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Information-theoretic aspects of inseparability of mixed states
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Information-theoretic aspects of quantum inseparability of mixed states are investigated in termsof the
entropy inequalities and teleportation fidelity. Inseparability of mixed states is defined and a complete charac-
terization of the inseparablexX?2 systems with maximally disordered subsystems is presented within the
Hilbert-Schmidt space formalism. A connection between teleportation and negative conditienaiopy is
also emphasizedS1050-294{®6)06908-9
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I. INTRODUCTION knowledge of its parts—and that is what keeps coming back
to haunt us”[4]. In this way Schrdinger recognized a pro-
Quantum inseparability is one of the most striking fea-foundly nonclassical relation between the information which
tures of quantum formalism. It can be expressed as followsn entangled state gives us about the whole system and the
If two systems interacted in the past it is, in general, notnformation which it gives us about the subsystems. It in-
possible to assign a single state vector to either of the tw olves an information-theoretic aspect of quantum insepara-

N ) . - bility which has attracted much attention recenftg~12].
s_ubsyst_emEl,Z]. T_h_|s IS yvhaF IS so_metlme_s called the prin Braunstein and Caves first considered information-theoretic
ciple of inseparability. Historically it was first recognized by

Einstein, Podolsky, and RoséBPR [3] and by Schidinger Bell's inequalities, and have shown that they can be violated

. _ in the region of the violation of the usual Bell's inequalities
[4]. In their famous paper EPR suggested a description of thm (see also Ref[8] in this context. There is another ap-

world (called “local realism’) which assigns an independent ,rqach which is based on the notion of the index of correla-
and objective reality to the physical properties of the welltjgp [9,10] or, more generally, quantum redundandi4].
separated subsystems of a compound system. Then EPR usgitharticular, it has been showai1] that for all known states
the criterion of local realism to conclude that quantum Me-admitting the local hidden variabléHV) model the normal-
chanics is incomplete. ized index of correlation is bounded by 1/1]. More gen-
EPR criticism was the source of many discussions coneral analysis in terms of the so-calledentropy inequalities
cerning fundamental differences between quantum and cla$i2] shows that there is a connection between the correlation
sical descriptions of nature. The most significant progressspect and the information-theoretic one involving quantum
toward the resolution of the EPR problem was made by Belentropies.
[5] who proved that the local realism implies constraints on Recently Bennetét al.[13] have discovered an aspect of
the predictions of spin correlations in the form of inequalitiesquantum inseparability—teleportation. It involves a separa-
(called Bell's inequalities which can be violated by some tion of an input state into classical and quantum parts from
guantum-mechanical predictions. The latter feature of quanhich the state can be reconstructed with perfect fidelity
tum mechanics called usually “nonlocality6] is one of the F=1. The basic idea is to use a pair of particles in the
most apparent manifestations of quantum inseparability. ~ Singlet state shared by the sendéfice) and the receiver

The Bell's inequalities involve correlations between the(BOD). Popesci14] noticed that the pairs in a mixed state

outcomes of measurements performed on the well separat&guld e still useful forimperfect teleportation. There was
guestion of what value of the fidelity of transmission of an

systems which have interacted in the past. It emphasizes th?enkn wn stat M ensur bout the nonclassical character
correlation aspect of inseparability. There is another aspeé{ own state can ensure us about thé nonclassical characte

of the state forming the quantum channel. It has been shown

\t’;']g'(;hmcoannrloéfpﬁfg'rﬁgtt%r:eéztr(:%éobcorre;itt'ogss?;ttersatner ;@4,15 that a purely classical channel can give at most
u ' : ' y quantu CtWaS-_ o3, Subsequently, Popescu showed that there exist mix-

first considered bY ?chdmger Who wrote in th.e.contex§ of tures which are useful for teleportation although they admit
the EPR problem: “Thus one disposes provisiondtil  he |ocal hidden variablé HV) model. Then basic questions
the entanglement is resolved by actual observatbonly a concerning the possible relations between teleportation,
commondescription of the two in that space of higher di- gg|I's inequalities and inseparability were addres$ed].
mension. Th|S IS the reason that knOWIedge Of the |nd|V|duabuite recent'y the maxima| f|de||ty for the Standard telepor-

systems cawmleclineto the scantiest, even to zero, while that tation schem¢16] with the quantum channel formed by any
of the combined system remains continually maximal. Besknixed two spin-1/2 state has been obtaifid].

