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Higher-order binding corrections to the Lamb shift of 2P states
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We present an improved calculation of higher-order corrections to the one-loop self-energystdtas in
hydrogenlike systems with small nuclear chayeThe method is based on a division of the integration with
respect to the photon energy into a high- and a low-energy part. The high-energy part is calculated by an
expansion of the electron propagator in powers of the Coulomb field. The low-energy part is simplified by the
application of a Foldy-Wouthuysen transformation. This transformation leads to a clear separation of the
leading contribution from the relativistic corrections and removes higher-order terms. The method is applied to
the 2P, and 2P, states in atomic hydrogen. The results lead to theoretical values for the Lamb shifts and the
fine-structure splittingl S1050-29476)08509-5

PACS numbd(ps): 12.20.Ds, 31.30.Jv, 06.20.Jr

[. INTRODUCTION terms. A very efficient scheme of the calculation has been
introduced in[5]. There, theAg, coefficient for the B and
The evaluation of the one-loop self-energy of a bound2S states in hydrogen atom was calculated. The method was
electron is a long-standing problem in quantum electrodybased on the division of the whole expression into two parts,
namics. There are mainly two approaches. The first, deveEL andE,, by introducing an artificial parameterwhich is
oped by Mohr[1], relies on a multidimensional numerical & cutoff in the photon frequency. In the high-energy part
integral involving a partial wave expansion of the electronEn One expands the electron propagator in powers of the
propagator in the Coulomb field. This approach is particu-Coulomb field and uses a Feynman gauge. In the low-energy
larly useful for heavy hydrogenlike ions. The second ap-Part one uses Coulomb gauge and applies a multipole expan-

proach is based on an expansion of the electron self-energy©n: The most important ingredient of this method is the
in powers ofZe Xpansion in the parameterafter the expansion iZa is

performed(for details, see the next sectjon

o The calculation presented in this paper is a further devel-
SEse=—(Za)*mF, (1) opment of this original method. In the low-energy part we

™ use a Foldy-Wouthuysen transformation. The transformation
clearly identifies the leading-order contribution and separates
out all higher-order terms. An additional advantage is that
the nonrelativistic Schinger-Coulomb propagator can be
used here. A closed-form expression of this propagator is

where

F=Au+Aun[(Za) 2]+ (Za)As

+(Za){Agot Agdn[(Za) 2] known in coordinate and in momentum spdfie details see
5 " [6]). This method is applied to theP3,, and 2P, states. All
+AsN(Za) "]+ 0(Za)}. (20 coefficients includingAg, are obtained. We recover all the

. I . . previously known results, and the new results Agp are in
The leading contribution as given By, has been originally -~ 5qreement with those obtained from the extrapolation of

calculated by Bethe ip2]. Many others have contributed 10 \ohrs data. Our results are relevant for single-electron,
the evaluation of higher-order corrections; for details see almallz systems(for example, atomic hydrogen and He

excellent review by Sapirstein and Yennie [iB]. A very  \hich are currently investigated with very high precision.
general analytical method has been introduced by Ericksofyoqretical values for the Lamb shift of theP2, and

and Yennie |r{4j. _Erlck_son and Yennie were able to c_alcu— 2P4, states and the fine-structure summarize our calcula-
late all the coefficients ifi2) except forAgy. The calculation ions

of corrections of Za)? relative order is a highly nontrivial
task because the binding Coulomb field enters in a nonper- Il. THE efw METHOD

turbative way, and there is no closed form expression for the _ _ _
Dirac-Coulomb propagator. Additionally, one-loop electron The self-interaction of the electron leads to a shift of the
self-energy contributes to all ordersZar, and the separation hydrogen energy levels. This shift at the one-loop level is
of the (Za)? relative contribution involves hundreds of given by

