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From Heisenberg matrix mechanics to semiclassical quantization: Theory and first applications
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Despite the seminal connection between classical multiply periodic motion and Heisenberg matrix mechan-
ics and the massive amount of work done on the associated problem of semiclassical Einstein-Brillouin-Keller
(EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited
aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a
guantum variational principle that implies the classical variational principle for invariant tori. We also expose
the more indirect connection between commutation relations and quantization of action variables. In the special
case of a one-dimensional system a different and succinct algebraic derivation of the WKB quantization rule
for bound states is given. With the help of several standard models with one or two degrees of freedom, we
then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain
guantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe
and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several
modified applications of EBK quantizatiopf51050-29476)06608-3

PACS numbgs): 03.65.Ca, 21.60.Ev, 21.60.Jz

I. INTRODUCTION integrable part and a perturbation. The latter is turned on
adiabatically over a tim&. From the assumption that the
Though applications of great interesand increasing actions computed initially for the unperturbed system are
complexity continue to be developed, e.f1,2], the theory approximate adiabatic invariants, it is possible to obtain
of the semiclassical quantization of invariant tori by the ap-quantum energief22,23 (sometimes even for values of the
plication of Einstein-Brillouin-Keller (EBK) quantization coupling strength at which associated invariant tori no longer
conditions[3—5] appears to be a closédr at least quiescent  exis.
sector in the study of the relationship between the quantum M2b. The Hamilton-Jacobi equation is solved iteratively,
mechanics and the classical mechanics of nonseparable sygsing a Fourier series expansion, thus providing the generat-
tems.(For exceptions, see the work of Jaffe and collaboraing function for the appropriate action-angle variabi24].
tors[6-8] and the even more recent work of Moreh¢@#l)  (1n contrast, the Fourier series constructedviia are to be
Focusing on systems with two degrees of freedom, we cafingerstood as the explicit equations of transformation from
divide the many methods that have been developed and agse griginal dynamical variables to the action-angle)set.
plied to this subject into two main subcategories those based M1c. It can be showri25,26 that a finite set of adjacent

on glle so_lutlotrr: of I—:an;ﬂ;n_on S fﬁ“?‘“‘:”s_ as an q 'tnr:t'al'vglue@onquantized trajectories with the same total energy can be
problem, 1.€., the calculation ot trajectories, an 0S€ DaS€hsad to calculate accurate values of the actions for one of

on algebraic methods involving trajectories indirectly or nOtthem. Quantized energies and associated actions are com-

at all. V.V'thm this subd!w.smn,' refer'req to ad1 andM?, puted by linear extrapolation. In this method it is necessary

respectively, we may dlst|_ngwsh principally the following. 0 propagate trajectories until they almost close on them-
Mla Independent actions are computed from Closeielves

curves, signaling invariant tori, generated by the intersection |\/|20; Following the ideas of Birkhoff and Gustavsfai]

of trajectories on two independent surfaces of secfidh- . .- group$28—31 have carried out increasingly ambi-

12]M2 If invariant tori exist. the dvnamical variabl n tious programs for transforming a given Hamiltonian to nor-
a ariant tori xist, the dynamical varnables can ., ¢4y by a succession of canonical transformations. The

be represented as multiply periodic functions of the angl : b ' _
variables, with Fourier coefficients that depend only on th:r[gisnuelgng Hamiltonian is quantized and energy values ob

IL%QE?JEI;S ccc))réf?i?:?el\rﬁslegrtcleybzgizgz iﬁqetﬁgnl_slgr;mggg;]fg: M1d Trajectories propagated over a sufficiently large
. : . ~multiple of the elementary periods of a multiply periodic
Lagrangian form and for each there is an associated vari

%rbit can be Fourier transformed to yield the Fourier repre-
tional principle. The equations of motion are solved either, y '

perturbatively or nonperturbatively and the quantized action sentation of the fundamental dynamical variables. Applying

and enerav calculated in terms of the known Fourier Coeff._?’ercival's formulag[17], the actions are computed. Initial
. 9y vated | W uri "conditions are varied until guantized orbits are fouBa—
cients[13-21]. This is the approach of paramount interest to34]
us. '

M1b. Consider the system Hamiltonian to be a sum of an For further discussion and a more exhaustive list of refer-
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ences, we refer the reader to Rgf32,33,39. Il. MATRIX MECHANICS

Despite all this effort, there remains a gap in the study of
the relationship between quantum mechanics and the theory
of invariant tori, especially as it relates to the work that uti-  We begin with a brief description of a variational prin-
lizes the description of invariant tori in terms of Fourier se-CiPle, the so-called trace variational principle, from which

ries. This assertion is grounded on the observation that ead{!€ ¢an derive Heisenberg’s form of quantum mechanics.
form of quantum mechanics is associated in a natural way '°U9h @ version of this principle was suggested more than
hree decades ag86] and subsequently several publications

with rr nding version of classical mechanics. Th . o
th a corresponding version of classical mechanics uﬁﬁave been devoted to its exposition and further development

in the same sense that Sctirmger wave mechanics is natu- ; .
rally associated with the Hamilton-Jacobi equation and thé37—39}, it appears to be Iar_gely unl_<nown by the community
at large. Except for one brief allusiof21], it has not been

classical limit of the path-integral method is Hamilton’s applied to the problem at hand.

variational principle, it is equally true that the classical limit Most of the important elements are already present for a

of Heisenberg matrix mechanics for bound systems are thgystem with one degree of freedom and we therefore focus
equations of motion for multiply periodic systems. Though sitention on the Hamiltonian

some of the work cited is based, in the sense of the corre-
spondence principle, on this passage between quantum and
classical descriptions and the passage itself is in some re-
spects well knowr(see[6—8], for instancg, the main thesis
of this paper is that this route for passing from the quantunwith equations of motion
to classical theory has not been fully explored. A possible
explanation is that, although the basic correspondence is well
known, it is hardly known outside the circle of the authors . o
and former associates that matrix mechanics can be derived lip,H]=dVidx=V", 23
from a different variational principle36-39 called the trace  gerjved by utilization of the commutation relatioh € 1)
variational principle(see also[40]) and that the classical
limit of this principle is the variational principle for invariant [x,p]=1i. (2.9
tori [21].

