Fermi momentum in the homoge-
neous limit. The parameterb will be determined afterwards.

The weight functionV is obtained by imposing the func-
tional to reproduce the physical properties of the homoge-
neous limit; in particular, its energy and its linear response.
The first point is merely accomplished by the normalization
condition of the weight function and the second is achieved
by means of the equation
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F S d2TS@n#

dn~r1!dn~r2!
Un0D

52x̂0~q,n0!
21

5
1

kF

2p2

11@~12h2!/2h# lnu~11h!/~12h!u
, ~10!

where x̂0(q,n0) is the Fourier form of the homogeneous
noninteracting electron gas~Lindhard! susceptibility @34#,
h5q/2kF is a dimensionless momentum, andF denotes the
Fourier transform. Subtraction of the Weizsa¨cker term trans-
forms Eq.~10! into

kFF S d2Tnl@n#

dn~r1!dn~r2!
Un0D

5
2p2

11@~12h2!/2h# lnu~11h!/~12h!u
23p2h2. ~11!

The left member in~11! includes the Fourier formV̂(q,n0)
of the weight function and its derivatives with respect toq.
The right member is dimensionless and it only depends on
h, so V̂(q,n0) is also scaled in the same way,

V̂~q,n0!5v̂~h!, ~12!

implying the following form for the real space weight func-
tion V:

V„z~r ,r 8!,ur2r 8u…5@2z~r ,r 8!#3v„2z~r ,r 8!ur2r 8u…,
~13!

wherev(x) is the inverse Fourier transform ofv̂(h). This
equation shows that the functionz(r ,r 8) is a scaling factor
which depends on the density at both pointsr and r 8. We
expect that the nonspherical average in Eq.~8! will improve
the treatment of the nonlocal effects.

Using these considerations, Eq.~11! becomes

6v̂~h!2v̂~h!22
111b

6
hv̂8~h!2

1

36
@hv̂8~h!#21

1

3
v̂~h!hv̂8~h!1

1

6
h2v̂9~h!

5
5

8 S 31
10

11@~12h2!/2h# lnu~11h!/~12h!u
215h2D , ~14!

with no explicit dependence on the density. Solving this
equation numerically, imposing the conditionsv̂(0)51 and
limh→`v̂(h)50, we get the functionv̂(h). The shape of
the weight functionv(x) is given in the Appendix.

In order to finish the construction of ourTS@n# we must
fix b. For ubu.1, the first functional derivative ofTS@n# has
a very slow decay for atomic density profiles. The final value
b51/2 was chosen after the minimization of the total energy
of atoms for several values ofb within (21,1) and compar-
ing both the ground energies and the density profiles with
those obtained with the KS method. Whenb53/4 is used in
the calculations, the results are quite similar to those pre-
sented in this paper, giving better energies for heavy atoms
but, in general, poorer energies and ionization potentials for
light atoms. For other values ofb within (21,1) the density
profiles also show shell structure, but the energies worsen by
about 10%.

Finally, we have to comment that it is possible to develop
a model similar to Eqs.~7! and ~8! by averaging a certain
power g of the density, instead of the density itself. How-
ever, the first functional derivative is not divergent only if
g>1. Prospective calculations withg54/3 give much
poorer results than those obtained withg51.

III. RESULTS

In this section we present the results obtained with our
functional for the ground-state energies and densities of at-
oms. We have minimized the total energy~1! solving the
Euler-Lagrange equation

dE@n#

dn~r !
5m, ~15!

wherem is a Lagrange multiplier related to the conservation
of the number of electrons; it can be identified with the
chemical potential of the system@3#. We have chosen for
Exc@n# the local density approximation~LDA ! proposed by
Perdew and Wang@35#, adjusted to the Monte Carlo calcu-
lations by Ceperley and Alder@36#, which is easy to extend
to spin polarized densities. All calculations in this paper,
including those performed with the KS method, have been
carried out using this xc functional in order to allow a proper
comparison between the different kinetic-energy functionals
and the exact KS method.

To solve Eq.~15! we have made the well known transfor-
mation into a Schro¨dinger-like equation by means of the sub-
stitutionC(r )5An(r ) @37#, resulting in the equation

F2
1

2
¹21Ve~r !GC~r !5mC~r !, ~16!

with the effective potential

Ve~r !5
dTnl@n#

dn~r !
1

dExc@n#

dn~r !
2
Z

r
1E n~r 8!

ur2r 8u
dr 8. ~17!