possible knowledge of a whole doestinclude best possible The main purpose of the present paper is to investigate a
relation between inseparability of mixed states and their non-
classical information-theoretic features. In particular, we pro-

*Electronic address: fizrh@univ.gda.pl vide a complete characterization of the inseparab{e ys-
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tems with maximally disordered subsystems. This paper igffects that manifest its inseparability.

organized in the following way. In Sec. Il we discuss the
inseparability principle for mixed states. In Sec. Il we
present the quanture entropy (-E) inequalities and dis-
cuss them in the context of inseparability. In particular, we In this section we will outline the concept of the en-
point out that separable states satisfy 1-and 2-entropy intropy inequalities in the context of inseparabiljty2]. Let us
equalities. In Sec. IV we consider in detaix2 systems consider the quantum counterpart of thénfRea entropy
using the Hilbert-Schmidt space formalism. In particular, we[18,19

provide the necessary conditions for separability of the

mixed two spin-1/2 states. In Sec. V we provide a complete 1

characterization of the mixed two spin-1/2 states with maxi- S,(0)=——InTro%, a>1. D

mal entropies of subsystems, and we single out the separable 1=a

states belonging to the above class. This allows us to obtain

information-theoretic characterizations of the latter in termdf a tends to 1 decreasingly, one obtains the von Neumann
of the a entropy inequalities and teleportation presented irentropyS;(e) as a limiting case

Sec. VI. The characterization is also obtained in terms of

lll. @ ENTROPY INEQUALITIES

purification of noisy teleportation channd8]. Finally we S,(e)=—Trelng. 2
discuss the idea of purification in the context @fE in-
equalities.

One can replace the standard information measure which is
the von Neumann entropy by the whole family @fentro-

Il INSEPARABILITY PRINCIPLE pies[20]. Then given the compound system, one can con-
sider the relationships between the entropy of the whole sys-

To make our consideration clearer it is necessary to extem and the entropies of the subsystems. For this purpose,

tend the notion of inseparability. Note that the above prin-consider the following inequalities:

ciple of inseparability when applied to mixed states becomes

inadequate. Indeed, there are nonproduct mixtures that can S.(0)=max_y S.(), (3)

be written as mixtures of pure product states thus separable

according to the principle. Then for clarity it is convenient to
) . 7 . wherea=1, S,(p) denotes the entropy of the system and
introduce the following natural generalization of the lattér: S.(0), i=12 are the entropies of the subsystems. The

wo systems mteracted in the past it is po§S|bIe to f'nq th%bove inequalities can be interpreted as the constraints im-
whole system in the state that cannot be written as a mixture

