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Information-theoretic aspects of quantum inseparability of mixed states are investigated in terms of thea
entropy inequalities and teleportation fidelity. Inseparability of mixed states is defined and a complete charac-
terization of the inseparable 232 systems with maximally disordered subsystems is presented within the
Hilbert-Schmidt space formalism. A connection between teleportation and negative conditionala entropy is
also emphasized.@S1050-2947~96!06908-9#
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I. INTRODUCTION

Quantum inseparability is one of the most striking fea-
tures of quantum formalism. It can be expressed as follows:
If two systems interacted in the past it is, in general, not
possible to assign a single state vector to either of the two
subsystems@1,2#. This is what is sometimes called the prin-
ciple of inseparability. Historically it was first recognized by
Einstein, Podolsky, and Rosen~EPR! @3# and by Schro¨dinger
@4#. In their famous paper EPR suggested a description of the
world ~called ‘‘local realism’’! which assigns an independent
and objective reality to the physical properties of the well
separated subsystems of a compound system. Then EPR used
the criterion of local realism to conclude that quantum me-
chanics is incomplete.

EPR criticism was the source of many discussions con-
cerning fundamental differences between quantum and clas-
sical descriptions of nature. The most significant progress
toward the resolution of the EPR problem was made by Bell
@5# who proved that the local realism implies constraints on
the predictions of spin correlations in the form of inequalities
~called Bell’s inequalities! which can be violated by some
quantum-mechanical predictions. The latter feature of quan-
tum mechanics called usually ‘‘nonlocality’’@6# is one of the
most apparent manifestations of quantum inseparability.

The Bell’s inequalities involve correlations between the
outcomes of measurements performed on the well separated
systems which have interacted in the past. It emphasizes the
correlation aspect of inseparability. There is another aspect
which cannot be directly related to correlations but rather to
the amount of information carried by quantum states. It was
first considered by Schro¨dinger who wrote in the context of
the EPR problem: ‘‘Thus one disposes provisionally~until
the entanglement is resolved by actual observation! of only a
commondescription of the two in that space of higher di-
mension. This is the reason that knowledge of the individual
systems candeclineto the scantiest, even to zero, while that
of the combined system remains continually maximal. Best
possible knowledge of a whole doesnot include best possible

knowledge of its parts—and that is what keeps coming back
to haunt us’’@4#. In this way Schro¨dinger recognized a pro-
foundly nonclassical relation between the information which
an entangled state gives us about the whole system and the
information which it gives us about the subsystems. It in-
volves an information-theoretic aspect of quantum insepara-
bility which has attracted much attention recently@7–12#.
Braunstein and Caves first considered information-theoretic
Bell’s inequalities, and have shown that they can be violated
in the region of the violation of the usual Bell’s inequalities
@7# ~see also Ref.@8# in this context!. There is another ap-
proach which is based on the notion of the index of correla-
tion @9,10# or, more generally, quantum redundancies@11#.
In particular, it has been shown@11# that for all known states
admitting the local hidden variable~LHV ! model the normal-
ized index of correlation is bounded by 1/2@11#. More gen-
eral analysis in terms of the so-calleda entropy inequalities
@12# shows that there is a connection between the correlation
aspect and the information-theoretic one involving quantum
entropies.

Recently Bennettet al. @13# have discovered an aspect of
quantum inseparability—teleportation. It involves a separa-
tion of an input state into classical and quantum parts from
which the state can be reconstructed with perfect fidelity
F51. The basic idea is to use a pair of particles in the
singlet state shared by the sender~Alice! and the receiver
~Bob!. Popescu@14# noticed that the pairs in a mixed state
could be still useful for~imperfect! teleportation. There was
a question of what value of the fidelity of transmission of an
unknown state can ensure us about the nonclassical character
of the state forming the quantum channel. It has been shown
@14,15# that a purely classical channel can give at most
F52/3. Subsequently, Popescu showed that there exist mix-
tures which are useful for teleportation although they admit
the local hidden variable~LHV ! model. Then basic questions
concerning the possible relations between teleportation,
Bell’s inequalities and inseparability were addressed@14#.
Quite recently the maximal fidelity for the standard telepor-
tation scheme@16# with the quantum channel formed by any
mixed two spin-1/2 state has been obtained@17#.

