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Quantum copying: Beyond the no-cloning theorem
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We analyze the possibility of copyinghat is, cloning arbitrary states of a quantum-mechanical spin-1/2
system. We show that there exists a “universal quantum-copying machiree; transformationwhich ap-
proximately copies quantum-mechanical states such that the quality of its output does not depend on the input.
We also examine a machine which combines a unitary transformation and a selective measurement to produce
good copies of states in the neighborhood of a particular state. We discuss the problem of measurement of the
output statesS1050-2947P6)08408-9

PACS numbd(s): 03.65.Bz

I. INTRODUCTION Schumachef2]. They have shown that if a particle in an
arbitrary mixed state is sent into a device and two particles
Suppose we have a quantum st@eof a particular sys- emerge, it is impossible for the two reduced density matrices
tem which we would like to copy. For simplicity, assume of the two-particle state to be identical to the input density
that the state space of our system is two dimensional like thahatrix. Nevertheless, it is still an open question how well
of a spin-1/2 particle, the polarizations of a photon, or aone can copy quantum states, i.e., when ideal copies are not
two-level atom. We shall denote the basis element$Oby  available how close the copy stateut state in the modb)
and|1),, where the subscrigt is used to indicate that this is can be to the original statée., |s),). The other question to
the original systentwhich we shall often refer to as a mode answer is what happens to the original stite, after the
with the polarization example in mingvhich is to be copied. copying. In the present paper we will illuminate these ques-
The statds), is some linear combination ¢0), and|1),. tions. In addition we will discuss how to measure the out
We now want to feeds), into a device, which we call a states after the copying procedure.
guantum-copying machine, which at its output will give us  Why is quantum copying of interest? With the advent of
|s)a back and, in addition, a copy, i.e., a system identical toquantum communication, e.g., quantum cryptography, and
the one we put in which is also in the quantum stae  quantum computing, understanding the limits of the manipu-
Thus we put in one system and get out two, both of whichlations we can perform on quantum information becomes
are in the same quantum state as the one which was fed intmportant. The no-cloning theorem is one such limit. It tells

the input. us that arbitrary quantum information cannot be copied ex-
Let us now make this quantitative. Thieal copying pro-  actly. On the other hand, we may be interested only in copy-
cess is described by the transformation ing a restricted set of quantum bits, or qubits, approximately.
. Such a copy would allow us to gain some, but not all, infor-

15)al Q) x—15)al )bl Q)x» (1.))  mation about the original. We would like to find out what we

can do under these less restrictive conditions. We shall ex-

where[s), is the in state of the original mode af@), isthe  amine a number of possibilities. We shall first study a
in state of the copying device. The in state of the copy modgjuantum-copying machine of the type proposed by Wootters
(b) is not specified in the transformatigh.1). In our discus-  and Zurek in their proof of the no-cloning theorem. This
sion there is no need to specify this state, though in reamachine has the property that the quality of the copy it
physical processes this state can be assumed [@)bdlike  makes depends on the input state. We shall next consider a
a blank paper in a copying machineThe whole idea of copying machine for which this is not true, i.e., the quality of
quantum copying is to produce at the output of the copyinghe copy is the same for all input states. We shall also look at
machine two identical statgs), and|s),, in the modesand  a machine which is designed to copy well only a restricted
b, respectively. The final state of the copying machine isset of input states. In particular, it copies states which are in
described by the vectdQ), . the neighborhood of a particular state well, but copies states

First one has to ask a questionDtes quantum mechan- which are far from this state poorly. It would be reasonable
ics allow the transformation (1.1) for an arbitrary input state to use a machine of this type if we are dealing with qubits
|s)a 7" Wootters and ZureK1] have answered this question. which are near a given state. Finally we examine briefly the
The answer is simple: No.” That is, quantum-mechanical entanglement of the copy and the original. Because of this
states cannot be clondtherefore the no-cloning theorgm entanglement any measurement we perform on the copy will
To be more specific, the Wootters-Zurek no-cloning theorenthange the state of the original. We show how nonselective
tells us that quantum states cannot be cloned ideally for ameasurements can be used to minimize this problem.
arbitrary original in state. This result has recently been ex- The paper is organized as follows. In Sec. Il we briefly
tended to mixed states by Barnum, Caves, Fuchs, Jozsa, addscribe the Wootters-Zurek copying procedure and we ana-
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lyze quantum-statistical properties of the copied states. Wevhere pW=|¥)u0Cu | [see Eq.(2.4)] and the basis

abx abx abx
introduce measuregHilbert-Schmidt norms on Hilbert  vectors associated with two two-level systems under consid-
space which allow us to quantify how “good” the copying eration are defined as

procedure is. Section lll is devoted to a description of the

universal quantum copying which is input-state independent. |00)=[0)a[0)p, |1D)=[1)a|1)s,
That is, we will describe a copying transformation for which
the Hilbert-Schmidt norms under consideration are input- |0D)=[0)a1)y, |10)=[1)a[0)p. (2.6a

state independent. In Sec. IV we will analyze a measuremen
procedure by means of which one of the output states can b
measured so the information about the second state can be

e also introduce two vectots-),

obtained under the condition that it is least perturbed by the | 4+)= i(|10>+ |02)), |—)=-—=(|10)—|01)),
measurement procedure. In Sec. V we will discuss some spe- 2 V2
cific quantum-copying transformations which produce very (2.6b

good copies in the neighborhood of specific input states. We

finish the paper with conclusions. which together with|00) and |11) create an orthonormal

basis. Density operators describing quantum states of the

ll. WOOTTERS-ZUREK QUANTUM-COPYING MACHINE original mode and the copy mode after the copying proce-

