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We present an improved calculation of higher-order corrections to the one-loop self-energy of 2P states in
hydrogenlike systems with small nuclear chargeZ. The method is based on a division of the integration with
respect to the photon energy into a high- and a low-energy part. The high-energy part is calculated by an
expansion of the electron propagator in powers of the Coulomb field. The low-energy part is simplified by the
application of a Foldy-Wouthuysen transformation. This transformation leads to a clear separation of the
leading contribution from the relativistic corrections and removes higher-order terms. The method is applied to
the 2P1/2 and 2P3/2 states in atomic hydrogen. The results lead to theoretical values for the Lamb shifts and the
fine-structure splitting.@S1050-2947~96!08509-5#

PACS number~s!: 12.20.Ds, 31.30.Jv, 06.20.Jr

I. INTRODUCTION

The evaluation of the one-loop self-energy of a bound
electron is a long-standing problem in quantum electrody-
namics. There are mainly two approaches. The first, devel-
oped by Mohr@1#, relies on a multidimensional numerical
integral involving a partial wave expansion of the electron
propagator in the Coulomb field. This approach is particu-
larly useful for heavy hydrogenlike ions. The second ap-
proach is based on an expansion of the electron self-energy
in powers ofZa,

dESE5
a

p
~Za!4mF, ~1!

where

F5A401A41ln@~Za!22#1~Za!A50

1~Za!2$A601A61ln@~Za!22#

1A62ln
2@~Za!22#1o~Za!%. ~2!

The leading contribution as given byA41 has been originally
calculated by Bethe in@2#. Many others have contributed to
the evaluation of higher-order corrections; for details see an
excellent review by Sapirstein and Yennie in@3#. A very
general analytical method has been introduced by Erickson
and Yennie in@4#. Erickson and Yennie were able to calcu-
late all the coefficients in~2! except forA60. The calculation
of corrections of (Za)2 relative order is a highly nontrivial
task because the binding Coulomb field enters in a nonper-
turbative way, and there is no closed form expression for the
Dirac-Coulomb propagator. Additionally, one-loop electron
self-energy contributes to all orders inZa, and the separation
of the (Za)2 relative contribution involves hundreds of

terms. A very efficient scheme of the calculation has been
introduced in@5#. There, theA60 coefficient for the 1S and
2S states in hydrogen atom was calculated. The method was
based on the division of the whole expression into two parts,
EL andEH , by introducing an artificial parametere which is
a cutoff in the photon frequency. In the high-energy part
EH one expands the electron propagator in powers of the
Coulomb field and uses a Feynman gauge. In the low-energy
part one uses Coulomb gauge and applies a multipole expan-
sion. The most important ingredient of this method is the
expansion in the parametere after the expansion inZa is
performed~for details, see the next section!.

The calculation presented in this paper is a further devel-
opment of this original method. In the low-energy part we
use a Foldy-Wouthuysen transformation. The transformation
clearly identifies the leading-order contribution and separates
out all higher-order terms. An additional advantage is that
the nonrelativistic Schro¨dinger-Coulomb propagator can be
used here. A closed-form expression of this propagator is
known in coordinate and in momentum space~for details see
@6#!. This method is applied to the 2P1/2 and 2P3/2 states. All
coefficients includingA60 are obtained. We recover all the
previously known results, and the new results forA60 are in
agreement with those obtained from the extrapolation of
Mohr’s data. Our results are relevant for single-electron,
small-Z systems~for example, atomic hydrogen and He1),
which are currently investigated with very high precision.
Theoretical values for the Lamb shift of the 2P1/2 and
2P3/2 states and the fine-structure summarize our calcula-
tions.

II. THE efw METHOD

The self-interaction of the electron leads to a shift of the
hydrogen energy levels. This shift at the one-loop level is
given by

dESE5 ie2E d4k

~2p!4
Dmn~k!^c̄ugm

1

p”2k”2m2g0V
gnuc&

2^c̄udmuc&, ~3!