The main purpose of the present paper is to investigate a
relation between inseparability of mixed states and their non-
classical information-theoretic features. In particular, we pro-
vide a complete characterization of the inseparable 232 sys-*Electronic address: fizrh@univ.gda.pl
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tems with maximally disordered subsystems. This paper is
organized in the following way. In Sec. II we discuss the
inseparability principle for mixed states. In Sec. III we
present the quantuma entropy (a-E! inequalities and dis-
cuss them in the context of inseparability. In particular, we
point out that separable states satisfy 1-and 2-entropy in-
equalities. In Sec. IV we consider in detail 232 systems
using the Hilbert-Schmidt space formalism. In particular, we
provide the necessary conditions for separability of the
mixed two spin-1/2 states. In Sec. V we provide a complete
characterization of the mixed two spin-1/2 states with maxi-
mal entropies of subsystems, and we single out the separable
states belonging to the above class. This allows us to obtain
information-theoretic characterizations of the latter in terms
of the a entropy inequalities and teleportation presented in
Sec. VI. The characterization is also obtained in terms of
purification of noisy teleportation channels@28#. Finally we
discuss the idea of purification in the context ofa-E in-
equalities.

II. INSEPARABILITY PRINCIPLE

To make our consideration clearer it is necessary to ex-
tend the notion of inseparability. Note that the above prin-
ciple of inseparability when applied to mixed states becomes
inadequate. Indeed, there are nonproduct mixtures that can
be written as mixtures of pure product states thus separable
according to the principle. Then for clarity it is convenient to
introduce the following natural generalization of the latter:If
two systems interacted in the past it is possible to find the
whole system in the state that cannot be written as a mixture
of product states. It involves the existence of inseparable
mixed states which may be viewed as a counterpart of pure
entangled states. They correspond to the Werner’s EPR cor-
related states, i.e., the ones which cannot be written as mix-
tures of direct products, while the separable states~mixtures
of product states! correspond to the classically correlated
ones@22#. It is natural to interpret the principle as follows.
As one knows, a mixed state can in general come from a
reduction of some pure state or from a source producing
randomly pure states. If a mixed state is separable, then it
produces the statistics equivalent to the one generated by an
ensemble of product states. In the latter case, the nonfac-
torability is due to the lack of knowledge of the observer
only. However, if a mixed state is inseparable, then there is
certainly no way to ascribe to the subsystems, even in prin-
ciple, their state vectors.

Now, we are interested in information-theoretic aspects of
inseparability as well as in the range of their manifestations.
The question is also, to what degree this range can cover the
whole set of inseparable states. However it is very difficult to
check whether some given state can be written as a mixture
of product states or not. Then it follows that more ‘‘opera-
tional’’ characterization of inseparable~separable! states is
more than desirable.

It should be emphasized here that, although the above
inseparability principle says about the existence of the dy-
namics that can convert product state into inseparable one,
we are interested in the final effect of the action of the dy-
namics. In other words, we assume that the system is found
in an inseparable state, and the task is to investigate the

effects that manifest its inseparability.

III. a ENTROPY INEQUALITIES

In this section we will outline the concept of thea en-
tropy inequalities in the context of inseparability@12#. Let us
consider the quantum counterpart of the Re´nyi a entropy
@18,19#

Sa~% !5
1

12a
ln Tr%a, a.1. ~1!

If a tends to 1 decreasingly, one obtains the von Neumann
entropyS1(%) as a limiting case

S1~% !52Tr% ln%. ~2!

One can replace the standard information measure which is
the von Neumann entropy by the whole family ofa entro-
pies @20#. Then given the compound system, one can con-
sider the relationships between the entropy of the whole sys-
tem and the entropies of the subsystems. For this purpose,
consider the following inequalities:

Sa~% !>maxi51,2Sa~% i !, ~3!

wherea>1, Sa(%) denotes the entropy of the system and
Sa(% i), i51,2 are the entropies of the subsystems. The
above inequalities can be interpreted as the constraints im-
posed on the system by positivity of the conditionala entro-
pies if the latter are defined by

Sa~1u2!5Sa~% !2Sa~%2!, Sa~2u1!5Sa~% !2Sa~%1!.
~4!