Eeemie? [ (5D, 00 5 )
se=1e“ | —5—zD,, Pl
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“nonrelativistic dipole” term (involving the nonrelativistic
Cr_ Cr propagator and wave functigrthe “nonrelativistic quadru-
- pole” term and the “relativistic dipole” term(which in-
Cr = volves the relativistic corrections to the wave function and
— N\, Cu the Dirac-Coulomb propagatofThe terms of higher order in
k vanish in the limite—0.
Calculations of the high-energy part are performed almost
FIG. 1. Thew integration contour used in the calculation. Bend- entirely with the computer algebra syStewRTHEMATICA
ing the Feynman contol€ in the specified way leads to the high- [7]. Because of the presence of an infrared cutoff, one can
and low-energy part€, andC, . Lines directly below and above expand the Dirac-Coulomb propagator in powers of the Cou-
the real axis denote branch cuts from the photon and electron propéemb potential. A subsequent expansion of the propagator in
gator. Crosses denote poles originating from the discrete spectruglectron momenta is also performed. This leads finally to the
of the electron propagator. calculation of matrix elements of operators containihgnd
p on the P states. BecausB-wave functions vanish at the
stood that the photon propagafy, .. has to be regularized to origin, all of the relevant matrix elements are finite up to the
prevent ultraviolet divergencesy is the Dirac adjoint order of Za)®.

P

oo Cr £ 2m Re(w)

Y=y 0.

For thew integration Ky=w), the lower part of the Feyn- IIl. HIGH-ENERGY PART
man integration contou€r is bent into the “right” half- )
plane with Re()>0 and divided into two parts, the low- 1N this part we use the Feynman gaug®,,(k)
energy contou€, and the high-energy conto@,, see Fig. = —9.»/K°] and the Pauli-Villars regularization for the pho-
1. The e parameter corresponds to the cuttffwhich was 0N propagator
introduced by Bethe in his original evaluation of the low- 11 1
energy part of the electromagnetic shift of energy ley2ls B (5)
(specifically,K = em). The two contours are separated along k* k¥ k=M

the line Rew)=em, wheree is some arbitrary dimension- i i i _
less parameter, which we assume to be smaller than unity° that the following expression remains to be evaluated:
This method ofw integration has been described in detail in d*k 11
[5]. The two integrations lead to the high- and low-energy E,= —iezf _4[_2
partsE, andEy, which are functions of the fine-structure cu(2m)" K
constanta and of the free parameter Their sum, however, 1

_ 1 —
— o — — Ol A
SEsd @) =E(a,€) +Ep(a,e), @ kZ—MZk""Y p—K—m— v 7l V) plomiy)

(6)

does not depend oar The most important step is the expan-

sion in e after the expansion ir. It eliminates, without We start by calculating the matrix element

actual calculations, many terms that vanish in the limit

e—0. To be more specific, in expandifg andE,, in € we S o 1

keep only finite termsthe € coefficients and the terms P={(yly P E—y Yl ) (7)
which diverge ag— 0. The divergent terms cancel out in the

sum; the finite terms contribute to the Lamb shift. This can-up to the order of Z«)®. The first step in the evaluation of
celation of the divergent terms is an important cross check op s the expansion of the matrix

the calculation. One may use different gauges of the photon

propagator for the two parts, because the gauge-dependent 1

term vanishes in the limié— 0. For convenience, we use the M= 7"m Y

Feynman gauge for the high- and the Coulomb gauge for the

low-energy part. in powers of the binding field. We denote the denominator of

In this work, the treatment of the low-energy part is the free electron propagator Iy (D = p—k—m). Realizing
largely simplified by the introduction of a Foldy- that the binding field/= — (Za)2m/p carries two powers of
Wouthuysen(FW) transformation. It enables one to clearly (Za) (with p=r/agyy), We expand the matrik! up to V3,

separate out the leadir(gonrelativistic dipolg term, which  \yhich leads in turn to four matrices, denotit]
gives thea(Za)* contribution, from the relativistic correc-

tions, which give terms im(Z«)®. An additional advantage 1 1,1

is the fact that all contributions to the low-energy part can be Mo=v*5Yu, M1=7"57 Vg5 Yu
evaluated using the nonrelativistic Sctimger-Coulomb-