AND NONCLONING THEOREM dure read
In their papef 1] Wootters and Zurek analyzed the copy- P =Tr[ 5" 1= a?0)aa(0]+ B 1)aa(1l, (2.73
ing process defined by the transformation relation on basis ~ (out (out 5 )
vectors|0), and|1),: Py =Tralpap 1= @*[0)pp(0| + B L)pp( 1], (2.7D
10)alQ)x—10)4|0)p| Qo) » (2.1a  respectively. From Eq2.7) it follows that both the original
and the copy mode at the output are in identical stétes is
11)al Q) x—11)al1)p| Q1 )x - (2.1  good news, but the original mode at the output is in a mix-
o _ ture state(all off-diagonal elements are destroyed
From the unitarity of the transformation procg2sl) and the In order to judge how good the copying machine is we

orthonormality of the basis stat¢8), and [1), it follows  need a way of comparing its output to what, ideally, its out-
that the copying-machine statf3,), and|Q;), are normal-  put should be. That is, we need a way of comparing density
ized to unity, provided thag(Q|Q),=1, i.e., we can assume matrices. We shall use the square of the Hilbert-Schmidt
that norm of the difference between two density matrices as a

B B _ measure of how close they are to each other. The Hilbert-
K QIQ)x=x{Qol Qo)x=x(QulQu)x=1. (22 schmidt norm of an operatdk is given by

The Wootters-Zurek (WZ) quantum-copying machine
(QCM) is defined in such a way that the basis veci@}s,
and|1), are copiedthat is, clonedlideally, that is, for these
states the relation(1.1) is fulfiled. We note that the
Wootters-Zurek copying machine is input-state dependent. |Tr(ATB)|<]||Al,l|B,. (2.9
Following Wootters and Zurek we check how the pure su-

perposition stat¢s), [the so-called S(2) coherent statg3]]  Our distance between the density matripgsand p, is then

defined as o )
D=(llp1—pal2)*. (2.10

|S>a: a|o>a+,8|1>a 2.3 ] ) )
Is this a reasonable measure? In a two-dimensional space any
is copied by the copying machine described by the transforobservableA which is not a multiple of the identity is rep-

mation relation(2.1). For simplicity we will assume in what resented by a Hermitian operatarwhich can be expressed
follows that probability amplitudegr and 8 are real and g

a?+ B?=1. Throughout the papeiexcept for Sec. Y we

1A, =[Tr(ATA)]Y2 (2.9

and it has the property that for operataﬁrsandé

considera and 8 to be real. Our results do not depend on A=\.P;+\,P,, (2.11
this assumption and can be easily extended for complex . .
and 3. Using the transformation relatigi2.1) we obtain where A, and \, are real andP, and P, are Hermitian,
one-dimensional projections with the property that
15)al Q)x— @]0)al0)6|Qo)x+ Bl1)al 1)1]Q1)u=| W) - P,P,=0. For a given density matrig, the probability that
(2.4 A takes the valu,; is given by
If it is assumed that(Q|Q1)x=0, i.e., the two copying- PiZTf(ﬁﬁ’i)- (2.12

machine state$Qo), and |Q,), are orthonormal, then the
reduced density operatgi}" describing the state of the We would like our notion of closeness for density matrices
original-copy subsystem after the copying procedure readsto have the property that if two density matrices are close,
~ (ou ~ (ou ) 5 then the probability distributions generated by thgm for an
Pab = Trlpabx 1= @°|0000 + B%11)(11], (2.5  arbitrary observablé are also close. That is, i, andp, are
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close, then the probability tha takes the value\; in the  value of @) then on average we should expect the distance
statep, i(l) should be close to the probability thattakes D, in the case of the Wootters-Zurek copying machine to be

the value; in the statep,, p/®. Using the property of the ) L
Hilbert-Schmidt norm given in Eq(2.9), we can, in fact, D_a:j da?D,(a?)==. (2.18
show that if the Hilbert-Schmidt norm ofp¢—p,) is small, 0 3

thenp{® will be close top{?). We have
From Eq.(2.17) we see that the Wootters-Zurek quantum-

|pi(1>_ pi<2>| — |-|—r[|5i(,31_,32)]| copying procedure istate dependenthat is, for some states
R it operates welleven perfectly while for some states it op-
<||Pillalp1—pall2=llp1—p2ll,, (2.13  erates badly. Moreover, as it follows from E@.5) the out-
put modes are, in general, highly entangled, which is not
where we have used the fact that the Hilbert-Schmidt normwyhat we would expect from a perfect Copying machine for

of a one-dimensional projection is one. This shows that ouyhich the output density operatpfd should be expressed
proposed definition of closeness based on the Hilbertyg

Schmidt norm has the desired property and allows us to . ' _
maintain that, in a two-dimensional space, it is a reasonable pld) =5 plid) (2.193
definition to use.