wheredm refers to the mass counter term, and it is under-
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stood that the photon propagatorDmn has to be regularized to
prevent ultraviolet divergences.c̄ is the Dirac adjoint
c̄5c1g0.
For thev integration (k0[v), the lower part of the Feyn-

man integration contourCF is bent into the ‘‘right’’ half-
plane with Re(v).0 and divided into two parts, the low-
energy contourCL and the high-energy contourCH , see Fig.
1. Thee parameter corresponds to the cutoffK which was
introduced by Bethe in his original evaluation of the low-
energy part of the electromagnetic shift of energy levels@2#
~specifically,K5em). The two contours are separated along
the line Re(v)5em, wheree is some arbitrary dimension-
less parameter, which we assume to be smaller than unity.
This method ofv integration has been described in detail in
@5#. The two integrations lead to the high- and low-energy
partsEL andEH , which are functions of the fine-structure
constanta and of the free parametere. Their sum, however,

dESE~a!5EL~a,e!1EH~a,e!, ~4!

does not depend one. The most important step is the expan-
sion in e after the expansion ina. It eliminates, without
actual calculations, many terms that vanish in the limit
e→0. To be more specific, in expandingEL andEH in e we
keep only finite terms~the e0 coefficients! and the terms
which diverge ase→0. The divergent terms cancel out in the
sum; the finite terms contribute to the Lamb shift. This can-
celation of the divergent terms is an important cross check of
the calculation. One may use different gauges of the photon
propagator for the two parts, because the gauge-dependent
term vanishes in the limite→0. For convenience, we use the
Feynman gauge for the high- and the Coulomb gauge for the
low-energy part.

In this work, the treatment of the low-energy part is
largely simplified by the introduction of a Foldy-
Wouthuysen~FW! transformation. It enables one to clearly
separate out the leading~nonrelativistic dipole! term, which
gives thea(Za)4 contribution, from the relativistic correc-
tions, which give terms ina(Za)6. An additional advantage
is the fact that all contributions to the low-energy part can be
evaluated using the nonrelativistic Schro¨dinger-Coulomb-
Green’s function, whose closed-form solution is well known
@6#. Terms which contribute to the Lamb shift up to
a(Za)6 can be readily identified, and each of these can be
calculated independently. In the low-energy part we may ex-
pand in the photon momentumk. The terms which contribute
to the Lamb shift in the order ofa(Za)6 correspond to the

‘‘nonrelativistic dipole’’ term ~involving the nonrelativistic
propagator and wave function!, the ‘‘nonrelativistic quadru-
pole’’ term and the ‘‘relativistic dipole’’ term~which in-
volves the relativistic corrections to the wave function and
the Dirac-Coulomb propagator!. The terms of higher order in
k vanish in the limite→0.

Calculations of the high-energy part are performed almost
entirely with the computer algebra systemMATHEMATICA
@7#. Because of the presence of an infrared cutoff, one can
expand the Dirac-Coulomb propagator in powers of the Cou-
lomb potential. A subsequent expansion of the propagator in
electron momenta is also performed. This leads finally to the
calculation of matrix elements of operators containingV and
p on theP states. BecauseP-wave functions vanish at the
origin, all of the relevant matrix elements are finite up to the
order of (Za)6.

III. HIGH-ENERGY PART

In this part we use the Feynman gauge@Dmn(k)
52gmn /k

2] and the Pauli-Villars regularization for the pho-
ton propagator

1

k2
→

1

k2
2

1

k22M2 , ~5!

so that the following expression remains to be evaluated:

EH52 ie2E
CH

d4k

~2p!4 F 1k2
2

1

k22M2G^c̄ugm
1

p”2k”2m2g0V
gmuc&2^c̄udmuc&.

~6!

We start by calculating the matrix element

P̃5^c̄ugm
1

p”2k”2m2g0V
gmuc& ~7!

up to the order of (Za)6. The first step in the evaluation of
P̃ is the expansion of the matrix

M5gm
1

p”2k”2m2g0V
gm

in powers of the binding field. We denote the denominator of
the free electron propagator byD (D5p”2k”2m). Realizing
that the binding fieldV52(Za)2m/r carries two powers of
(Za) ~with r5r /aBohr), we expand the matrixM up toV3,
which leads in turn to four matrices, denotedMi ,

M05gm
1

D
gm , M15gm

1

D
g0V

1

D
gm ,

M25gm
1

D
g0V

1

D
g0V

1

D
gm ,

M35gm
1

D
g0V

1

D
g0V

1

D
g0V

1

D
gm , ~8!