Now one can expect that violation of thea-E inequalities is
a manifestation of some nonclassical features of a compound
system resulting from its inseparability. Indeed, one can eas-
ily see that for discrete classical systems@21# the correspond-
ing inequalities are always satisfied, i.e., the classical condi-
tional a entropies are positive.

Note that the classical systems are always separable: joint
distributions can always be written as convex combinations
of product distributions@22#. Then it is natural to ask about
the connection between the violation of thea-E inequalities
and inseparability of quantum states. In fact one can prove
@12#

Theorem 1. For any separable state% on the finite-
dimensional Hilbert space the inequality~3! is satisfied for
a51,2.

The above theorem provides necessary conditions for
separability. In particular, it turns out that the 2-E inequality
is essentially stronger than the Bell-CHSH inequality for the
two spin-12 cases@12#. Then it constitutes a nontrivial and
extremely simple computationally necessary condition for
separability. This is a useful result as there is still no opera-
tional criterion of inseparability, in general. As we will see
further, for a class of two spin-1/2 states, it is possible to
provide the criterion in terms of thea-E inequalities.
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IV. POSITIVITY AND SEPARABILITY CONDITIONS
IN THE HILBERT-SCHMIDT SPACE

In this section and further we will restrict our consider-
ation to the 232 systems. Consequently, consider the Hil-
bert spaceH5C2

^C2. All Hermitian operators acting on
H constitute a Hilbert-Schmidt~HS! spaceHHS with a scalar
product ^A,B&5Tr(A†B). An arbitrary state of the system
can be represented inHHS as follows:

%5
1

4 S I ^ I1r–s^ I1I ^s–s1 (
m,n51

3

tnmsn^ smD . ~5!

Here I stands for identity operator,r, s belong to R3,
$sn%n51

3 are the standard Pauli matricesr–s5( i51
3r is i .

The coefficientstmn5Tr(rsn^ sm) form a real matrix de-
noted byT. Note thatr and s are local parameters as they
determine the reductions of the state%

%1[TrH2%5 1
2 ~ I1r–s!, %2[TrH1%5 1

2 ~ I1s–s!, ~6!

while theT matrix is responsible for correlations

E~a,b![Tr~%a–s^b–s!5~a,Tb!. ~7!

Now we will reduce the number of the parameters that are
essential for the problem we discuss in this paper. Note that
inseparability is invariant under product unitary transforma-
tions, i.e., if a state% is inseparable~separable! then any
state of the formU1^U2%U1

†
^U2

† also has this property.
Then, without loss of generality we can restrict our consid-
erations to some representative class of the states described
by less number of parameters. The class should be represen-
tative in the sense that any state% should be of the form
%5U1^U2%̃U1

†
^U2

† where%̃ belongs to the class. Conse-
quently, denote byD the set of all states with diagonalT.
This set is a convex subset of the set of all states. To show
that it is representative, we will use the fact, that for any
unitary transformationU there is a unique rotationO such
that @23#

Un̂–sU†5~On̂!–s. ~8!

Then if a state is subjected to theU1^U2 transformation,
the parametersr,s andT transform themselves as follows

r85O1r, s85O2s, T85O1TO2
† ,

whereOi ’s correspond toUi ’s via formula ~8!. Thus given
an arbitrary state, we can always choose suchU1 ,U2 that the
corresponding rotations will diagonalize its matrixT @24#,
and the transformed state will belong toD.

Now we are in position to present the conditions imposed
on the parameters contained in theT matrix by positivity of
% and by its separability@17#. As we consider the states with
diagonalT we can identify the latter with the vectortPR3

given byt5(t11,t22,t33). Henceforth we will identify diago-
nal matrices with corresponding vectors. By the notationT
PA, whereT is a matrix andA is a subset ofR3, we mean
that T is diagonal and the corresponding vector belongs to
A. We have

Prop. 1. For any%PD the T matrix given by (5) be-
longs to the tetrahedronT with verticest05(21,21,21),
t15(21,1,1), t25(1,21,1), t35(1,1,21).

