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We consider the transmission of classical information over a quantum channel. The channel is defined by an
“alphabet” of quantum states, e.g., certain photon polarizations, together with a specified set of probabilities
with which these states must be sent. If the receiver is restricted to making separate measurements on the
received “letter” states, then the Kholevo theorem implies that the amount of information transmitted per
letter cannot be greater than the von Neumann entkbf the letter ensemble. In fact the actual amount of
transmitted information will usually be significantly less tHdnWe show, however, that if the sender uses a
block coding scheme consisting of a choice of code words that respedspifi@i probabilities of the letter
states, and the receiver distinguishes whole words rather than individual letters, then the information transmit-
ted per letter can be made arbitrarily closeHoand never exceedd. This provides a precise information-
theoretic interpretation of von Neumann entropy in quantum mechanics. We apply this result to “superdense”
coding, and we consider its extension to noisy chanfg&s050-294{06)12209-5

PACS numbd(s): 03.65.Bz, 89.70:c

I. QUANTUM CHANNELS photon polarization states, but our analysis applies to all
guantum systems.

Quantum information theory concerns the transmission Suppose that a sender, Alice, wishes to transmit classical
and manipulation of information stored in systems that mustnformation to a receiver, Bob, using a communication chan-
be treated quantum mechanically. As in classical informatioriiel that is quantum mechaniddbr instance, the polarization
theory, one of the most basic questions in quantum informa®f & photon. Alice will represent possible messages by pre-
tion theory is this: How efficiently can one transmit informa- Paring the channel in various quantum states. Bob will re-
tion using a given set of resources? In contrast to the classfover the information by subjecting the channel to a mea-
cal case, however, quantum theory presents two ver urement. As noted above, however, unless the signal states

different forms of the question, depending on the nature o sed by_ A_I'Ce are orthogonal, no measurement W'”, a”°.W
the information to be conveyed. On the one hand, one can tr ob to dlstlngwlsh perfectly betweehn them. Thui,fo? S abC:I-

' ity to recover Alice’s message without error will be limite
to convey qugntum states themselves: the sender has aqu i{/'the quantum mechanicsgof the channel. Indeed no “de-
tum system N an gnknown sta}te and wants the recever tgoding observable” will be sufficient to recover the entire
end up with a similar system in the same state. A codlnq

, nformation content of the message in the quantum signal
theorem for this case has recently been proied|. On the source. It is therefore more appropriate to considerahe

other hand, one might want tsequantum states o convey ceggiple informationthe maximum amount of information
classical information, that is, information that can be ex- ghout the message that can be recovered in a measurement
pressed as a sequence of zeros and ones. The situationpisrformed on the syste that conveys that message. The
particularly interesting if the quantum states one is using argroper measure of recovered information is thetual infor-
not all orthogonal to each other, in which case they cannot bghation which for a pair of random variable¥ and Y is
distinguished from each other perfectly by the receiver. Thigefined to be
is the problem we consider here. As we will see, this prob-
lem leads to a new information-theoretic interpretation of the [(X:Y)=H(X)—H(X]Y). D
von Neumann entropy of an ensemble of states.

Nonorthogonal quantum states might be used in a varietyiere H is the Shannon entropy, which is a function of the
of contexts to transmit classical information. In studies ofProbabilitiesp(x;) of the possible values of:
guantum cryptography, nonorthogonal signals are used inten-
tionally in qrdgr to gvoid. eavesdroppiri@]. Moreover, in H(X):_Z p(X;)10gp(X;). )
any transmission using signals at the quantum level, such as i
weak coherent pulses in an optical fiber, any ambiguity be-
tween signals may be more a matter of nonorthogonalitfHere we interpretplog,p as taking the value zero when
(e.g., overlapping pulsgshan classical noise. In what fol- p=0.) H(X|Y) is the expected entropy &f once one knows
lows we will often imagine the signals to be nonorthogonalthe value ofY. That is,
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mutual information is 1.369 bits, or about 0.685 bit per pho-
HX|Y)=2 p(y;j) - p(xi|yjlogp(xily;)|- (3  ton. In other words, by restricting her code to a subset of the
) ' possible code words, while still respecting the given letter
frequencies, Alice can increase the distinguishability of the
code words and increase the information conveyed per pho-
| ton to Bob.