Green'’s function, whose closed-form solution is well known 1 1 1

[6]. Terms which contribute to the Lamb shift up to M,= 3,#53,0\/5 ),0\/5 Vs

a(Za)® can be readily identified, and each of these can be
calculated independently. In the low-energy part we may ex-
pand in the photon momentukn The terms which contribute 1 1 1 1 )

O\ Oy Oy
to the Lamb shift in the order ok(Za)® correspond to the Ms=7 D” VD L4 VD Y VD Yur
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with  M=Mg+M;+M,+Mz+0((Za)”). Defining Ei none of the electron momentum operators in the denomina-

=(|M;| ), we write the elemenP as the sum tor. Next, we evaluate the matrix elements of these operators
o with the relativistic(Dirac) wave functiony. It is a property
P=Py+P;+P,+P3+0((Za)’). (9) of P states, which vanish at the origin, that up to order

(Za)8, all of the desired matrix elements are finite.
This expansion corresponds to a division of the initial ex- As an example, we describe here the evaluation of the
pression into 0-,1-,2-, and 3-vertex parts. We then expanghree-vertex matrix elemem3—<¢|M3|¢/;) It takes on the
each of the matrice#/; into the standard 16" matrices, same values for both R states. Expandingy!; into the 16
which form a basis set of’44 matrices. ['-matrices, we find that up to ordeZ&)®, all expansion
15 coefficients vanish except for the identityand y° matrices.

1 . L -
Mi:;::o Ci,ﬁl“ﬁ where Ci,ﬁ:ZTr(FﬁMi)- (10) The expansion coefficients are explicitly

k?—k?’w—4w+3w?+2

. .. . . C3|:16\/3 Eb3|V31 (11)
The expansion coefficients ; are rational functions of the : (K4 20— wd)? :
binding field, the electron and photon energy and momenta.
They can therefore be expanded in powersagfleaving  wherek=|k| and for simplicitym=1, and
|
K — 8K+ 124w+ 160 — 6k’ 0w’ — 120° + 4w’ — w*—8 s
C3’70:2V Eb30,OV . (12)

(k2+ 20— w?)*

So up to order Za)®, the twoc-expansion coefficients are The remaining terms are integrated with respedk toy re-
(except for their dependence dénand ) functions of the sidual integration and with respect ® by changing the
binding field only. Thus, the matrix elemeRt is given by  integration variable to

P3=b3, (V3| 4h) + bz 014 YOV ). (13 _
he rel | f th f 2mo o tio 17)
The relevant matrix element of the wave function is U= ——.
V2mow w0’ —iw

— — 1
(V)= (U1yV ) = — 5(Za)m*+ O((Za) ) o _ _ o _
(14 This integration procedure is described in detail§5h The

final results for the high-energy part dfer the definition of

where the first equality holds only in the order @)®. The T See Eq(1)]
above matrix elements take on the same values for the
2P4;» and P4, states because the radial parts of both 2

; e M 1 4177 103
states are the same in the nonrelativistic limit. Fu(2Py)=—=+(Za)? —1In(2)
For the other vertex parts, many more terms appear, and 21600 180
the matrix elements contribute in the lower order also. We 103 2
give one example here, to be evaluated for the 1-vertex part, —1—80|n(€)— 9—} (18)
€
<I|y°p~(Vp)l<//>———(Za)“m 2wy
1152
and
for 2Py,. (15
Fu(2P3p) = +(Za) 21600 90In(2) In(e)
— 5 71 (19)
0p. N 4003 6m3
(WY°p- (VP) ) = = 25(Za)*m® — 2 =(Za)°m
for 2Pg,. (16) IV. LOW-ENERGY PART
For a more detailed review of the calculations, E&le Hav- In this part we are dealing with low-energy virtual pho-

ing calculatedP we subtract the mass-counter term beforetons; therefore we treat the binding field nonpertubatively.
integrating with respect tk andw. The finalk andw inte-  Choosing the Coulomb gauge for the photon propagator, one
gration is performed in the following way. Those terms finds that only the spatial elements of this propagator con-
which appear to be ultraviolet divergent are regularized andribute. Thew integration alondC, is performed first, which
integrated covariantly using Feynman parameter approacleads to the following expression fé; :