Guided by this relationship, the main purpose of this workIn Practice we are usually concerned with the matrix ele-
is to study the transition from the quantum to the classicaMents 0f(2.2—(2.4) in the representation in whicH is di-
domain more thoroughly than heretofore for both the dynam@gdonal, with eigenvalues,, namely,
ics and the kinematicguantization conditions This has led (Ep— En)Xmn=ip
to some results that we find it difficult to believe are not noommimmn TEmn
known, but for which we do no_t have an mdepgndent refer- (En—En)ipmn=V")mns (2.5
ence. In Sec. Il we supply a brief but self-contained account
of our version of matrix mechanics, with emphasis on thegnd
variational basis. The passage to the semiclassical limit is
then carried out in Secs. lll and IV, where we show that the [X,P]am=10nm, (2.6
limit of the quantum variational principle is the variational _
principle for invariant tori. We find, however, that the rela- wherex,m=(n|x|m). We shall feel free to use both notations

tionship between the commutation relations and the EBKmTrChaTgeabB'M H H for ool ol
guantization conditions is more indirect, the former corre- n early work[44] we have shown, for polynomial poten-

sponding in the classical limit to the Poisson bracket rela—t'als’ how the energy differences and the matrix elements

tions and the latter to the Lagrange bracket relat{@is. In Xmn:Pmn Can be obtained from Eq&2.5 and(2_.6). The pri-
. : macy of these elements can be seen by using the complete-
Sec. V we study the commutation relatigmsr se the most

. . oo . ness relation for the evaluation of matrix elements of a prod-
tanglble resqu[ being arjother derlvat|on' of thg WKB quanti-, ot The eigenvalues themselves can be found by the direct
zation condition, applicable to one-dimensional systems

) ) ) X : ' evaluation of the expectation values
Section VI is devoted to some illustrative numerical studies.

We describe in turn and then apply algorithms for carrying 1 ,
out the semiclassical calculations, the associated matriEn:Hnn:<n|H|n>:Z §|pnn/| +(n|V(x)[n), 2.7
guantum calculations, and a method for calculating directly n

quantum corrections to the semiclassical result. The need fQgnere the application of completeness is illustrated in the
the latter as a separate approach arises from the fact that thg\etic-energy term. Ultimately, we shall be concerned with
matrix quantum calculations are designed to give better reextending the previous algorithms to the multidimensional
sults than the semiclassical one for low-lying states, but dgase.

not go over in any limit to the EBK calculation. Finally, Sec. ~ Before proceeding to the discussion of a variational for-
VIl contains several suggestions for alternative ways to usenulation, we add a few remarks about the implementation of
the semiclassical quantization scheme. In Sec. VIII, we makéhe above formalism. Equatiorig.5 and (2.6) are, to start
some proposals for further work. Preliminary accounts of thawith, an infinite set of sum rules that must be satisfied by the
main theoretical results of this paper can be founily43.  exact eigenstates of the Hamiltonian. Starting at any point in

A. Variational principles and equations of motion

1
H:§p2+V(x), (2.1

[x,H]=ip, (2.2
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the spectrum, sums spread without cutoff as far as the corBecause of the invariance of the trace with respect to choice
figuration space will allow. To obtain closure, we must makeof basis, the representatiom) is, at this point, arbitrary. The
two kinds of approximation. The first is that the matrix ele- most convenient immediate choice is the one in which the
ments are rapidly decreasing functionskef|[n—m|, so that Hermitian operatorA is diagonal. By comparing with the
all matrix elements withk>k,,, can be set to zero. The known equations of motion, we then identiff% as the
second is that the matrix elements are, for sufficiently largeHamiltonian.
n andm, slowly varying functions ofi+m, so that for some The derivation of the equations of motion does not ex-
values sufficiently far from the center of interest in a givenhaust the consequences that can be drawn from the trace
calculation we can setn-+r|x|m+r)=(n|x|m) for |r|  variational principle. We shall now demonstrate from this
<3(m+n). With these assumptions Eq€.5) and(2.6) re-  principle that the vanishing of the off-diagonal matrix ele-
duce to a finite set of equations, where in addition to thements of the canonical commutator is a consequence of the
retained matrix elements aof and p, the additional un- equations of motion, leaving only the diagonal elements as
knowns are a set of elementary energy differences fronndependent kinematical conditions. This result is consistent
which all other energy differences can be composed. To dewith the “empirical” finding above that a dynamical scheme
termine this collection of variables, it suffices to utilize all is, in fact, completely determined by adjoining this one-
the available equations of motion, but only the diagonal eledimensional(diagona) array of kinematical constraints to
ments of the commutator. This is consistent with the resultthe equations of motion.
proved in Sec. Il B, that the off-diagonal elements of the To derive the off-diagonal elements @.6), we make use
commutator are a consequence of the equations of motionof the invariance of the trace under an infinitesimal change of
A natural question to ask is whether Eq8.5 can be basis. In the new basis, the Hamiltonian will not be diagonal,
derived from a variational principle. Here we wish to treatin general, and thus we must allow for a change in the
the matrix elements of andp as variables in the variational Lagrange multiplier matrix. We calculate
statemen®E,= éH,,=0. There are, however, two obstacles )
to such an endeavofi) The matrix elements are not all 0=0F=Tr{—i(éH)[x,p]}, (213
independent andi) the same matrix elements appear in dif-
ferent energy functionals. Thys,, occurs both irH,, and
in H,,,,. For which is it to be a variational parameter? A
solution to the second problem posed is to form an averag
of t.he stationary functiona.ls. It turns out that_ in order to slny=—ied|n), (2.14
derive the equations of motion as given above, it is necessary
to choose the most symmetrical possible average, namelyhere ¢ is infinitesimal and® is Hermitian, we recognize
the trace. Thus we require that in a variation about the energy diagonal representation

since all other contributions vanish as a consequence of the
equations of motion. If we express the infinitesimal change
8f basis in the standard form