This example shows that it is sometimes possible to in-
crease the accessible information per elementary signal by
(a) using code words composed of several elementary sig-
Ir]1als, andb) deletingsome of the possible code words in the
ensemble, while respecting the given elementary signal fre-
i quencies. The receiver then chooses a decoding observable

optimized to distinguish among the code words actually
used. Note that this observable will typicalfyt be realiz-
ble as a set of separate measurements on the individual

In classical information theory, the mutual information is
the amount of information abot that is acquired by deter-
mining the value ofY. The crucial theorem from classica
information theory that justifies our focus o(X:Y) is this:
if a communication channel has mutual informatidexX:Y)
between the input signa{ and the received outpf, then
by means of sufficiently redundant coding, that channel ca
be used to send up to, but no more thigix: Y) binary digits
per use of the channel with arbitrarily low probability o
error. In our quantum context, if we denote Bythe outcome
of a measurement of an observable bh the quantity
I (A:B) measures the information about the message sourc

A that is acquired by measurement of the observable. It alsqehin\:vehngfgi:;g;agé;Z}Sir(’):smﬂ titr)1 eg ?gjnéemﬁgf durement on

therefore, measures the number of binary digits that can be These considerations lead us to ask whether it is possible

conveyed per signal when the receiver uses this observabl%r Alice and Bob to use this strategy to approach the
A theorem stated by Gorddw] and Levitin[5] and first Kholevo bound. That is, given ampriori ezsemble of pure-

proved by Kholevd6] states that the amount of information estate signals wi.th entroﬁg(p) canpAIice and Bob cho%se a

accessible to Bob is limited by the entropy of the ensembl et of code words respecting the original probabilities of the
of signal states. That is, suppose Alice represents each mes: P 9 9 P

sagea (with a priori probability p,) by a statep,, which is Signals, together with a decoding observable, so that infor-

in general a mixed state. Then for any observable that Bofjiation is rellgbly transmitted at arate approachh@) per
. " elementary signal? The answer is yes. Moreover, we will see
chooses to measure, the mutual informatiph: B) between L
SRR , . that for no such code can the transmission rate exceed
Alice’s input A and Bob’s measurement outconi® is

H(p).

bounded by We now give a precise formulation of our main result.
Suppose we are given an ensembief letter statega) of an
|(AZB)$H(p)—E pPH(pa), 4) elementary quantum systetnot necessarily a photpnvith

a a priori probabilitiesp,. The letter ensemble has a density

where p=Z2,p,p, (the average density matrix for the en- matrix

semblef of signalg andH (p) = — Trplnp (the von Neumann
entropy of the density matrix). If the signal statep, are all p= 2 pala)al, (6)
pure states, the second term on the right vanishes, and we a
can simply say
with von Neumann entropii (p) = — Trplnp.
I(A:B)<H(p). 5 A code[“( N,|) code™] consists of two things(i) a set of
N code wordg|s;):i=1, ... N} where each code word is a
sequencd(i.e., product of | letter statesbut not all such
sequences of letter states are code womsd(ii) ana priori
n?)robability Ps, assigned to each code word. Ttaderance

of the code is defined by

As Kholevo noted[7], there are situations in which
[ (A:B) does not approacH(p) very closely for any choice
of Bob’s decoding observable. Thus, though this theore
provides anupper boundon the amount of information ac-
cessible to Bob, this upper bound is not in general very”
strong[8,9].

One example of this was studied in detail by Peres and 7=maxy|fa— pal, @
Wootters[10]. Suppose Alice sends a photon in one of three
linear polarization stategcalled “letter” states denoted wheref, is the overall frequency of occurrence of the letter
|a), |b), and|c), which are separated by 120°. Each state iga) among theN| letters of all the code words, taking into
used equally often. This signal ensemble has a von Neumaraccount thea priori probabilities of the code words. That is,
entropyH(p) of 1.000 bit, whereas Bob’s optimal decoding
observable yields a mutual informatidtA:B) of 0.585 bit. 1 N
If two photons are used, there are nine possible signal states: fa=|—z PsNas; (8)
|aay, |ab), etc. The von Neumann entropy is 2.000 bits and =1
the optimal mutual information available to Bob is 1.170
bits. wherena’Si is the number of occurrences of letta) in code

