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We analyze the possibility of copying~that is, cloning! arbitrary states of a quantum-mechanical spin-1/2
system. We show that there exists a ‘‘universal quantum-copying machine’’~i.e., transformation! which ap-
proximately copies quantum-mechanical states such that the quality of its output does not depend on the input.
We also examine a machine which combines a unitary transformation and a selective measurement to produce
good copies of states in the neighborhood of a particular state. We discuss the problem of measurement of the
output states.@S1050-2947~96!08408-9#

PACS number~s!: 03.65.Bz

I. INTRODUCTION

Suppose we have a quantum stateus& of a particular sys-
tem which we would like to copy. For simplicity, assume
that the state space of our system is two dimensional like that
of a spin-1/2 particle, the polarizations of a photon, or a
two-level atom. We shall denote the basis elements byu0&a
andu1&a , where the subscripta is used to indicate that this is
the original system~which we shall often refer to as a mode
with the polarization example in mind! which is to be copied.
The stateus&a is some linear combination ofu0&a and u1&a .
We now want to feedus&a into a device, which we call a
quantum-copying machine, which at its output will give us
us&a back and, in addition, a copy, i.e., a system identical to
the one we put in which is also in the quantum stateus&.
Thus we put in one system and get out two, both of which
are in the same quantum state as the one which was fed into
the input.

Let us now make this quantitative. Theideal copying pro-
cess is described by the transformation

us&auQ&x→us&aus&buQ̃&x , ~1.1!

whereus&a is the in state of the original mode anduQ&x is the
in state of the copying device. The in state of the copy mode
~b! is not specified in the transformation~1.1!. In our discus-
sion there is no need to specify this state, though in real
physical processes this state can be assumed to beu0&b ~like
a blank paper in a copying machine!. The whole idea of
quantum copying is to produce at the output of the copying
machine two identical statesus&a andus&b in the modesa and
b, respectively. The final state of the copying machine is
described by the vectoruQ̃&x .

First one has to ask a question: ‘‘Does quantum mechan-
ics allow the transformation (1.1) for an arbitrary input state
us&a ?’’ Wootters and Zurek@1# have answered this question.
The answer is simple: ‘‘No.’’ That is, quantum-mechanical
states cannot be cloned~therefore the no-cloning theorem!.
To be more specific, the Wootters-Zurek no-cloning theorem
tells us that quantum states cannot be cloned ideally for an
arbitrary original in state. This result has recently been ex-
tended to mixed states by Barnum, Caves, Fuchs, Jozsa, and

Schumacher@2#. They have shown that if a particle in an
arbitrary mixed state is sent into a device and two particles
emerge, it is impossible for the two reduced density matrices
of the two-particle state to be identical to the input density
matrix. Nevertheless, it is still an open question how well
one can copy quantum states, i.e., when ideal copies are not
available how close the copy state~out state in the modeb!
can be to the original state~i.e., us&a). The other question to
answer is what happens to the original stateus&a after the
copying. In the present paper we will illuminate these ques-
tions. In addition we will discuss how to measure the out
states after the copying procedure.

Why is quantum copying of interest? With the advent of
quantum communication, e.g., quantum cryptography, and
quantum computing, understanding the limits of the manipu-
lations we can perform on quantum information becomes
important. The no-cloning theorem is one such limit. It tells
us that arbitrary quantum information cannot be copied ex-
actly. On the other hand, we may be interested only in copy-
ing a restricted set of quantum bits, or qubits, approximately.
Such a copy would allow us to gain some, but not all, infor-
mation about the original. We would like to find out what we
can do under these less restrictive conditions. We shall ex-
amine a number of possibilities. We shall first study a
quantum-copying machine of the type proposed by Wootters
and Zurek in their proof of the no-cloning theorem. This
machine has the property that the quality of the copy it
makes depends on the input state. We shall next consider a
copying machine for which this is not true, i.e., the quality of
the copy is the same for all input states. We shall also look at
a machine which is designed to copy well only a restricted
set of input states. In particular, it copies states which are in
the neighborhood of a particular state well, but copies states
which are far from this state poorly. It would be reasonable
to use a machine of this type if we are dealing with qubits
which are near a given state. Finally we examine briefly the
entanglement of the copy and the original. Because of this
entanglement any measurement we perform on the copy will
change the state of the original. We show how nonselective
measurements can be used to minimize this problem.

The paper is organized as follows. In Sec. II we briefly
describe the Wootters-Zurek copying procedure and we ana-
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lyze quantum-statistical properties of the copied states. We
introduce measures~Hilbert-Schmidt norms! on Hilbert
space which allow us to quantify how ‘‘good’’ the copying
procedure is. Section III is devoted to a description of the
universal quantum copying which is input-state independent.
That is, we will describe a copying transformation for which
the Hilbert-Schmidt norms under consideration are input-
state independent. In Sec. IV we will analyze a measurement
procedure by means of which one of the output states can be
measured so the information about the second state can be
obtained under the condition that it is least perturbed by the
measurement procedure. In Sec. V we will discuss some spe-
cific quantum-copying transformations which produce very
good copies in the neighborhood of specific input states. We
finish the paper with conclusions.

II. WOOTTERS-ZUREK QUANTUM-COPYING MACHINE
AND NONCLONING THEOREM

In their paper@1# Wootters and Zurek analyzed the copy-
ing process defined by the transformation relation on basis
vectorsu0&a and u1&a :

u0&auQ&x→u0&au0&buQ0&x , ~2.1a!

u1&auQ&x→u1&au1&buQ1&x . ~2.1b!