FIG. 1. Thev integration contour used in the calculation. Bend-
ing the Feynman contourCF in the specified way leads to the high-
and low-energy partsCH andCL . Lines directly below and above
the real axis denote branch cuts from the photon and electron propa-
gator. Crosses denote poles originating from the discrete spectrum
of the electron propagator.
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with M5M01M11M21M31O„(Za)7…. Defining P̃i

5^c̄uMi uc&, we write the elementP̃ as the sum

P̃5 P̃01 P̃11 P̃21 P̃31O„~Za!7…. ~9!

This expansion corresponds to a division of the initial ex-
pression into 0-,1-,2-, and 3-vertex parts. We then expand
each of the matricesMi into the standard 16G matrices,
which form a basis set of 434 matrices.

Mi5 (
b50

15

ci ,bGb where ci ,b5
1

4
Tr~GbMi !. ~10!

The expansion coefficientsci ,b are rational functions of the
binding field, the electron and photon energy and momenta.
They can therefore be expanded in powers ofa, leaving

none of the electron momentum operators in the denomina-
tor. Next, we evaluate the matrix elements of these operators
with the relativistic~Dirac! wave functionc. It is a property
of P states, which vanish at the origin, that up to order
(Za)6, all of the desired matrix elements are finite.

As an example, we describe here the evaluation of the
three-vertex matrix elementP̃35^c̄uM3uc&. It takes on the
same values for both 2P states. ExpandingM3 into the 16
G-matrices, we find that up to order (Za)6, all expansion
coefficients vanish except for the identityI andg0 matrices.
The expansion coefficients are explicitly

c3,I516V3
k22k2v24v13v212

~k212v2v2!4
[b3,IV

3, ~11!

wherek5uku and for simplicitym51, and

c3,g052V3
k428k2112k2v116v26k2v2212v214v32v428

~k212v2v2!4
[b3,g0V

3. ~12!

So up to order (Za)6, the twoc-expansion coefficients are
~except for their dependence onk andv) functions of the
binding field only. Thus, the matrix elementP̃3 is given by

P̃35b3,I^c̄uV3uc&1b3,g0^c̄ug0V3uc&. ~13!

The relevant matrix element of the wave function is

^c̄uV3uc&5^c̄ug0V3uc&52
1

24
~Za!6m31O„~Za!7…

~14!

where the first equality holds only in the order of (Za)6. The
above matrix elements take on the same values for the
2P1/2 and 2P3/2 states because the radial parts of both 2P
states are the same in the nonrelativistic limit.

For the other vertex parts, many more terms appear, and
the matrix elements contribute in the lower order also. We
give one example here, to be evaluated for the 1-vertex part,

^c̄ug0p•~Vp!uc&52
5

48
~Za!4m32

283

1152
~Za!6m3

for 2P1/2. ~15!

and

^c̄ug0p•~Vp!uc&52
5

48
~Za!4m32

71

1152
~Za!6m3

for 2P3/2. ~16!

For a more detailed review of the calculations, see@8#. Hav-
ing calculatedP̃, we subtract the mass-counter term before
integrating with respect tok andv. The finalk andv inte-
gration is performed in the following way. Those terms
which appear to be ultraviolet divergent are regularized and
integrated covariantly using Feynman parameter approach.

The remaining terms are integrated with respect tok by re-
sidual integration and with respect tov by changing the
integration variable to

u5
A2mv2v21 iv

A2mv2v22 iv
. ~17!

This integration procedure is described in details in@5#. The
final results for the high-energy part are@for the definition of
F see Eq.~1!#

FH~2P1/2!52
1

6
1~Za!2F 417721600

2
103

180
ln~2!

2
103

180
ln~e!2

2

9e G ~18!

and

FH~2P3/2!5
1

12
1~Za!2F 657721600

2
29

90
ln~2!2

29

90
ln~e!2

2

9eG .
~19!

IV. LOW-ENERGY PART

In this part we are dealing with low-energy virtual pho-
tons; therefore we treat the binding field nonpertubatively.
Choosing the Coulomb gauge for the photon propagator, one
finds that only the spatial elements of this propagator con-
tribute. Thev integration alongCL is performed first, which
leads to the following expression forEL :

54 1855HIGHER-ORDER BINDING CORRECTIONS TO THE . . .



