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We consider the transmission of classical information over a quantum channel. The channel is defined by an
‘‘alphabet’’ of quantum states, e.g., certain photon polarizations, together with a specified set of probabilities
with which these states must be sent. If the receiver is restricted to making separate measurements on the
received ‘‘letter’’ states, then the Kholevo theorem implies that the amount of information transmitted per
letter cannot be greater than the von Neumann entropyH of the letter ensemble. In fact the actual amount of
transmitted information will usually be significantly less thanH. We show, however, that if the sender uses a
block coding scheme consisting of a choice of code words that respects thea priori probabilities of the letter
states, and the receiver distinguishes whole words rather than individual letters, then the information transmit-
ted per letter can be made arbitrarily close toH and never exceedsH. This provides a precise information-
theoretic interpretation of von Neumann entropy in quantum mechanics. We apply this result to ‘‘superdense’’
coding, and we consider its extension to noisy channels.@S1050-2947~96!12209-5#

PACS number~s!: 03.65.Bz, 89.70.1c

I. QUANTUM CHANNELS

Quantum information theory concerns the transmission
and manipulation of information stored in systems that must
be treated quantum mechanically. As in classical information
theory, one of the most basic questions in quantum informa-
tion theory is this: How efficiently can one transmit informa-
tion using a given set of resources? In contrast to the classi-
cal case, however, quantum theory presents two very
different forms of the question, depending on the nature of
the information to be conveyed. On the one hand, one can try
to convey quantum states themselves: the sender has a quan-
tum system in an unknown state and wants the receiver to
end up with a similar system in the same state. A coding
theorem for this case has recently been proved@1,2#. On the
other hand, one might want tousequantum states to convey
classical information, that is, information that can be ex-
pressed as a sequence of zeros and ones. The situation is
particularly interesting if the quantum states one is using are
not all orthogonal to each other, in which case they cannot be
distinguished from each other perfectly by the receiver. This
is the problem we consider here. As we will see, this prob-
lem leads to a new information-theoretic interpretation of the
von Neumann entropy of an ensemble of states.

Nonorthogonal quantum states might be used in a variety
of contexts to transmit classical information. In studies of
quantum cryptography, nonorthogonal signals are used inten-
tionally in order to avoid eavesdropping@3#. Moreover, in
any transmission using signals at the quantum level, such as
weak coherent pulses in an optical fiber, any ambiguity be-
tween signals may be more a matter of nonorthogonality
~e.g., overlapping pulses! than classical noise. In what fol-
lows we will often imagine the signals to be nonorthogonal

photon polarization states, but our analysis applies to all
quantum systems.

Suppose that a sender, Alice, wishes to transmit classical
information to a receiver, Bob, using a communication chan-
nel that is quantum mechanical~for instance, the polarization
of a photon!. Alice will represent possible messages by pre-
paring the channel in various quantum states. Bob will re-
cover the information by subjecting the channel to a mea-
surement. As noted above, however, unless the signal states
used by Alice are orthogonal, no measurement will allow
Bob to distinguish perfectly between them. Thus, Bob’s abil-
ity to recover Alice’s message without error will be limited
by the quantum mechanics of the channel. Indeed no ‘‘de-
coding observable’’ will be sufficient to recover the entire
information content of the message in the quantum signal
source. It is therefore more appropriate to consider theac-
cessible information, the maximum amount of information
about the message that can be recovered in a measurement
performed on the systemM that conveys that message. The
proper measure of recovered information is themutual infor-
mation, which for a pair of random variablesX and Y is
defined to be

I ~X:Y!5H~X!2H~XuY!. ~1!

HereH is the Shannon entropy, which is a function of the
probabilitiesp(xi) of the possible values ofX:

H~X!52(
i
p~xi !log2p~xi !. ~2!

~Here we interpretplog2p as taking the value zero when
p50.! H(XuY) is the expected entropy ofX once one knows
the value ofY. That is,
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H~XuY!5(
j
p~yj !F2(

i
p~xi uyj !log2p~xi uyj !G . ~3!

In classical information theory, the mutual information is
the amount of information aboutX that is acquired by deter-
mining the value ofY. The crucial theorem from classical
information theory that justifies our focus onI (X:Y) is this:
if a communication channel has mutual informationI (X:Y)
between the input signalX and the received outputY, then
by means of sufficiently redundant coding, that channel can
be used to send up to, but no more than,I (X:Y) binary digits
per use of the channel with arbitrarily low probability of
error. In our quantum context, if we denote byB the outcome
of a measurement of an observable onM , the quantity
I (A:B) measures the information about the message source
A that is acquired by measurement of the observable. It also,
therefore, measures the number of binary digits that can be
conveyed per signal when the receiver uses this observable.