From the unitarity of the transformation process~2.1! and the
orthonormality of the basis statesu0&a and u1&a it follows
that the copying-machine statesuQ0&x anduQ1&x are normal-
ized to unity, provided thatx^QuQ&x51, i.e., we can assume
that

x^QuQ&x5x^Q0uQ0&x5x^Q1uQ1&x51. ~2.2!

The Wootters-Zurek ~WZ! quantum-copying machine
~QCM! is defined in such a way that the basis vectorsu0&a
andu1&a are copied~that is, cloned! ideally, that is, for these
states the relation~1.1! is fulfilled. We note that the
Wootters-Zurek copying machine is input-state dependent.
Following Wootters and Zurek we check how the pure su-
perposition stateus&a @the so-called SU~2! coherent state@3##
defined as

us&a5au0&a1bu1&a ~2.3!

is copied by the copying machine described by the transfor-
mation relation~2.1!. For simplicity we will assume in what
follows that probability amplitudesa and b are real and
a21b251. Throughout the paper~except for Sec. V! we
considera andb to be real. Our results do not depend on
this assumption and can be easily extended for complexa
andb. Using the transformation relation~2.1! we obtain

us&auQ&x→au0&au0&buQ0&x1bu1&au1&1uQ1&x[uC&abx
~out! .

~2.4!

If it is assumed thatx^Q0uQ1&x50, i.e., the two copying-
machine statesuQ0&x and uQ1&x are orthonormal, then the
reduced density operatorr̂ab

(out) describing the state of the
original-copy subsystem after the copying procedure reads

r̂ab
~out!5Trx@ r̂abx

~out!#5a2u00&^00u1b2u11&^11u, ~2.5!

where r̂abx
(out)[uC&abx

(out)
abx
(out)^Cu @see Eq.~2.4!# and the basis

vectors associated with two two-level systems under consid-
eration are defined as

u00&[u0&au0&b , u11&[u1&au1&b ,

u01&[u0&au1&b , u10&[u1&au0&b . ~2.6a!

We also introduce two vectorsu6&,

u1&5
1

A2
~ u10&1u01&), u2&5

1

A2
~ u10&2u01&),

~2.6b!

which together withu00& and u11& create an orthonormal
basis. Density operators describing quantum states of the
original mode and the copy mode after the copying proce-
dure read

r̂a
~out!5Trb@ r̂ab

~out!#5a2u0&aa^0u1b2u1&aa^1u, ~2.7a!

r̂b
~out!5Tra@ r̂ab

~out!#5a2u0&bb^0u1b2u1&bb^1u, ~2.7b!

respectively. From Eq.~2.7! it follows that both the original
and the copy mode at the output are in identical states~this is
good news!, but the original mode at the output is in a mix-
ture state~all off-diagonal elements are destroyed!.

In order to judge how good the copying machine is we
need a way of comparing its output to what, ideally, its out-
put should be. That is, we need a way of comparing density
matrices. We shall use the square of the Hilbert-Schmidt
norm of the difference between two density matrices as a
measure of how close they are to each other. The Hilbert-
Schmidt norm of an operatorÂ is given by

iÂi25@Tr~Â†Â!#1/2, ~2.8!

and it has the property that for operatorsÂ and B̂

uTr~Â†B̂!u<iÂi2iB̂i2 . ~2.9!

Our distance between the density matricesr̂1 and r̂2 is then

D5~ i r̂12 r̂2i2!2. ~2.10!

Is this a reasonable measure? In a two-dimensional space any
observableA which is not a multiple of the identity is rep-
resented by a Hermitian operatorÂ which can be expressed
as

Â5l1P̂11l2P̂2 , ~2.11!

where l1 and l2 are real andP̂1 and P̂2 are Hermitian,
one-dimensional projections with the property that
P̂1P̂250. For a given density matrixr̂, the probability that
A takes the valuel i is given by

pi5Tr~ r̂ P̂i !. ~2.12!

We would like our notion of closeness for density matrices
to have the property that if two density matrices are close,
then the probability distributions generated by them for an
arbitrary observableA are also close. That is, ifr̂1 andr̂2 are

54 1845QUANTUM COPYING: BEYOND THE NO-CLONING THEOREM



close, then the probability thatA takes the valuel i in the
stater̂1, pi

(1) should be close to the probability thatA takes
the valuel i in the stater̂2, pi

(2). Using the property of the
Hilbert-Schmidt norm given in Eq.~2.9!, we can, in fact,
show that if the Hilbert-Schmidt norm of (r̂12 r̂2) is small,
thenpi

(1) will be close topi
(2) . We have

upi
~1!2pi

~2!u5uTr@ P̂i~ r̂12 r̂2!#u

<i P̂i i2i r̂12 r̂2i25i r̂12 r̂2i2 , ~2.13!

where we have used the fact that the Hilbert-Schmidt norm
of a one-dimensional projection is one. This shows that our
proposed definition of closeness based on the Hilbert-
Schmidt norm has the desired property and allows us to
maintain that, in a two-dimensional space, it is a reasonable
definition to use.