However, suppose Alice sends two photons but only useword |s;). A low tolerance code will use up the letters ap-
the three statésa), |bb), and|cc). Note that the individual ~ proximately with their givera priori probabilitiesp, in the
letter states are being used with their origif@fua) prob-  construction of the code words.
abilities in this restricted choice of two-photon states. Then Then we may consider the information transmissible us-
the ensemble entro(p) is only 1.585 bits, but the optimal ing the ensemble of code word states. The information per
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letter is just the accessible information of the code wordtransmitted to Bob without alteration; i.e., there is no

ensemble divided bY. We shall show the following: “noise.” The problem now is that nonorthogonal quantum
TheoremLet | 5 be the least upper bound on the informa- states are not perfectly distinguishable by any measurement.

tion per letter transmissible with any code having toleranceBob has much freedom in his choice of decoding measure-

<§. Then ment and the conditional probabilities in E@) arise from
. the probabilistic nature of quantum measurements. Our no-
limls=H(p). tion of quantum channel capaci{9) corresponds to optimiz-
5—0

ing over choice of input distributioand of decoding observ-
This theorem gives a precise information-theoretic interpref"b'e' in contrast to classical channel capacity, which involves

tation of von Neumann entropy in quantum mechanics. Tdnaximizing only over input distribution. Indeed in the quan-
tum case, even if the input distribution is viewed as being

put it in somewhat looser but more familiar terms, the theo-. . " -
rem says that if Alice is required to use certain quantumﬂxed (as in our th_eorem aboyéhe cond|t|0_nz;l probabilities
states as signals with certain specified frequencies of occul? (1) are_st|ll variable as we need to opt|m|zg over all pos-
rence, the number of binary digits she can convey to Bob pe?‘Ible choices of t_he decodm_g obsgrva_ble. It is this require-
particle can be made arbitrarily close to, but not greater tharﬂ1ent that necessitates the discussion in Sec. I.”' L
the von Neumann entropy of the ensemble of signals. The proof of the theorem pres_ented here is S|m|_lar n
some respects to that of the classical channel capacity theo-

Before proving the theorem, it is interesting to compare™~ " : i
our result to the channel capacity theorem for classical chad®™ both rely on the concatenation of letter states to obtain

nels[15], which describes the reliable transmission of infor- codg V\{ordzta_ndﬂt]he prdunlntg %f the sdet_ OIha” p;]ossmlle Icotdhe
mation through a noisy classical channel. For a given set of/0ras to oblain e codes 1o be used in the channel. In the
input letters, transmissible through a noisy charibat with classical setting the aim of pruning is to increase redundancy

the a priori probabilities unspecified the classical channel Wh_e_reas in the quantum setting, it is to mcrede&tmgglsh-
capacityC is defined to be the maximum attainable mutualablllty of the code word states. It should be emphasized that

information, where the maximum is taken over all possibleth's concatenation and pruning do not result in a channel that

choices of probability distribution of the input letters. Then ?c;flrgﬁsf'rﬁ‘r&;hzlI?J(/Ivgégﬁlr'elnet;ct)g;i Stlrtéljr?:r%?sssitgr? gfugfetﬁgr:fafs
the classical theorem states tlitatis the maximum possible : P y

rate at which information can be reliably transmitted throughICe;:]ert)Ztitgﬁ\'/;’VheEg,)'Ségteh m‘;";(')rf';“m"rij;e :tn\:\gjnlr?:d”g?g:élgr?]
the noisy channel. yed: p

In our quantum theorem above, we have considered goding to demonstrate the existence of a code with desired
fixed probability distributionp, for the input letters|a), properties. This is merely a technique of proof amat a

which allows us to characterize the von Neumann entropy Opwethod of signaling Considering averages over random

the letter ensemble. However, we may consider this distribu(-:oOles is a means of bringing statistical arguments to bear

tion to be variablgfor a fixed set of letter statesnddefine ﬁ]po?h;h?ep[ﬁrt:algngbgedoes not provide a means of construct-
the capacityC of the quantum channel to be the maximum 9 q X

) . In the next five sections we describe the machinery nec-
von Neumann entropy attainable from the given letter stateg ! . :
. o e essary to complete the proof, including typical subspaces of
by free choice of the priori probabilities:

guantum ensembles, a sufficiently optimal choice of decod-
C:=max, H(p). (9) ing obseryable, _and the technique of “random coding.” The
a final sections discuss some of the corollaries and conse-

Then according to our theorer is the maximum rate at duénces of the main result.

which classical information may be transmitted through the

quantum channe{the channel being characterized entirely Il. TYPICAL SUBSPACES
by its allowed letter stat@sBelow, in the course of the proof

