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We report results of a systematic study of the energy-field dependence of the four elementary periodic orbits
of the electron motion of the hydrogen atom in crossed magnetic-electric fields from weak to strong pertur-
bation, up into the continuum regime. We find the classical dynamics of the crossed-field atom to be intimately
connected to that of the Sun-Earth-Moon three-body problem in Hill’s approximation, exhibited by striking
similarities of the four elementary orbits of the atomic and celestial systems in their energy-field dependence.
@S1050-2947~96!04007-3#

PACS number~s!: 32.60.1i, 33.80.Rv, 03.20.1i, 95.10.Eg

Periodic orbits have, since Kepler, evolved as the key
concept for describing and understanding classical dynamics
and, since Bohr, as the basic link in the transition to quantum
mechanics. This is particularly true when atomic systems
turn chaotic in the classical limit, as has been elaborated
extensively by Gutzwiller@1#. In this context highly excited
Rydberg hydrogen atoms, strongly perturbed by homoge-
neous external fields, have lately attracted a large amount of
interest, because they show classically chaotic behavior and
simultaneously are dynamically sufficiently simple to allow
detailed experimental and theoretical studies@2#. Particularly
the hydrogen atom in magnetic fields, the most simple cha-
otic system, has been a subject of intense research@3# and is
now reasonably well understood@4#. The atom in crossed
electric-magnetic fields is, however, still an open problem
despite significant advances in recent years@5#. With its three
nonintegrable degrees of freedom and additionally because
of the possibility of the field ionization, the crossed-field
atom dynamics is essentially different from that of the mag-
netized atom, and is naturally also much more complex.
Searching for a systematics and organizational order of the
electron motion in crossed fields, we discovered a set of
three elementary Kepler-like periodic orbits, originating in
the weak-perturbation regime@6#, one of them found before
by Delande and Gay@7#. An additional elementary periodic
orbit, known as the quasi-Penning orbit, was earlier reported
by Clark, Korevaar, and Littman@8#. It occurs in the crossed-
field system only and is centered around the field-ionization
saddle point. As in pure fields, these four orbits represent the
roots out of which evolves the dynamics of the crossed-field
atom from weak to strong perturbation, a most fundamental
property not yet investigated to our knowledge.

The significance of periodic orbits in classical dynamics
became apparent at the end of the last century, particularly in
celestial mechanics. In this context the problem of the lunar
dynamics in the Sun-Earth-Moon system played a prominent
role. While the observational motion of the Moon was
known with impressive precision since the ancient Greeks’
time @9#, the theoretical quantitative solution remained unsat-
isfactory until 1878, when a breakthrough was achieved by
Hill @10#, who reduced the three-body problem by an inge-
nious approximation to an effective two-body problem. As a
result, the observed lunar motion is described by a Kepler-
like orbit centered in the ecliptic plane with small-amplitude

oscillatory deviations superimposed. Following Hill’s ap-
proach later work extended to the global dynamics and the
general periodic orbit structure@11# showed the existence of
three further elementary periodic orbits governing the overall
dynamics of this system. A more recent comprehensive study
has been performed by He´non @12#.

The objective of this work is to investigate the energy
dependence of the four elementary orbits of the crossed-field
atom. These trajectories turned out to exhibit features resem-
bling the orbits in Hill’s lunar theory, resulting from simi-
larities of the Hamiltonians of these apparently different sys-
tems. Exploiting the knowledge about the Moon dynamics
thus leads to an understanding of properties and structures
that are observed in the crossed-field system.

FIG. 1. The three elementary Kepler ellipses of the crossed-field
hydrogen atom in the perturbative regime for different combina-
tions of external fields.
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Neglecting relativistic and center-of-mass effects the
Hamiltonian for the electron of the hydrogen atom in crossed
fields is given by
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with the electric and magnetic fieldsF andB in the x and
z directions, respectively. The angular momentum compo-
nentLz is not conserved and the potential is velocity depen-
dent. Symmetries are thez parity, with z50 as symmetry
plane, and they parity connected with time reversal. At the
Stark saddle energyESp522AF, the equations of motion
have a fix point atxSp521/AF. The dynamical properties
are similar for all values inE, F, andB, leading to the same
scaled energy Ẽ5EB22/3 and scaled electric field
F̃5FB24/3. The scaled Hamiltonian reads
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with the scaled coordinater̃5rB2/3 and scaled momentum
p̃5pB21/3.
As shown previously@6#, there exist three elementary Ke-