Other measures of the similarity of two density matrices
have been used. Schumacher@4# has advocated the use of
fidelity which is defined as

F5Tr~ r̂1
1/2r̂2r̂1

1/2!1/2, ~2.14!

which ranges between 0 and 1. A fidelity of one means two
density matrices are equal. This is a more satisfactory defi-
nition in general. The interpretation of the Hilbert-Schmidt
norm in terms of probability distributions breaks down in
infinite-dimensional spaces and becomes less good in finite-
dimensional spaces as the dimension increases. Hilbert-
Schmidt norms are, on the other hand, easier to calculate
than fidelities. For our purposes, in a two-dimensional space,
the Hilbert-Schmidt norm provides a very reasonable way to
compare density matrices.

To see how ‘‘far’’ the copying machine drives the origi-
nal mode from its initial state we now evaluate the Hilbert-
Schmidt norm, i.e., the ‘‘distance’’ between the in- and out-
density operators of the original mode. The Hilbert-Schmidt
norm is defined as

Da[Tr@ r̂a
~ id!2 r̂a

~out!#2, ~2.15!

where we denote the input density operator of the original
mode asr̂a

(id) ~here the index id stands for the ideal!. This
density operator of the state~2.3! reads

r̂a
~ id!5a2u0&a^0u1abu0&a^1u1bau1&a^0u1b2u1&a^1u.

~2.16!

The Hilbert-Schmidt norm of the difference between the
density operators~2.7a! and ~2.16! is

Da52a2b252a2~12a2!, ~2.17!

which clearly reflects the fact that the statesu0&a ~i.e.,
a51) andu1&a ~i.e.,a50) are copied perfectly, that is, for
these statesDa50, while the pure superposition states
us&a5(u0&a6u1&a)/A2 are copied worst. In this case
Da51/2. We remind ourselves that the maximum possible
value for the Hilbert-Schmidt norm of the difference of two
density matrices is equal to 2~for instance, this is the ‘‘dis-
tance’’ between two mutually orthogonal statesu0&a and
u1&a). If we do not specify which pure superposition state
us&a is going to be copied~i.e., we do not knowa priori the

value ofa) then on average we should expect the distance
Da in the case of the Wootters-Zurek copying machine to be

D̄a5E
0

1

da2Da~a2!5
1

3
. ~2.18!

From Eq.~2.17! we see that the Wootters-Zurek quantum-
copying procedure isstate dependent, that is, for some states
it operates well~even perfectly! while for some states it op-
erates badly. Moreover, as it follows from Eq.~2.5! the out-
put modes are, in general, highly entangled, which is not
what we would expect from a perfect copying machine for
which the output density operatorr̂ab

(id) should be expressed
as

r̂ab
~ id!5 r̂a

~ id!
^ r̂b

~ id! , ~2.19a!

where the density operators of the ideal original and the copy
at the output are described by Eq.~2.16!. The density opera-
tor r̂ab

(id) in the basis~2.6! reads

r̂ab
~ id!5a4u00&^00u1A2a3bu00&^1u1a2b2u00&^11u

1A2a3bu1&^00u12a2b2u1&^1u1A2ab3u1&^11u

1a2b2u11&^00u1A2ab3u11&^1u1b4u11&^11u.

~2.19b!

To measure the degree of entanglement we can either use the
entropic parameterSab as proposed by Barnett and Phoenix
@5#, or we can use the Hilbert-Schmidt normDab measuring
the ‘‘distance’’ between the actual two-mode density opera-
tor r̂ab

(out) and a direct product of density operatorsr̂a
(out) and

r̂b
(out) , i.e.,

Dab
~1!5Tr@ r̂ab

~out!2 r̂a
~out!

^ r̂b
~out!#2. ~2.20!

Using the explicit expressions for the density operators
which appear in Eq.~2.20! we find the Hilbert-Schmidt norm
to be

Dab
~1!5DaDb , ~2.21!

where the single-mode normsDa (Db) are given by Eq.
~2.17!. Analogously we can evaluate the Hilbert-Schmidt
norm for the density operatorsr̂ab

(out) and r̂ab
(id) @see Eqs.~2.5!

and ~2.19!, respectively#. In this case we find

Dab
~2!5Tr@ r̂ab

~out!2 r̂ab
~ id!#25Da1Db . ~2.22!

Note that this result and Eq.~2.21! imply that the output state
is most entangled when the performance of the copying ma-
chine is worst. To complete the picture we evaluate the dis-
tanceDab

(3) between the ideal output described by the density
operatorr̂ab

(id) and the direct product of the single-mode den-
sity operators

Dab
~3!5Tr@ r̂ab

~ id!2 r̂a
~out!

^ r̂b
~out!#25Da1Db2Dab

~1! .
~2.23!

From the above equations we clearly see that the output
modes are, first, entangled~except the cases whena250 or
a251). Secondly, the degree of entanglement quantified via
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the normDab
(1) is initial-state dependent~i.e., it depends on

the parametera2). Thirdly, there is the following relation-
ship between the normsDab

( i ) :

Dab
~1!<Dab

~3!<Dab
~2! . ~2.24!

For further reference we note that the input-state-averaged
value @see Eqs.~2.18! and ~2.22!# of the normD̄ab

(2) is equal
to 2/3, while the input-averaged values ofD̄ab

(1) andD̄ab
(3) are

2/15 and 8/15, respectively.
We finish the present section on the Wootters-Zurek

quantum-copying procedure with several comments.
~1! If we assume the original~a! mode to be initially in

the mixture state

r̂a
~ in!5a2u0&aa^0u1b2u1&aa^1u, ~2.25!

then the output density operator describing the modesa and
b after the copying is given by the same relation~2.5! as in
the case of the pure input state. This means that if the input
a mode is described by the density operator~2.25!, then the
input and the output density operators in the modea are
equal, i.e.,Da50. Nevertheless, the distanceDab

(1) reflecting
a degree of entanglement between the output modes has the
value equal to 4a4b4, i.e., is the same as for the pure input
state~2.3!. This simply reflects the fact that the Wootters-
Zurek quantum-copying machine produces a strong en-
tanglement between output modes even in the case when
‘‘classical’’ states~mixtures! are copied.