Other measures of the similarity of two density matriceswhere the density operators of the ideal original and the copy
have been used. Schumaclidt has advocated the use of at the output are described by E&.16). The density opera-

fidelity which is defined as tor pU9 in the basig2.6) reads

F=Tr(p1p2p7)"2, (214 pU9=4%00)(00 + 2aB|00)(+ |+ «282|00)(11]

which ranges between 0 and 1. A fidelity of one means two +2a3B|+ (00 + 202 B2+ )+ | + V283 + }(11]
density matrices are equal. This is a more satisfactory defi- ) s 5 .
nition in general. The interpretation of the Hilbert-Schmidt +a?B?11)(00 + V2a B3 11)(+ |+ B411)(11].
norm in terms of probability distributions breaks down in (2.199
infinite-dimensional spaces and becomes less good in finite-
dimensional spaces as the dimension increases. Hilberf-o measure the degree of entanglement we can either use the
Schmidt norms are, on the other hand, easier to calculatentropic paramete®,, as proposed by Barnett and Phoenix
than fidelities. For our purposes, in a two-dimensional spacd5], or we can use the Hilbert-Schmidt noiy,,, measuring
the Hilbert-Schmidt norm provides a very reasonable way tdhe “distance” between the actual two-mode density opera-
compare density matrices. tor p% and a direct product of density operat@$"? and

To see how “far” the copying machine drives the origi- ;,gout), ie.,
nal mode from its initial state we now evaluate the Hilbert-

Schmidt norm, i.e., the “distance” between the in- and out- DY =Trpo" — pP e pioh72, (2.20
density operators of the original mode. The Hilbert-Schmidt
norm is defined as Using the explicit expressions for the density operators
. which appear in Eq2.20 we find the Hilbert-Schmidt norm
D.=Tr[py" —p"1%, (215  tobe
where we denote the input density operator of the original Dgﬂ=Dan, (2.21
mode asp? (here the index id stands for the idgaThis _ _
_ (2.17). Analogously we can evaluate the Hilbert-Schmidt
pUD = 420) (0| + aB|0)5(1| + Bar|1) (0| + B 1)a(1]. norm for the density operatofg . andp{d) [see Eqs(2.5
(2.19 and(2.19, respectively. In this case we find

The Hilbert-Schmidt norm of the difference between the D@ =Tr p "W —pD12=D,+D,. (2.22

density operator§2.79 and(2.16) is
Note that this result and E¢R.21) imply that the output state
Da=2a’B*=2a*(1-a?), (2.17  is most entangled when the performance of the copying ma-
chine is worst. To complete the picture we evaluate the dis-

tanceD () between the ideal output described by the density

operatorf)gg) and the direct product of the single-mode den-

sity operators

which clearly reflects the fact that the statg®, (i.e.,
a=1) and|1), (i.e., a=0) are copied perfectly, that is, for
these statedD,=0, while the pure superposition states
Is)a=(|0Ya*|1)a)/V2 are copied worst. In this case
D,=1/2. We remind ourselves that the maximum possible D@ =T pld) — pW g peW)2—p_4 D, ~ DL

value for the Hilbert-Schmidt norm of the difference of two (2.23
density matrices is equal to (®or instance, this is the “dis-

tance” between two mutually orthogonal stat, and From the above equations we clearly see that the output
|1),). If we do not specify which pure superposition statemodes are, first, entangldexcept the cases wherf=0 or

|s), is going to be copiedi.e., we do not knowa priori the ~ @?=1). Secondly, the degree of entanglement quantified via
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the normD}) is initial-state dependerit.e., it depends on Due to the Araki-Lieb theorerfB] and the fact that we con-
the parameterr?). Thirdly, there is the following relation- sider a conservative system for which the entropy of the

ship between the nornB{): complete system is constant, and is equal to zero providing
both modes andb are initially in pure states, the entropy of
DY<DP<D?. (2.24 the QCM (§,) after the copying is equal to the entropy

(S,p) Of the original-copy subsystem described by the den-
For further reference we note that the input-state-averagesity operatorp2". Besides this general property we find
value[see Eqgs(2.18 and(2.22] of the normD () is equal  that

to 2/3, while the input-averaged valuesdf}) andD{3) are

2/15 and 8/15, respectively. Sap=Sa=S,= —kg[a’Ina®+ BInp%],  (2.28
We finish the present section on the Wootters-Zurek ) o o
quantum-copying procedure with several comments. irrespective of whether the original mode has been initially
(1) If we assume the originala) mode to be initially in prepared in the pure staf2.3) or a corresponding statistical
the mixture state mixture described by the density operat@r25). If the out-
put state were a product of states in thendb modes we
;32”)= a?]0),.(0| + B3| 1) 2a(1], (2.25 Wwould have S;,=S,+S;,. The fact that the entropy is

smaller than this shows that the modes are correlated, i.e.,
then the output density operator describing the madaad  entangled.
b after the copying is given by the same relati@y5) as in

the case of the pure input state. This means that if the input I INPUT-STATE-INDEPENDENT