pler orbits of the crossed-field atom in the perturbation re-
gime shown in Fig. 1: two ellipses,S1 andS2, located in
the z50 plane and the third one,S', in the z-y plane per-
pendicular to the electric field.S2 andS1 rotate clockwise
and anticlockwise with respect to theB direction, changing
from circular in the magnetic to linear in the electric field
~parallel or antiparallel!. S' varies from linear in the mag-
netic to circular in the electric field.

As the energy is increased from weak to strong perturba-
tion the three orbits change shape significantly, as shown in
Fig. 2 for the field strengthF̃50.25, arbitrarily chosen sim-
ply because it corresponds to a scaled saddle point energy

FIG. 2. Energy dependence of the elementary periodic orbits of the crossed-field hydrogen atom atF̃50.25: ~a! S1, ~b! S2, ~c!
projections of theS' orbit onto they-x and y-z planes, on the left side for energies below and on the right side for energies above the

collision. ~d! Quasi-Penning orbit,SSp, centered on the Stark saddle pointx̃Sp51/AF̃522.
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ẼSp522AF̃521. The important point is that the orbits
show qualitatively the same energy dependence, essentially
independent ofF̃. Characteristic features are as follows.

S1 remains quasielliptical, largly orientated towards the
electric field with increasing polarization@Fig. 2~a!#. In con-
trast,S2 changes its shape@Fig. 2~b!#: The initially elliptic
trajectory develops a cusp turning to a loop in the electric-
field direction, then stretching in the opposite direction, de-
veloping another cusp and a second loop. BothS1 and
S2 are located in thez50 plane at all energies. Their shape
variation is qualitatively the same for all external field com-
binations, except in pure fields where they remain circular or
linear.S', while in the perturbation approximation planar in
they-z plane, evolves with increasing energy in three dimen-
sions, more and more polarized by the electric field. Figure
2~c! shows examples of orbits inz-y and x-y projections.
Notably, this orbit exhibits a cusp at the origin, correspond-
ing to a collision of the electron with the proton. In addition
to these three orbits the quasi-Penning orbitSSp occurs for
energies above the field-ionization threshold, centered on the
saddle point and with energy increasingly polarized in the
electric-field direction@Fig. 2~d!#. An unexpected property,
common to all four orbits, is that they still exist in the con-
tinuum regime.

In Hill’s theory the Moon is assumed to be a massless
particle, the Earth is considered to evolve on a circular Ke-
pler orbit around the Sun, and the variation of the gravita-
tional potential of the Sun on the Moon is approximated by a
quadrupole field. In the rotating frame of the Earth around
the Sun the Moon’s motion is described by the Hamiltonian

~3!

with the coordinate system centered in the Earth,x and y
spanning the ecliptic plane,x orientated in the Sun’s direc-
tion, r the Earth-Moon distance, andn the rotation frequency
of the Earth around the Sun. The termsa andb describe the
interaction of the two-body system Earth and Moon with the
Sun.

This Hamiltonian satisfies a scaling property with respect
to n, in direct analogy to theB scaling of the atomic system.
The dynamics is governed by the scaled Hamiltonian
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with the scaled coordinater̃5rn2/3 and momentum
p̃5pn21/3.
As in the crossed-field atom there are three nonintegrable

degrees of freedom. Symmetries are thez parity and thex
and y parity connected with time reversal. AlsoLz is not
conserved, rendering the potential velocity dependent. Two
symmetric fix points at x̃Lp56321/3 exist, known as
Lagrange points, at the escape-threshold energy

ẼLp.234/3/2, in analogy to the field-ionization saddle point
of the atomic system.

As previously pointed out by Gutzwiller@1#, the termsa
and b in the Hamiltonian can be taken as a paramagnetic
term a, resulting from a magnetic field with2z orientation
and an electric quadrupole fieldb destabilizing in the6x
direction. In this respect the situation resembles that of the
crossed-field atomic system. Differences are the missing dia-
magnetic term and the electric-field interaction being of a
quadrupole instead of a dipole nature.