1856 U. JENTSCHURA AND K. PACHUCKI 54

3
EL:_ezf L(ST,U UalekTy* =
|k|<e(277)32|k|

_ _ 1 1
o 1+|(k~r)—§(k-r)2)—WP'(OI'D)

. p ) 1 1 .
X (| a'e™® " (20) +705(1+|(k'r)—§(k'r)2)—Yomp'pz

o (w1

1l «a o1 .
—— 3(r X))+ =—y%(k-r)(kx 3)!
where w=k|. Hp denotes the Dirac-Coulomb-Hamiltonian, 2m r_g( ) 2m” (k-1 )

57 is the transverse delta function, aatrefers to the Dirac

a matrices. In the matrix element - ZI—myO(kxz)‘, (26)

- o 1 o In the limit e—0 the odd operators in the above expression
Py :<'/’|a'e'k'rma'ef'k'r|¢> (21 do not contribute to the self-energy i@ )? relative order,
b v S0 one can neglect the odd operators. It can be shown easily
that also the last term in the above expresgjmoportional
we introduce a unitary Foldy-Wouthuysen transformationto kX %) does not contribute to the Lamb shift iZ¢)?
u, relative order fore—0.
Because we can ignore odd operators, and because the
lower components of the Foldy-Wouthuysen transformed
- . 1 wave function vanish, we keep only the upper lekt 2 sub-
Pil=(U 'M(U“Ielk.rUﬂU(HD—(E¢—w))U+ matrix of Eq.(26), and we writetUa'e*"U™ as

X(Uale ™ "UT)[Uy). (22) - N T
Ua'e®'U ZE 1+|(k-r)—§(k-r) _ﬁpp

The lower components of the Foldy-Wouthuysen trans- 1 « o1 i
formed Dirac wave functiony vanish up to Z«)?, so that “omz X o)+ 5 (k1) (kX o).
we may approximat¢U ) by
(27)
U)=|)+|54) with (p|S¢)=0, (23  This can be rewritten as

. p' .

iaikerpp+ 5 Aiker i
where |¢) is the nonrelativistic(Schralinger-Pauli wave Ua'e™U “m¢ + oy, (28)

function, and| 8¢) is the relativistic correction.

We define an operator acting on the spinors as even if {yhere 8y’ is of order €«)3. It is understood that the term
does not mix upper and lower components of spinors, and wep'/m)e’ " is also expanded up to the ordetc)3. Denot-
call the operator odd if it mixes upper and lower compo-ing by E the Schidinger energy[ E= —(Za)?m/8 for 2P

nents. The Foldy-Wouthuysen Hamiltonian consists of eveRtateg and by SE the first relativistic correction t&, we can
operators only. For the upper leftx2 submatrix of this  thus write the matrix elemer® as
Hamiltonian, we have the resu]

i
. : 1
%e|k~r+ éyl

Hs— (E—w)+ oH— oE

PU=(¢+ 59|

p] —ik-r j
me + oy

X |p+5). (29

whereHg refers to the Schidinger Hamiltonian, andH is

is the relativistic correction, i i i i L
In this expression, the leading term and tfiest) relativistic

corrections can be readily identified. Spurious lower-order
(p)* a terms are not present in EQR9). By expansion of the de-
6H:_8W+W5(r)+ma'l" (25  nominator Hs— (E— w)+ H—SE in powers of a, the
whole expression can be written in a form which involves
only the Schrdinger-Coulomb-Green's function,

Now we turn to the calculation of the Foldy-Wouhuysen

transform of the operatorsy'expk-r). The expression G(E—w)=
Ua'expik-r)U™ is to be calculated. Assuming that= K|

is of the orderO((Za)?), we may expand the expression

Ua'e® U™ in powers of Za). The result of the calculation whose closed-form expression in coordinate space is given in
is Eq. (33). We now define the dimensionless quantity

1

Fs (€ o)’ %0
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V—2mE

m _.. 1
pP= EtsTJJ pii (31 t=———==sv. (38)

V—2m(E— w)

The other contributions td® [for definition of P see Eq.
(31)] are listed below.