. . . posed on the system by positivity of the conditionagéntro-
of product stateslt involves the existence of inseparable . if the latter are defined b
mixed states which may be viewed as a counterpart of purgleS It Ine fatter are detined by
entangled states. They correspond to the Werner's EPR cor-
related states, i.e., the ones which cannot be written as mixea(112)=Sa(0) =Sa(€2),  Su(2[1)=S,(@)—Sa(€1).
tures of direct products, while the separable statestures (4)
of product statéscorrespond to the classically correlated
ones[22]. It is natural to interpret the principle as follows. Now one can expect that violation of theE inequalities is
As one knows, a mixed state can in general come from @& manifestation of some nonclassical features of a compound
reduction of some pure state or from a source producingystem resulting from its inseparability. Indeed, one can eas-
randomly pure states. If a mixed state is separable, then ity see that for discrete classical systef$] the correspond-
produces the statistics equivalent to the one generated by #rg inequalities are always satisfied, i.e., the classical condi-
ensemble of product states. In the latter case, the nonfational o entropies are positive.
torability is due to the lack of knowledge of the observer Note that the classical systems are always separable: joint
only. However, if a mixed state is inseparable, then there iglistributions can always be written as convex combinations
certainly no way to ascribe to the subsystems, even in prinef product distributiong22]. Then it is natural to ask about
ciple, their state vectors. the connection between the violation of theE inequalities
Now, we are interested in information-theoretic aspects ofind inseparability of quantum states. In fact one can prove
inseparability as well as in the range of their manifestations[12]
The question is also, to what degree this range can cover the Theorem 1. For any separable state on the finite-
whole set of inseparable states. However it is very difficult todimensional Hilbert space the inequalif§) is satisfied for
check whether some given state can be written as a mixture=1,2.
of product states or not. Then it follows that more “opera- The above theorem provides necessary conditions for
tional” characterization of inseparablseparable states is  separability. In particular, it turns out that the 2-E inequality
more than desirable. is essentially stronger than the Bell-CHSH inequality for the
It should be emphasized here that, although the abovewo spin cases[12]. Then it constitutes a nontrivial and
inseparability principle says about the existence of the dyextremely simple computationally necessary condition for
namics that can convert product state into inseparable onsgparability. This is a useful result as there is still no opera-
we are interested in the final effect of the action of the dy-tional criterion of inseparability, in general. As we will see
namics. In other words, we assume that the system is fountirther, for a class of two spin-1/2 states, it is possible to
in an inseparable state, and the task is to investigate thgrovide the criterion in terms of the-E inequalities.
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IV. POSITIVITY AND SEPARABILITY CONDITIONS Prop. 1. For anyp € D the T matrix given by (5) be-
IN THE HILBERT-SCHMIDT SPACE longs to the tetrahedro with verticesty=(—1,—1,—1),
t,=(—-1,1,1) t,=(1,—-1,1), t3=(1,1,—1).
Proof. ¢ is positive if and only if the following inequali-
ties are satisfied:

In this section and further we will restrict our consider-
ation to the 2 systems. Consequently, consider the Hil-
bert spaceH=C2®C?. All Hermitian operators acting on

‘H constitute a Hilbert-SchmidHS) spacelH s with a scalar Tr(oP)=0, 9)
product(A,B)=Tr(A'B). An arbitrary state of the system
can be represented g as follows: for any projectorP. Consider four projectors given by the
Bell basis
! @1+ [+ + i t (5) 1
=—11® r-o® XSO oh®0om|.

e 4 mn=1 nmen " w(é)Zﬁ(elé@eltez@ez), (10)
Here | stands for identity operaton, s belong to R®,
{on}3_, are the standard Pauli matriceso=3;_,%0;. w3 =i(e ©e,re,0e,) (11)
The coefficients,,=Tr(po,® o) form a real matrix de- @ i TtTTem Tl

noted byT. Note thatr ands are local parameters as they . o,
determine the reductions of the state where{g;} is the standard basis @°. The parameters of the

above projectors in the Hilbert-Schmidt space are

= =1 . = =3 .
01=Tn,e=3(l+r-0), @=Trye=3(l+s0), ©) r=0, §=0, i=01.23

while the T matrix is responsible for correlations To=diag —1,—1,—1)
E(a,b)=Tr(pa.-o®b-o)=(a,Th). (7) T1=diag—1,1,1)

Now we will reduce the number of the parameters that are T,=diag1,—1,1)

essential for the problem we discuss in this paper. Note that

inseparability is invariant under product unitary transforma- Ty=diag1,1,-1). (12)

tions, i.e., if a statep is inseparablgseparable then any

state of the formU,®U,oUl® U} also has this property. Now as for two stateso and ¢’ given by ,s,T) and
Then, without loss of generality we can restrict our consid-(r’,s’,T"), respectively, one has

erations to some representative class of the states described , 1 , , ot

by less number of parameters. The class should be represen- Tree'=z[1+(r,r")+(ssH+Tr(TT'H]. (13
tative in thg sinsefthat any stageshould be of the form Then one obtains that the inequalitiesR;=0,i=0,1,2,3
e=U;®U,oU;®U, whereg belongs to the class. Conse- 4 equivalent to the following ones:

qguently, denote byD the set of all states with diagonal

This set is a convex subset of the set of all states. To show 1-ty—ty—t33=0, 11—ty +tyn+133=0,
that it is representative, we will use the fact, that for any

unitary transformatiorJ there is a unique rotatio® such 1+t~ trtt33=0, 1+t+t—1t3=0.
that[23]