53 H, = 5TrH=0. 2.8 S(n|H[n)=i€&(n|[®,H]|n)=0. (2.15

On the other hand, nondiagonal elements

A solution to the first problem is to impose all the possible

kinematical constraints, namely, &(n|H[m)=(n|sH|m)=6Hr (2.19

can be assigned arbitrary infinitesimal values consistent with
3%, plnn=0. (29 Hermiticity. From this and2.13 we conclude that the off-
o . . diagonal elements dfx,p] vanish.
Multiplying (2.9 by a Lagrange multiplier matrix One additional result of great importance is that a solution
(=) Ann (A is Hermitian), we add the result t62.8) and  of the dynamical scheme proposed above guarantees that the

are thus led to a master variational principle Hamiltonian is diagonald,, ,,=0, n#n’. This result is de-
. rived in the Appendix.
0=0F=5Tr{H—iA[X,p]} In place of Hamilton’s equation§2.5) it is often more
= STH{H—ip[A,x]}=8Tr{H+ix[A,p]}. (2.10 convenient to consider Newton’s equation
(En— Em)zxmn: (V)mn- (2.17

The several forms are equivalent because of the assumed
cyclic invariance of the tracéThis is certainly unobjection- This equation may be derived from its own variational prin-

able in practice where the trace is taken over a finite—cip|e by substituting the first of Eq€2.5) into the previous

dimensional vector spage. . _ functional F. The result is a new function&b that can be
Carrying out the unconstrained variation @&.10 with  \yritten in the alternative forms

respect to the matrix elemensts, and p,,, keepingA
fixed, and using the explicit forn2.1) of H we obtain the G=TrHH—Hx,[H,x]T=Tr{— [x,H][H,x]+V(X)}.
equations e 2 ’ 218

Pnrn= —1[X,Alnn, (2.1 In the second form, we recognize thatis the negative of
the trace of the Lagrangian. To obtain Newton(er
V) =i[P, Adnn- (2.12 Lagrange’s equations one varie§ with respect to the ma-
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trix elements ok, keeping the matrix elements of the Hamil-
tonian fixed. From the structure (.18, this means keeping
the energy differencefixed. This formulation of the quan-

FROM HEISENBERG MATRIX MECHANICS D...

1823

study. We have been somewhat cavalier in the present dis-
cussion, but the questions that we have slighted, in particu-
lar, why other elements of the algebra do not appear in the

tum theory is completed by adjoining a form of the canonicalconstrained variational principle, will be considered in more
commutator from which the momentum operator has alsaletail in the discussion that now follows.

been eliminated, namely,

Snm=D%[H,X]lom= > (2E;— Em—Ep)XmiXin - (2.19

It should also be mentioned that the vanishing of the of

B. Commutation relations and equations of motion

The canonical commutation relations must be constants of
the motion; this means that their time derivatives should van-

£.ish [45]. We show this for the class of Hamiltonians under

diagonal matrix element of the commutator can equally welStudy- Consider first

be proved by paraphrasing for the functio@the argument
presented for the function#.

Since our main interest in this paper is in autonomous
systems with at least two degrees of freedom, we must noy
describe how the previous considerations are modified b

this generalization. We therefore consider a system With
coordinatesx=(X4, . . . ,Xn) and a Hamiltonian of the form

H =2i ;pi2+V(x). (2.20

The functionalF from which Hamilton's equations are de-
rived takes the form

F=Tr{H—iAZ [xi,pi]], (2.20)

where A is once again identified as the Hamiltonian.
Lagrange’s equations are derived from the functio@al
where

1
G=Tr[ — EZi [X; ,H][H,xi]+V(x)] . (2.22

=0. (2.23

V
- pi,a_Xj

his calculation shows that in the energy-diagonal represen-

d LY

Yation (assuming no degeneradyne commutator of two dif-

ferent components of momenta has no off-diagonal matrix
elements. If we choose the momenta to be imaginary Her-
mitian operators, it follows that the diagonal elements of the
commutator also vanish. Thus it is clear that the commuta-
tors[p;,p;]=0 may be omitted from the dynamical scheme.

Utilizing the previous result that the off-diagonal ele-
ments of the commutatdix; ,p;] vanish, we calculate

0= d = v 2.2
—E[thi]— Xi,ﬁ—xi- (2.249

SinceV is to a large extent arbitrary, we may safely conclude
that the coordinates all commute with one another.
Combining the previous two results, we next verify that

0. (2.25

d
a[xi Pi1=10pipjl+ | X ’a_xj

Finally, we check compatibility by the calculation

Before providing any further details, we must mention the

problem of labeling the eigenvalues and eigenstatds.dh
our earlier work[21], we “naturally” assumed that the la-
beling could be done by a choice oN integers
n=(nq,...,ny) of which we could keep track as we tuned

d
a[xi,Xj]:[xi-pj]Jr[Pi:Xj]:O- (2.26

We have thus shown that the commutation relations are

one or more coupling parameters, starting from values fogompatible with the equations of motion for the class of
which the problem was integrable. The same assumption wasgamiltonians under consideration. For the practical problem

discussed rather more thoroughly by Percida—16, who

of constructing a calculus based on Heisenberg matrix me-

emphasized that the validity of this assumption is cotermichanics, the consequence of our deliberations is that at most

nous, in the semiclassical limit, with the existence of invari-

ant tori.

only the elements diagonal in the energy representation of
the commutators of a coordinate and the corresponding mo-

With this understanding, it is not necessary to write thementum can enter, if we use all the available equations of
equations of motion a second time, but only to remembemation.

that there is now one equation for each valué ahd in each
of these equations to replace the integday the correspond-

ing vectorn. There does remain one question to be addressed

IIl. SEMICLASSICAL LIMIT:
MATHEMATICAL PRELIMINARIES

that will be of some importance to us later. This is the ques-
tion of whether we can deduce from the variational principle The purpose of this section and the one to follow is to

the separate vanishing, for each value ipfof the off-
diagonal elements of the commutatdrss,p;]. This follows
from the fact that the rows and columns of the matixare
each labeled by aN-dimensional vector, provided that the
set of nonvanishing matrix elements of the produgg; is

show that the semiclassical theory of invariant tori is the
“natural” limit of the quantum theory of the preceding sec-
tion. We shall first collect in the form of lemmas some of the
mathematical statements that we need. In the following we
shall use the notation litm|O|n) to signify the leading term

disjoint from the corresponding set for any other choice ofin the semiclassical limit of the designated matrix element.
coordinate index. This will be true for any model that we Here O is generally a product of elementary operators. We
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consider first the one-dimensional case and define for a re& of second order is a consequence of our choice of defini-