OT the quantum theorem we will show t_hat for any input e spacel with probabilitiesp,, as described above.
d|str|bl_Jt|on Pa and for anye, 5=0 there exists a che and a Fix ¢,6>0. We can concatenate letters into words of length
decoding observable such that the amount of |nformat|0r|1 and if | is long enough[1,2] then the Hilbert space

transmitted per letter is greater the{p) — 6 and the prob- H'=H®H®---®H (the Ith-order tensor power of{) for

ability of error is less thare. (In fact this will be achieved the words can be decomposed into two subspaces: a “typi-
with code words having equal priori probabilities) Thus cal” subspace\ and the perpendicular subspate, having

i“fOfma“k?”hma]}’ be lrlelia.blyl tre:nstrr?ittetdtat ratt;[e ?rlg nol the following properties(a) Both A andA* are spanned by
more, which IS formaily simiiar to the stateément of the Clas- g, o nstates of!' = pe p® - - - ® p (thelth-order tensor power

sical channel capacity theorem and justifies the definit®n of p). (b) Almost all of the weight of the ensemble lies

above, of quantum channel capacity in the present contextWithin A: THI,p'T,>1—€ and Tl p'Tl, <e. (Here
Despite this similarity between classical channel capacity; 47y ., a?e thé orojections ontz? and//\\i ) (o) The

and the above notion of quantum channel capacity, there aré':iaenvalugs\ of p! for eigenstates irh fall Withi.n a “nar-

also essential differences, in particular the origin of the cons range: n

ditional probabilities in Eq(3). In the classical setting these '

probabilities are fixed, being characteristic of the noise in the 2 H(p)+ 8l <)\ <2~ I[H(p) = 3], (10)

channel. On receiving thepartially corruptedl signals, Bob

simply records them and the issue of his measurement €f course,H(p')=IH(p).] (d) The number of dimensions

trivial. In contrast in our quantum setting, letter states ardn the typical subspace is bounded in the range

Suppose we have the ensemble of letter stpgsin a
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(1_6)2I[H(p)f5]$dimA$2|[H<p>+6]_ (11) The operatorsu,){ x|, supplemented by a projection onto
the subspace perpendicular to the spat| gf)}, thus form
The typical subspace is constructed as follows: The the outcome operators of a POM.
eigenvaluesy; of the one-letter density operater form a The vectors ¢ specify a particular POM that employs
“probability distribution” for the eigenstates gf, for which  the outcome operatorig){ . This is the POM that Bob
the classicalShannoi entropy is just the von Neumann en- chooses in orde'r to distinguish among the vectors. This is a
tropy H(p). Eigenstates of' are sequences gf eigenstates. reasonable ch0|c§. !f thg vectofg,) are o_rthogonal and
By the weak law of large numbers, we can find a set ofthus completely distinguishable, the resulting measurement
“typical” eigenstates ofp' in which the frequencies of the does mdeed_dl_stmgwsh them perfectd'y'_'here is no known_
p eigenstates are close to the “probabilitieg}. A is the W&y of specnfymg thebest observable in general, but this
subspace spanned by these typical eigenstates. observable will be good enough for_our pu_rpo}ses.
Suppose we sum the squares of the eigenvalugs, it The |uy) vectors have another interesting atfdr us

restrict ourselves to the typical subspace. Then we get ~ USeful property. LetS; be the matrix of inner products
among the ¢, ) vectors:

Sik=(9jl dw). (16)

If there areN vectors, this is atNXN complex matrix with

This inequality will be useful below in connecting the prob- POsitive eigenvalues. Thgu,) vectors are related to the
ability of error for a coding scheme to the entroyp). square root of this matrix by

IIl. DECODING OBSERVABLE (VS) 3= i - (a7

Suppose that Alice is using a code with words long!n fact, this property of th¢,;) vectors can be taken as an
enough for the typical subspace to exist and that have thignplicit definition for them.