EL52e2E
uku,e

d3k

~2p!32uku
dT,i j

3^cua ieik•r
1

HD2~Ec2v!
a je2 ik•ruc&, ~20!

wherev[uku. HD denotes the Dirac-Coulomb-Hamiltonian,
dT is the transverse delta function, anda i refers to the Dirac
a matrices. In the matrix element

Pi j5^cua ieik•r
1

HD2~Ec2v!
a je2 ik•ruc& ~21!

we introduce a unitary Foldy-Wouthuysen transformation
U,

Pi j5^Ucu~Ua ieik•rU1!
1

U„HD2~Ec2v!…U1

3~Ua je2 ik•rU1!uUc&. ~22!

The lower components of the Foldy-Wouthuysen trans-
formed Dirac wave functionc vanish up to (Za)2, so that
we may approximateuUc& by

uUc&5uf&1udf& with ^fudf&50, ~23!

where uf& is the nonrelativistic~Schrödinger-Pauli! wave
function, andudf& is the relativistic correction.

We define an operator acting on the spinors as even if it
does not mix upper and lower components of spinors, and we
call the operator odd if it mixes upper and lower compo-
nents. The Foldy-Wouthuysen Hamiltonian consists of even
operators only. For the upper left 232 submatrix of this
Hamiltonian, we have the result@9#

HFW5U„HD2~Ec2v!…U15m1HS1dH, ~24!

whereHS refers to the Schro¨dinger Hamiltonian, anddH is
is the relativistic correction,

dH52
~p!4

8m3 1
pa

2m2 d~r !1
a

4m2r 3
s•L . ~25!

Now we turn to the calculation of the Foldy-Wouhuysen
transform of the operatorsa iexp(k•r ). The expression
Ua iexp(ik•r )U1 is to be calculated. Assuming thatv5uku
is of the orderO„(Za)2…, we may expand the expression
Ua ieik•rU1 in powers of (Za). The result of the calculation
is

Ua ieik•rU15a i S 11 i ~k•r !2
1

2
~k•r !2D2

1

2m2 p
i~a•p!

1g0
pi

m S 11 i ~k•r !2
1

2
~k•r !2D2g0

1

2m3 p
ip2

2
1

2m2

a

r 3
~r3S! i1

1

2m
g0~k•r !~k3S! i

2
i

2m
g0~k3S! i . ~26!

In the limit e→0 the odd operators in the above expression
do not contribute to the self-energy in (Za)2 relative order,
so one can neglect the odd operators. It can be shown easily
that also the last term in the above expression~proportional
to k3S) does not contribute to the Lamb shift in (Za)2

relative order fore→0.
Because we can ignore odd operators, and because the

lower components of the Foldy-Wouthuysen transformed
wave function vanish, we keep only the upper left 232 sub-
matrix of Eq.~26!, and we writeUa ieik•rU1 as

Ua ieik•rU1.
pi

m S 11 i ~k•r !2
1

2
~k•r !2D2

1

2m3 p
ip2

2
1

2m2

a

r 3
~r3s! i1

1

2m
~k•r !~k3s! i .

~27!

This can be rewritten as

Ua ieik•rU15
pi

m
eik•r1dyi , ~28!

wheredyi is of order (Za)3. It is understood that the term
(pi /m)eik•r is also expanded up to the order (Za)3. Denot-
ing by E the Schro¨dinger energy@E52(Za)2m/8 for 2P
states# and bydE the first relativistic correction toE, we can
thus write the matrix elementPi j as

Pi j5^f1dfuFpimeik•r1dyi G 1

HS2~E2v!1dH2dE

3Fpjme2 ik•r1dyj G uf1df&. ~29!

In this expression, the leading term and the~first! relativistic
corrections can be readily identified. Spurious lower-order
terms are not present in Eq.~29!. By expansion of the de-
nominator HS2(E2v)1dH2dE in powers of a, the
whole expression can be written in a form which involves
only the Schro¨dinger-Coulomb-Green’s function,

G~E2v!5
1

HS2~E2v!
, ~30!

whose closed-form expression in coordinate space is given in
Eq. ~33!. We now define the dimensionless quantity
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P5
m

2
dT,i j Pi j . ~31!

Using the symmetry of theP-wave functions and Eq.~29!,
we easily see thatP can be written, up to (Za)2, as the sum
of the contributions~32!, ~39!–~43!. The leading contribution
~the ‘‘nonrelativistic dipole’’! is given by

PND5
1

3m
^fupi

1

HS2~E2v!
pi uf&. ~32!