In Table I we compare the exact KS total energies for
several closed-shell atoms with those obtained, after their
minimization, with our new functional and with the original
nonsymmetric ADA functional@29# ~which we will refer to
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as nsADA!. We also include the results for the TF(1/9)W
and TF(1/5)W functionals. Our functional and the TF
(1/5)W functional give a clear improvement upon the
nsADA and TF(1/9)W functionals, with a very good agree-
ment with the KS results. Note that the differences between
our TF(l)W results and those found in the paper by Stich
et al. @38# are due to the absence of correlation in their cal-
culations. On the other hand, our KS results are in agreement
with previous calculations@4# performed with another LDA
parametrization of the xc functional done by Perdew and
Zunger@39#.

We have not included the Hartree-Fock@40# and WDA
@26# energies because of the different treatment of the xc
energy in each case. Anyway, the differences between our
energies and the KS ones, using any LDA for the xc, are
lower than 1%; they are of the same order of magnitude as
the differences between the KS values and the Hartree-Fock
or WDA energies~see also@41#!.

In Fig. 1 we plot the electronic density profiles of the Ne,
Ar, and Kr atoms. KS densities are compared with those
obtained with the mentioned models. The TF(1/5)W func-
tional smooths out the shell structure and the densities are
very similar to those obtained with any other TF(l)W func-
tional. The profiles obtained with the nsADA functional
show a clear improvement in the position and height of the
first maximum (K shell! but there is no structure associated
to the second (L) shell for lighter atoms. However, for
heavier atoms like Kr, the nsADA functional gives a density
with a second peak, showing a trend similar to that observed
with the WDA functional~see Fig. 2!. Finally, our symme-
trized model gives an excellent description of theK shell for
every atom and, besides, there is a second oscillation in the
Ne atom profile that represents theL shell, although the
height and position of this second maximum are displaced
with respect to the KS one. The density of the Ar and Kr
atoms also exhibits a second peak between theL and third
(M ) shells. Moreover, as presented in the inset, Kr and
heavier atoms’ profiles show some additional weak structure
in the outer region of the atom.

In Fig. 2 we compare the density profiles obtained with
our functional and the WDA results@25,27# for the Ar and
Kr atoms. We have to remark again the different treatment of
the xc term in the WDA model. But we want to include a
comparison between density profiles obtained by accurate
nonlocal functionals, which make no reference to the KS

orbitals. As was mentioned in the Introduction, the WDA
profiles show a weak structure with two local maxima. How-
ever, the description of theK shell is worse than that per-
formed with our functional, although the positions of the
second maximum are very similar in both cases. Additional
structure for heavy atoms is not observed in the WDA pro-
files.

In Fig. 3 we plot the chemical potentials, obtained after
resolution of the Euler-Lagrange equation for differentZ val-
ues. They are compared with the highest KS orbital energy,

FIG. 1. Radial density 4pr 2n(r ) for the Ne atom~a!, the Ar
atom ~b!, and the Kr atom~c!. Thick solid line, Kohn-Sham; solid
line, present work; dotted line, nsADA functional; dashed line,
TF(1/5)W.

TABLE I. Total energies for several closed-shell atoms~in
atomic units! obtained through the Kohn-Sham method and the
kinetic-energy functionals quoted in the text.

KS This work nsADA TF(1/5)W TF(1/9)W

He 22.834 22.848 22.839 22.917 23.324
Ne 2128.23 2128.70 2140.42 2129.53 2140.62
Ar 2525.93 2521.62 2554.03 2526.31 2563.42
Kr 22750.1 22742.7 22760.8 22748.6 22902.0
Xe 27228.8 27205.3 27159.4 27218.1 27569.0
Be 214.446 214.786 215.666 214.717 216.399
Mg 2199.13 2198.43 2215.47 2200.05 2216.20
Ca 2675.73 2671.15 2707.17 2676.73 2722.78
Sr 23129.4 23120.8 23132.5 23126.5 23297.6
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which equals the chemical potential in the KS method@42#.
We can observe that the TF(1/5)W chemical potential is
practically constant for all atoms and that the nsADA values
increase monotonously, an indication of stability problems.
In contrast, the values obtained with our functional are not
monotonic, according to the exact behavior, although for
light atoms these values are overestimated. For atoms with
Z.20 our results are better than the TF(1/5)W ones.