If, in a perturbative approximation, the2(3x̃ 22 r̃ 2)/2
term is omitted one naturally obtains the same elementary
Kepler ellipses as for the magnetized atom as shown in Fig.
3: two circular onesL1 andL2 with the angular momen-
tum Lz parallel and antiparallel to the magnetic field and the
linear oneL' along thez axis. If the electric field is taken
into account,L' remains linear, since it does not exert a
force vertically to thez axis, while the orbitsL1 andL2
obtain an eccentricity in they direction. WhileL1 stays
elliptic at all energies@Fig. 4~a!#, L2 develops two symmet-
ric cusps, which then evolve further to loops@Fig. 4~b!#. The
fourth elementary orbit,LLp , consists of two symmetric or-
bits, existing only above the Moon escape threshold and sur-
rounding the two Lagrange points@Fig. 4~c!#.

The properties of the lunar and electron orbits naturally
mirror the symmetries of the respective fields: Both the or-
bitsS1, S2 andL1, L2 are bound to the respective sym-
metry planes and also show similar energy dependences.
While S1 and L1 keep their elliptical or quasielliptical
shape,S2 andL2 exhibit cusps and loops as characteristic
and significant features. However, the cusps ofL2 appear
on they axis symmetrically at a given energy because of the
orbits’ parity symmetry. On the other hand the cusps of

FIG. 3. The three elementary Kepler ellipses of the three-body
problem Sun-Earth-Moon in Hill’s approximation in the perturba-
tive regime.
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S2 appear on thex axis asymmetrically at different ener-
gies, because the atomic orbit is nonsymmetric with respect
to the electric-field direction. As found by Stro¨mgren in 1907
@13#, such cusps and loops are a general consequence of the
velocity dependence of the potential, which thus also ex-
plains their occurrence in the crossed-field atom. A substan-
tial difference is observed forS' andL' resulting from the
difference in the ‘‘electric field’’ forces of both systems.
While no force is acting on the Moon in thex or y direction,
the electron is pulled out of they-z plane by the electric field
in the x direction, moreso with higher energy.SSp and
LLp , though different in shape have their common source in
and are a general consequence of the saddle-point structure
of the potentials and the Coriolis force caused by the non-
conservedLz angular momentum. Finally, another common
property is that all elementary orbits exist up into the con-
tinuum; i.e., they are stable against ionization. However, this
result gives no information about their dynamical stability
and their signature in the quantum spectrum. Investigations

on the effects of these orbits on the experimental photoab-
sorption spectrum particularly in the continuum regime are
in progress.

Somewhat surprisingly the two systems show these simi-
larities although the quadratic diamagnetic term of the
atomic system is not contained in the Moon Hamiltonian. If
the diamagnetic term is neglected, describing the hydrogen
atom in a circular polarized microwave field@14#, the four
periodic orbits show the same basic qualitative structures—
they are affected only quantitatively by the quadratic field
term.

In summary, we have provided a first systematic study of
the energy dependence of the four elementary periodic orbits
governing the classical dynamics of the crossed-field hydro-
gen atom. We have found that the dynamics of this system is
intimately connected to the Sun-Earth-Moon three-body
problem in Hill’s approximation. Due to analogies in the
equations of motion with the characteristic velocity depen-
dence and the saddle-point structures of the potentials, strik-

FIG. 4. Energy dependence of the elementary periodic lunar orbits:~a! L1, ~b! L2, c! LLp , surrounding the Lagrange point
x̃ L5321/3.
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ing similarities in the energy dependence of the orbits in both
systems exist.

The work supplies a starting point for further investiga-
tions of the crossed-field atom problem. Remaining basic-
questions are, for instance,~a! the classical dynamical stabil-
ity properties of the four elementary orbits, likely revealing

further connections to Hill’s theory,~b! the evolution of the
global phase space dynamics involving the bifurcation-
schemes of the periodic orbits, and~c! the semiclassical
quantization of the system in the strong perturbation regime.

We thank the Deutsche Forschungsgemeinschaft for fi-
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