A theorem stated by Gordon@4# and Levitin @5# and first
proved by Kholevo@6# states that the amount of information
accessible to Bob is limited by the entropy of the ensemble
of signal states. That is, suppose Alice represents each mes-
sagea ~with a priori probabilitypa) by a statera , which is
in general a mixed state. Then for any observable that Bob
chooses to measure, the mutual informationI (A:B) between
Alice’s input A and Bob’s measurement outcomeB is
bounded by

I ~A:B!<H~r!2(
a

paH~ra!, ~4!

where r5(apara ~the average density matrix for the en-
sembleE of signals! andH(r)52Trr lnr ~the von Neumann
entropy of the density matrixr). If the signal statesra are all
pure states, the second term on the right vanishes, and we
can simply say

I ~A:B!<H~r!. ~5!

As Kholevo noted @7#, there are situations in which
I (A:B) does not approachH(r) very closely for any choice
of Bob’s decoding observable. Thus, though this theorem
provides anupper boundon the amount of information ac-
cessible to Bob, this upper bound is not in general very
strong@8,9#.

One example of this was studied in detail by Peres and
Wootters@10#. Suppose Alice sends a photon in one of three
linear polarization states~called ‘‘letter’’ states! denoted
ua&, ub&, anduc&, which are separated by 120°. Each state is
used equally often. This signal ensemble has a von Neumann
entropyH(r) of 1.000 bit, whereas Bob’s optimal decoding
observable yields a mutual informationI (A:B) of 0.585 bit.
If two photons are used, there are nine possible signal states:
uaa&, uab&, etc. The von Neumann entropy is 2.000 bits and
the optimal mutual information available to Bob is 1.170
bits.

However, suppose Alice sends two photons but only uses
the three statesuaa&, ubb&, anducc&. Note that the individual
letter states are being used with their original~equal! prob-
abilities in this restricted choice of two-photon states. Then
the ensemble entropyS(r) is only 1.585 bits, but the optimal

mutual information is 1.369 bits, or about 0.685 bit per pho-
ton. In other words, by restricting her code to a subset of the
possible code words, while still respecting the given letter
frequencies, Alice can increase the distinguishability of the
code words and increase the information conveyed per pho-
ton to Bob.

This example shows that it is sometimes possible to in-
crease the accessible information per elementary signal by
~a! using code words composed of several elementary sig-
nals, and~b! deletingsome of the possible code words in the
ensemble, while respecting the given elementary signal fre-
quencies. The receiver then chooses a decoding observable
optimized to distinguish among the code words actually
used. Note that this observable will typicallynot be realiz-
able as a set of separate measurements on the individual
elementary signals; rather, it will be a joint measurement on
the whole set of signals constituting a code word.

These considerations lead us to ask whether it is possible
for Alice and Bob to use this strategy to approach the
Kholevo bound. That is, given ana priori ensemble of pure-
state signals with entropyH(r), can Alice and Bob choose a
set of code words respecting the original probabilities of the
signals, together with a decoding observable, so that infor-
mation is reliably transmitted at a rate approachingH(r) per
elementary signal? The answer is yes. Moreover, we will see
that for no such code can the transmission rate exceed
H(r).

We now give a precise formulation of our main result.
Suppose we are given an ensembleE of letter statesua& of an
elementary quantum system~not necessarily a photon! with
a priori probabilitiespa . The letter ensemble has a density
matrix

r5(
a

paua&^au, ~6!

with von Neumann entropyH(r)52Trr lnr.
A code@‘‘( N,l ) code’’# consists of two things:~i! a set of

N code words$usi&: i51, . . . ,N% where each code word is a
sequence~i.e., product! of l letter states~but not all such
sequences of letter states are code words!, and~ii ! ana priori
probability psi assigned to each code word. Thetolerance

t of the code is defined by

t5maxau f a2pau, ~7!

where f a is the overall frequency of occurrence of the letter
ua& among theNl letters of all the code words, taking into
account thea priori probabilities of the code words. That is,

f a5
1

l (i51

N

psina,si, ~8!

wherena,si is the number of occurrences of letterua& in code
word usi&. A low tolerance code will use up the letters ap-
proximately with their givena priori probabilitiespa in the
construction of the code words.