The evaluation of this matrix element is described here as an
example. For the Schro¨dinger-Coulomb propagator, we use
the following coordinate-space representation@6#:

G~r1 ,r2 ,E2v!5(
l ,m

gl~r1 ,r2 ,n!Yl ,m~ r̂1!Yl ,m* ~ r̂2!,

~33!

with E2v[2a2m/(2n2).

gl~r 1 ,r 2 ,n!5
4m

an S 2r 1an D l S 2r 1an D le2~r11r2!/~an!

3 (
k50

` Lk
2l11S 2r 1an DLk2l11S 2r 2an D

~k11!2l11~ l111k2n!
, ~34!

wherea5aBohr51/(am), and (k)c is the Pochhammer sym-
bol. The evaluation of Eq.~32! proceeds in the following
steps: The angular integration is performed first. Second, the
remaining integrals overr 1 and r 2 are evaluated using the
formula ~see, e.g.,@10#!

E
0

`

dte2sttg21Ln
m~ t !5

G~g!G~n1m11!

n!G~m11!
s2g

3 2F1S 2n,g,11m;
1

sD . ~35!

The following formula is useful for carrying out the summa-
tion with respect tok @11#,

(
n50

`
G~n1l!

n!
sn2F1~2n,b;c;z!

5G~l!~12s!2l
2F1S l,b;c;2

sz

12sD . ~36!

The summations lead to hypergeometric functions in the re-
sult,

PND~ t !5
2t2~326 t23 t2112 t3129 t41122t52413t6!

9 ~12t !5~11t !3

1
256t7~23111 t2!

9 ~12t !5~11t !5

32F1F1,22t;122t;S 12t

11t D
2G , ~37!

where

t[
A22mE

A22m~E2v!
5
1

2
n. ~38!

The other contributions toP @for definition of P see Eq.
~31!# are listed below.

~1! The nonrelativistic quadrupole,

PNQ5
1

3m
^fupieik•r

1

HS2~E2v!
pie2 ik•ruf&2PND ,

~39!

~2! the corrections to the currenta i from the Foldy-
Wouthuysen transformation,

Pdy5dT,i j ^fudyi
1

HS2~E2v!
pje2 ik•ruf&, ~40!

~3! the contribution due to the relativistic Hamiltonian,

PdH52
1

3m
^fupi

1

HS2~E2v!
dH

1

HS2~E2v!
pi uf&,

~41!

~4! the contribution due to the relativistic correction to the
energy,

PdE5
1

3m
^fupi

1

HS2~E2v!
dE

1

HS2~E2v!
pi uf&,

~42!

and~5! due to the relativistic correction to the wave function,

Pdf5
2

3m
^dfupi

1

HS2~E2v!
pi uf&. ~43!

For almost all of the matrix elements we use the coordinate-
space representation of the Schro¨dinger-Coulomb propagator
given in Eq.~33!. There are two exceptions: For the nonrel-
ativistic quadrupole, we use Schwinger’s momentum space
representation and carry out the calculation in momentum
space. A rather involved contribution is

PdH52
1

3m
^fupiG~E2v!

3F2
~p!4

8m3 1
pa

2m2 d~r !1
a

4m2r 3
s•L GG~E2v!pi uf&,

~44!

whereG(E2v)51/@HS2(E2v)#. The form of dH im-
plies a natural separation ofPdH into three terms,

PdH5Pp41Pd1PL–S. ~45!

For Pd ,

Pd52
1

3m
^fupiG~E2v!F pa

2m2 d~r !GG~E2v!pi uf&,

~46!
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which involves the zitterbewegungs term~proportional to the
d function!, we use a coordinate-space representation of the
Schrödinger-Coulomb propagator involving Whittaker func-
tions ~this representation is also to be found in@6#!. The
result forPd(t) is

Pd~ t !52
a2

27

t4@2314 t17 t228 tF~ t !#2

~ t221!4
, ~47!

where

F~ t !52F1S 1,22 t,122 t,
t21

t11D . ~48!

Both termsPp4 andPL–S,

Pp452
1

3m
^fupiG~E2v!F2

~p!4

8m3GG~E2v!pi uf&,

~49!