a mode is described by the density opera@g5), then the QUANTUM-COPYING MACHINE

input and the output density operators in the medare o )
equal, i.e.D,=0. Nevertheless, the distanaédlb) reflecting The Wootters-Zurek QCM suffers one significant disad-

a degree of entanglement between the output modes has thantage —_its operation depends on the_state of the original
value equal to 48, i.e., is the same as for the pure input input. That |s,_t_he statg®) and|1) are copied perfe_ctly, but
state(2.3. This simply reflects the fact that the Wootters- the superposition stateg0+|1))/y2 are essentially de-
Zurek quantum-copying machine produces a strong en_s,troyed py this particular copying machine in the sense that
tanglement between output modes even in the case whdfformation about quantum coherencesff-diagonal ele-
“classical” states(mixtureg are copied. ments of the density operator in a considered hasislimi-

(2) It is interesting to note that the Wootters-Zurek QCM Nnated. _ . o
preserves the initial mean value of the operator N What follows we describe a copying process which is
o,=(]1)(1]—|0)(0|)/2 while it completely destroys any in- input-state mc_jependent_When using this ‘_‘L_mlversal”
formation about the initial mean value of the operatorquantum-copying machindUQCM) superposition  states
o= (|1)(0]+|0)(1])/2, that is, (2.3) are copied equally well foqnyvall{e. of @ in the sense

that the distances D= Tr{p®W—p{D12 and D,y

o im - 1 =T p2"W—5 {972 do not depend on the parameter In
(in) _ (ou) _ _ — ab ab
(0205 =(02)5 "= 20032¢, (2.263  qdition to this we design the UQCM in such a way that both
D, andD,, take minimal values.
where we have used the parametrizatiafcosp and The most general quantum-copying transformation rules
B=sing. On the other hand, for pure states on a two-dimensional space can be written as
(in) 1 :
A (i) T
(792" =5sin2¢, (2.2 10)al @ X [K)al el Qe (313
while (5,)°"=0 irrespective of the initial state of the origi- 1
nal modea. This means that whatever the value of the initial
~ ; 1 — m),|n , 3.1b
variance((Aa,)2)" its output value is equal to 1/4. These I1)al Q) m;:() )l 1ol Qo (310

observations suggest that the Wootters-Zurek QCM is “de-

signed” in such a way that the mean value of the operatohere the statefQ,,,)x are not necessarily orthonormal for

(o,) is preserved by the copying procedure, while informa-all possible values o andn. The general copying trans-

tion associated with other mean values is totally destroyedormation is very complex and it involves many free param-

This in turn suggests that one can think about designing &ters {Q|Qmn)x Which characterize the copying machine.

copying machine associated with certain observation levelfn what follows we will concentrate our attention on one

[6]. particular copying transformation which fulfills our demands
(3) Finally we briefly note that the von Neumann entropy as described above. We propose the transformation

[7] can also be utilized to describe the “quality” of the origi-

nal and copy modes. The von Neumann entropy of a [0)alQ)x—10)a/0)s|Qo)x+[|0)al1)p+[1)al0)s]|Yo)x,

guantum-mechanical system described by the density opera- (3.2

tor p is defined as
o 11)alQ)x—11)al 1)plQu)x+[10)alL)p+[1)al 0)] [ Y1)«
S=—kgTr[plnp]. (2.27) (3.2b
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which is an obvious generalization of the WZ QCM. Due tother specifies “properties” of the copying machine under
the unitarity of the transformatio(8.2) the following rela- consideration. So essentially we end up with two “free”
tions hold: parameters which we will specify further.
) As we said in the Introduction, we are looking for a copy-
{QilQi)xt2x(YilYi)x=1, i=01 (333 ing machine such that all input original states are copied
equally well, that is, we want the norf8.7) to be indepen-
(Yol Y1)x=x(Y1|Y0)x=0. (3.3b dent of the parameter?. This means that one of the param-

There are still many free parameters to specify, therefore Wstersg or % can be determined from the condition
will further assume that the copying-machine state vectors

J
|Yi)x and|Q;), are mutually orthogonal: WDa:o, (3.9
1Y)=0, i=0,1 3.4 o
QYD (343 where the nornD is given by Eq.(3.7). From Eq.(3.9 we
and that find that if the parameter§ and » are related as
QolQ1)x=0. (3.4b n=1-2¢, (3.10a

With these assumptions in mind we find the density operatothen the nornD is input-state independent and it takes the
p{o" describing the modes andb after copying of the pure value

superposition stat€.3) as

L0u0 = &2|00)( 001 ,{ Qol Qo) x+ V2Bl 00)( + (Y1 Qo)