Then we may consider the information transmissible us-
ing the ensemble of code word states. The information per
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letter is just the accessible information of the code word
ensemble divided byl . We shall show the following:

Theorem: Let I d be the least upper bound on the informa-
tion per letter transmissible with any code having tolerance
<d. Then

lim
d→0

I d5H~r!.

This theorem gives a precise information-theoretic interpre-
tation of von Neumann entropy in quantum mechanics. To
put it in somewhat looser but more familiar terms, the theo-
rem says that if Alice is required to use certain quantum
states as signals with certain specified frequencies of occur-
rence, the number of binary digits she can convey to Bob per
particle can be made arbitrarily close to, but not greater than,
the von Neumann entropy of the ensemble of signals.

Before proving the theorem, it is interesting to compare
our result to the channel capacity theorem for classical chan-
nels@15#, which describes the reliable transmission of infor-
mation through a noisy classical channel. For a given set of
input letters, transmissible through a noisy channel~but with
the a priori probabilities unspecified!, the classical channel
capacityC is defined to be the maximum attainable mutual
information, where the maximum is taken over all possible
choices of probability distribution of the input letters. Then
the classical theorem states thatC is the maximum possible
rate at which information can be reliably transmitted through
the noisy channel.

In our quantum theorem above, we have considered a
fixed probability distributionpa for the input lettersua&,
which allows us to characterize the von Neumann entropy of
the letter ensemble. However, we may consider this distribu-
tion to be variable~for a fixed set of letter states! anddefine
the capacityC of the quantum channel to be the maximum
von Neumann entropy attainable from the given letter states
by free choice of thea priori probabilities:

C:5maxpaH~r!. ~9!

Then according to our theorem,C is the maximum rate at
which classical information may be transmitted through the
quantum channel~the channel being characterized entirely
by its allowed letter states!. Below, in the course of the proof
of the quantum theorem we will show that for any input
distributionpa and for anye,d.0 there exists a code and a
decoding observable such that the amount of information
transmitted per letter is greater thanH(r)2d and the prob-
ability of error is less thane. ~In fact this will be achieved
with code words having equala priori probabilities.! Thus
information may be reliably transmitted at rateC and no
more, which is formally similar to the statement of the clas-
sical channel capacity theorem and justifies the definition~9!
above, of quantum channel capacity in the present context.

Despite this similarity between classical channel capacity
and the above notion of quantum channel capacity, there are
also essential differences, in particular the origin of the con-
ditional probabilities in Eq.~3!. In the classical setting these
probabilities are fixed, being characteristic of the noise in the
channel. On receiving the~partially corrupted! signals, Bob
simply records them and the issue of his measurement is
trivial. In contrast in our quantum setting, letter states are

transmitted to Bob without alteration; i.e., there is no
‘‘noise.’’ The problem now is that nonorthogonal quantum
states are not perfectly distinguishable by any measurement.
Bob has much freedom in his choice of decoding measure-
ment and the conditional probabilities in Eq.~3! arise from
the probabilistic nature of quantum measurements. Our no-
tion of quantum channel capacity~9! corresponds to optimiz-
ing over choice of input distributionandof decoding observ-
able, in contrast to classical channel capacity, which involves
maximizing only over input distribution. Indeed in the quan-
tum case, even if the input distribution is viewed as being
fixed ~as in our theorem above! the conditional probabilities
in ~1! are still variable as we need to optimize over all pos-
sible choices of the decoding observable. It is this require-
ment that necessitates the discussion in Sec. III.

The proof of the theorem presented here is similar in
some respects to that of the classical channel capacity theo-
rem: both rely on the concatenation of letter states to obtain
code words and the pruning of the set of all possible code
words to obtain the codes to be used in the channel. In the
classical setting the aim of pruning is to increase redundancy
whereas in the quantum setting, it is to increasedistinguish-
ability of the code word states. It should be emphasized that
this concatenation and pruning do not result in a channel that
differs from the original. In both situations the question is as
follows: If we allow for repeated transmission of elementary
letter states, what is the maximum rate at which information
can be conveyed? Both proofs utilize a method of random
coding to demonstrate the existence of a code with desired
properties. This is merely a technique of proof andnot a
method of signaling. Considering averages over random
codes is a means of bringing statistical arguments to bear
upon the problem. It does not provide a means of construct-
ing the required code.