Clearly, the above conditions mean thatbelongs to the
Un-oU'=(0n)-o. (8) tetrahedror?.
Now one can establish conditions implied by separability
Then if a state is subjected to thh ® U, transformation, of a given statep. Consequently, we have

the parameters,s and T transform themselves as follows Prop. 2. For any separable state e D the T matrix
given by (5) belongs to the octahedrah with vertices
r'=0qr, s'=0,5 T/ =0,TO}, 0; =(0,0,+1), 0, =(0,+1,0), 03 =(0,0,* 1).

Proof. Consider the operator V given by
whereO;'s correspond tdJ;’s via formula(8). Thus given v ¢g'¢=¢® ¢. Note that[22] one has
an arbitrary state, we can always choose dug¢hU, that the
corresponding rotations will diagonalize its matiix[24], TrVA®B=TrAB. (14
and the transformed state will belongTo

Now we are in position to present the conditions imposedl hen it follows that for any separable statewe have

on the parameters contained in thematrix by positivity of
¢ and by its separabilitf17]. As we consider the states with TrVe=0. (15
diagonalT we can identify the latter with the vectoe R®
given byt=(t;1,t52,t33). Henceforth we will identify diago-
nal matrices with corresponding vectors. By the notafion V,=o Vo, (16)
e A, whereT is a matrix andA is a subset oR3, we mean
that T is diagonal and the corresponding vector belongs tavhereoy=1. As the set of separable statedis® U, invari-
A. We have ant, it follows from(15) that for separable stag we have

Consider now four operatoig; , i=0,1,2,3 given by
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TrV,e=0, i=0,1,2,3. (17) Proof. To prove sufficiency, note that the verticeg ,
k=1,2,3, of the octahedron represent some separable states.
The operatord/; can be written in terms of the HS space Indeed, one can easily check that they represent the states

3 + - -
1 . -y - - _
Vi=g 2'®'_,Zl tio@0|, (18) o )=5(PVeP I+ PP, k=123, (20

S B B ) . whereP, correspond to the eigenvectors @f with eigen-
where T'=diag(ty;,t2,,t39 = —2T;. Then the inequalities y41yes+1. Now if T belongs to the octahedron, it can be
(17) imply Te —7 (te —7if and only if —te 7). Combin- yyitten as a convex combination of its vertices. Thus the
ing this with Prop. 1 we obtain that for separable states withtorresponding state can be written as a mixture of the states
diagonal T, the latter belongs to the octahedron o* hence itis a separable state.

L=TN-T It is remarkable that the above result can easily be ex-
pressed in terms of spectra of the considered states. Indeed,
V. 2x2 SYSTEMS WITH MAXIMALLY DISORDERED the octahedron represents tlestates with diagonarl that
SUBSYSTEMS have all the eigenvalues less than or equal to 1/2. As the

spectrum is invariant under unitary transformatioftisen
In this section we shall deal with the states whose reduceg), U, invariany we obtain

density matrices are maximally disordered, i.e., are normal- "pProp. 5. Any statee with maximal entropy of the sub-
ized identities. The only pure states with this property aresystems is separable if and onlyif=[0,1/2] whereo is the
maximally entangled ones, i.eJ;®U, transformations of spectrum ofp.
the singlet state. The latter appears to be the most nonclassi-
cal of all pure states. Many of the mixtures belonging to the VI. INSEPARABLE 2 x2 SYSTEMS
class of the states with maximally disordered subsystems WITH MAXIMALLY DISORDERED SUBSYSTEMS:
should exhibit nonclassical properties as, if the entropies of INFORMATION-THEORETIC CHARACTERIZATIONS
the subsystems are maximal, we expect that the inequalities
(3) should often be violated.