D,=2&2 (3.10h

Taking into account the relation8.10 and (3.33 we can

+v2aB]+){00/,( Qo Y1)x+[2a2( Yol Yo)x now rewrite the density operatop§}'? and p{**" [see Egs.
) (3.5 and(3.6), respectively as
+285(Y 1Y 1)l )+ + V2Bl +)(11,(Qu| Yol
+V2aBI11)(+ [ Yol Qo)+ BZ111)(11( Qu|Qu)y. b= a2(1-26)|00(00+ 2 (1-2¢)|00)( +
359 V2
The density operator describing thamode can be obtained ﬁ _
from Eq. (3.5 by tracing over the modb and it reads * \/E(l 26)[+ )00 +2¢] +)(+]
P=10)a o OlLa®+ (B2 Y1l Y1)x— a(Yol Yo)o)] B B
—=(1-29)[+)(1Y+ —=(1-28)[11)(+|
+ |O>a a<1|aﬁ[x<Q1|YO>x+x<Yl|QO>x] \/— \/—
+|1>a a<0|aﬁ[x<Q0|Yl>x+x<YO|Ql>x] +:82(1_2§)|11><11| (3-11)
+|1>a a<1|[ﬂ2+(a2x<YO|YO>x_B2x<Yl|Y1>x)]- and
(3-6) ”(out

(out) |O>a a<0|[a2+§(ﬁ2_a2)]+|0>a a<1|a':8(1 2¢)
The density operatop{®” looks exactly the same. This _ 2

means that the states of the two modeandb at the output +11)a o(0laB(1-28) +|1), o 1|[ B+ &(a?

of the copying machine under consideration are equal to each -B9)]. (3.12
other, but they are not equal to the density operator of the in

state of the original modécompare Eqs(3.6) and (2.16)]. We determine the optimum value of the parameidrom
This means that the original state is distorted by the copyingthe assumption that the distangeorm) between the two-
To quantify the degree of this distortion we evaluate themode density operatofs;"? and p{d =59 pi9 is input-

Hilbert-Schmidt norm(2.10 for the density operatoré3.6)  state independent. That is, we solve the equation
and(2.16:

J
D, =2&2(4a*—4a?+1)+2a%(1—a?)(n—1)2, FD;%J:O, (3.13

o

3.7
where we have introduced the notation whereD)=Tr[p{%"—p{P1? and the denS|ty operat@y)
is given by Eq.(2.19h. The normD( in this case can be
Yol Yol =x(Y1lY1),=¢, (3.8  expressed as
Yol Qu)x=x(Qol Y 1)x=x{Q1l Yo)x=x(Y1|Qo)x= n(/§’8b) D =(U19)?3+2(U1p)?+2(U19 %+ (U)?+2(Up)?

. +(Usza)?, (3.14a

with 0<¢<1/2 and 0s< p<2£Y4(1-2¢)Y2<1/\2, which
follows from the Schwarz inequality. The relati¢8.8) fur-  with the elementd);; given by the relations
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Up=a*—a?(1-2¢), Up=+\2aB[a?—1i(1-28)], (3) It is natural to ask how the copying machine under
consideration will copy an input state described by the sta-
U= a2B2  Uy=2a2B2—2¢, (3.14p tistical mixture
~ (i) _ T T
U23: \/E(X,B[,BZ_%(].—ZS)], U33::84_B2(1_2§)- Pa A|O>a a<0| B|0>a a<1| B|1>a a<0|
+(1-A)[1)a (1], (3.19

Now Eg. (3.13 can be solved with respect to the parameter
&, for which we find&=1/6. For this value of the norm  where we assume for simplicity thBtis real. We note that
D@ is ? independent and its value is equal to 2/9. from the condition Trp{?)?<1 it follows that

— 2 2
Some properties of the UQCM (1-2A)"+4B°<1. (3.20

(1) First we point out that the density operatpf® is ~ We find the Hilbert-Schmidt normb, of the difference be-
diagonal in the basis tween the input staté8.19 and the corresponding output to

be
P1)a=al0)at Bl1)a,  [P2)a=pl0)a—all)a.
|®1)a=@|0),+ B|1) |®2)a=pBl0)a—all) D,=2£2(1—2A)2+2B%(1— 7). (3.213

In this basis we havp{®=|d,), ,(P4|. In this same basis If we assume thapy=1-2¢, then the nornm(3.213 reads

(out)
the density operatgs;”*" reads D,=2&%[(1—2A)2+4B?]|<2£, (3.210
"(out):_ = which means that the UQCM discussed here copies mixture
P =5l Pra a(Pal+ GlP2)a o P2l 310 iates better than pure superposition states with the same

diagonal density matrix elements.
from which it directly follows that the von Neumann entropy  |f we assume =0 (in this case the UQCM is identical to

of the modea at the output of the copying machine is the WZ QCM then the statistical mixture.19 such that
B=0 are copied perfectly in the sense that the distddge

sl 22+ L 1” (3174  9venby Eq(3.21h is equal to zero. Nevertheless one has to

a B6 |6/ 6 |6 be aware of the fact that the two output modes are still

strongly entangled, which is reflected in the fact that the
Analogously we can evaluate the von Neumann entropy ofiorm D(® has a value
. R ab
the ab subsysten{or, which is the same, the entropy of the