In the next five sections we describe the machinery nec-
essary to complete the proof, including typical subspaces of
quantum ensembles, a sufficiently optimal choice of decod-
ing observable, and the technique of ‘‘random coding.’’ The
final sections discuss some of the corollaries and conse-
quences of the main result.

II. TYPICAL SUBSPACES

Suppose we have the ensemble of letter statesua& in a
Hilbert spaceH with probabilitiespa , as described above.
Fix e,d.0. We can concatenate letters into words of length
l , and if l is long enough@1,2# then the Hilbert space
Hl5H^H^ •••^H ~the l th-order tensor power ofH) for
the words can be decomposed into two subspaces: a ‘‘typi-
cal’’ subspaceL and the perpendicular subspaceL', having
the following properties:~a! BothL andL' are spanned by
eigenstates ofr l5r ^ r ^ •••^ r ~the l th-order tensor power
of r). ~b! Almost all of the weight of the ensemble lies
within L: TrPLr lPL.12e and TrPL'r lPL',e. ~Here
PL andPL' are the projections ontoL andL'.! ~c! The
eigenvaluesln of r l for eigenstates inL fall within a ‘‘nar-
row’’ range:

22 l @H~r!1d#,ln,22 l @H~r!2d#. ~10!

@Of course,H(r l)5 lH (r).# ~d! The number of dimensions
in the typical subspace is bounded in the range
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~12e!2l @H~r!2d#<dimL<2l @H~r!1d#. ~11!

The typical subspaceL is constructed as follows: The
eigenvaluesqi of the one-letter density operatorr form a
‘‘probability distribution’’ for the eigenstates ofr, for which
the classical~Shannon! entropy is just the von Neumann en-
tropyH(r). Eigenstates ofr l are sequences ofr eigenstates.
By the weak law of large numbers, we can find a set of
‘‘typical’’ eigenstates ofr l in which the frequencies of the
r eigenstates are close to the ‘‘probabilities’’qi . L is the
subspace spanned by these typical eigenstates.

Suppose we sum the squares of the eigenvalues ofr l , but
restrict ourselves to the typical subspace. Then we get

TrPL~r l !2PL,~dimL!~22 l @H~r!2d#!2

,22 l @H~r!23d#. ~12!

This inequality will be useful below in connecting the prob-
ability of error for a coding scheme to the entropyH(r).

III. DECODING OBSERVABLE

Suppose that Alice is using a code with words long
enough for the typical subspace to exist and that have the
properties outlined above. Alice may not be usingall of the
possible code words. Denote an individual code word by
usi&.

In order to read Alice’s messages, Bob will have to em-
ploy a decoding observable to determine which signalusi& is
present. This decoding observable will in general be a ‘‘posi-
tive operator’’ measurement~or POM! @11,12#. Bob will
want to choose his decoding observable so that he will de-
duce Alice’s message with as small a probability of error as
possible.

Bob’s essential problem is to distinguish between a col-
lection of vectors in the Hilbert spaceHl . Let $ufk&% be a
collection of such vectors~possibly not normalized!. Con-
sider the operator

F5(
k

ufk&^fku, ~13!

which is a positive operator whose support is the subspace
spanned by the vectorsufk&. On this subspaceF1/2 exists
and is invertible, so we can form the vectors@13#

umk&5F21/2ufk& ~14!

corresponding to positive operatorsumk&^mku. These positive
operators are easily shown to be a resolution of the identity
on this subspace:

(
k

umk&^mku5(
k

F21/2ufk&^fkuF21/2

5F21/2S (
k

ufk&^fku DF21/2

5F21/2FF21/251. ~15!

The operatorsumk&^mku, supplemented by a projection onto
the subspace perpendicular to the span of$ufk&%, thus form
the outcome operators of a POM.

The vectorsufk& specify a particular POM that employs
the outcome operatorsumk&^mku. This is the POM that Bob
chooses in order to distinguish among the vectors. This is a
reasonable choice. If the vectorsufk& are orthogonal and
thus completely distinguishable, the resulting measurement
does indeed distinguish them perfectly.~There is no known
way of specifying thebest observable in general, but this
observable will be good enough for our purposes.!

The umk& vectors have another interesting and~for us!
useful property. LetSjk be the matrix of inner products
among theufk& vectors:

Sjk5^f j ufk&. ~16!

If there areN vectors, this is anN3N complex matrix with
positive eigenvalues. Theumk& vectors are related to the
square root of this matrix by

~AS! jk5^m j ufk&. ~17!

In fact, this property of theum j& vectors can be taken as an
implicit definition for them.