~2! It is interesting to note that the Wootters-Zurek QCM
preserves the initial mean value of the operator
ŝz5(u1&^1u2u0&^0u)/2 while it completely destroys any in-
formation about the initial mean value of the operator
ŝx5(u1&^0u1u0&^1u)/2, that is,

^ŝz&a
~ in!5^ŝz&a

~out!52
1

2
cos2f, ~2.26a!

where we have used the parametrizationa5cosf and
b5sinf. On the other hand,

^ŝx&a
~ in!5

1

2
sin2f, ~2.26b!

while ^ŝx&a
(out)50 irrespective of the initial state of the origi-

nal modea. This means that whatever the value of the initial
variance^(Dŝx)

2&a
(in) its output value is equal to 1/4. These

observations suggest that the Wootters-Zurek QCM is ‘‘de-
signed’’ in such a way that the mean value of the operator
(ŝz) is preserved by the copying procedure, while informa-
tion associated with other mean values is totally destroyed.
This in turn suggests that one can think about designing a
copying machine associated with certain observation levels
@6#.

~3! Finally we briefly note that the von Neumann entropy
@7# can also be utilized to describe the ‘‘quality’’ of the origi-
nal and copy modes. The von Neumann entropy of a
quantum-mechanical system described by the density opera-
tor r̂ is defined as

S52kBTr@ r̂ lnr̂ #. ~2.27!

Due to the Araki-Lieb theorem@8# and the fact that we con-
sider a conservative system for which the entropy of the
complete system is constant, and is equal to zero providing
both modesa andb are initially in pure states, the entropy of
the QCM (Sx) after the copying is equal to the entropy
(Sab) of the original-copy subsystem described by the den-
sity operatorr̂ab

(out) . Besides this general property we find
that

Sab5Sa5Sb52kB@a2lna21b2lnb2#, ~2.28!

irrespective of whether the original mode has been initially
prepared in the pure state~2.3! or a corresponding statistical
mixture described by the density operator~2.25!. If the out-
put state were a product of states in thea andb modes we
would have Sab5Sa1Sb . The fact that the entropy is
smaller than this shows that the modes are correlated, i.e.,
entangled.

III. INPUT-STATE-INDEPENDENT
QUANTUM-COPYING MACHINE

The Wootters-Zurek QCM suffers one significant disad-
vantage — its operation depends on the state of the original
input. That is, the statesu0& andu1& are copied perfectly, but
the superposition states (u0&6u1&)/A2 are essentially de-
stroyed by this particular copying machine in the sense that
information about quantum coherences~off-diagonal ele-
ments of the density operator in a considered basis! is elimi-
nated.

In what follows we describe a copying process which is
input-state independent. When using this ‘‘universal’’
quantum-copying machine~UQCM! superposition states
~2.3! are copied equally well foranyvalue ofa in the sense
that the distances Da5 Tr@ r̂a

(out)2 r̂a
(id)#2 and Dab

5Tr@ r̂ab
(out)2 r̂ab

(id)#2 do not depend on the parametera. In
addition to this we design the UQCM in such a way that both
Da andDab take minimal values.

The most general quantum-copying transformation rules
for pure states on a two-dimensional space can be written as

u0&auQ&x→ (
k,l50

1

uk&au l &buQkl&x , ~3.1a!

u1&auQ&x→ (
m,n50

1

um&aun&buQmn&x , ~3.1b!

where the statesuQmn&x are not necessarily orthonormal for
all possible values ofm andn. The general copying trans-
formation is very complex and it involves many free param-
eters x^QkluQmn&x which characterize the copying machine.
In what follows we will concentrate our attention on one
particular copying transformation which fulfills our demands
as described above. We propose the transformation

u0&auQ&x→u0&au0&buQ0&x1@ u0&au1&b1u1&au0&b] uY0&x ,
~3.2a!

u1&auQ&x→u1&au1&buQ1&x1@ u0&au1&b1u1&au0&b] uY1&x ,
~3.2b!
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which is an obvious generalization of the WZ QCM. Due to
the unitarity of the transformation~3.2! the following rela-
tions hold:

x^Qi uQi&x12 x^Yi uYi&x51, i50,1 ~3.3a!

x^Y0uY1&x5x^Y1uY0&x50. ~3.3b!

There are still many free parameters to specify, therefore we
will further assume that the copying-machine state vectors
uYi&x and uQi&x are mutually orthogonal:

x^Qi uYi&x50, i50,1 ~3.4a!

and that

x^Q0uQ1&x50. ~3.4b!

With these assumptions in mind we find the density operator
r̂ab
(out) describing the modesa andb after copying of the pure
superposition state~2.3! as

r̂ab
~out!5a2u00&^00ux^Q0uQ0&x1A2abu00&^1ux^Y1uQ0&x

1A2abu1&^00ux^Q0uY1&x1@2a2
x^Y0uY0&x

12b2
x^Y1uY1&x#u1&^1u1A2abu1&^11ux^Q1uY0&x

1A2abu11&^1ux^Y0uQ1&x1b2u11&^11ux^Q1uQ1&x .