QCM after the copying proces$o be D@ =T ploW—plid12=4A2(1-A)2.  (3.22
1 2 (4) We can compare the performance of the Wootters-
Sa=5= kg 3In| 3]+ 3In[3]|.  (317B  Zurek QCM and the UQCM as discussed above if we com-

pare the averaged values of the norbhg and D, for the

We see that both the von Neumann entropy of each outp/Z QCM, which read, respectively,
modea andb separately, as well as the entropy of the two- -— -—
mode subsysterab do not depend on the input pure state of Da=1/3, Dap=2/3,

the original modea. Mereover, from the .fact that the entro- with the input-state-independent values of these parameters
pies under consideration fulfill the relation for the UQCM. We see that in the case of the UQCM the
Su<S.t S, 319 norm D, is six times smallefon averagewhile D_ab is three
times smaller compared ©©, andD,,, respectively. These
it follows that there does not exist a basis in which the dentelations simply reflect the “high-quality” performance of
sity p(out) can be represented in a factorized form the UQCM. It is still an open question whether the UQCM is
(out)®p(out) As we will see later, this entanglement betweenthe bes{on averageQCM quantum mechanics would allow.

the two output modes significantly affects the measurement (5) The UQCM has the Interesting property that the mean

procedure of the two modes after the copying. To be more values of the operators, and o, are scaled by copying. It
specific, any measurement performed on mbdsfects the ¢an be found that irrespective of whether the input mode is in

state of mode. a pure state or a statistical mixture the following relations

(2) Once we have found the basis in which both densrtyhOIOI

operatorp{® andp" are diagonal we can easily find the (&)= (1-2£)(5)™,  j=x,z (3.23
value of the fidelity parametd¥, as introduced by Schuma- . e '

cher[4]. The fidelity parameter which we are interested in iswhere the relationp=1—2¢ has been taken into account.
given by Eq.(2.14 with p,=p{? andp,=p" In our case  Obviously, foré=1/6 both(a,)©°" and(a)" are scaled

the fidelity is equal to a constant valutge for all input by the factor 2/3. This is in contrast to the WZ QCM, when
states. We can conclude that the UQCM has that universdhe mean value of the operatey is preserved in the copying
property to be input-state independent, that is, all pure statgsrocess, whiléa,)(°“9=0 irrespective of the input state. We
are copied equally well. note that the relations between the input and output mean
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values can be taken as definitions of particular copying ma- 2 1

chines. To be specific, one can associate the copying process |0)alQ)x— §| 00| 1)+ §| +)1), (3.293
with a given observation level, i.e., a set of observables, and

impose particular conditions on input and output values of > 1

the observables associated with the given observation level. 1 \ﬁ 1D 1)+ \/: T 3.29
The relations between the input and output mean values then 1)l Q= 3| b 3| . (3.29

can be solved with respect to those parameters which specify o ] ]

the copying machine itself, i.e., the valug&Q | Qmn)x - where the initial copying-machine stat@), can be ex-
(6) The four state vector$Qg)y, |Qi)x, |Yo)x, and Pressed as a linear superposition of the two basis stajes

|Y1)x in terms of which the QCM transformatiof8.2) is and|]).

defined are not orthonormal. Using the Gram-Schmidt pro-

cedure one can define a set of four orthonormal quantum- IV. MEASUREMENT OF THE ORIGINAL
copying-machine basis statd®g)x, |Q1)x, |Yo)x, and AND THE COPY STATE
[Y1)y. If we assume the relation8.3), (3.4), and(3.8) de- AT THE OUTPUT OF QCM

fining the QCM under consideration and the relation

From our previous discussion it follows that the original
n=1-2¢, the orthonormal states read

and the copy statdglescribed by density operatq}g’”‘) and

. Qo) L 1Q,) ,3g°“0, respectively are highly entangledsee discussion in
|Q0>x:$- |Q1)= x Sec. Il)). This means that any measurement performed on the
V1-2¢ V1-2¢ modeb will significantly affect the state of the mode This
could defeat the purpose of a quantum-copying machine be-
—_2Yoh—1Qx o 2Y)x—[Qo)x cause by measuring the copy we distort the original. Ideally
|YO>X_W1 |Y1>x—ﬁ’ we would like to have the copy and original independent so

(3.24) that if one is measured the other is undisturbed and available
' for future processing. We need to determine how close the
from which it follows that one has to treat carefully the casecopying machine of the preceding section comes to this
of £=1/6, i.e., when the nornD,, is input-state indepen- ideal.
dent. To be more specific, under the conditions given by Eqs. What we shall do is to consider the effect of an uncondi-
(3.3, (3.4), and(3.8) imposed on the copying-machine vec- tioned measurement of the mode on the state of the
tors|Q;)x and|Y;), (i=0,1) with =2/3 and¢=1/6 we find mode. Define théd-mode vector
the relations
Isyp=ul0)p+v[1)y, [ul?+|v]*=1, (4.7
x<Qi|Qi>x:2/3v x<Yi|Yi>x:1/Bv i=0,1 n
and the corresponding projection operamg>b=|s>b (S|

(Y1 Y0)x=x(Q1]|Qo)x=0, (329 we start with an ensemble of copies and originals which has
been produced by the copying machine and is described by
(Yol Quh=x(Y1|Qo)x=1/3, the density matrixpy. We now measure®, for each

which means that the four copying-machine vectors are nd¢lement of the ensemble and, irrespective of the result, keep
linearly independent. They in fact lie in a two-dimensionalthe resulting two-mode state. This results in the new en-
subspace of the original four-dimensional space of the copySemble

ing machine. In this two-dimensional subspace the copying- A (meas_ B~ (oupa ~ oA

machine vectors have the following components: Pab = PlsPab Pls), T Qls),Pab Qs), (4.2