To decode Alice’s message, Bob will employ an observ-
able to distinguish between her signal statesusi&. But we will
find it more useful to suppose that he distinguishes between
projections of the signal states into the typical subspace
L—that is, between non-normalized vectorsus i&5PLusi&.
To do this he will employ the ‘‘square root’’ measurement
just described. Since the typical subspace contains ‘‘almost
all’’ of the set of available code words~in the sense of the
previous section!, this refinement introduces negligible error,
as we shall show. Thus, we define the matrixSi j5^s i us j&,
and construct theum i& vectors~which lie within L) so that

^m i usj&5^m i us j&5~AS! i j . ~18!

Let us also defineni5Sii5^s i us i&, the norm of the pro-
jected code words. Theumk& vectors, together with the pro-
jection onto the subspace perpendicular to all the vectors
us i&, define Bob’s POM.

IV. PROBABILITY OF ERROR

Alice’s code will consist ofN code wordsusi&, each used
with equal frequency. The information content of a single
code word is therefore log2N. Each code word is a sequence
of l letters chosen from the set of possible letters.~For now,
we will disregard the probabilities of those letters in the
given ensemble.! Bob devises his decoding observable as
described above.

Alice sends the signalusi& with probability 1/N. Bob will
correctly interpret the signal—that is, he will obtain them i
outcome in his decoding POM—with probability

p~m i usi !5Trum i&^m i usi&^si u5u^m i usi&u2. ~19!

We note that̂ m i usi& is real and non-negative. The average
probability of error is thus
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PE512(
i

1

N
^m i usi&25

1

N(
i

~12^m i usi&!~11^m i usi&!

<
2

N(
i

~12^m i us i&!. ~20!

In terms of theSi j matrix, this is

PE<
2

N(
i

@12~AS! i i #. ~21!

The square root function is bounded below by a parabola:
for x>0,

Ax> 3
2 x2 1

2 x
2. ~22!

The matrixS is a matrix with non-negative eigenvalues, so
this inequality may be applied to it:

AS> 3
2 S2 1

2 S
2. ~23!

This means that, for a complexN vector with components
zk ,

(
kl

zk* ~AS!klzl>
3

2(kl zk*Sklzl2
1

2(kl j zk*SkjSjl zl . ~24!

For a giveni , we can choosezi51 andzk50 for kÞ i . This
yields

~AS! i i>
3

2
Sii2

1

2(j Si j Sji

5
3

2
ni2

1

2
ni
22

1

2(jÞ i
Si j Sji . ~25!

Therefore

PE<
2

N(
i

S 12
3

2
ni1

1

2
ni
21

1

2(jÞ i
Si j Sji D

5
2

N(
i

S ~12ni !~12ni /2!1
1

2(jÞ i
Si j Sji D

<
2

N(
i

S ~12ni !1
1

2(jÞ i
Si j Sji D . ~26!

V. RANDOM CODES

In this section and the next we will prove our main result.
We will show that Alice can chooseN code words withN
sufficiently large so that log2N is approximatelylH (r), such
that Bob ~using the scheme above! has probability of error
PE nearly equal to zero. Furthermore we will see that Alice’s
code can be chosen to have arbitrarily small tolerancet as
defined in~7!. Finally we will show that an information rate
of H(r) bits per letter cannot be exceeded in the limit of
vanishing tolerance.

To show the existence of such a code, we will in fact
show that almost any code will do the job. That is, we will
calculate the average probability of error for an ensemble of

randomcodes ofN words. We generate a random code in
this way. Each of theN code words is a sequence ofl letter
states generated using thea priori probabilities for the let-
ters. The probability that the i th code word
usi&5ua1a2•••al& is just p(a1)p(a2)•••p(al). Each code
word is generated independently of the others. We are in
effect drawingN code words at randomwith replacement
from thea priori ensemble.

Denote an average over random codes by^ &c . First, we
note that, for any particular code wordusi&,

Šusi&^si u‹c5r l . ~27!

Next we take the average ofPE over random codes.

^PE&c<
2

N(
i

S 12^ni&c1
1

2(jÞ i
^Si jSji &cD . ~28!

Each of the averages in this expression is straightforward
to calculate. The average norm̂ni&c of the i th projected
code word is

^ni&c5ŠTr~PLusi&^si uPL!‹c

5Tr~PLr lPL!>12e. ~29!