~3.5!

The density operator describing thea mode can be obtained
from Eq. ~3.5! by tracing over the modeb and it reads

r̂a
~out!5u0&a a^0u@a21~b2

x^Y1uY1&x2ax
2^Y0uY0&x!#

1u0&a a^1uab@x^Q1uY0&x1x^Y1uQ0&x#

1u1&a a^0uab@x^Q0uY1&x1x^Y0uQ1&x#

1u1&a a^1u@b21~a2
x^Y0uY0&x2b2

x^Y1uY1&x!#.

~3.6!

The density operatorr̂b
(out) looks exactly the same. This

means that the states of the two modesa andb at the output
of the copying machine under consideration are equal to each
other, but they are not equal to the density operator of the in
state of the original mode@compare Eqs.~3.6! and ~2.16!#.
This means that the original state is distorted by the copying.
To quantify the degree of this distortion we evaluate the
Hilbert-Schmidt norm~2.10! for the density operators~3.6!
and ~2.16!:

Da52j2~4a424a211!12a2~12a2!~h21!2,
~3.7!

where we have introduced the notation

x^Y0uY0&x5x^Y1uY1&x[j, ~3.8a!

x^Y0uQ1&x5x^Q0uY1&x5x^Q1uY0&x5x^Y1uQ0&x[h/2,
~3.8b!

with 0<j<1/2 and 0<h<2j1/2(122j)1/2<1/A2, which
follows from the Schwarz inequality. The relation~3.8! fur-

ther specifies ‘‘properties’’ of the copying machine under
consideration. So essentially we end up with two ‘‘free’’
parameters which we will specify further.

As we said in the Introduction, we are looking for a copy-
ing machine such that all input original states are copied
equally well, that is, we want the norm~3.7! to be indepen-
dent of the parametera2. This means that one of the param-
etersj or h can be determined from the condition

]

]a2Da50, ~3.9!

where the normDa is given by Eq.~3.7!. From Eq.~3.9! we
find that if the parametersj andh are related as

h5122j, ~3.10a!

then the normDa is input-state independent and it takes the
value

Da52j2. ~3.10b!

Taking into account the relations~3.10! and ~3.3a! we can
now rewrite the density operatorsr̂ab

(out) and r̂a
(out) @see Eqs.

~3.5! and ~3.6!, respectively# as

r̂ab
~out!5a2~122j!u00&^00u1

ab

A2
(122j)u00&^1u

1
ab

A2
~122j!u1&^00u12ju1&^1u

1
ab

A2
~122j!u1&^11u1

ab

A2
~122j!u11&^1u

1b2~122j!u11&^11u ~3.11!

and

r̂a
~out!5u0&a a^0u@a21j~b22a2!#1u0&a a^1uab~122j!

1u1&a a^0uab~122j!1u1&a a^1u@b21j~a2

2b2!#. ~3.12!

We determine the optimum value of the parameterj from
the assumption that the distance~norm! between the two-
mode density operatorsr̂ab

(out) and r̂ab
(id)5 r̂a

(id)
^ r̂b

(id) is input-
state independent. That is, we solve the equation

]

]a2Dab
~2!50, ~3.13!

whereDab
(2)5Tr@ r̂ab

(out)2 r̂ab
(id)#2 and the density operatorr̂ab

(id)

is given by Eq.~2.19b!. The normDab
(2) in this case can be

expressed as

Dab
~2!5~U11!

212~U12!
212~U13!

21~U22!
212~U23!

2

1~U33!
2, ~3.14a!

with the elementsUi j given by the relations
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U115a42a2~122j!, U125A2ab@a22 1
2 ~122j!#,

U135a2b2, U2252a2b222j, ~3.14b!

U235A2ab@b22 1
2 ~122j!#, U335b42b2~122j!.

Now Eq. ~3.13! can be solved with respect to the parameter
j, for which we findj51/6. For this value ofj the norm
Dab
(2) is a2 independent and its value is equal to 2/9.

Some properties of the UQCM

~1! First we point out that the density operatorr̂a
(id) is

diagonal in the basis

uF1&a5au0&a1bu1&a , uF2&a5bu0&a2au1&a .
~3.15!

In this basis we haver̂a
(id)5uF1&a a^F1u. In this same basis

the density operatorr̂a
(out) reads

r̂a
~out!5

5

6
uF1&a a^F1u1

1

6
uF2&a a^F2u, ~3.16!

from which it directly follows that the von Neumann entropy
of the modea at the output of the copying machine is

Sa52kBF56 lnS 56D1
1

6
lnS 16D G . ~3.17a!

Analogously we can evaluate the von Neumann entropy of
the ab subsystem~or, which is the same, the entropy of the
QCM after the copying process! to be

Sab5Sx52kBF13 lnS 13D1
2

3
lnS 23D G . ~3.17b!

We see that both the von Neumann entropy of each output
modea andb separately, as well as the entropy of the two-
mode subsystemab do not depend on the input pure state of
the original modea. Moreover, from the fact that the entro-
pies under consideration fulfill the relation

Sab,Sa1Sb ~3.18!

it follows that there does not exist a basis in which the den-
sity r̂ab

(out) can be represented in a factorized form
r̂a
(out)

^ r̂b
(out) As we will see later, this entanglement between

the two output modes significantly affects the measurement
procedure of the two modes after the copying. To be more
specific, any measurement performed on modeb affects the
state of modea.