Using the symmetry of th€-wave functions and Eq29),
we easily see tha® can be written, up toZ«)?, as the sum
of the contributiong32), (39)—(43). The leading contribution

(the “nonrelativistic dipole’) is given by (1) The nonrelativistic quadrupole,

1 i .
PND:ﬁ<¢|pmp|¢>' (32 Prno= 3m<¢|Pe'k ' e ™*"|¢)~Pnp.

(39

1 i
—(E-w)’
The evaluation of this matrix element is described here as an

example. For the Schdinger-Coulomb propagator, we use

. | _
the following coordinate-space representafiéh (2) the corrections to the currend' from the Foldy

Wouthuysen transformation,

G(rl’rZ’E_w):% Oi(r,F2, )Y m(F) Y (T2,

p :5T,ij i - je—ik-r , 40
- w= 0Ny g —g P ), (40
with E— w=—a’m/(217). (3) the contribution due to the relativistic Hamiltonian,
4m (2ry or\! 1 . 1 .
_ —— —(ry+ry)/(av) - i i
gl(rl!r21 ) av |\ av av € P(SH 3m<¢|p HS_(E_(J)) 5HHS_(E_w)p|¢>’
(41
[ 21+1 ﬂ [ 21+1 ﬁ
§°°: av/ av (4) the contribution due to the relativistic correction to the
& (Kt Da(IT1rk—p) ¥ energy,
wherea:aBohrZ;/(am), and k). is the Po_chhammer sym- P6E2_<¢|pi B pi|¢>,
bol. The evaluation of Eq(32) proceeds in the following 3m Hs—(E—w) Hg—(E—-w)
steps: The angular integration is performed first. Second, the (42)
remaining integrals over; andr, are evaluated using the L ] ]
formula (see, e.g.[10]) and(5) due to the relativistic correction to the wave function,
0 'y)yr(in+u+1) 2 . 1 .
—Stty—1; p — - —__ | |

1 For almost all of the matrix elements we use the coordinate-
—ny 1t g) . (39 space representation of the Safirmer-Coulomb propagator
given in Eq.(33). There are two exceptions: For the nonrel-
The following formula is useful for carrying out the summa- ativistic quadrupole, we use Schwinger's momentum space
tion with respect td [11], representation and carry out the calculation in momentum
space. A rather involved contribution is

X oF,

- F(n+)\)
2 ————s"F,(—n,b;c;2) 1 .
PJH__%<¢|D (E-w)
sz
=I‘()\)(1—s)"‘2F1()\,b;C;—E)- (36) (p)*  7wa
X _W+2m25( )+4 230" L|G(E—w)p'|),
The summations lead to hypergeometric functions in the re-
sult, (44)
5  2t2(3-6t-3t2+12t3+29t%+122t5-413t%) ~ Where G(E-w)=1/[Hs=(E~w)]. The form of 5H im-
ao(t) = 9 (1—05(1+1)° plies a natural separation &fs, into three terms,
256t7(—3+11t?) Psn=Ppu+Ps;+P_s. (45
—1\5 5
9(1-1)%(1+t) For P, .
_$\2
szl[l 2t;1— 2t( , (37)
1+t P =——<¢|p G(E=0)| 5 8(1)|G(E- )P 6),

where (46)
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TABLE |. Contributions of relative orderZa)? to the low-energy parE, for the 2P, and 2P, states.

Contribution

Py,

2Pg3;

Frno —1.201150(1) 49/90 If e/(Z)?] —1.201150(1) 49/90 If €/(Z)?]
Fay 0.791493(1)-2/9 I e/(Za)?] 0.531475(1)-2/9 IN e/(Za)?]
Fsn 0.322389(1)- 47/288 Iiel(Za)?] 0.293749(1)- 35/288 Ifiel(Z)?]
Fse 0.040095(1)}5/96 I e/(Z)?] 0.008019(1)} 1/96 I e/(Za)?]
Fse —0.748478(1) 13/36 Ifel(Za)?] —0.216612(1) 1/96 I e/(Za)?]
Sum —0.79565(1 )} 103/180 Ifie/(Za)?] —0.58452(1)+29/90 Ife/(Za)?]

which involves the zitterbewegungs tefproportional to the

can be evaluated with the help of E®6); for more details

6 function), we use a coordinate-space representation of theee[8]. Although we do not describe the calculations in de-
Schralinger-Coulomb propagator involving Whittaker func- tail, we stress that the summation with respect toktliredex

tions (this representation is also to be found [@]). The
result forP g(t) is

a? [ —3+4t+7t2—8tF(1)]?