Proof. % is positive if and only if the following inequali-
ties are satisfied:

Tr~%P!>0, ~9!

for any projectorP. Consider four projectors given by the
Bell basis

c 1
~2!

5
1

A2 ~e1^e16e2^e2!, ~10!

c 3
~4!

5
1

A2
~e1^e26e2^e1!, ~11!

where$ei% is the standard basis inC
2. The parameters of the

above projectors in the Hilbert-Schmidt space are

r i50, si50, i50,1,2,3

T05diag~21,21,21!

T15diag~21,1,1!

T25diag~1,21,1!

T35diag~1,1,21!. ~12!

Now as for two states% and %8 given by (r,s,T) and
(r8,s8,T8), respectively, one has

Tr%%85 1
4 @11~r,r8!1~s,s8!1Tr~TT8†!#. ~13!

Then one obtains that the inequalities Tr%Pi>0, i50,1,2,3
are equivalent to the following ones:

12t112t222t33>0, 12t111t221t33>0,

11t112t221t33>0, 11t111t222t33>0.

Clearly, the above conditions mean thatT belongs to the
tetrahedronT.

Now one can establish conditions implied by separability
of a given state%. Consequently, we have

Prop. 2. For any separable state%PD the T matrix
given by (5) belongs to the octahedronL with vertices
o1

65(0,0,61), o2
65(0,61,0), o3

65(0,0,61).
Proof. Consider the operator V given by

Vf ^ f̃5f̃ ^ f. Note that@22# one has

TrVA^B5TrAB. ~14!

Then it follows that for any separable state% we have

TrV%>0. ~15!

Consider now four operatorsVi , i50,1,2,3 given by

Vi5s iVs i , ~16!

wheres0[I . As the set of separable states isU1^U2 invari-
ant, it follows from~15! that for separable state% we have
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TrVi%>0, i50,1,2,3. ~17!

The operatorsVi can be written in terms of the HS space

Vi5
1

4 S 2I ^ I2(
j51

3

t j j
i s j ^ s j D , ~18!

where Ti[diag(t11
i ,t22

i ,t33
i )522Ti . Then the inequalities

~17! imply TP2T (tP2T if and only if 2tPT). Combin-
ing this with Prop. 1 we obtain that for separable states with
diagonal T, the latter belongs to the octahedron
L4Tù2T.

V. 232 SYSTEMS WITH MAXIMALLY DISORDERED
SUBSYSTEMS

In this section we shall deal with the states whose reduced
density matrices are maximally disordered, i.e., are normal-
ized identities. The only pure states with this property are
maximally entangled ones, i.e.,U1^U2 transformations of
the singlet state. The latter appears to be the most nonclassi-
cal of all pure states. Many of the mixtures belonging to the
class of the states with maximally disordered subsystems
should exhibit nonclassical properties as, if the entropies of
the subsystems are maximal, we expect that the inequalities
~3! should often be violated.

The states with maximally disordered subsystems are
completely characterized byT matrix ~we will call them fur-
ther theT states!. Again, we can restrict our considerations
to the states with diagonalT. We prove here

Prop. 3. Any operator of the form (5) withr,s50 and
diagonal T is a state if and only if T belongs to the tetrahe-
dron T.

Proof. If the operator is a state, then from Prop. 1 it fol-
lows thatT belongs to the tetrahedron. Now, letT belong to
the tetrahedron. Then it can be written as a convex combi-
nation of its vertices treated as matrices. Thus the operator
given byT appears to be a convex combination of the pro-
jectors given by~11!.

Note that the necessary condition of positivity of the op-
erators in the HS space given by Prop. 1 is now also suffi-
cient. The above proposition gives us complete characteriza-
tion of the states with maximal entropies of the subsystems.
Any such state is of the form

%5U1^U2S (
i50

3

piPi DU1
†

^U2
† , ~19!

whereU1 ,U2 are unitary transformations,Pi ’s are given by
~11! and ( i pi51. Thus one can see that the above class
appears to be a very poor one: up to theU1^U2 isomor-
phism, the states have only one partition of unity~in the
nondegenerate case!.