The states with maximally disordered subsystems are There is an interesting relation between inseparability of
completely characterized bl matrix (we will call them fur- the T states and their nonclassical information-theoretic fea-

ther theT state. Again, we can restrict our considerations {Urés- It turns out that the condition imposed on the spectrum
to the states with diago,nal We prove here of the states can be expressed as the amount of the classical

. conditions for thea entropies. Namely, we have
Prop. 3. Any operator of the form (5) withs=0 and : . . .
diagonal T is a state if and only if T belongs to the tetrahe- Prop. 6. A state with maximal entropies of subsystems is

dron T separable if and only if it satisfies theE inequalities for all

. . a=1.
Proof. If the operator is a state, then from Prop. 1 it fol-  proot A simple proof is based on geometrical arguments.
lows thatT belongs to the tetrahedron. Now, Btbelong to ko theT states thex-E inequalities read

the tetrahedron. Then it can be written as a convex combi-

nation of its vertices treated as matrices. Thus the operat& o nl—a )

given by T appears to be a convex combination of the pro-<« Pi <279 a>1 _Ei pilnpi=In2, a=1, (21)
jectors given by(11).

Note that the necessary condition of positivity of the op-where {p;} is the spectrum. Thus the set of distributions
erators in the HS space given by Prop. 1 is now also suffi{p;} satisfying the inequalities is convex, hence the subset
cient. The above proposition gives us complete characteriza® of the T states with diagonal satisfying them is also
tion of the states with maximal entropies of the subsystemszonvex. Now, as the stateg, given by (20) satisfy the
Any such state is of the form a-E inequalities, then all the states from the octahedron must

also satisfy them. To see that there are no states beyond the

octahedron with this property, it suffices to consider the
uleud, (190 states represented by the line connecting one of the vertices
of 7 (e.g., the one representing the singlet siafg with the
origin of the frame25] (see Fig. 1 It is straightforward to
check that a state belonging to this line satisfies ¢hE

A. a entropy characterization

Q:U1®U2

3
> piP;
i=0

whereU,U, are unitary transformation®;’s are given by

(11 and 2;pi=1. Thus one can see that the a_lbove Clas?nequalities if it is separablgl?] (i.e., if and only if it be-
appears to be a very poor one: up to the® U, isomor- longs to the octahedran
phism, the states have only one partition of uniy the Now from U;® U, invariance of the sef it follows that
nondegenerate cgse . , it is invariant under the group of proper rotations of a regular
Now it is important to know which of the considered tetrahedron. Then from the convexity of the considered set it
states are inseparable. It turns out that, again, the necessagflows that it must be the octahedron, i.e., we h&vecl.
condition for separability of the states in the HS space given Thus we see that the inseparability of the 2 states with
by Prop. 2 appears to be sufficient in the case of the consitnaximal entropies of the reductions manifests itself by vio-
ered states. Namely, we have lation of thea-entropy inequalities for some, i.e., by nega-
Prop. 4. Any two spin-1/2 state with maximally disor- tivity of some conditionakr entropy[26]. Recently the nega-
dered subsystems and diagonal T is separable if and only iive conditional von Neumann entropy was considered in the
T belongs to the octahedrof. context of the teleportation and superdense cofi2¥g. As
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¢ Frma= $[1+3N(0)]. (24)

D Now we observe that within the seb the inequality
/ N(e)=<1 holds if and only ifT belongs to the octahedron.
¢ Thus for theT states with diagonal this is equivalent to the
o separability condition given by Prop. 4. Obviously, if a state
- is separable then not only the standard teleportation proce-
/ dure but any possible one cannot produce fidelity greater
B than 2/3. Then, under thg,®U, invariance ofN(g) we
obtain
Prop. 7. A two spin-1/2 state with maximal entropies of
the subsystems is useful for teleportation if and only if it is
FIG. 1. Geometrical representation of the states with diago”ainseparable.
T and maximally disordered reduced density matrices: the bold- Thyg, again, inseparability of tHE states manifests itself
line-contoured octahedron represents separable states, the dashﬁﬁerenﬂy by better fidelity of teleportation than the maximal
line denotes the set of the Werner states with the Slngletétam one produced by a purely Class|ca| Channel It |S remarkable
normalized identity E. Here A=(—1,-1,-1), B=(1,1,-1),  that, within the considered class of states, the ability of form-
C=(1-11),D=(-111). ing an efficient teleportation channel is due to the negative
conditional entropy for all larger. This generalizes earlier
we will see further, within the considered class of the statessesylt concerning Werner spin-1/2 statese Fig. 1[12].
the negativity of any conditionak entropy makes the state  So far we have considered teleportation directly via mixed