PL–S52
1

3m
^fupiG~E2v!F a

4m2r 3
s•L GG~E2v!pi uf&,

~50!

involve two propagatorsG(E2v). We use the Schro¨dinger
equation and the identity

FHS2~E2v!,
1

r

]

]r
r G5

L2

mr3
2
Za

r 2
~51!

to rewrite them to the form that contain only one propagator
with modified parameters. Namely, to the desired order in
(Za), the expression with two propagators can be replaced
by an expression with just one propagator, in which an
(Za)2 correction is added to the angular momentum param-
eter l or to the fine-structure constanta in the radial part of
the Schro¨dinger-Coulomb propagator as given in Eq.~33!.
For thePp4 andPL–S contributions, many more terms appear
in the calculation, and derivatives of the hypergeometric
functions with respect to parameters have to be evaluated.
The result consists of terms involving elementary functions
and hypergeometric functions only, and other terms which
involve slightly more complex functions. Some of the sum-
mations give rise to the Lerch transcendentF. Summations
of the form

(
k50

`

knjk
]

]b2
F1~2k,b,c,z! ~52!

can be evaluated with the help of Eq.~36!; for more details
see@8#. Although we do not describe the calculations in de-
tail, we stress that the summation with respect to thek index
is the decisive point in the calculation. In general, a sensible
use of contiguous relations is necessary to simplify the result
of any of the summations. Symbolic procedures were written
to accomplish this. Through the compartmentalization of the
calculation achieved by the Foldy-Wouthuysen transforma-
tion, it has been possible to keep the average length of inter-
mediate expressions below 1000 terms.

The contribution toEL due to thedESE is given by

EL52
2a

pmE0
e

dvvP~v!. ~53!

Changing the integration variable tot, we have

F52
1

2Ete
1

dt
12t2

t5
P~ t !. ~54!

TheP terms are integrated with respect tot by the following
procedure. Terms which give a divergence fore→0 are ex-
tracted from the integrand. The extraction can be achieved
by a suitable expansion in the argument of the hypergeomet-
ric function~s! which appear inP(t). The extracted terms
consist of elementary functions oft only, so they can be
integrated analytically. After integration, the terms are first
expanded in (Za) up to (Za)2, then in e up to e0. The
remaining part, which involves hypergeometric functions, is
integrated numerically with respect tot by the Gaussian
method.

The t integration leads toF terms which we name accord-
ing to theP termsFND , FNQ, Fdy , FdH , FdE , andFdf .
TheFND term, which is the same for both 2P states, is given
by

FND52
4

3
lnk0~2P!1

2

9

~Za!2

e
. ~55!

We have recovered the first nine digits of the Bethe loga-
rithm with our ~Gaussian! integration procedure@the value
for the Bethe logarithm given in @3# is lnk0(2P)
520.030 016 708 9(3)#. TheFND term has, fore→0, a di-
vergence of12/9(Za)2/e, which cancels the corresponding
divergence in the high-energy part. All otherF terms pro-
duce logarithmic divergences in (Za)2ln(e) ~see Table I!.
The results for the low-energy parts of the 2P states are

TABLE I. Contributions of relative order (Za)2 to the low-energy partFL for the 2P1/2 and 2P3/2 states.

Contribution 2P1/2 2P3/2

FNQ 21.201150(1)149/90 ln@e/(Za)2# 21.201150(1)149/90 ln@e/(Za)2#
Fdy 0.791493(1)22/9 ln@e/(Za)2# 0.531475(1)22/9 ln@e/(Za)2#
FdH 0.322389(1)247/288 ln@e/(Za)2# 0.293749(1)235/288 ln@e/(Za)2#
FdE 0.040095(1)15/96 ln@e/(Za)2# 0.008019(1)11/96 ln@e/(Za)2#
Fdf 20.748478(1)113/36 ln@e/(Za)2# 20.216612(1)11/96 ln@e/(Za)2#

Sum 20.79565(1)1103/180 ln@e/(Za)2# 20.58452(1)129/90 ln@e/(Za)2#
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FL~2P1/2!52
4

3
lnk0~2P!1~Za!2F20.79565~1!

1
103

180
ln@~Za!22#1

103

180
ln~e!1

2

9eG ~56!

and

FL~2P3/2!52
4

3
lnk0~2P!1~Za!2F20.58452~1!

1
29

90
ln@~Za!22#1

29

90
ln~e!1

2

9eG . ~57!

The divergence in 1/e and in ln(e) cancels out when the low-
and high-energy parts are added. The results for theF factors
~sum of low-energy part and high-energy part! are

F~2P1/2!52
1

12
2
4

3
lnk0~2P!

1~Za!2F20.99891~1!1
103

180
ln@~Za!22#G

~58!

for the 2P1/2 state and

F~2P3/2!5
1

6
2
4

3
lnk0~2P!