Now it is important to know which of the considered
states are inseparable. It turns out that, again, the necessary
condition for separability of the states in the HS space given
by Prop. 2 appears to be sufficient in the case of the consid-
ered states. Namely, we have

Prop. 4. Any two spin-1/2 state with maximally disor-
dered subsystems and diagonal T is separable if and only if
T belongs to the octahedronL.

Proof. To prove sufficiency, note that the verticesok
6 ,

k51,2,3, of the octahedron represent some separable states.
Indeed, one can easily check that they represent the states

%k

1
~2 !5

1

2
~Pk

1
~1 ! ^Pk

1
~2 !1Pk

2
~2 ! ^Pk

2
~1 !!, k51,2,3, ~20!

wherePk
6 correspond to the eigenvectors ofsk with eigen-

values61. Now if T belongs to the octahedron, it can be
written as a convex combination of its vertices. Thus the
corresponding state can be written as a mixture of the states
%k

6 , hence it is a separable state.
It is remarkable that the above result can easily be ex-

pressed in terms of spectra of the considered states. Indeed,
the octahedron represents theT states with diagonalT that
have all the eigenvalues less than or equal to 1/2. As the
spectrum is invariant under unitary transformations~then
U1^U2 invariant! we obtain

Prop. 5. Any state% with maximal entropy of the sub-
systems is separable if and only ifs,@0,1/2# wheres is the
spectrum of%.

VI. INSEPARABLE 2 32 SYSTEMS
WITH MAXIMALLY DISORDERED SUBSYSTEMS:

INFORMATION-THEORETIC CHARACTERIZATIONS

A. a entropy characterization

There is an interesting relation between inseparability of
theT states and their nonclassical information-theoretic fea-
tures. It turns out that the condition imposed on the spectrum
of the states can be expressed as the amount of the classical
conditions for thea entropies. Namely, we have

Prop. 6. A state with maximal entropies of subsystems is
separable if and only if it satisfies thea-E inequalities for all
a>1.

Proof. A simple proof is based on geometrical arguments.
For theT states thea-E inequalities read

(
i
pi

a<212a, a.1; 2(
i
pi lnpi> ln2, a51, ~21!

where $pi% is the spectrum. Thus the set of distributions
$pi% satisfying the inequalities is convex, hence the subset
E of the T states with diagonalT satisfying them is also
convex. Now, as the states%k

6 given by ~20! satisfy the
a-E inequalities, then all the states from the octahedron must
also satisfy them. To see that there are no states beyond the
octahedron with this property, it suffices to consider the
states represented by the line connecting one of the vertices
of T ~e.g., the one representing the singlet statec0) with the
origin of the frame@25# ~see Fig. 1!. It is straightforward to
check that a state belonging to this line satisfies thea-E
inequalities if it is separable@12# ~i.e., if and only if it be-
longs to the octahedron!.

Now from U1^U2 invariance of the setE it follows that
it is invariant under the group of proper rotations of a regular
tetrahedron. Then from the convexity of the considered set it
follows that it must be the octahedron, i.e., we haveE5L.

Thus we see that the inseparability of the 232 states with
maximal entropies of the reductions manifests itself by vio-
lation of thea-entropy inequalities for somea, i.e., by nega-
tivity of some conditionala entropy@26#. Recently the nega-
tive conditional von Neumann entropy was considered in the
context of the teleportation and superdense coding@27#. As
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we will see further, within the considered class of the states,
the negativity of any conditionala entropy makes the state
useful for teleportation.

B. Teleportation characterization

Some inseparable states have a very striking feature.
Namely, they can be used for transmission of quantum infor-
mation with better fidelity than by means of classical bits
themselves. For example, two-particle system in pure singlet
state shared by a sender and a receiver allows to transmit
faithfully an unknown two spin-1/2 state, with additional use
of two classical bits@13#. This is what is called quantum
teleportation. In absence of the quantum channel, the only
thing the sender can do is to measure the unknown state and
then to inform the receiver about the outcome of the mea-
surement by means of classical bits. Now, if in the presence
of the quantum channel the receiver can reconstruct the state
better than it is possible by using the best possible strategy
basing only on classical bits, then we say that the state form-
ing the quantum channel is useful for teleportation@14#.