Hermitian operatoA, tion (3.1). The sum on the right-hand side (8.7) has the
value required by the lemma.
An)=(n—3k|AlIn+ 3 k)=A_,(n). (3.1 Lemma 1(a) With the same assumptions as before,

Lemma 1 can be extended to a product of more than two

Notice that this quantity is an analytic continuation of afactors,
nearby physical matrix element and is our definition of the
semiclassical limit of the matrix elemein|An+k). As  lim(n|ABC:--|n)=(ABC:---)
shown in a previous work20], this choice can be used to
provide a completely algebraic basis for the standard WKB :2 Sk kot ks - AR (M B (N Ty (N) - (3.9
guantization rule for a vibrational degree of freedom. 172 Ts 1 2 3

We note that with the definitioi3.1), we have, for the

first two terms of a Taylor expansion, The proof is carried out by ordering the various upward-
going, downward-going, and mixed contributions to the mul-

1 dA(n) tiple sum so that Eq3.2) can be applied.
(n[Aln= kKy=An) =5 k— —. 3.2 Lemma 1(l The previous lemmas can be extended to the

multidimensional case. Extending the boldface notation now
Next, with the array of amplitudes(n), for fixed n and !0 designate, in addition to the quantum numberalso the
varyingk we associate a formal Fourier series integer vectork for the components of a multiple Fourier

series and the vectaf for an array of angle variables, we

* introduce a formal multiple Fourier series
A(n, )= > Adn)expiks), (3.9
k= —o
A(n,0)=2 Adn)expik- 6). (3.9
though in practice we shall always deal with severely re- k
stricted sums. Below, we shall then make extensive use of
the average The lemma then applies to the average
(ABC-~~>E(27T)_1J doA(n,#B(n,HC(n,H)- - -, <AB>E(27T)*NJ d0A(n,0)B(n,0):% A (B _(Nn)
al
(3.9 (3.10

which is just the constant term in the Fourier series of theand to corresponding multiple products.
product. Lemma 2
With the above preliminaries, we are prepared to state and

prove a series of elementary propositions. ) )
Lemma 1 I|m<n|O|n+k}zOk(n)z(ZTr)*lf doexp—ikd)O(n, o).

(3.1)

Here O is a product of two or more elementary operators,
since for a single operator the previous statement is only a
Kax combination of the definition£3.1) and (3.3). The same
Iim<n|AB|n)=IimZ [(n|A|n+K)(n+Kk|B|n) equatlop applies in boIdface nc_)tatl'on. We shall not ac;ually
k>0 need this lemma, since its application would be to obtain the
semiclassical limit of the equations of motion directly. Our
procedure, however, will be to obtain that limit for the varia-

Here we have assumed thatis sufficiently large that the :L?Q?;t?:rnc'ple and then derive the equations of motion from

sum overk can be extended far enough in both directions, to We do require expressions for limits of commutators. We
Kmnax, t0 obtain numerical convergence. This establishes th%onsider the usual Poisson bracket '
limited and nonrigorous sense in which the word proof is to
be understood both here and below.

If we now apply(3.2) in sequence first to the matrix ele- [A,B]PBEE

lim(n|AB|n)=(AB). (3.5

For the proof we write

+(n|A|n—=k)(n—Kk|B|n)]. (3.6)

dA(n,6) 9B(n,6) 9A(N,6) B(n,6)

ments of A, for example, and subsequently to the matrix i 90, an; an; 96,
elements oB, we find (3.12
. ) We can now state the following.
lim(n|AB|m)= > A(n)B_(M[1+0(n"?)] Lemma 3
=(AB)[1+0O(n~?)]. 3.7 lim(n|[A,B]|n+k)=i([A,B]pg)k, .13

The error estimate arises from the assumption that a derivavhere the notion on the right-hand side is understood as the
tive with respect ta is of relative order (If). That the error  kth Fourier component of the Poisson brack&tl?. This
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lemma can be extended to multiple commutators. In practicedamiltonian is a function only of the action variablesThis
we shall only require the double commutator, for which wefollows from the fact that the formal Fourier series intro-

find the following. duced to represent the solution of the classical problem de-
Lemma 3(a) fines a canonical transformation to the correct action angle

) - variables(see below.

lim(n|[A,[B,C]l[n+k)=(1)%[A,[B,Clpelpe)k-  (3.14 For the quantity just evaluated, as well as for the potential

We shall utilize these results to develop the dynamics angnergy,
kinematics of a semiclassical quantization scheme. Before lim{n|V|n)=(V), (4.3
turning to this task, we note an important consequence of the
results in this section. Whereas in quantities such ashe relative error is of order (A7), provided that we use the
(n|ABC|n) different base values af will occur, it is a con-  definition (3.1).
sequence of the elementary reasoning applied above that in If we combine Egs(4.2) and(4.3) we have
the expression lign|ABC|n) only the reference value of
occurs. Thus, in the semiclassical limit a trace decomposes lim(n|L[n)=(L). (4.9

into a sum of independent terms. . . L . . _ .
Since this expression is the semiclassical limit of a quantity

) stationary with respect to variations of matrix elements of the
V. SEX’LI%LQ?I\IS;\:A';LT:‘CIX:_T‘SE:EQ!'CAL coordinates, keeping energy differences fixed, we expect
(4.4) to be stationary with respect to variations of the asso-