1~Za!2F20.50337~1!1
29

90
ln@~Za!22#G

~59!

for the 2P3/2 state. TheA60 coefficients are given by

A60~2P1/2!520.99891~1! ~60!

and

A60~2P3/2!520.50337~1!. ~61!

The last digit is the cumulated inaccuracy of the numerical
integrations. The values for theA40 andA61 coefficients are
in agreement with known results@3#.

These results can be compared to those obtained by Mohr
@13# by extrapolation of his numerical data for higherZ,

GSE~2!520.96~4!, GSE~1!520.98~4! for 2P1/2,
~62!

and

GSE~2!520.46~2!, GSE~1!520.48~2! for 2P3/2,
~63!

where the functionGSE(Z) for 2P states is defined by

F5A401~Za!2@A61ln@~Za!22#1GSE~Z!#. ~64!

BecauseGSE(Z50)5A60, these values are clearly in very
good agreement with the results of our analytical calculation.

Using Mohr’s numerical data@12#, we have obtained the
following estimates for higher-order terms summarized by
GSE,7

F5A401~Za!2$@A601A61ln@~Za!22#1~Za!GSE,7~Z!#%,
~65!

GSE,7~2P1/2,Z51!53.1~5!

and

GSE,7~2P3/2,Z51!52.3~5!. ~66!

One of the most important aspects of rather lengthy cal-
culations such as those presented here is to avoid errors. The
result has been checked in many ways. Except for checking
the values of the terms divergent ine, it was also checked the
value of eachP contribution asv→0. It can be shown easily
that the sum of all contributions to the matrix elementP in
the low-energy part must vanish in the limitv→0. Care
must be taken when checking the sum, because after the
Foldy-Wouthuysen transformation, hidden terms are intro-
duced which do not contribute to the Lamb shift, but con-
tribute in the limitv→0. The hidden terms originate from
the odd operators in Eq.~26!. Taking into account these
terms, the sum vanishes for both states.

V. OTHER CONTRIBUTIONS TO THE LAMB SHIFT

For the Lamb shiftL, we use the implicit definition

E5mr@ f ~n, j !21#2
mr
2

2~m1mN!
@ f ~n, j !21#21L1Ehfs,

~67!

where E is the energy level of the two-body-system and
f (n, j ) is the dimensionless Dirac energy,m is the electron
mass,mr is the reduced mass of the system andmN is the
nuclear mass.

For the final evaluation of the Lamb shift the following
contributions are added.

~1! One-loop self-energy. The coefficients are presented
in this work. For the determination of the Lamb shift the
reduced mass dependence of the terms has to be restored.
The relevant formulas are given in@3#. For example, the
A60 have a reduced mass dependence of (mr /m)

3. We use
Eq. ~66! to estimate the theoretical uncertainty from the one-
loop contribution.

~2! Vacuum polarization correction. It enters forP states
in higher order~for the formulas see@3#, p. 570!.

~3! Two-loop contributions due to the anomalous mag-
netic moment@15#. It is given in analogy to the one-loop
contribution as

dE2-loop5S a

p D 2m~Za!4

n3
@B401•••#, ~68!

where theB coefficients are labeled in analogy to theA
coefficients for the one-loop self-energy. TheB40 coefficient
is due to the anomalous magnetic moment of the electron. It
is given as
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B405
Cjl

2~2l11!F19772 1
p2

6
2p2ln21

3

2
z~3!G Smr

m D 2,
~69!

whereCjl52( j2 l )/( j11/2).
~4! Two-loop contributions in higher order. Recently, the

logarithmic term

B625F 427 n
221

n2
ln2@~Za!22#G Smr

m D 3 ~70!

has been calculated in@14#. TheB62 term, which is enlarged
by the logarithm, probably dominates the contributions to the
two-loop self-energy in higher order. So the result may also
be used to estimate the theoretical uncertainty of the two-
loop contribution, coming mainly from the unknownB61 co-
efficient. It is taken to be half the contribution fromB62.

~5! Three-loop self-energy as given by the anomalous
magnetic moment@15#.

dE3-loop5S a

p D 3m~Za!4

n3
@C401•••#, ~71!

where

C405F2 Cjl

2~2l11!
1.17611~1!G Smr

m D 2. ~72!