P&(t):_2_7 (t2_1)4 ' (47)
where
-1
F(t)=2F1(1,—2t,1—2t,m . (48)
Both termsP s andP, g,
1 (p)* i
Ppt=—3-(4lP'G(E-w)| = g 5|G(E—w)P'[$),
(49

1 .
PLs= ~ 3 (IP'G(E-0)

ﬁU'L}G(E—w)piW},
(50)

involve two propagator&(E— w). We use the Schringer
equation and the identity

Za
v (51

Hs—(E-w), - me T

-
ror mr

1(9}_8

is the decisive point in the calculation. In general, a sensible
use of contiguous relations is necessary to simplify the result
of any of the summations. Symbolic procedures were written
to accomplish this. Through the compartmentalization of the
calculation achieved by the Foldy-Wouthuysen transforma-
tion, it has been possible to keep the average length of inter-
mediate expressions below 1000 terms.
The contribution toE; due to thedEgg is given by

E.= Zajsd P 53
L= m ), 4@ (w). (53
Changing the integration variable towe have
11 1-t?
F:——f dt—s—P(1). (54)
2)y,

The P terms are integrated with respectttby the following
procedure. Terms which give a divergence éer0 are ex-
tracted from the integrand. The extraction can be achieved
by a suitable expansion in the argument of the hypergeomet-
ric functions) which appear inP(t). The extracted terms
consist of elementary functions @fonly, so they can be
integrated analytically. After integration, the terms are first
expanded in Za) up to (Za)?, then ine up to €. The
remaining part, which involves hypergeometric functions, is

to rewrite them to the form that contain only one propagatofntegrated numerically with respect toby the Gaussian
with modified parameters. Namely, to the desired order irmethod. _ _

(Za), the expression with two propagators can be replaced Thet integration leads t& terms which we name accord-
by an expression with just one propagator, in which anng to theP termsFyp, Fng, Fsy, Fon, Foe, andFgsy.
(Za)? correction is added to the angular momentum param] heFnp term, which is the same for botiP2states, is given

eterl or to the fine-structure constaatin the radial part of
the Schrdinger-Coulomb propagator as given in Eg3).

For theP,« andP_.g contributions, many more terms appear
in the calculation, and derivatives of the hypergeometric

by

4 2 (Za)?
FND=—§Ink0(2P)+§ —. (55)

functions with respect to parameters have to be evaluated.

The result consists of terms involving elementary functionsW
and hypergeometric functions only, and other terms whicl}
involve slightly more complex functions. Some of the sum

mations give rise to the Lerch transcenddntSummations
of the form

” 9
kgo k”gk%zFl(— k,b,c,z) (52)

e have recovered the first nine digits of the Bethe loga-
ithm with our (Gaussiah integration procedurg¢the value
“for the Bethe logarithm given in[3] is Inky(2P)
=—0.030 016 708 9(3]) TheF\p term has, fore—0, a di-
vergence oft+2/9(Za)?/ e, which cancels the corresponding
divergence in the high-energy part. All othErterms pro-
duce logarithmic divergences irZ&)?In(e) (see Table )L
The results for the low-energy parts of the 3tates are



21
4
FL(2Pyp)=— §Inko(2P)+(Za)2 —0.795651)
,. 103 2
180|n[(Za) 1+ 1g5"(€) + 52 (56)
and
4
FL(2Pgp)=— §|nko(2P)+(Za)2 —0.584521)

(57)

29| 202 29| 2
+% n[( a ]+— n(€)+§

The divergence in ¥and in Inf) cancels out when the low-
and high-energy parts are added. The results foFtfectors
(sum of low-energy part and high-energy paate