For jÞ i , the code wordsusj& and usi& are independent, so
that

^Si jSji &c5Š^si uPLusj&^sj uPLusi&‹c

5ŠTr~PLusi&^si uusj&^sj uPL!‹c

5TrPL~r l !2PL . ~30!

~We have used the fact thatPL commutes withr l .!
Each term in the upper bound for^PE&c is independent of

i , so that the sum overi yields a multiplicative factor ofN.
The j sum yields a factor ofN21. Thus

^PE&c,2e1NTrPL~r l !2PL . ~31!

We use the properties of typical subspaces@Eq. ~12! above#
to obtain

^PE&c,2e1N22 l @H~r!23d#. ~32!

If the averageprobability of error is below this bound,
then Alice and Bob will be able to find some particular code
for which

PE,2e1N22 l @H~r!23d#. ~33!

If l is very large~perhaps much larger than we actually need
to form the typical subspaceL), Alice can make
N52l @H(r)24d# and still havePE,3e. In this case, Alice
encodesH(r)24d bits per letter. This proves the existence
of codes allowing transmission at an asymptotic rate of
H(r) bits per letter, with arbitrarily low error.

Remark:In fact, we can do even better: we can modify a
code with a lowaverageprobability of error to give a code
with a lowmaximumprobability of error. Let us throw away
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the worst half of the code words in the optimizing code.
Since the average probability of error for this code is less
than 3e, we have

1

2lH ~r!(
i

@12p~m i usi !#<3e. ~34!

This implies that at least half the code words must have
conditional probability of error of less than 6e; otherwise,
these code words would contribute at least 3e to the sum.
Thus, in the reduced code book we have 2lH (r)21 code
words. By throwing out half of the code words we have
changed the rate fromH(r) to H(r)21/l , a negligible dif-
ference for largel .

VI. LETTER FREQUENCIES AND CHANNEL CAPACITY

The argument in the previous section is nonconstructive.
We have not explicitly constructed a code with low probabil-
ity of error; we have merely shown that such a code must
exist. Therefore we do not know much about its detailed
properties. However, we now show that the code may be
chosen to have arbitrarily small tolerance.

Note first that the generation of a random code consisting
of N code words of lengthl amounts to an independent
choice ofNl letters according to thea priori probability
distribution. Since each code word is used equally often, the
number of times a given letter appears in the list ofN code
words tells us its frequency of occurrence when the code is
used by Alice and Bob. We can apply the weak law of large
numbers to the set of codes as follows: ifNl is sufficiently
large, the set of all random codes may be divided into two
classes:~a! a set of ‘‘typical’’ codes, in which the letter
frequencies approximate thea priori probabilities to within a
fixed tolerance; and~b! a set of ‘‘atypical’’ codes, which are
generated by random coding with small total probability. The
‘‘atypical’’ codes, having small total probability, contribute
very little to the overall average probability of error^PE&c
estimated above. Thus,^PE&c must also be very small even if
Alice and Bob are restricted to using ‘‘typical’’ codes—
every one of which has letter frequencies matching thea
priori probabilitiespa to within any specified tolerance.

A different consideration arises if Alice and Bob are not
required to use any particular letter frequencies but are free
to adjust them as they please in order to maximize the infor-
mation per letter conveyed by their channel. For that case, as
discussed in Sec. I, we may define thechannel capacity Cof
a quantum channel with a particular alphabet$ua&% to be

C5maxpaH~r!, ~35!

wherer5(apaua&^au. Our argument above implies that Al-
ice may communicate with arbitrarily low probability of er-
ror, up toC bits per letter, to Bob using the letter states
$ua&% .

To complete the proof of the main result we now show
that the information rateH(r) bits per letter cannot be ex-
ceeded in the limit of vanishing tolerance. Consider any
(N,l ) code having~small! toleranced in which the code
words usi& i51, . . . ,N havea priori probabilitiespsi ~not

assumed to be equal!. Let rcodeandHcodedenote the density
matrix and von Neumann entropy of the code word en-
semble.

Let E1 be the ensemble of letter states that appear as first
letters in the code words; i.e., we look at the first letter of
each of theN code words and note the frequencyf a

(1) of
occurrence of each letterua&, taking into account thea priori
probabilities of the code words. Letr1 andH1 be the density
matrix and entropy ofE1. Thus

r15(
a

f a
~1!ua&^au. ~36!

Similarly define Ek , rk , and Hk for each position
k51, . . . ,l in the code words.

Now each word is a product state of letters so thatrk is
the reduced state ofrcode, obtained by partial tracing over all
letter positions except thekth position. Hence subadditivity
of von Neumann entropy@16# gives

Hcode<H11•••1Hl . ~37!