In Table II we present the results of the chemical potential

of noble gas atoms and their relaxed ionization energies
I5E(N21)2E(N), with E(N) andE(N21) being the to-
tal energies of the neutral atom and the first positive ion,
respectively. Except for He, we get better results than with
the nsADA functional.

Figure 4 shows the behavior of the Ca atom (Z520)
density near the nucleus. The inclusion of the Weizsa¨cker
term provides a good description of the density when
r→0 for both symmetrized and nonsymmetrized ADA func-

FIG. 2. Radial densities obtained with the symmetrized ADA
functional ~solid line!, with the WDA functional~dotted line!, and
with the Kohn-Sham method~thick solid line!. ~a! Ar atom; ~b! Kr
atom.

FIG. 3. Chemical potential for several atoms with spherical
symmetry. Solid line with points, Kohn-Sham; solid line, present
work; dotted line, nsADA functional; dashed line, TF(1/5)W.

FIG. 4. Behavior of the densityn(r ) for the Ca atom, near the
nucleus~a! and for large values ofr ~b!. Notation is the same as in
Fig. 1.

TABLE II. Chemical potentials and~in brackets! first ionization
energiesE(N21)2E(N) in a.u. for noble gas atoms, obtained with
the Kohn-Sham method and the kinetic-energy functionals quoted
in the text.

KS This work nsADA TF(1/5)W TF(1/9)W

He 20.570 20.155 20.271 20.101 20.092
@0.83# @0.50# @0.60# @0.22# @0.20#

Ne 20.497 20.087 20.063 20.109 20.096
@0.82# @0.29# @0.18# @0.30# @0.28#

Ar 20.382 20.072 20.037 20.111 20.097
@0.59# @0.22# @0.17# @0.28# @0.25#

Kr 20.345 20.153 20.020 20.113 20.098
@0.53# @0.30# @0.06# @0.27# @0.25#

Xe 20.309 20.140 20.017 20.114 20.099
@0.47# @0.28# @0.05# @0.26# @0.24#
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tionals. In contrast, the TF(1/5)W density is clearly overes-
timated.

The asymptotic behavior of the density is related to the
chemical potential of the atom through the equation

n~r !;exp@22A22mr # for r→` ~18!

when the exact kinetic functional is used@4#. The relation
~18! is verified by those kinetic-energy functionals con-
structed using Eq.~5! and verifying the additional condition
~6!. For the TF(l)W model, the correct law~18! is substi-
tuted by

n~r !TF~l!W;expF22A2
2m

l
r G for r→`. ~19!

This expression shows that, for the TF(l)W functional and
lÞ1, the better the chemical potential, the worse the decay
of the density, as can be clearly seen in Fig. 4. For the Ca
atom the KS chemical potential almost coincides both with
that obtained with the TF(1/5)W functional and with our
functional, but the decay of our density is much closer to the
KS one; the bad behavior of the TF (1/5)W decay reflects the
value ofl. On the other hand, the slow decay of the nsADA
profile is related to the small absolute value of its chemical
potential.

Finally, in Fig. 5 we plot the density profile for the neutral
Mg atom (Z512) and several of its ions, as obtained with
our functional and with the TF(1/5)W approximation. We
see the progressive smearing off of the shells as we remove
the electrons of the ions. For our functional, and according to
the exact KS behavior, the position of the second peak does
not change substantially when the number of electrons is
greater than ten and the inner shell remains invariant until
the number of electrons is less than four. This trend is not
described at all by the TF(1/5)W model.

IV. EXTENSION TO SPIN-POLARIZED SYSTEMS

The kinetic-energy functional presented in the previous
sections can be generalized in order to include the spin po-
larization in systems where, in the ground state,

n1~r !Þn2~r !, ~20!

ns(r ) being the electron density with spin orientations. We
must remark that only the inclusion of a suitable xc func-
tional can describe spin-polarized systems, but the corre-
sponding extension for the kinetic functional must be done in
order to describe any electronic system within a functional
theory for the spin density.