THI, (p) 20T, < (dimA ) (27 TH(P) =912
<2~ 1[H(p)-35], (12)

properties outlined above. Alice may not be usalgof the To decode Alice’s message, Bob will employ an observ-
possible code words. Denote an individual code word byable to distinguish between her signal stasgs But we will
Isi). find it more useful to suppose that he distinguishes between

In order to read Alice’s messages, Bob will have to em-Projections of the signal states into the typical subspace
ploy a decoding observable to determine which siggalis ~A—that is, between non-normalized vectqeg) =11 ,[s;).
present. This decoding observable will in general be a “posi-T0 do this he will employ the “square root” measurement
tive operator” measuremenior POM) [11,17. Bob will just described. Since the typical subspace contains “almost
want to choose his decoding observable so that he will dedll” of the set of available code wordgn the sense of the
duce Alice’s message with as small a probab”ity of error ag)reViOUS Sectio)] this refinement introduces negllglble error,
possible. as we shall show. Thus, we define the maﬁ;j?(=<cri|0'j>,

Bob’s essential problem is to distinguish between a coland construct thgu;) vectors(which lie within A) so that
lection of vectors in the Hilbert spack'. Let {|¢,)} be a
collection of such vectorgpossibly not normalized Con- (mils)y=(milo)=(9); . (18
sider the operator

Let us also definen;=S;=(a;|a;), the norm of the pro-
jected code words. Thig) vectors, together with the pro-
D=2 |d) (i, (13 jection onto the subspace perpendicular to all the vectors
K |o;), define Bob’s POM.

which is a positive operator whose support is the subspace

spanned by the vectolgs,). On this subspacé’? exists IV. PROBABILITY OF ERROR

and is invertible, so we can form the vect¢ts] Alice’s code will consist oN code wordgs;), each used
U2 with equal frequency. The information content of a single
| =P~ 4 ) (14)  code word is therefore Igty. Each code word is a sequence

of | letters chosen from the set of possible lettéFar now,
corresponding to positive operatdys,)(u,|. These positive we will disregard the probabilities of those letters in the
operators are easily shown to be a resolution of the identitgiven ensembl¢.Bob devises his decoding observable as
on this subspace: described above.
Alice sends the signdk;) with probability 1N. Bob will
correctly interpret the signal—that is, he will obtain the
; |ﬂk><#k|:§k: O (|2 outcome in his decoding POM—uwith probability

Pl si)=Trl iy il (sil = [{ il si)]?. (19

=<I>1’2(2k |¢k><¢k|)‘pl/2
We note that u;|s;) is real and non-negative. The average
=@ Vpp-1=1, (15  probability of error is thus
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randomcodes ofN words. We generate a random code in
Pe=1- 2 <,U«||S| = E (L= (mils) (1+(uilsi)) this way. Each of th&\ code words is a sequence lofetter
states generated using thepriori probabilities for the let-
2 ters. The probability that the ith code word
$N§i: (1—( il oy)). (200 |s)y=|aja,---a) is just p(a;)p(ay)- - -p(a). Each code
word is generated independently of the others. We are in
effect drawingN code words at randomwith replacement
from thea priori ensemble.
2 Denote an average over random codeg by. First, we
Pes< NEi [1-(V9)il. (21)  note that, for any particular code wofs|),

In terms of theS;; matrix, this is

—
The square root function is bounded below by a parabola: (Isi)(sie=p'" (27

for x=0,
Next we take the average &fz over random codes.

Jx=2x—1x2 (22)

1
The matrixS is a matrix with non-negative eigenvalues, so (Pe)e= NZ‘ 1=(ni)e+ E;i (SijSjie|- (28)
this inequality may be applied to it:
Je=2 L2 Each of the averages in this expression is straightforward
S=25-35" (23 {0 calculate. The average norfm;). of the ith projected

This means that, for a complaX vector with components code word is

Zo ()= (Tr(TT s, )(si|TT5) e

3 1 _ I >1—
% Z:(\/g)k|2|2 E% ZESkIZI_EkEH ZESkJ'SJ'|Z| . (24) TI’(HAP HA)>1 €. (29)

For j#i, the code wordss;) and|s;) are independent, so
For a giveni, we can chooseg,=1 andz,=0 for k#i. This  that

yields
(SijSji)e={(silT;|s;)(sj|TT|si))e
3 1
(V9= 7S~ 5; Sij Sji =(Tr(IT,[s;)(sil[sj){sj|TT5))c
3 =TrII,(p")?I1, . (30)
=>ni— 2 SiSii - (25)
2 = (We have used the fact thBt, commutes withp'.)

Each term in the upper bound fOP¢).. is independent of
Therefore i, so that the sum ovaryields a multiplicative factor oN.