Equation~37! holds regardless of any tolerance constraints
and already implies that the quantum channel capacityC, as
defined in~9!, is an upper bound on the information rate per
letter. Indeed, since eachEk is an ensemble of letter states, it
follows from the definition ofC thatHk<C. From ~37! we
get

Hcode/ l<~H11•••1Hl !/ l<C ~38!

and the Kholevo theorem applied to the code word ensemble
gives that the transmitted information per letter is less than
Hcode/ l . Thus an information rate ofC bits per letter cannot
be exceeded and the random coding argument in the previous
section shows that this upper bound is tight.

Let us now incorporate tolerance constraints. Let us sup-
pose that the toleranced is extremely small. This means that
to high accuracy the average density matrix of allNl letters
in all the code words isr:

r5
1

l (k51

l

rk . ~39!

Now concavity of von Neumann entropy@16# gives

H~r!>
H11•••1Hl

l
. ~40!

Then ~40! and ~37! give Hcode/ l<H(r) so that by the
Kholevo theorem

~information!/~letter!<~entropy!/~letter!5Hcode/ l<H~r!,
~41!

as required.
Equation~39! is strictly true only if the tolerance is zero.

For small nonzero tolerance~37! remains exact but~39! be-
comes

1

l (k51

l

rk5r* , ~42!

1874 54PAUL HAUSLADEN et al.



whereuH(r* )2H(r)u→0 asd→0. Equation~41! becomes

~information!/~letter!<H~r* ! ~43!

and our desired result appears in the limit asd→0. This
completes the demonstration of our main theorem.

VII. SUPERDENSE CODING

We can apply our results to an interesting quantum com-
munication scheme proposed by Bennett and Wiesner@14#,
which has been called ‘‘superdense coding.’’ Superdense
coding makes use of the quantum entanglement between sys-
tems to enhance their information capacity.

The simplest example works as follows. Alice and Bob
initially share a pair of two-state systems—e.g., a pair of
spins—which are in an entangled state. Suppose that this
state is one of the four orthogonal ‘‘Bell states,’’ given by

uC6&5
1

A2
~ u↑1↓2&6u↓1↑2&),

~44!

uF6&5
1

A2
~ u↑1↑2&6u↓1↓2&).

For definiteness, we imagine that the initial state is the sin-
glet uC2&.

Alice manipulates her own spin and then transmits it to
Bob, who performs a measurement on both spins. Ordinarily,
the transmission of a single spin could only communicate
one bit of information to Bob~by a simple application of the
Kholevo theorem!. However, in this case the pre-established
entanglement between the pair of spins will allow Alice to
send two bits of information to Bob. This can happen be-
cause Alice can convert the initial stateuC2& into any one of
the four Bell states by a suitable unitary transformation on
only one of the spins, and Bob can distinguish between the
four orthogonal Bell states by a coherent measurement of the
pair of spins. Alice’s four-way choice encodes a two-bit mes-
sage that is perfectly recoverable by Bob.1

We are interested in a more general situation. Alice and
Bob work with N-state quantum systems instead of spins,
and they may possess a considerable supply of them~so that
they may use block coding of many independent messages!.
If Alice were to send messages to Bob by sendingN-state
quantum systems, she could send up to log2N bits per sys-
tem. However, suppose that Alice and Bob share many pairs
of systems, which are each in some entangled pure state
~which may or may not be ‘‘maximally entangled’’ like the
Bell states!. What is the information capacity of these en-
tangled systems for superdense coding?

We can write the initial state of one of the entangled pairs
using the Schmidt decomposition:

uC0&5 (
k51

N

Apkuakbk&, ~45!

where uak& is an orthonormal basis for Alice’s system and
ubk& is a basis for Bob’s system. The density matrix for
Bob’s system given by a partial trace over Alice’s system has
eigenvaluespk . We will call the entropyHE of that density
matrix theentropy of entanglementof the system.HE will be
between zero~for a product state! and log2N ~for a maxi-
mally entangled state!.

Alice can perform a unitary transformation on her system,
after which she delivers it to Bob. We might imagine her
performing different transformations with differenta priori
probabilities, leading to an ensemble of states for the pair of
systems that Bob measures. Our theorem establishes that, by
judicious coding~and choice of Bob’s decoding observable!,
Alice may convey an amount of information up to the en-
tropy of this ensemble. How big may this entropy be—i.e.,
what is the information capacity of this scheme?