A. EBK scheme ciated Fourier components, keeping the frequency compo-

We now apply the reasoning and results of the precedin&ems fixed. Conversely, requiring the stationary property

section to obtain the semiclassical limit of tfleagrangian S(L)

form of the trace variational principle. We are interested in a X =0,

value of the vecton for which the corresponding energy and -k

eigenstate may be described accurately by the semiclassiqglening the frequencies fixed, yields Lagrange’s equations in

approximation. We should then form the trace over a spacgq ier component form, namely,

of states extending to both smaller and larger values of

compared to the reference state. From the results of the pre- V)

ceding section, however, it follows that for the purpose of (k- @)X (n)

deriving equations of motion we may suppress the trace, be-

cause in the limit Considered, as we have already pOinted out Considered from the purely classical point of VieW, the

and in contrast to the quantum case, the states decouple.d|ution of Eq.(4.6) may be undertaken from several stand-

thus suffices to focus attention on a given stétd.the end  points. The choice of real Fourier coefficients, adhered to

of this section, however, we shall have occasion to restorgnroughout the present development, has already determined

the trace). half of the initial conditions, namely, all components of the
We consider first the kinetic energy. If E(n) is the  yelocity vanish initially. If we then specifiN fundamental

energy of the state identified hy, then here we shall en- Fourier components of the coordinates, we thereby define a

(4.5

= X (4.9

counter the correspondence principle in the form scheme, provided that a solution exists, that determines the
L L remaining Fourier components as well as bhérequencies.
w(N=E(Ng,....m+3,....)—E(Ng,...nj—3,...) An alternative scheme, more integral to the variational prin-
=[JE(n)/an;], @.1) ciple, is to specifyN (incommensurab)drequencies and cal-

culate the Fourier amplitudes from the equations of motion.
i.e., the classical frequencies(n)=(wy, . . . ,wy) approach In this paper, however, our interest will be in adjoinihg

the quantum energy differences. We then find by a perfectlygua,m'zat'or.] (;ondltlons to_the equations of motl_on. The re-
straightforward examination that sulting set, if it has a solution, must then determine the Fou-

rier amplitudes and the frequencies.
We apply the EBK quantization conditigrestoring# for
Iim2(n|T|n>=IimE_ (n|[x; ,HI[H,x;]|n) the instant
I

_ li=(ni+ 3 apt, (4.7
=limY, [E(n+k)—E(n)]?
Lk where «;, the Maslov index, has the value 2 for an un-
< (n|x;|n+K)(n+Kk|x;|n) coupled vibrational degree of freedom and for the models
! ' studied in Sec. VII.(For a more general discussion of the
B 2 5 B significance of this index and how it is determined in a given
& (K- @)X 1 (MX;, -1 (M) =(2T). (42 case, see Ref5].) The actionl; is given by the equivalent
expression$13,17,21
We note that the same result may be found by applying (L
Lemma 3 for the classical limit of a Fourier component of a = (L) :2 (k. - i
. . ) I Ki(K- o)X X_={p x), (4.8
commutator, provided that we recognize that the classical Ow; 3 a6,
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where, in the last formp is the momentum vector of the ]
system. This completes the formal statement of the semiclas- x(n,0)=2, Xq(n)exp(iq o),
sical quantization for invariant tori. a

B. Connection between EBK quantization p(n,0)= Eq: iqwXy(n)expliq f) (4.1
and commutation relations

We have, in fact, given two quantization schemes in thissatisfy the PB condition
paper: the completely quantum one consisting of Heisen-
berg’s equations of motion adjoined to diagonal elements of [X,plpe=[X,plon=1. (4.12
the canonical commutation relations and the semiclassical ’

one consisting of the classical equations of motion in Fouriebrovided of course, that Eqét.11) satisfy the equations of
component form adjoined to EBK quantization conditions.mqion, In that case the Fourier series represent the canonical
But a part of the logical story is clearly missing. On the oneyanstormation between the given canonical coordinatps
hand, we have derived the classical equations of motion from, § the exact angle-action variabigs. By working out the

the quantum ones using correspondence principle argumengg, rer series for the PB, requiring that the constant term be

modified only minimally from historical forms. On the other | nivy and that the other Fourier components vanish, we find,
hand, although EBK quantization can also be derived, up Qyith the help of a linear transformation of the summation
the value of the Maslov index, from the correspondence priny,qices . that

ciple, what has not been made clear is the relationship be-
tween the canonical commutation relations and the EBK 1 P
quant_|zat|on conditions. Though it is hard to b(_elle_ve that j[hls 8q.0= Z [(kZ_ ZqZ) Xk+(l/2)qa_(wxfk+(1/2)q)
guestion has not been addressed at some point in the history K n
of quantum mechanics, we have never encountered such a
discussion in the literature. Therefore, for the sake of com- +
pleteness, we include it at this juncture.

Consider first the diagonal matrix element of the commu-

1 )2 J
K=50] oX-kr@aqzyXkr@aq|- (413

tation relation In the sumk takes on both integral and half integral values.
For g=0 this expression reduces to the one-dimensional
lim(n[[x; ,[H,x1][n)=—ilim{n[[x; ,p;]|n) form of (4.9). The vanishing of the remaining Fourier com-
o% P 9% dp ponents must be a consequence, we suspect, of the vanishing
= < 2 R s M > of the off diagonal elements of the commutator, i.e., it must
T |90 dnj dn; 9, be the classical limit of this property. This can be verified

p directly, using Lemma @). As we emphasized at the begin-
=> — k(K- @)X 1 X . (4.9 ning of this discussion, the equations of motion must be in-
1k In; o volved, as indeed they are, in the vanishing of these off-
diagonal elements.
Using the results derived in Sec. Il B, we can extend the

is that the limit of the di Lol fth “'detailed considerations just given to the multidimensional
IS that the limit of the diagonal element of the commutator ISproblem. This is in fact the interesting case, since in the

the time average of the corresponding Po!sson bra@kax one-dimensional case the PB and LB are indistinguishable, a
On the other hand, we observe that the time average of thg . that will be used later to derive the WKB quantization
fundamental Lagrange brackft; ,n;} has the value condition from the commutation relation. The correct value
of the Maslov indices must somehow also be implied in the
D multidimensional derivation of the EBK quantization condi-