Then there is a basic question: are all the inseparableT
states useful for teleportation? As we will see below, the
answer is ‘‘yes.’’ As a measure of efficiency of teleportation
we will use fidelity

F5E
S
dM~f!(

k
pkTr~%kPf!. ~22!

HerePf is the input state,%k is the output state, provided the
outcomek was obtained by Alice. The quantity Tr(%kPf)
which is a measure of how the resulting state is similar to the
input one, is averaged over the probabilities of the outcomes,
and then over all possible input states (M denotes uniform
distribution on the Bloch sphereS). It has been shown, that
the purely classical channel can give at mostF52/3 @14,15#.
Recently it has been proven@17# that within the standard
teleportation scheme@16# the inequalityF<2/3 is equivalent
to the following one:

N~% !<1, ~23!

whereN(%)[AT†T. Moreover, if a state is useful for the
standard teleportation, then the maximal fidelity amounts to

Fmax5 1
2 @11 1

3N~% !#. ~24!

Now we observe that within the setD the inequality
N(%)<1 holds if and only ifT belongs to the octahedron.
Thus for theT states with diagonalT this is equivalent to the
separability condition given by Prop. 4. Obviously, if a state
is separable then not only the standard teleportation proce-
dure but any possible one cannot produce fidelity greater
than 2/3. Then, under theU1^U2 invariance ofN(%) we
obtain

Prop. 7. A two spin-1/2 state with maximal entropies of
the subsystems is useful for teleportation if and only if it is
inseparable.

Thus, again, inseparability of theT states manifests itself
inherently by better fidelity of teleportation than the maximal
one produced by a purely classical channel. It is remarkable
that, within the considered class of states, the ability of form-
ing an efficient teleportation channel is due to the negative
conditional entropy for all largea. This generalizes earlier
result concerning Werner spin-1/2 states~see Fig. 1! @12#.

So far we have considered teleportation directly via mixed
states. Recently, Bennettet al. ~BBPSSW! @28# presented the
idea of purification of noisy channels. The authors show how
to obtain asymptotically faithful teleportation via mixed
states using local operations and classical communication in
order to purify them. The state can be purified by BBPSSW
procedure if Tr%P0.1/2 whereP05uc0&^c0u is the singlet
state. Of course, one can immediately see that it can be also
purified if Tr%P.1/2, whereP is a projector corresponding
to any maximally entangled pure state. Thus by Prop. 5 we
obtain that given a mixed 232 state with maximal entropies
of the subsystems, one can distill a nonzero entanglement by
using the BBPSSW procedure if the state is inseparable.

VII. CONCLUSION

We have investigated information-theoretic aspects of in-
separability of mixed states in terms of thea entropy in-
equalities and teleportation. We have discussed some general
properties of thea-E inequalities. Subsequently, using the
Hilbert-Schmidt space formalism we have provided the sepa-
rability conditions for 232 systems. Then the set of theT
states~the two spin-1/2 states with maximal entropies of the
subsystems! has been considered in detail.

It appears that, up to theU1^U2 isomorphism, the set of
the T states can be identified with some tetrahedronT in
R3, whereas the separableT states can be identified with an
octahedron contained inT. The above very illustrative geo-
metrical representation of both sets allowed to obtain
information-theoretic interpretation of inseparability of the
considered states. Namely, it appears that the states lying
beyond the octahedron violatea entropy inequalities for all
largea. The resulting negative conditionala entropy has its
reflection in the fact that all the inseparableT states are
useful for teleportation. In addition, they have nonzero dis-
tillable entanglement, i.e., one can use them for asymptoti-
cally faithful teleportation by using the BBPSSW procedure.

Finally we believe that the results of the present paper can
help in deeper understanding of the connections between the
inseparability and the quantum information theory. More-
over, they may be also useful in the problem of the classifi-
cation of mixed states under the nonlocality criterion
@14,29,30#.

FIG. 1. Geometrical representation of the states with diagonal
T and maximally disordered reduced density matrices: the bold-
line-contoured octahedron represents separable states, the dashed
line denotes the set of the Werner states with the singlet stateA and
normalized identity E. Here A5(21,21,21), B5(1,1,21),
C5(1,21,1),D5(21,1,1).
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