5 1 The j sum yields a factor oN—1. Thus
23 (130 bt s 5

| (Pg)e<2e+NTrIL(p")I1, . (3D
_ 22 (1-n)(1—n/2)+ 2 S;Si We use the properties of typical subspafes. (12) abovd
N to obtain
2 1 —I[H(p)-36]
NN NEEINEEDY Sﬁjsji)' (26 (Pepe=2e+ N2 T 32
i IEa
If the averageprobability of error is below this bound,
V. RANDOM CODES then A_I|ce and Bob will be able to find some particular code
for which
In this section and the next we will prove our main result.
We will show that Alice can choosiN code words withN Pe<2e+ N2 [H(P)=33] (33

sufficiently large so that lof\ is approximatelytH (p), such
that Bob (using the scheme abovbas probability of error If | is very large(perhaps much larger than we actually need
Pe nearly equal to zero. Furthermore we will see that Alice’sto  form the typical subspaceA), Alice can make
code can be chosen to have arbitrarily small toleran@s  N=2'H() =49 gnd still havePe<3e. In this case, Alice
defined in(7). Finally we will show that an information rate encodedH(p)—4 6 bits per letter. This proves the existence
of H(p) bits per letter cannot be exceeded in the limit ofof codes allowing transmission at an asymptotic rate of
vanishing tolerance. H(p) bits per letter, with arbitrarily low error.

To show the existence of such a code, we will in fact Remark:In fact, we can do even better: we can modify a
show that almost any code will do the job. That is, we will code with a lowaverageprobability of error to give a code
calculate the average probability of error for an ensemble ofvith a low maximumprobability of error. Let us throw away
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the worst half of the code words in the optimizing code.assumed to be equalet pgoge andH e denote the density
Since the average probability of error for this code is lessmatrix and von Neumann entropy of the code word en-
than 3, we have semble.
Let & be the ensemble of letter states that appear as first
1 letters in the code words; i.e., we look at the first letter of
WZ [1-p(uils)]<3e. (34 each of theN code words and note the frequenty of
occurrence of each lettéa), taking into account tha priori

This implies that at least half the code words must havérobabilities of the code words. Lpi andH, be the density
conditional probability of error of less thanefotherwise, ~Matrix and entropy ot;. Thus
these code words would contribute at leagttd the sum.
Thus, in the reduced code book we havé'®@~! code p1=2>, fPla)(al. (36)
words. By throwing out half of the code words we have a
changed the rate frorhl(p) to H(p)— 1/, a negligible dif-

ference for largd. Similarly define &, px, and Hy for each position

k=1, ... in the code words.
Now each word is a product state of letters so thats
VI. LETTER FREQUENCIES AND CHANNEL CAPACITY the reduced state @f.,4., Obtained by partial tracing over all

The argument in the previous section is nonconstructivel.etter positions except thieth position. Hence subadditivity

We have not explicitly constructed a code with low probabil—Of von Neumann entrop}l6] gives

ity of error; we have merely shown that such a code must Hegg<Hi+ - +H,. (37)

exist. Therefore we do not know much about its detailed

properties. However, we now show that the code may be&quation(37) holds regardless of any tolerance constraints

chosen to have arbitrarily small tolerance. and already implies that the quantum channel cap&ijtgs
Note first that the generation of a random code consistinglefined in(9), is an upper bound on the information rate per

of N code words of lengtH amounts to an independent letter. Indeed, since eadh is an ensemble of letter states, it

choice of NI letters according to the priori probability  follows from the definition ofC thatH,<C. From (37) we
distribution. Since each code word is used equally often, thget

number of times a given letter appears in the listNo€ode
words tells us its frequency of occurrence when the code is Heode/ I <(H1+ -+ - +H)/I<C (38)

used by Alice and Bob. We can apply the weak law of large .
numbers to the set of codes as followsNif is sufficiently and the Kholevo theorem applied to the code word ensemble

large, the set of all random codes may be divided into twaoives that the tra_nsmitteq information_per letter is less than
classes:(@) a set of “typical” codes, in which the letter Hcoge/l- Thus an information rate .dt bits per Iet.ter cannot.
frequencies approximate thaepriori probabilities to within a b€ exceeded and the random coding argument in the previous
fixed tolerance; anb) a set of “atypical”’ codes, which are S€ction shows that this upper bound is tight.
generated by random coding with small total probability. The L&t us now incorporate tolerance constraints. Let us sup-
“atypical” codes, having small total probability, contribute POS€ that the tolerancgis extremely_small. ThIS means that
very little to the overall average probability of erroPg). FO high accuracy the average density matrix ofNillletters
estimated above. ThuéP), must also be very small even if in all the code words ig:
Alice and Bob are restricted to using “typical’” codes— |
every one of which has letter frequencies matching ahe _ }2 (39)
priori probabilitiesp, to within any specified tolerance. P k=1 Pi:

A different consideration arises if Alice and Bob are not
required to use any particular letter frequencies but are freBlow concavity of von Neumann entropg6] gives
to adjust them as they please in order to maximize the infor-
mation per letter conveyed by their channel. For that case, as H(p)=
discussed in Sec. |, we may define ttennel capacity @f
a quantum channel with a particular alphafet)} to be

H1+ e + H|
— (40
Then (40) and (37) give Hg./I<H(p) so that by the
C=max, H(p) (35) Kholevo theorem
(information/(letten < (entropy/(letten=H o4/ | <H (p),
wherep= = ,p,/a)(al. Our argument above implies that Al- (41
ice may communicate with arbitrarily low probability of er-

ror, up to C bits per letter, to Bob using the letter states@S required. _ _
{|a)} . Equation(39) is strictly true only if the tolerance is zero.

To complete the proof of the main result we now showFOr Small nonzero tolerand@7) remains exact but39) be-
that the information ratéd(p) bits per letter cannot be ex- C0Mes
ceeded in the limit of vanishing tolerance. Consider any |
(N,I) code having(smal) toleranceé in which the code 12 _ * 42
: g g pk=p", (42)
words|s;) i=1,... N havea priori probabilitiesps (not =]



54 CLASSICAL INFORMATION CAPACITY OF A QUANTUM ... 1875

where|H(p*)—H(p)|—0 asé—0. Equation(4l) becomes where|a,) is an orthonormal basis for Alice’s system and
|b,) is a basis for Bob’s system. The density matrix for
(information/(letten<H(p*) (43)  Bob’s system given by a partial trace over Alice’s system has
) ) o . eigenvaluep, . We will call the entropyHg of that density
and our desired result appears in the limit & 0. This  matrix theentropy of entanglemenf the systemH g will be

completes the demonstration of our main theorem. between zerdfor a product stateand logN (for a maxi-
mally entangled staje
VIl. SUPERDENSE CODING Alice can perform a unitary transformation on her system,

after which she delivers it to Bob. We might imagine her
performing different transformations with differeat priori
grobabilities, leading to an ensemble of states for the pair of
J

We can apply our results to an interesting quantum com
munication scheme proposed by Bennett and Wiegi#;
which has been called “superdense coding.” Superdens
coding makes use of the quantum entanglement between sy dicious coding(and choice of Bob’s decoding observable

tems to enhance their information capacity. Alice may convey an amount of information up to the en-

. .tTrllle S|rr1nplest exgmp;lciwwoﬂ:st as fO:IOWS' Alice and '.‘D’Obftropy of this ensemble. How big may this entropy be—i.e.,
intially share a pair of two-staté Systems—¢€.g., a pair ol 54 s the information capacity of this scheme?

spins_—which are in an entangled“state. Suppl),os_e that this It is easy to see that the entropy can e larger than
state is one of the four orthogonal “Bell states,” given by He+1og,N, since Alice’s manipulations of her system do not
affect the density matrix for Bob’s system. The total entropy
|\I’i>=i(”1l2>i|iﬁ2>), for the pair of systems cannot be greater than the entropy of
V2 Bob's system(which isHg) plus the largest possible entropy
(44) for Alice’s system(which is logN). It can also be shown that
1 a particular ensemble of transformations can make the over-
| PY=—=(|T1T2) =]l 1l2))- all entropy equal tdd ¢+ log,N. One such ensemble of trans-
V2 formations would include all permutations of the Schmidt
. . ) . . _ basis statesa,), rotations of the relative phases of these
For definiteness, we imagine that the initial state is the SiNgtates, and combinations of the two.
gIet|}If ). ) ) o We can therefore conclude that the channel capacity of
Alice manipulates her own spin and then t_ransmlt_s it _tothe superdense coding scheméHis+log,N. This is a sen-
Bob, who performs a measurement on both spins. Ordinarilygipie result. If the pair of systems is initially in a product
the transmission of a single spin could only commumcatestate,HE:O and so Alice can only send Ig§ bits per sys-
one bit of information to Boliby a simple application of the tem, as expected. If the pair of systems is maximally en-