The basic result exhibited here, that follows from Lemma 3,

tions. The only derivation we can supply at the moment is
&0i an; an; &Hl

one based on starting with a separable system and assuming
P adiabatic invariance as one turns up the coupling.
=—> Ki(K- @)X kX, —k It may be of some interest to derive tle~0 part of

{6, ,ni}>E< EJ:

I Tk : (4.13 directly from the classical variational principle. For
this purpose, we find it necessary to retain the full structure
=—1I;=1. (4.10 of the quantum variational principle, so that in the classical
an limit we have not only an average over a given torus, but, in

addition, from the trace operation, an integral over all tori. In

Thus the EBK quantization condition is related to theOther words, we consider an average over phase space and

Lagrange brackefLB) rather than to the PB. indicate it by a double bracket notation, e.g.,

It is, of course, well knowh41] that one set of fundamen-
tal brackets implies the other. But for this purpose we must L Ef dndoL(6.n 41
consider the full brackets rather than just their time averages (L) (4.n). .19
over the torus. We illustrate the argument for one degree of
freedom. We thus wish to show that the formal Fourier seriesvhere the phase average lofhas the form
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TABLE |. Concepts of the theory of invariant tori as the classical limit of the concepts associated with
Heisenberg matrix mechanics in the energy-diagonal representation.

Quantum Semiclassical
1 Matrix elements ok,p Fourier components of(l, 8),p(l, )
(n[x|m},(n|p[m) xi(1),pi(1)
2 Trace variational principle Constrained variational principle
. oX
STr(H—ip[H,x])=0 5‘<H—wpa—0 >=o
3 Matrix element of equation of motion Fourier component of equation of motion
dv
_ I G d(V)
(Ensk—EnXnikn= 2y = 77
n+ n AntknT | gy kK (ko)X dx_,
4 Commutation relations Quantization of the action
= gl +
(nl[x,plln) =i “\Pag/™"
2
5 Energy is the diagonal element df Energy is the phase averagetdf
En=(n[H[n) E(1)=(H)
6 Quantum frequency Classical frequency
wn+k,nEEn+k_En w=dE(|)/d|
7 Operator Dynamical variable
A(X,p) Ax(1,6),p(1,6))
8 Matrix elements Fourier coefficients
de
(n|Aln+k) Ak(l)=JZTA(I,n9)exqfik6’)
9 Energy is diagonal Hamiltonian independent of angles

E HkH_k:O
k#0

2 (n[H|n+k)n+KkH|n)=0
k#0
1 ax\2[ aH\? It is, finally, important to refer to the classical limit of the
(L)= §i2< (% ((9—n) >—(V>. property that the quantum theory is formulated in the repre-
sentation in whictH is diagonal. The limit of this property is
. . P precisely the condition that when the canonical transforma-
We now subject the system to an arbitrary infinitesimal Casjgn 19 the exact action-angle variables has been carried out,
nonical transformatlop about the exact solution. As a CONSey is signaled by the vanishing of the Fourier series for the
quence of the equations of motion, the only nonvanishing|assicaH, other than the constant term. In applications, we
contribution comes from the first term 64.15 and has the  gpa| utilize this requirement in both its quantum and classi-

form cal aspects as a test of the convergence of our solutions. For

example, in the classical limit, the difference
ox\29H oH
N==\\174) an%amn

(4.19

(H2>_<H>2=k;0 HiH —« (4.17
PH [ox\? oH 9 [ox\? ,
=({H|=—=| =] +—=—|= ) should vanish.
an\ a6 an Jn\ao We summarize in Table | the analogy that has now been

fully established between Heisenberg matrix mechanics in
the energy-diagonal representation and the theory of invari-

t tori. For the sake of simplicity, the notation appropriate
0 one degree of freedom has been utilized. All entries have
geen described in the preceding text. Note that we have in-
Cluded the Hamiltonian rather than the Lagrangian form of
the variational principle.

(4.19

Here the second line has been obtained by an integration
parts with respect to with boundary terms dropped. This
requirement is clearly the classical analog of the invarianc
of the trace, as is the requirement tk&tl6 vanish. Finally,

if we assume thadH is expanded in a Fourier series with no
constant term and otherwise arbitrary Fourier coefficients,
we are forced to the conclusion that all Fourier components
of the expression in square brackets, other than the constant
term, vanish. It is in fact easy to see that this conclusion ~ A. One dimension and the WKB quantization rule

coincides with the corresponding statement contained in In the following lines we present a derivation of the WKB
(4.13. quantization rule for bound states that is simpler than the one

V. FURTHER STUDY
OF THE COMMUTATION RELATIONS
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that we have previously publishéd0]. A diagonal element B. Remarks on quantum aspects
in a staten of the canonical commutation relation may be

) k , ~C Consider a two-dimensional system and suppose it to pos-
written (using reality conditions

sess only bound state@n any event we use a notation with
o discrete labels onlyWe can write a Heisenberg scheme that
> 2% Py =1 (5.1  should be valid whether we deal with the “regular” spec-

n=0 trum or the “irregular” one[17]. We simply order the en-

ergy levels of a two-dimensional system with coordinates
Changen—n" and sum this equation from O to Divide the  x,y, in a linear sequenc&y=0,1, ... . Acalculation can be

resulting double sum into two terms. The first, defined bybased on the equations

taking both sums from 0 to, vanishes by antisymmetighe

matrix elements ok are symmetric under exchange of indi- (En'—En)*Xnn =~ (F)nns
ces, those op antisymmetrig. We are left with the sum