~2! Once we have found the basis in which both density
operatorsr̂a

(id) and r̂a
(out) are diagonal we can easily find the

value of the fidelity parameterFa as introduced by Schuma-
cher@4#. The fidelity parameter which we are interested in is
given by Eq.~2.14! with r̂15 r̂a

(id) andr̂25 r̂a
(out) In our case

the fidelity is equal to a constant valueA5/6 for all input
states. We can conclude that the UQCM has that universal
property to be input-state independent, that is, all pure states
are copied equally well.

~3! It is natural to ask how the copying machine under
consideration will copy an input state described by the sta-
tistical mixture

r̂a
~ id!5Au0&a a^0u1Bu0&a a^1u1Bu1&a a^0u

1~12A!u1&a a^1u, ~3.19!

where we assume for simplicity thatB is real. We note that
from the condition Tr(r̂a

(id))2<1 it follows that

~122A!214B2<1. ~3.20!

We find the Hilbert-Schmidt normDa of the difference be-
tween the input state~3.19! and the corresponding output to
be

Da52j2~122A!212B2~12h!2. ~3.21a!

If we assume thath5122j, then the norm~3.21a! reads

Da52j2@~122A!214B2#<2j2, ~3.21b!

which means that the UQCM discussed here copies mixture
states better than pure superposition states with the same
diagonal density matrix elements.

If we assumej50 ~in this case the UQCM is identical to
the WZ QCM! then the statistical mixtures~3.19! such that
B50 are copied perfectly in the sense that the distanceDa
given by Eq.~3.21b! is equal to zero. Nevertheless one has to
be aware of the fact that the two output modes are still
strongly entangled, which is reflected in the fact that the
normDab

(2) has a value

Dab
~2!5Tr@ r̂ab

~out!2 r̂ab
~ id!#254A2~12A!2. ~3.22!

~4! We can compare the performance of the Wootters-
Zurek QCM and the UQCM as discussed above if we com-
pare the averaged values of the normsDa andDab for the
WZ QCM, which read, respectively,

D̄a51/3, D̄ab52/3,

with the input-state-independent values of these parameters
for the UQCM. We see that in the case of the UQCM the
normDa is six times smaller~on average! while Dab is three
times smaller compared toD̄a andD̄ab , respectively. These
relations simply reflect the ‘‘high-quality’’ performance of
the UQCM. It is still an open question whether the UQCM is
the best~on average! QCM quantum mechanics would allow.

~5! The UQCM has the interesting property that the mean
values of the operatorsŝx and ŝz are scaled by copying. It
can be found that irrespective of whether the input mode is in
a pure state or a statistical mixture the following relations
hold:

^ŝ j&
~out!5~122j!^ŝ j&

~ in!, j5x,z ~3.23!

where the relationh5122j has been taken into account.
Obviously, forj51/6 both^ŝz&

(out) and ^ŝx&
(out) are scaled

by the factor 2/3. This is in contrast to the WZ QCM, when
the mean value of the operatorŝz is preserved in the copying
process, whilêŝx&

(out)50 irrespective of the input state. We
note that the relations between the input and output mean
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values can be taken as definitions of particular copying ma-
chines. To be specific, one can associate the copying process
with a given observation level, i.e., a set of observables, and
impose particular conditions on input and output values of
the observables associated with the given observation level.
The relations between the input and output mean values then
can be solved with respect to those parameters which specify
the copying machine itself, i.e., the valuesx^QkluQmn&x .

~6! The four state vectorsuQ0&x , uQ1&x , uY0&x , and
uY1&x in terms of which the QCM transformation~3.2! is
defined are not orthonormal. Using the Gram-Schmidt pro-
cedure one can define a set of four orthonormal quantum-
copying-machine basis statesuQ̄0&x , uQ̄1&x , uȲ0&x , and
uȲ1&x . If we assume the relations~3.3!, ~3.4!, and ~3.8! de-
fining the QCM under consideration and the relation
h5122j, the orthonormal states read

uQ̄0&x5
uQ0&x

A122j
, uQ̄1&x5

uQ1&x
A122j

,

uȲ0&x5
2uY0&x2uQ1&x

A6j21
, uȲ1&x5

2uY1&x2uQ0&x
A6j21

,

~3.24!

from which it follows that one has to treat carefully the case
of j51/6, i.e., when the normDab is input-state indepen-
dent. To be more specific, under the conditions given by Eqs.
~3.3!, ~3.4!, and~3.8! imposed on the copying-machine vec-
tors uQi&x anduYi&x ( i50,1) withh52/3 andj51/6 we find
the relations

x^Qi uQi&x52/3, x^Yi uYi&x51/6, i50,1

x^Y1uY0&x5x^Q1uQ0&x50, ~3.25!

x^Y0uQ1&x5x^Y1uQ0&x51/3,

which means that the four copying-machine vectors are not
linearly independent. They in fact lie in a two-dimensional
subspace of the original four-dimensional space of the copy-
ing machine. In this two-dimensional subspace the copying-
machine vectors have the following components:

uY0&x5~1/A6,0!, uY1&x5~0,1/A6!,

uQ0&x5~0,A2/3!, uQ1&x5~A2/3,0!. ~3.26!

We see that the vectorsuYi&x can be expressed in terms of
the vectorsuQi&x :

uY0&x5
1

2
uQ1&x , uY1&x5

1

2
uQ0&x . ~3.27!