It is easy to see that the entropy can beno larger than
HE1 log2N, since Alice’s manipulations of her system do not
affect the density matrix for Bob’s system. The total entropy
for the pair of systems cannot be greater than the entropy of
Bob’s system~which isHE) plus the largest possible entropy
for Alice’s system~which is log2N). It can also be shown that
a particular ensemble of transformations can make the over-
all entropy equal toHE1 log2N. One such ensemble of trans-
formations would include all permutations of the Schmidt
basis statesuak&, rotations of the relative phases of these
states, and combinations of the two.

We can therefore conclude that the channel capacity of
the superdense coding scheme isHE1 log2N. This is a sen-
sible result. If the pair of systems is initially in a product
state,HE50 and so Alice can only send log2N bits per sys-
tem, as expected. If the pair of systems is maximally en-
tangled, then the capacity is 2 log2N, exactly twice as great.

VIII. NOISY CHANNELS

So far we have assumed that when Alice sends a letter
stateua&, the state arrives at Bob’s end unchanged. In many
practical applications, however, the channel will introduce
noise and the signal will arrive in some mixed statera . In
that case, it is as if Alice were using an ensemble of mixed
states to send her message rather than an ensemble of pure
states. Our theorem does not apply to ensembles of mixed
states, but it suggests the following conjecture concerning
this case.

Let Alice be given an ensembleE of letter statesra with
a priori probabilitiespa , and letr be the the density matrix
of the whole ensemble:r5(apara . We conjecture that the
amount of information Alice can convey per letter can be
made arbitrarily close to the quantityx defined by

x5H~r!2(
a

paH~ra!. ~46!

Note thatx is the upper bound that appears in the general
form ~4! of the Kholevo theorem.

To argue for this conjecture, it is helpful to consider two
different ensembles: the ensembleE of mixed states that Al-
ice is given, and the ensembleE8 consisting of all the eigen-
statesua, j & of the density matricesra . The a priori prob-
ability of the stateua, j & in E8 is paqa j , whereqa j is the

1The apparent doubling of the information capacity in the pres-
ence of entanglement motivates the name ‘‘superdense coding.’’
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eigenvalue ofra corresponding toua, j &. In other words,E8
is a refinement ofE, in which each mixed state is replaced by
its pure eigenstates.

Consider now a random code constructed from the origi-
nal mixed-state ensembleE. This code corresponds to a spe-
cific code constructed fromE8: in place of eachE code word,
substitute the set ofall correspondingE8 code words~in
which eachra is replaced by one of its eigenstates!, with
probabilities determined by the eigenvalues. There is no
physical difference between these two codes as regards the
set of possible transmissions. What is different in theE8 code
is that Alice knows which pure state she sends.

Let us suppose for now that our main theorem applies to
E8 codes constructed in this way. That is, if Alice had the
ability to know which pure signal she was sending, then she
could convey up toH(r) bits per letter using a typicalE8
code constructed as above. Included in this information,
however, is the information that Bob would obtain about
which specific eigenstates were used. In actuality, Alice
knows only the mixedE code word, so that the information
Bob obtains about which eigenstates were used is irrelevant
to Alice’s message. Now, the amount of information Bob
could have obtained per letter about these eigenstates is the
average entropy of the mixed signal statesra , that is,
(apaH(ra). Thus, from the additivity of information it fol-
lows that the amount of information Bob actually obtains
about whichE code word Alice sent can be made arbitrarily
close to

H~r!2(
a

paH~ra!, ~47!

which is what we wanted to show.
Unfortunately our theorem as it stands does not apply to

the E8 codes because of the lack of strict independence
among the code words. However, it is plausible that a modi-
fied argument could account for this case and thereby prove
the conjecture.

IX. CONCLUSION

We have shown that the von Neumann entropyH(r) of
an ensemble of pure quantum states is equal to the capacity
of a quantum channel to transmit classical information where
the quantum channel transmits the states with their givena
priori probabilities. This conclusion holds in spite of the fact
that for all nonorthogonal ensembles, the amount of informa-
tion one can obtain by a measurement on asinglesystem is
strictly less thanH(r) @6#. One achieves the increased ca-
pacity by having the receiver discriminate among whole
code words rather than trying to distinguish the individual
signal states.

Considering the importance of entropy in other contexts,
it is satisfying that in this communication problem the en-
tropy turns out to be the actual channel capacity, and not
merely an upper bound.
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