(En'—En)2Ynn == (Fy)nns (5.9
n o0
2 E 2X " rlp ” /:n+1 (52)
doon e > (En—En)xuw =1, (5.9
NI
With our standard definition
, En—E |?=1, 5.1
v ol (14 17)] =X 53 2 (En =l (510
and a change of indices whereE, are the exact eigenvalues. These equations can be
viewed in two ways, either as a set of sum rules to be satis-
n"=n—v, n'=n+k—v, (5.4  fied by the exact solutions of the quantum mechanical prob-
lem, found by some other means such as matrix diagonaliza-
(5.2) becomes tion in a basis, or else as the foundation for a computational
v kel scheme involving the solution of nonlinear equations. For a
1 . 1 well-defined quantum systertHamiltonian bounded from
221 VZ‘O X n+ 5k= V)'pk n+sk=vj=n+l. (5.9 below), we shall certainly be able to do a diagonalization and

subsequently check the above equations. Since this should be
Equation(5.5) is still exact and can be used in quantum pqssib_le both for the regular and fo_r the irregular spectrum,
calculations. Expanding about the semiclassical vajya)  this raises the hope that some version of the quantum matrix

and keeping terms that contribute at most to omdemd to ~ method can also be applied to the chaotic regime.
order unity, we find Toward this end, we note that by summing the commuta-

tion relations from 0 td\, we can replac€5.9) by the posi-

* _ d . tive sums(this involves the same argument as in the one-
gl 2kx(n)ipy(n) + ﬁ[kxk(n)mk(n)]""" =n+1. dimensional case
(5.9 % N

2 2 (EN'_EN”)|XN”N'|2:N+11

(To obtain the form of the second term on the left-hand side N =N+1 N"=0

of this equation requires a careful examination and grouping

of terms that contributg The way to read this equation is to * N
understand that the first term contains contributions of order 2 E (En'—Eno)|ynrn[?=N+1. (5.1
n and smaller, whereas the second term is at most of order N’=N+1 N"=0

unity and at the same time is half the derivative with respec
to n of the first term. It follows that this second term has the
valuei. We thus derive the one-dimensional Cartesian WKB
guantization rule

These relations are interesting because they guarantee the
convergence of certain sums and thus imply that the matrix
elements cannot spread out too far as a function of energy
differences.

- 1
2> kx(n)ip(n)=n+ > (5.7 VI. APPLICATION OF MATRIX MECHANICS
k=1 AND COMPARISON WITH THE SEMICLASSICAL

.. . APPROXIMATION
A similar tour de force does not work in two or more

dimensions. We omit the uninspiring details. The moral of In this section we present illustrative applications of the
the story is that we are “lucky” to have the EBK guantiza- matrix mechanics method for several simple models and
tion rules for semiclassical quantization. Our aim when wecompare the results with those of the semiclassical approxi-
started the investigation of this section was to discover amation as well as with the results of exact diagonalization.
alternative semiclassical scheme based directly on the conWith a given semiclassical approximation, as defined below,
mutation relations. The conclusion, which we believe to bewe shall associate the matrix method, which will be de-
firm, is that this is not possible except in the one-dimensionascribed as a sequence of approximations that should ap-
case. proach more and more closely to the exact result. Therefore
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we may anticipate that at a sufficiently high order of approxi-x2=vy, the only nonzero components, initially, areq o and
mation its accuracy will exceed that of the semiclassical rey, ;. All others vanish. We shall refer to these as the driv-
sult. It is not, however, guaranteed to do this automaticallying components. The values of these initial nonzero compo-
for the simple reason that the quantum method that we shaflents are computed from the action conditions E{8),
describe does not have a true semiclassical limit, but is sparamely,x, ;= \1,/2w;, wherel; is the action of thdth de-
cifically designed to be most accurate for small quantumyree of freedom, as given by Et.7).
numbers. For this reason, we shall also describe an alterna- \With these initial values, we can then calculate initial val-
tive method that starts with the EBK theory and specificallyues for the Fourier components of the nonharmonic part of
calculates quantum corrections to it. Numerical results for althe force. Improvements to the frequencigsare then ob-
three methods are presented at the end of this section.  tained from the equations of motion for the driving compo-
Imagine that we have a two-dimensional system describeflents,
by a Hamiltonian

2 2 2. — ! (6.4)
1 1 . w i . .
H= %-l— % + E)\1()(1)2_|_ E)\2()(2)24_Vanharmomfxl,)(2) ! X:

5 5 With these new and improved frequencies, other Fourier
b IN-X| anharmoni components can be obtained from the remaining equations of
=_—+ +V £x). (6.1 . :

2 2 motion. In particular, we compute

However, the methods described here are more general and i FL(X) )
Xp=——"—— for k#i. (6.5

can be used with a system with many degrees of freedom. KN = (k- w)?

We shall describe these methods, in general, by referring to

an n-dimensional system and give examples and show re- This completes one cycle of iteration. We now return to

sults for the specific cases=1 andn=2. For improved the EBK quantum conditions, and using the calculated values

clarity, we have shifted the coordinate index from subscriptof the frequencies and of the nondriving Fourier components

to superscript. we compute new and improved values for the driving com-
For the solution of the algebraic formulation of the semi-ponents. Explicitly,

classical approximation we utilize an iterative method de-

scribed by Percival and Pomphré¢$5,16. For the corre-

sponding fully quantum calculations, we shall describe a

guantum extension of this method. We have also carried out

calculations using the Newton-Raphson method, but thesEor the special case=2, we have

will not be discussed here.

1

20, kik-@)xx-g|. (66

i
X|=

I —
k#i

X+1,0
A. Semiclassical iterative method

Following Percival and Pomphrey, this method utilizes

the semiclassical equations of motion, given for Fourier 2 2
. S I — KX .+ kKiw;+k

components (in terms of the above Hamiltonian X (kl,kz(ﬂ,@ 1%k TV i) (K01 + kz02)

(6.7)

[N = (k- )2]x¢=Fy(X), (6.2 2w,

where

F(x)=— Vvanharmonifx) ’ (6.3 Yox1

andw=(wq,w,, ...,w,) is the vector of frequencies of the
system. When there is no anharmonic driving force, 2 2
w?=\;. The vectork is ann-dimensional sequence of inte- 'y_(klvkz)#(o'ﬂ) Ka(Xic, i, Ty k) (a2 T ka02)
gers, positive and negativé=(k,,ks, ... k,). It is also =
useful, here, to define the vector&=(1,0,0,...,0),
2=(0,1,0,...,0),i=(0,...,1,...,0)where the 1is in the (6.8
ith place and all other indices are zero. THus=k;. In .
order to solve the equations that describe the semiclassicgance more we calculate th_e_|mproved values of the fr_equen-
limit in algebraic terms, we must truncate the Fourier serieﬁc'es and then of the remaining components and continue to
by specifying a maximum integer vecti#|. The meaning of 10OP until the energy converges.
the absolute value is that we define this limit symmetrically o
with respect to the origin irk space. We sekl=0 for B. Quantum iterative method
[k|>|K]. In this section we discuss the modifications to the semi-
The procedure begins from the harmonic limit, where theclassical perturbative method that are necessary in order to
only nonzero Fourier components axg; As an example, have a completely quantum calculation. The major compli-
for a two-dimensional system, where we writt=x and cation of the quantum approach is that in our version of the