If we introduce two orthonormal basis statesu↑& and u↓& in
the two-dimensional state space, then we can express the
copying-machine statesuQ0&x in this basis as

uQ0&x5A2

3
u↑&, uQ1&x5A2

3
u↓&. ~3.28!

Consequently, the UQCM transformation~3.2! now reads

u0&auQ&x→A2

3
u00&u↑&1A1

3
u1&u↓&, ~3.29a!

u1&auQ&x→A2

3
u11&u↓&1A1

3
u1&u↑&, ~3.29b!

where the initial copying-machine stateuQ&x can be ex-
pressed as a linear superposition of the two basis statesu↑&
and u↓&.

IV. MEASUREMENT OF THE ORIGINAL
AND THE COPY STATE

AT THE OUTPUT OF QCM

From our previous discussion it follows that the original
and the copy states~described by density operatorsr̂a

(out) and
r̂b
(out) , respectively! are highly entangled~see discussion in
Sec. III!. This means that any measurement performed on the
modeb will significantly affect the state of the modea. This
could defeat the purpose of a quantum-copying machine be-
cause by measuring the copy we distort the original. Ideally
we would like to have the copy and original independent so
that if one is measured the other is undisturbed and available
for future processing. We need to determine how close the
copying machine of the preceding section comes to this
ideal.

What we shall do is to consider the effect of an uncondi-
tioned measurement of theb mode on the state of thea
mode. Define theb-mode vector

us&b5uu0&b1vu1&b , uuu21uvu251, ~4.1!

and the corresponding projection operatorP̂us&b
5us&b b^su.

We start with an ensemble of copies and originals which has
been produced by the copying machine and is described by
the density matrixr̂ab

(out) . We now measureP̂us&b
for each

element of the ensemble and, irrespective of the result, keep
the resulting two-mode state. This results in the new en-
semble

r̂ab
~meas!5 P̂us&b

r̂ab
~out!P̂us&b

1Q̂us&b
r̂ab

~out!Q̂us&b
, ~4.2!

whereQ̂us&b
5 Î b2 P̂us&b

and Î b is theb-mode identity opera-

tor. From this we obtain thea-mode reduced density matrix

r̂a
~meas!5Trb~ r̂ab

~meas!!. ~4.3!

The measurement ofP̂us&b
can yield either 0 or 1. The prob-

ability of obtaining 1 is given by

Tr~ P̂us&b
r̂ab

~out!P̂us&b
!5

1

6
1
2

3
uau*1bv* u2. ~4.4!

It is clear from this equation that measurement of this prob-
ability will give us information abouta and b. Thus by
measuring theb mode we do gain information about the
quantum state of the input mode of the copying machine.

Now let us see what the effect of theb-mode measure-
ment is on thea mode. We note that
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r̂a
~out!5Trb@~ P̂us&b

1Q̂us&b
!r̂ab

~out!~ P̂us&b
1Q̂us&b!]5 r̂a

~meas!

~4.5!

so that thea-mode density matrix after the unconditional
measurement is the same as that before it. This result does
not depend onu and v so we can choose to measure any
projection in theb mode.

Even thoughr̂a
(out) andr̂a

(id) are close (Da51/18) they are
not the same. However, because of the form ofr̂a

(out) it is
possible to recover the expectation value of any operator in
the stater̂a

(id) from it. In order to show this we express
r̂a
(out) as

r̂a
~out!5

2

3
r̂a

~ id!1
1

6
Î a . ~4.6!

This implies that the density matrices differ in a way that
does not depend ona and b. Therefore, if Âa is an
a-mode operator, then

Tr~Âar̂a
~ id!!5

3

2 FTr~Âar̂a
~out!!2

1

6
Tr~Âa!G , ~4.7!

where Tr(Âa) does not depend ona andb and is, therefore,
known.

In summary the output from the UQCM has the following
property. If any projection is measured in theb mode the
unconditioneda-mode ensemble which results is close to the
ideal output state, i.e., the input state, and can be used to find
the expectation value of anya-mode operator in the ideal
output state. In addition, theb-mode measurement provides
us with information about the input state.

V. COPYING STATES IN THE NEIGHBORHOOD
OF GIVEN STATE

Suppose that we want to build a copying machine which
will copy, to a high degree of fidelity, states in the neighbor-
hood of a given quantum state. In order to get an idea of how
to construct such a machine let us look at what would happen
if the machine made perfect copies. We shall consider the
input state given by Eq.~2.3! whereb is close to one and
a is small in magnitude~in this section we considera and
b to be complex numbers because this does matter to the
results!. If this state were copied perfectly we would have
r̂ab
(id) given by Eq.~2.19b!. Under the stated conditions on

b anda we have roughly that

au0&a1bu1&a→b2u11&1a~ u10&1u01&). ~5.1!

This suggests that the copying machine specified by

u1&auQ&x→u1&au1&buQ1&x ,

u0&auQ&x→
1

A2
~ u1&au0&b1u0&au1&b)uQ1&x ,

~5.2!

where uQ&x and uQ1&x are the initial and final states of the
copying machine, respectively, would produce something
like the desired action. Note that this machine is very differ-
ent from the Wootters-Zurek machine in that while one basis

vector is duplicated exactly, the other is completely changed.
In fact, the stateu0&a is sent into a state which has no overlap
at all with the perfectly cloned stateu0&au0&b .