Because of thenoninteractingcharacter of the system rep-
resented byTS@n#, the mentioned extension is made directly
by means of the definition@43#

TS@n1 ,n2#5
1

2
TS@2n1#1

1

2
TS@2n2#, ~21!

FIG. 5. Radial density for the neutral Mg (Z512) atom and for
several of its ions (N510, 8, 6, 4, 2! obtained with~a! the KS
method,~b! the TF(1/5)W approximation,~c! our functional.

TABLE III. Total energies in a.u. for group Vb atoms. Between
brackets, total energies when the polarizability is forced to be equal
to jKS in the minimization.

KS This work nsADA TF(1/5)W TF(1/9)W

N 254.134 255.326 260.307 255.407 260.773
@255.261# @259.532# @255.001# @260.349#

P 2340.00 2337.53 2362.87 2340.67 2366.27
@2337.41# @362.58# @2340.42# @365.97#

As 22232.6 22227.1 22254.1 22233.9 22362.3
@22227.1# @22254.0# @22233.7# @22362.1#

Sb 26310.3 26295.0 26256.1 26300.1 26612.8
@26295.0# @26256.1# @26300.0# @26612.3#
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whereTS@n# is the non-spin-polarized kinetic-energy func-
tional. ~This easy extension cannot be made for the correla-
tion energy functional, which describes properties of thein-
teractingelectron gas.! Inserting our functional~7! into Eq.
~21! we get the definitive expression of the nonlocal kinetic-
energy functional. Of course, for non-spin-polarized systems
like those described in the preceding section, both formula-
tions are completely equivalent.

To minimize the new functional we solve the two coupled
Euler-Lagrange equations for both spin densities,

dE@n1 ,n2#

dns~r !
5

dTS@n1 ,n2#

dns~r !
2
Z

r
1E n~r 8!

ur2r 8u
dr 8

1
dExc@n1 ,n2#

dns~r !
5ms , ~22!

where theExc@n# is, in our calculations, the extension to
spin-polarized systems of the functional@35# we have used
previously. Conserving the number of electrons with each
spin orientation we obtain the energy minimum for a given
polarization j5(N12N2)/(N11N2), where Ns is the
number of electrons with spin orientations. By varying the
distribution of particles between the two possible spin states,
we get the final energy of the ground state of the system, its
density profile, and its spin polarization. At this point, we
must have chemical equilibrium between both spin oriented
electron gases, i.e.,m15 m2 .

Group Vb of the periodic table is a good test for the
spin-polarized functionals. The nsADA and all the square
gradient based functionals give a non-spin-polarized ground
state, i.e.,j50, for every atom of the group. However, the
symmetrized ADA functional gives a spin-polarized ground
state withj50.272 for the N atom andj50.077 for the P

~the KS values are, respectively,zKS50.429 and
zKS50.200). In Fig. 6 we plot the functionsE(j) obtained
with our functional, with the TF(1/5)W functional, and with
the KS method for the N atom. On the other hand, for the
heavier atoms of group Vb~with a weaker KS polarizability;
jKS50.091 for the As andjKS50.059 for the Sb!, our func-
tional yields unpolarized ground states.

Note that if we calculate the differences between the
atomic energywith the KS polarizationand the final
ground state energy obtained with each functional, the results
for our functional are much lower than the ones obtained
with any of the other functionals~see Fig. 6 and also Table
III, where the total energies of several group Vb atoms are
presented!. That means the energy versus polarization curve
in our symmetrized functional is much flatter than for the
other ones.

The total and spin densities for the P atom using the new
functional are plotted in Fig. 7. We can see that the total
density profile exhibits two inner shells with a practically
equal contribution from both spin densities, in complete

FIG. 6. Total energy vs polarizability for the N atom. Dashed
line, TF(1/5)W; solid line, this work; thick solid line, KS.

FIG. 7. Radial total density~thick solid line! and spin densities
~solid and dotted lines! for the P atom obtained with the KS method
~a! and with our spin-polarized functional~b!.

TABLE IV. Values of the parameters for the fitting of the weight functionv(x).