~6! The additional reduced mass dependence of order
(mr /mN)

2(Za)4 @3#, which we will refer to as the (Za)4

recoil contribution,

dErec,45
~Za!4

2n3
mr
3

mN
2 S 1

j11/2
2

1

l11/2D ~12d l0!. ~73!

~7! The Salpeter correction~relativistic recoil! in order
(Za)5 as given in@3#. The formula is forP states,

dErec,55
mr
3

mmN

~Za!5

pn3 S 2
8

3
lnk0~n!2

7

3

1

l ~ l11!~2 l11! D .
~74!

~8! Relativistic recoil corrections in the order of
(Za)6mr /mN ,

dErec,65
m2

mN
~Za!6F12 ^fu

L2

r 4
uf&G . ~75!

The formula forP states has been calculated in@16#. This
general form has been obtained by us.

The above contributions are listed in Table II for the 2P
states.

VI. RESULTS AND CONCLUSIONS

The theoretical values for the Lamb shifts of the 2P1/2
and 2P3/2 states presented here are

L~2P1/2!5212835.99~8! kHz ~76!

and

L~2P3/2!512517.46~8! kHz. ~77!

From the values of the 2P Lamb shifts, the fine structure can
be determined. It turns out that the limiting factor in the
uncertatinty is the experimental value of the fine-structure
constanta. Using a value of@17#

a215137.0359895~61! ~44 ppb!, ~78!

the fine-structure can be determined as

E~2P3/2!2E~2P1/2!510969043~1! kHz. ~79!

With the most recent and most precise value ofa available
@18#

a215137.03599944~57! ~4.2 ppb!, ~80!

we obtain a value of

E~2P3/2!2E~2P1/2!510969041.52~9!~8! kHz, ~81!

where the first error originates from the uncertainty ina and
the second from the uncertainty in the Lamb shift difference.
Our result for the fine structure disagrees with that used by
Hagley and Pipkin in @19# for the determination of
L(2S22P1/2). Therefore their result ofL(2S22P1/2)
5105 783 9(12) is to be modified and according to our cal-
culation it should be

L~2S22P1/2!51057842~12! kHz. ~82!

TABLE II. Contributions to the Lamb shift in kHz for the 2P1/2 and 2P3/2 states. Estimates of the
contributions of uncalculated higher-order terms are given in the text. Where no uncertainties are specified,
they are negligible at the current level of precision.

Contribution 2P1/2 ~kHz! 2P3/2 ~kHz!

One-loop self-energy 212846.92(2) 12547.95(2)
Two-loop self-energy 25.98(7) 212.79(7)
Three-loop self-energy 20.21 0.10
Vacuum polarization 20.35 20.08
(Za)4 recoil 2.16 21.08
(Za)5 recoil 217.08 217.08
(Za)6 recoil 0.42 0.42

Sum for 2P1/2 212835.99(8) 12517.46(8)
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Precise theoretical predictions forP states could be used
to compare two different kinds of measurements of Lamb
shifts in the hydrogen. One is the classic 2S1/2-2P1/2 Lamb
shift measured by several groups@19–21#, and the second is
the combined Lamb shiftL(4S22S)2 1

4L(2S21S) as mea-
sured by the Ha¨nsch group~for a review, see@22#!. The
experimental value of the 2S Lamb shift can be extracted
from E(2S-2P1/2) having the precise value for 2P1/2 Lamb
shift, and can also be determined from the combined Lamb
shift through the formula

L~2S!5
8

7 F SL~4S!2
5

4
L~2S!1L~1S! D

expt

2SL~4S!2
17

8
L~2S!1L~1S! D

theor

G , ~83!

where the subscript expt denotes experimental, and the sub-
script theor denotes theoretical values. This theor combina-
tion has the property that terms scaling as 1/n3 cancel out,
which means that almost all QED effects do not contribute,
and therefore the quantity can be precisely determined. Such

a comparison of completely different experimental tech-
niques is an interesting and valuable test of high-precision
experiments.

The method of calculation presented in this paper could
be directly applied for the evaluation of Lamb shifts and the
fine structure in two-electron systems, for example, in he-
lium or positronium. It was a purpose of this method to use
only a Schro¨dinger-Coulomb propagator, and relativistic ef-
fects are incorporated through the Foldy-Wouthuysen trans-
formation. This method clearly separates out the lower- and
the higher-order terms, and expresses the energy shift
through the matrix elements of nonrelativistic operators.
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