useful for teleportation. states. Recently, Bennett al. (BBPSSW [28] presented the
idea of purification of noisy channels. The authors show how
B. Teleportation characterization to obtain asymptotically faithful teleportation via mixed

. o states using local operations and classical communication in
Some inseparable states have a very striking featurgyger to purify them. The state can be purified by BBPSSW

Namely, they can be used for transmission of quantum 'nforprocedure if ToPo>1/2 wherePy=|o){ 0| is the singlet
mation with better fidelity than by means of classical bitSgiate. Of course, one can immediately see that it can be also
themselves. For example, two-particle system in pure singl&l,rified if Tro P> 1/2, whereP is a projector corresponding
state shared by a sender and a receiver allows to transniy any maximally entangled pure state. Thus by Prop. 5 we
faithfully an unknown two spin-1/2 state, with additional use otain that given a mixed 22 state with maximal entropies
of two classical bitg13]. This is what is called quantum ¢ the syhsystems, one can distill a nonzero entanglement by

teleportation. In absence of the quantum channel, the onlysing the BBPSSW procedure if the state is inseparable.
thing the sender can do is to measure the unknown state and

then to inform the receiver about the outcome of the mea- VIl. CONCLUSION
surement by means of classical bits. Now, if in the presence ] . ) ] ] .
of the quantum channel the receiver can reconstruct the state We have investigated information-theoretic aspects of in-
better than it is possible by using the best possible strateg§eParability of mixed states in terms of tle entropy in-
basing only on classical bits, then we say that the state formfqualities and teleportation. We have discussed some general
ing the quantum channel is useful for teleportatiad]. properties of then-E inequalities. Subsequently, using the
Then there is a basic question: are all the insepar@ible Hilbert-Schmidt space formalism we have provided the sepa-
states useful for teleportation? As we will see below, theability conditions for 2<2 systems. Then the set of tffe
answer is “yes.” As a measure of efficiency of teleportation States(the two spin-1/2 states with maximal entropies of the
we will use fidelity subsystemshas been considered in detail.
It appears that, up to thg,®U, isomorphism, the set of
the T states can be identified with some tetrahedom
F= f SdM(d))Ek PTr(QkPy). (22 R3 whereas the separablestates can be identified with an
octahedron contained . The above very illustrative geo-
HereP, is the input stateg, is the output state, provided the metrical representation of both sets allowed to obtain
outcomek was obtained by Alice. The quantity (P ,) information-theoretic interpretation of inseparability of the
which is a measure of how the resulting state is similar to th&€onsidered states. Namely, it appears that the states lying
input one, is averaged over the probabilities of the outcomedeyond the octahedron violate entropy inequalities for all
and then over all possible input stated (denotes uniform large«. The resulting negative conditional entropy has its
distribution on the Bloch spher®). It has been shown, that reflection in the fact that all the inseparablestates are
the purely classical channel can give at mgst2/3[14,15. useful for teleportation. In addition, they have nonzero dis-
Recently it has been provdr7] that within the standard tillable entanglement, i.e., one can use them for asymptoti-

teleportation schem 6] the inequality7<2/3 is equivalent ~ cally faithful teleportation by using the BBPSSW procedure.
to the following one: Finally we believe that the results of the present paper can

help in deeper understanding of the connections between the
N(g)<1, (23 inseparability and the quantum information theory. More-
over, they may be also useful in the problem of the classifi-
whereN(g)=\T'T. Moreover, if a state is useful for the cation of mixed states under the nonlocality criterion
standard teleportation, then the maximal fidelity amounts td 14,29,30Q.
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