F(2Pyp)=— Ink0(2P)

12 3

103
—0.998911)+

Tgonl(Za) 2]

+(Za)?
(58)

for the 2P, state and

4
F(2P3p) = & — zlnko(2P)

+(Za)? —0.503371) + In[(Za) 2]
(59
for the 2P4, state. TheAg coefficients are given by
Ago(2P1)) = —0.998911) (60)
and

Aso2P3p) = —0.503371). (61)
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Using Mohr's numerical dat@12], we have obtained the
following estimates for higher-order terms summarized by

GSE,7

F=Aut+(Za)*{[AsotAailn[ (Za) 2]+ (Za)Gse 42) 1},

(65)
Gsg2P12,2=1)=3.15)
and

GSE,7(2P3/2'Z:1):2'35)' (66)

One of the most important aspects of rather lengthy cal-
culations such as those presented here is to avoid errors. The
result has been checked in many ways. Except for checking
the values of the terms divergenténit was also checked the
value of eachP contribution asv— 0. It can be shown easily
that the sum of all contributions to the matrix eleméntn
the low-energy part must vanish in the limit—0. Care
must be taken when checking the sum, because after the
Foldy-Wouthuysen transformation, hidden terms are intro-
duced which do not contribute to the Lamb shift, but con-
tribute in the limitw— 0. The hidden terms originate from
the odd operators in E¢26). Taking into account these
terms, the sum vanishes for both states.

V. OTHER CONTRIBUTIONS TO THE LAMB SHIFT

For the Lamb shift, we use the implicit definition

2

E=m[f(n,j)-1]-5 )[f (n,)) =117+ L+ Epss,

2(m+m
(67)

where E is the energy level of the two-body-system and
f(n,j) is the dimensionless Dirac energy, is the electron
mass,m, is the reduced mass of the system ang is the
nuclear mass.

For the final evaluation of the Lamb shift the following
contributions are added.

(1) One-loop self-energy. The coefficients are presented

The last digit is the cumulated inaccuracy of the numericain this work. For the determination of the Lamb shift the

integrations. The values for th,, and Ag; coefficients are
in agreement with known resul8].

reduced mass dependence of the terms has to be restored.
The relevant formulas are given {8]. For example, the

These results can be compared to those obtained by Mol have a reduced mass dependencenaf/(m)3. We use

[13] by extrapolation of his numerical data for high&r

Gs(2)=—-0.964), Ggg1)=-0.994) for 2Py,
(62

and

Gg(2)=—0.462), Gg1)=-0.482) for 2Py,
(63)

where the functiorGgg(Z) for 2P states is defined by

F=Agpt (Za)[AsIn[(Za) 2]+ Gs(2)]. (64

Eq. (66) to estimate the theoretical uncertainty from the one-
loop contribution.

(2) Vacuum polarization correction. It enters fBrstates
in higher order(for the formulas seg3], p. 570.

(3) Two-loop contributions due to the anomalous mag-
netic moment 15]. It is given in analogy to the one-loop
contribution as

2 (Za)4

m— 35— [Baot -1, (68)

5E2—Ioop (;)

where theB coefficients are labeled in analogy to tie
coefficients for the one-loop self-energy. TRg, coefficient

BecauseGg(Z=0)= A4, these values are clearly in very is due to the anomalous magnetic moment of the electron. It
good agreement with the results of our analytical calculationis given as
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TABLE Il. Contributions to the Lamb shift in kHz for the 2, and 2P5, states. Estimates of the
contributions of uncalculated higher-order terms are given in the text. Where no uncertainties are specified,
they are negligible at the current level of precision.