B d A a1 a2 a3
5.22594 4.23212 20.0303061 0.276801 1.47097 0.458380

a4 a5 a6 a7 a8
0.375101 20.0372670 0.0100745 0.765885 0.405737
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agreement with the exact behavior. On the other hand, the
M shell, mainly due to the 3p electrons, is clearly polarized
and our result shows a major presence of electrons of one of
the spin orientations in a region aroundr53 a.u.

V. CONCLUSIONS

In this paper we have presented a nonlocal ADA kinetic-
energy functional which includes the Weizsa¨cker term ~4!
and a nonlocal term~7! with an averaged density calculated
through a universal weight function. We have symmetrized
via Eq. ~9! the evaluation of the averaged density and this
symmetrization has clearly increased the nonlocal character
of the functional by the inclusion of a nonspherical averaging
procedure.

The functional has given very accurate total and kinetic
atomic energies, when compared to those obtained with the
exact KS method, as well as acceptable first ionization ener-
gies and polarized ground states for the lighter atoms of
group Vb .

The present kinetic-energy functional gives a clear shell
structure in all the atoms, except for Li and Be. Although
some of the previous nonlocal kinetic functionals have
shown incipient structures for heavy atoms, only when using
the present nonspherical average procedure is a clear struc-
ture for most of the atoms obtained. Moreover, the polarized
version of the functional has been able not only to show the
outer shell of polarized atoms but even to distinguish unam-
biguously the spin density of that shell. So, we confirm the
idea that only when using highly nonlocal models for the
kinetic-energy functional is it possible to obtain results close
to the exact ones, both for energies and for density profiles.

We have constructed our functional with no reference to
the specific properties of atomic systems, except in the final
choice of the parameterb which appears in Eq.~9!. How-
ever, when discussing the appearance or not of the shell
structure, the important point is the inclusion of the two-
point symmetrized functionz(r ,r 8) and the specific value of
b would be of minor importance.

The main limitations of our functional are the absence of
polarization in some heavy atoms of group Vb and that the
values of the first ionization energy for light atoms do not
clearly improve upon the results obtained with the nsADA
and TF(1/5)W functionals. The use of the linear response of
the homogeneous electron gas to construct our functional
could affect the correct description of electronic systems in
regions where either the collective effects or the inhomoge-
neity of the density are extremely high.
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APPENDIX: PARAMETRIZATION
OF THE WEIGHT FUNCTION

Due to the spherical symmetry of the functionv̂(h) @see
Eq. ~14!#, the functionv(x) introduced in Eq.~13! is given
by

v~x!5
1

2p2xE0
`

h sin~hx!v̂~h!. ~A1!

It is easy to see that the asymptotic decay ofv̂(h) for
h→` is proportional toh22. That implies an integrable
singularity inv(x)of the typea/x whenx→0. On the other
hand, the nonanalytical behavior of the Lindhard function at
h51 induces a nonanalyticity inv̂(h) at h51. Conse-
quently, the decay ofv(x) is not exponential but of the type

v~x!5
Bcos~x1d!

x5
1o~x26!, x@0. ~A2!

This behavior has a minor contribution when using the func-
tional in localized systems as atoms, however, it is important
when calculating properties of extended systems like metal
surfaces@30#.

In order to simplify the use of the functional we present a
parametrization of the weight function forb51/2. Any ana-
lytical parametrization ofv̂(h) will not include the above
mentioned nonanalyticity forh51. For that reason, it is
preferable to parametrizev(x) instead ofv̂(h). We propose
the following fitting for x in the interval@0,16#:

v~x!5
A

x Fcos~a1x1a2!

exp~a3x!
1

~a41a5x1a6x
2!sin~a7x!

exp~a8x! G
~A3!

and the expression~A2! for x>16, taking into account the

FIG. 8. Weight functionv(x) for b51/2. Dots: numerical val-
ues; solid line: parametrized function.

1904 54GARCÍA-GONZÁLEZ, ALVARELLOS, AND CHACÓN



normalization ofv(x) and the continuity ofv(x) and its
derivative atx516. The parameters of the fitting are showen
in Table IV. Differences between the parametrized form
given in Eqs.~A2! and ~A3! and the numerical values of

v(x) are negligible~see Fig. 8!. Although we have used the
numerical weight function in the present paper, we have not
found any difference in the results when the parametrized
v(x) is used in the calculations.
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