[Yo)x=(116,0), |Y1),=(0,11/6), Whereé|5>b=fb— I5‘5>b andl,, is the b-mode identity opera-
tor. From this we obtain tha-mode reduced density matrix
|Qo)x=(0N2/3),  [Q1)x=(12/3,0. (3.29

We see that the vectol¥;), can be expressed in terms of
the vectorg Q;):

PSS =Try(pipeas). 4.3

The measurement cff‘% can yield either 0 or 1. The prob-

1 1 ability of obtaining 1 is given by
|YO>XZE|Q1>X! |Yl>x:§|Q0>x- (3.27

A ~ 1 2
~ (out TGk *|2
If we introduce two orthonormal basis stafé$ and||) in Tr(Plg,pan” Pls,) =g+ glau+porl* (4.4

the two-dimensional state space, then we can express the

copying-machine statg€,), in this basis as It is clear from this equation that measurement of this prob-
ability will give us information aboute and 8. Thus by
\F \/5 measuring theo mode we do gain information about the
|Qoh= §|T>' Qo= §|l>' (3.28 quantum state of the input mode of the copying machine.

Now let us see what the effect of themode measure-
Consequently, the UQCM transformati¢®.2) now reads ment is on thea mode. We note that



54 QUANTUM COPYING: BEYOND THE NO-CLONING THEOREM 1851

PO =Tr[ ( '5\3>b+ Q|S>b);)g%ut)( '5|S>b+ Q‘S>b)] = pmeas vector is duplicated .exactly., the other is cpmpletely changed.
(4.5) In fact, _the stat¢0), is sent into a state which has no overlap
at all with the perfectly cloned sta{@),|0)y, .
so that thea-mode density matrix after the unconditional ~ We shall examine the action of this copying machine, but
measurement is the same as that before it. This result dodisi's worthwhile to note at the beginning that there is a major
not depend oru andv so we can choose to measure anyproblem with it. The factor of /2, which is required by
projection in theb mode. unitarity, means that we do not obtain the action indicated in

Even thoughp® andp [ are close D,=1/18) they are  EQ. (5.1). What we have is that

not the same. However, because of the formp{ft" it is
possible to recover the expectation value of any operator in (a]0)at B|1)a)|Q)x—[BI11) + | +)]|Qu)x

the statep!? from it. In order to show this we express =|9,)O"|Q,)y . (5.3
~ (out)
py "~ as
: We can determine how good a job this copying machine
~ (ot _ 2 ~(idy , L+ does by looking at the difference between what it does and
Pa —3Pa Tgla- (4.8 \what it is supposed to do, i.e., we evaluate the Hilbert-

Schmidt norm between the states described by the density
This implies that the density matrices differ in a way thatoperator(y) [see Eq(2.12h] andp'3" [see Eq(5.3)]. For
does not depend omx and B. Therefore, if A, is an the Hilbert-Schmidt noranzb) given by Eq.(2.15 we find
a-mode operator, then the explicit expression

~ . - " (2)_o_ * 2 2

This can be simplified by expressifg®jas 1—- §8 and using
where Tr@,) does not depend om and 3 and is, therefore, the normalization conditiohs|?+|a|?=1 to find the condi-
known. tion

In summary the output from the UQCM has the following 2 )
property. If any projection is measured in themode the OB+ op* =|al*+|5BI% (5.9
unconditionech-mode ensemble which results is close to the,
ideal output state, i.e., the input state, and can be used to fin
the expectation value of ang-mode operator in the ideal D@ =(3-22)al2+|58|2 56
output state. In addition, the-mode measurement provides ab = \/—)|a| |9BI%, 6.8
us with information about the input state. where terms of orddia|* and| 58|?| «|2 have been dropped.

Finally, we need to determine the size jf3|?. Setting

V. COPYING STATES IN THE NEIGHBORHOOD sB=re'? and substituting this into Ed5.5) we find that
OF GIVEN STATE

e then have that

: : . . 2rcosh—r?=|al? 5.
Suppose that we want to build a copying machine which o ©.9

will copy, to a high degree of fidelity, states in the neighbor-ps implies that unlesg is very close tor/2, thenr will be
hood of a given quantum state. In order to get an idea of hovy¢ order|a|?. If 5= 09— /2 is of order|a| or less, them is

to construct such a machine let us look at what would happegs order|e|. In either case, the right-hand side of E§.6)

if the machine made perfect copies. We shall consider thg pe of order|al?. '

input state given by Eq2.3) where is close to one and It is possible to do better than this in a certain sense.