Contribution P, (kHz) 2P5, (kHz)
One-loop self-energy —12846.92(2) 12547.95(2)
Two-loop self-energy 25.98(7) —12.79(7)
Three-loop self-energy -0.21 0.10
Vacuum polarization -0.35 —0.08
(Za)* recaoil 2.16 —1.08
(Za)® recoil —17.08 —17.08
(Za)® recoll 0.42 0.42
Sum for 2P, —12835.99(8) 12517.46(8)
B 27 ™ o 2] L EYpTI 75
0 i+ 72 6 M ¢ ) rec,G_m_N( @) §<¢|r_“|¢> - (79)
(69)
The formula forP states has been calculated[it6]. This
whereCj =2(j —1)/(j +1/2). general form has been obtained by us.
(4) Two-loop contributions in higher order. Recently, the  The above contributions are listed in Table Il for the 2
logarithmic term states.
4 n?-1 m,\3
B | a5 |n2[(Za)_2]KHr> 70 VI. RESULTS AND CONCLUSIONS

The theoretical values for the Lamb shifts of th,2

has been calculated [14]. The Bg, term, which is enlarged and 2Py, states presented here are

by the logarithm, probably dominates the contributions to the L(2Py,)=—12835.998) kHz (76)
two-loop self-energy in higher order. So the result may also

be used to estimate the theoretical uncertainty of the twoand

loop contribution, coming mainly from the unknoviay, co-

efficient. It is taken to be half the contribution froBy,. L(2P3) =12517.468) kHz. (77
5) Three-loop self-energy as given by the anomalous
ma(gr)1etic momef{tlS] 9y g y From the values of theR2 Lamb shifts, the fine structure can
' be determined. It turns out that the limiting factor in the
a\® (Za)* uncertatinty is the experimental value of the fine-structure
5E3_|oop=(;) m 3 [Caot - -1, (71 constante. Using a value of17]
a~1=137.035989661) (44 ppb, (79
where
, the fine-structure can be determined as
C4o={22(T'+1)1.176111)}(mr) : (72) E(2Pg,) — E(2P;,) =109690481) kHz. (79

(6) The additional reduced mass dependence of OrdeE’q/g]h the most recent and most precise valuexofvailable

(m, /my)?(Za)* [3], which we will refer to as the Za)*

recoil contribution, a 1= 1370359994@57) (42 ppb, (80)
5E (Za)* m_f 1 s 1g WE obtain a value of
e ond mz\ [+ 12 T+1) (17 %) (73

E(2P3)) — E(2Py),) = 10969041.509)(8) kHz, (81)

(7) The Salpeter correctiofrelativistic recoi) in order

5 , ) , where the first error originates from the uncertaintyrimnd
(Za)® as given in[3]. The formula is forP states,

the second from the uncertainty in the Lamb shift difference.
Our result for the fine structure disagrees with that used by
Hagley and Pipkin in[19] for the determination of
L(2S—2P4). Therefore their result ofL(2S—2P4)

(74  =1057839(12) is to be modified and according to our cal-

_ . . ) culation it should be
(8) Relativistic recoil corrections in the order of

(Za)®m, Imy, L(2S—2P,,) =105784212) kHz. (82)

é\Erec,’o__

m? (Za)5< 8 7 1

mmy an® |~ 3 3Tz D
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Precise theoretical predictions fér states could be used a comparison of completely different experimental tech-
to compare two different kinds of measurements of Lambniques is an interesting and valuable test of high-precision
shifts in the hydrogen. One is the classi§;2-2P,, Lamb  experiments.
shift measured by several groud®9-21], and the second is The method of calculation presented in this paper could
the combined Lamb shiff(4S—2S) — 3£(2S—1S) as mea-  be directly applied for the evaluation of Lamb shifts and the
sured by the Hiasch group(for a review, sed22]). The fine structure in two-electron systems, for example, in he-
experimental value of theS2Lamb shift can be extracted lium or positronium. It was a purpose of this method to use
from E(2S-2P,,,) having the precise value for,, Lamb  only a Schrdinger-Coulomb propagator, and relativistic ef-
shift, and can also be determined from the combined Lamifects are incorporated through the Foldy-Wouthuysen trans-
shift through the formula formation. This method clearly separates out the lower- and

the higher-order terms, and expresses the energy shift

8 5 i ivisti
£(2S)= 7{ ( £(4S)— Z£(28)+£(1S)) through the matrix elements of nonrelativistic operators.
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