Kholevo theorem However, in this case the pre—establishedtangmd’ then the capacity is 2 9y exactly twice as great.
entanglement between the pair of spins will allow Alice to

sendtwo bits of information to Bob. This can happen be-
cause Alice can convert the initial stat ~) into any one of
the four Bell states by a suitable unitary transformation on gqg far we have assumed that when Alice sends a letter
only one of the spins, and Bob can distinguish between thgtate|a), the state arrives at Bob’s end unchanged. In many
four orthogonal Bell states by a coherent measurement of theractical applications, however, the channel will introduce
pair of spins. Alice’s four-way choice encodes a two-bit mes-gjse and the signal will arrive in some mixed state In
sage that is perfectly recoverable by Bob. . that case, it is as if Alice were using an ensemble of mixed
We are interested in a more general situation. Alice andates to send her message rather than an ensemble of pure
Bob work with N-state quantum systems instead of spinsSstates. Our theorem does not apply to ensembles of mixed
and they may possess a considerable supply of fsenthat  states, but it suggests the following conjecture concerning
they may use block coding of many independent mes3agesnhis case.
If Alice were to send messages to Bob by sendigtate Let Alice be given an ensemblof letter states, with
quantum systems, she could send up tobbits per sys- 3 priori probabilitiesp,, and letp be the the density matrix
tem. However, suppose that Alice and Bob share many pairst the whole ensemblgi==,p.p,. We conjecture that the
of systems, which are each in some entangled pure staf@mount of information Alice can convey per letter can be

(which may or may not be “maximally entangled” like the made arbitrarily close to the quantiy defined by
Bell state$. What is the information capacity of these en-

tangled systems for superdense coding?
We can write the initial state of one of the entangled pairs x=H(p)— > pH(pa). (46)
using the Schmidt decomposition: a

stems that Bob measures. Our theorem establishes that, by

VIIl. NOISY CHANNELS

N Note thaty is the upper bound that appears in the general
_ form (4) of the Kholevo theorem.

Vo) kzl \/E| b, 49 To argue for this conjecture, it is helpful to consider two
different ensembles: the ensemBlef mixed states that Al-
ice is given, and the ensemtfé consisting of all the eigen-

The apparent doubling of the information capacity in the pres-states|a,j) of the density matriceg,. The a priori prob-
ence of entanglement motivates the name “superdense coding.” ability of the state|a,j) in & is Padaj, Whereq,; is the
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eigenvalue ofp, corresponding tda,j). In other wordsg’  which is what we wanted to show.

is a refinement of, in which each mixed state is replaced by ~ Unfortunately our theorem as it stands does not apply to

its pure eigenstates. the £ codes because of the lack of strict independence
Consider now a random code constructed from the origiamong the code words. However, it is plausible that a modi-

nal mixed-state ensembi This code corresponds to a spe- fied argument could account for this case and thereby prove

cific code constructed frorfi’: in place of eaclf code word, the conjecture.

substitute the set oéll correspondingE’ code words(in

which eachp, is replaced by one of its eigenstatewith

probabilities determined by the eigenvalues. There is no IX. CONCLUSION

physical difference between these two codes as regards the

set of possible transmissions. What is different ingheode We have shown that the von Neumann entrépp) of

is that Alice knows which pure state she sends. an ensemble of pure quantum states is equal to the capacity
Let us suppose for now that our main theorem applies t®f @ quantum channel to transmit classical information where

£ codes constructed in this way. That is, if Alice had thethe quantum channel transmits the states with their gaven

ability to know which pure signal she was sending, then sheriori probabilities. This conclusion holds in spite of the fact

could convey up taH(p) bits per letter using a typicad’ that for all nonorthogonal ensembles, the amount of informa-

code constructed as above. Included in this informationtion one can obtain by a measurement osirggle system is

however, is the information that Bob would obtain aboutstrictly less thanH(p) [6]. One achieves the increased ca-

which specific eigenstates were used. In actuality, Alicepacity by having the receiver discriminate among whole

knows only the mixed code word, so that the information code words rather than trying to distinguish the individual

Bob obtains about which eigenstates were used is irrelevagignal states.

to Alice’s message. Now, the amount of information Bob  Considering the importance of entropy in other contexts,

could have obtained per letter about these eigenstates is tejg satisfying that in this communication problem the en-

average entropy of the mixed signal staes, that is, tropy turns out to be the actual channel capacity, and not
2aPaH(pa). Thus, from the additivity of information it fol- - erely an upper bound.

lows that the amount of information Bob actually obtains
about which& code word Alice sent can be made arbitrarily
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