We shall examine the action of this copying machine, but
it is worthwhile to note at the beginning that there is a major
problem with it. The factor of 1/A2, which is required by
unitarity, means that we do not obtain the action indicated in
Eq. ~5.1!. What we have is that

~au0&a1bu1&a)uQ&x→@bu11&1au1&] uQ1&x

[uC1&ab
~out!uQ1&x . ~5.3!

We can determine how good a job this copying machine
does by looking at the difference between what it does and
what it is supposed to do, i.e., we evaluate the Hilbert-
Schmidt norm between the states described by the density
operatorsr̂ab

(id) @see Eq.~2.12b!# andr̂ab
(out) @see Eq.~5.3!#. For

the Hilbert-Schmidt normDab
(2) given by Eq.~2.15! we find

the explicit expression

Dab
~2!522~b1b* !~ ubu21uau2A2!. ~5.4!

This can be simplified by expressingb as 12db and using
the normalization conditionubu21uau251 to find the condi-
tion

db1db*5uau21udbu2. ~5.5!

We then have that

Dab
~2!5~322A2!uau21udbu2, ~5.6!

where terms of orderuau4 andudbu2uau2 have been dropped.
Finally, we need to determine the size ofudbu2. Setting
db5reiu and substituting this into Eq.~5.5! we find that

2rcosu2r 25uau2. ~5.7!

This implies that unlessu is very close top/2, thenr will be
of orderuau2. If du5u2p/2 is of orderuau or less, thenr is
of order uau. In either case, the right-hand side of Eq.~5.6!
will be of order uau2.

It is possible to do better than this in a certain sense.
Consider the copying machine specified by

u1&auQ&x→
1

A2
~ u11&uQ1&x1u00&uQ0&x),

u0&auQ&x→
1

A2
~ u10&1u01&)uQ1&x ,

~5.8!

where x^Q0uQ0&x5x^Q1uQ1&x51 and x^Q0uQ1&x50. With
this copying machine we find that a superposition state goes
into

au0&a1bu1&a→
1

A2
@bu11&1a~ u10&1u01&)] uQ1&x

1
b

A2
u00&uQ0&x . ~5.9!
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We define the vector in the first term on the right-hand side
of Eq. ~5.9! to be

uC2&ab
~out!5bu11&1a~ u10&1u01&). ~5.10!

This vector is much closer to the vector on the right-hand
side of Eq.~5.1! than isuC1&ab

(out) given by Eq.~5.3!. In fact,
we find that the Hilbert-Schmidt norm between the density
operator associated state vector~5.10! and the ideally copied
state given by the density operator~2.19b! is

Dab
~2!5udbu212uau2udbu2. ~5.11!

As long asu is not too close top/2, the right-hand side of
this equation will be of orderuau4. This is a considerable
improvement over what the Wootters-Zurek copying ma-
chine can do. There is, however, in this case, the problem of
the term proportional tou00& in Eq. ~5.9!. What we can do
with the output of this copying machine is to use it to calcu-
late the expectation values of any operator which annihilates
this state. That is, ifŜ is an operator which has the property
that Ŝu00&50, then we can get a very good estimate of the
expectation value ofŜ in the state~2.19b! by calculating the
expectation ofŜ in the state on the right-hand side of Eq.
~5.9! and multiplying the result by 2. In this sense the copy-
ing machine specified by Eq.~5.8! does a good job of copy-
ing states in the neighborhood ofu1&.

Another possibility is to use a selective measurement to
obtain the desired state from that in Eq.~5.9!. If we measure
the operatorP̂005u00&^00u and obtain the value 0 the result-
ing two-mode density matrix is

r̂ab
~sel!5

1

11uau2
uC2&ab

~out!
ab
~out!^C2u. ~5.12!

This produces the desired result becauseDab
(2) is again of the

order of uau4 as long asu is not too close top/2. A nonse-
lective measurement of any one-dimensional projection in
the b mode now gives us information abouta and b and
leaves us with the reduceda-mode density matrix

r̂a
~sel!5

1

11uau2 ~ r̂a
~ id!1uau2u1&^1u!, ~5.13!

which, for uau2!1, is close tor̂a
(id) . Therefore the transfor-

mation in Eq. ~5.8! followed by a selective measurement

gives us a good approximation to cloning for a limited range
of states. The copy can be measured, providing information
about the initial state, and the resultinga-mode density ma-
trix is close to that of the input.

VI. CONCLUSIONS

The Wootters-Zurek no-cloning theorem forbids the copy-
ing of an arbitrary quantum state. If one does not demand
that the copy be perfect, however, possibilities emerge. We
have examined a number of these. A quantum-copying ma-
chine closely related to the one used by Wootters and Zurek
in the proof of their no-cloning theorem copies some states
perfectly and others poorly. That is, the quality of its output
depends on the input. A second type of machine, which we
called a universal quantum-copying machine, has the prop-
erty that the quality of its output is independent of its input.
Finally, we examined a machine which combines a unitary
transformation and a selective measurement to produce good
copies of states in the neighborhood of a particular state.

A problem with all of these machines is that the copy and
original which appear at the output are entangled. This
means that a measurement of one affects the other. We
found, however, that a nonselective measurement of one of
the output modes will provide information about the input
state and not disturb the reduced density matrix of the other
mode. Therefore the output of these copying machines is
useful.

There is further work to be done; we have only explored
some of the possibilities. It would be interesting to know, for
example, what the best input-state independent quantum-
copying machine is. One can also consider machines which
make multiple copies. Does the quality of the copies de-
crease as their number increases? These questions remain for
the future.
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