@ is small in magnitudein this section we consider and  cgnsider the copying machine specified by
B to be complex numbers because this does matter to the

resultg. If this state were copied perfectly we would have 1
pld given by Eq.(2.19h. Under the stated conditions on |1)a|Q)X—>T(|11)|Q1)X+|00>|Q0>X),
B and @ we have roughly that 2
1 (5.8
@|0)a+ B|1)a— B[1) + a(|10)+]01). (5.0 |0>a|Q>X—>E(|1O>+|01>)|Q1>x,

This suggests that the copying machine specified by
where ,(Qo| Qo)x=x(Q1|Q1)x=1 and ,{Qo|Q1),=0. With
11)alQ)x—11)al 1)bl Q1) this copying machine we find that a superposition state goes
1 (5.2 into
|O>a|Q>x_’E(|1>a|o>b+|0>a|1>b)|Q1>xy

1
a|0)a+ B|1)a— —=[B|1D) + a(|10) +|01))]| Q1)
where |Q), and |Q,), are the initial and final states of the V2
copying machine, respectively, would produce something
like the desired action. Note that this machine is very differ- + £|00>|Q0>X. (5.9
ent from the Wootters-Zurek machine in that while one basis V2
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We define the vector in the first term on the right-hand sidegives us a good approximation to cloning for a limited range
of Eq. (5.9 to be of states. The copy can be measured, providing information
about the initial state, and the resultingmode density ma-

) _
|‘I’2>§a%u =B|11)+ a(|10)+[01)). (510 tix is close to that of the input.

This vector is much closer to the vector on the right-hand

side of Eq.(5.1) than is| ¥ ;)" given by Eq.(5.3). In fact,

we find that the Hilbert-Schmidt norm between the density V1. CONCLUSIONS

operator associated state vectdr10 and the ideally copied  The Wootters-Zurek no-cloning theorem forbids the copy-

state given by the density operat@:19b is ing of an arbitrary quantum state. If one does not demand

2)_ 2 2 2 that the copy be perfect, however, possibilities emerge. We

Dep=1681°+2]al*| 58" (.19 have exam?riled apnumber of these.FfA quantum-copyi%g ma-

As long asé is not too close tor/2, the right-hand side of chine closely related to the one used by Wootters and Zurek

this equation will be of ordefal|?. This is a considerable N the proof of their no-cloning theorem copies some states

improvement over what the Wootters-Zurek copying ma-Perfectly and others poorly. That is, the quality of its output

chine can do. There is, however, in this case, the problem dfepends on the input. A second type of machine, which we

the term proportional t¢00) in Eq. (5.9. What we can do called a universal quantum-copying machine, has the prop-

with the output of this copying machine is to use it to calcu-€ that the quality of its output is independent of its input.

late the expectation values of any operator which annihilate§nally, we examined a machine which combines a unitary

this state. That is, i is an operator which has the property transformation and a selective measurement to produce good

_ . copies of states in the neighborhood of a particular state.
that S/00) =0, then we can get a very good estimate of the A problem with all of these machines is that the copy and

expectation value of in the state(2.19 by calculating the  ,iginal which appear at the output are entangled. This
expectation ofS in the state on the right-hand side of Eq. means that a measurement of one affects the other. We
(5.9 and multiplying the result by 2. In this sense the copy-found, however, that a nonselective measurement of one of
ing machine specified by E¢5.8) does a good job of copy- the output modes will provide information about the input
ing states in the neighborhood (f). state and not disturb the reduced density matrix of the other

Another possibility is to use a selective measurement tgnode. Therefore the output of these copying machines is
obtain the desired state from that in E.9). If we measure yseful.

the operatoﬁooz |00){00 and obtain the value O the result-  There is further work to be done; we have only explored

ing two-mode density matrix is some of the possibilities. It would be interesting to know, for
1 example, what the best input-state independent quantum-
~(se) _ |\I,2>Z§gut)(a%ut)<q,2|. (5.12 copying machine is. One can also consider machines which

Pab =T Ta? make multiple copies. Does the quality of the copies de-

_ _ _ _ crease as their number increases? These questions remain for
This produces the desired result becaDé@ is again of the  the future.

order of|a|* as long asd is not too close tar/2. A nonse-
lective measurement of any one-dimensional projection in
the b mode now gives us information about and 8 and ACKNOWLEDGMENTS
leaves us with the reducedmode density matrix
This work was supported by the National Science Foun-
~(se) ~ (id dation under Grants No. INT 9221716 and No. PHY-
Pa D_1+|a|7(pé +lal?1)(1), (5.13 9403601 and by the East-West Program of the Austrian
_ Academy of Sciences under Contract No. 45.367/1-1V/6a/94
which, for|a|?<1, is close top ¥ . Therefore the transfor- of the Gsterreichisches Bundesministeriurir #tVissenschaft
mation in Eq.(5.8) followed by a selective measurement und Forschung.

[1] W.K. Wootters and W.H. Zurek, Naturg.ondon 299, 802 [5] S.M. Barnett and S.J.D. Phoenix, Phys. Rev.48 2404
(1982. (1989.

[2] H. Barnum, C. Caves, C. Fuchs, R. Jozsa, and B. Schumachef6] V. Buzek, G. Adam, and G. DrobnyAnn. Phys.(N.Y.) 245
Phys. Rev. Lett76, 2818(1996. 37 (1996, and references therein.

[3] A.M. Perelomov,Generalized Coherent States and Their Ap- [7] A. Wehrl, Rev. Mod. Phys50, 221 (1978.

plications (Springer-Verlag, Berlin, 1987 [8] H. Araki and E. Lieb, Commun. Math. Phy&8, 160 (1970.
[4] B. Schumacher, Phys. Rev. 34, 2738(1995.