2&)2
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Heisenberg method, we must consider the coupling of eigenHowever, a better approximation at this point is to use
states both in the equations of motion and in the commutaharmonic-oscillator results for the large matrix elements that
tion relations. To deal with this problem in a practical way are nonvanishing in the uncoupled limitEquation (6.12)
will necessitate the introduction of two cutoff parameters,defines the zero bandwidttB=0 approximation in the
compared to the one used in the semiclassical case. present case.

To explain this difference within the simplest context, we To improve the scheme, we increase the bandwhlith
return to a one-dimensional notation and recall how theThus, in aB=1 approximation, in analogy with the one-
semiclassical approximation is defined. In the quantundimensional case, we treat without closure those values of

theory, together with the matrix element m that comprise both the ground state and those states that
are coupled to the ground state by harmonic-oscillator matrix
(n— 3 K|x|In+ Ky=x,(n), (6.9 elements. By suitable extension we can define a scheme for

arbitrary B, with the understanding that the maximum value
which is the focus of a given semiclassical calculation, weof m, calledM, cannot exceet. A closure approximation,
will also encounter, for a fixed value &f matrix elements generalizing(6.12), needs to be applied now only to relate

such as matrix elements outside the expanded scheme to those in
which the left-hand state i8l. As B increases, we find that

dx(n) the values obtained for low-lying states become more and

X(n+b)=x(n)+b an +eee (6.10 more accurate, as well as insensitive to the closure approxi-

mation. The values oB and ofK determine the number of
equations of motion and commutation relations that have to
Be used to evaluate the set of included matrix elements and
energy differences. This number is a small multiple Bof
times the number of equations for the semiclassical approxi-
mation associated with the same valuekof

Turning to the detailed scheme, we begin from the har-
‘monic limit. In this limit, all the energies are equally spaced.
Thus, if we define quantum frequencies to be the energy
differences

In the quantum theory, we treat on an equal footing a certai
range of values o, symmetrically disposed with respect to
b=0, and refer to the maximum value bfthus included as
the bandwidthB. Normally it is necessary to include still
larger values ob in our equations in order to be consistent
numerically. For these we normally make the closure ap
proximation[cf. (6.10]

X (n+B+a)=x(n+B), (6.11
<n|H|n>_<m|H|m>:En_Emen,m- (6.13
valid for smalla. The introduction of a closure approxima-
tion is an invariable aspect of all approximate calculationghen the harmonic limit is defined by
made by the form of matrix mechanics described in this
work; it plays the role of reducing the number of unknowns Opxjn==L \/)\—l (6.14
to the number of equations utilized. Finally, the significance . )
of the parametek, the maximum Fourier component, is the Here the vectori is the same as was introduced above,
same for the quantum as for the classical calculation. Similapamely, it is ann-dimensional vector whose entries are all
ideas apply to calculations that work from the ground stateZ€ro except for theéth one, whose value is unity.

up (and therefore do not have a semiclassical hrmb(cept From the well-known solution for the harmonic OSCi”a.tor,
that the values of the “Fourier” indek and of the parameter We also know the driving matrix elements, ; , Itis integral
b take on only positive values, as we shall now see. to our method that this result need not be put in from the

Consider a typical matrix elemefin|O|n) of an operator ~outside but follows by application of the canonical commu-
O (in general a coordinalelf we have chosen an ordering of tation relations, given the result expressed(6yL4). Actu-
the integer vectors, we can suppose thatm is defined and  ally, the full statement is that for the harmonic case, as is
k=n—m is the analog of a Fourier component. Since thewell known, the simultaneous solution of the equations of
first state always considered in the quantum method to bgotion and of the commutation relations yields the starting

described is the ground state=0, K coincides with the Vvalues of the quantum frequencies and of the driving matrix

maximum value ofn that we include in the calculation. €lements. In turn, we can calculate the lowest approximation
However, this specification does not completely define thdo the forceF, ;. This completes a single cycle of the
calculation. The crudest way to define a closed scheme fdiuantum iteration procedure.

fixed K is to allow only matrix elements witm=0. But the Next, the quantum frequencies are improved by using the
equations of motion for the matrix element§|O|n) will ~ generalization of Eq(6.4),

necessarily bring in matrix elements with+ 0. In order to i

have a closed scheme involving only the quantities specified, 2y Frnti 6.19

we must adjoin a closure approximation that relates the un- On+in= A Xnnti '
wanted matrix elements to those that belong to the allowed ’

set. The crudest such approximation is to relate matrix eleFor further work, we write

ments by an equal displacement of both sets of quantum

numbers, in analogy witk6.11), Onm= Om+am: (6.16

(m|O|n)=(0|O|n—m). (6.12 a=a;l+a2+---+a,n. (6.17



54 FROM HEISENBERG MATRIX MECHANICS D... 1831

It is straightforward to write this energy difference as a sumtive terms in(6.23 and (6.24). These equations are expan-
of fundamental energy differences or quantum frequencies isions in (1h) and we need terms up to second order because,
which just one of the quantum numbers changes by a unias we have shown, the first-order terms do not contribute to
This is important in counting that the number of variables inthe energy.

the problem is determined by the equations of motion and a The calculation is straightforward. Reverting to an
set of diagonal elements of the commutation relations. Witm-dimensional notation, we recall that the semiclassical
the new and improved energy differences, it is possible t@uantization program is based on the equations

compute the perturbative quantum matrix elements from the

equations of motion (k- @) =F}, (6.29
: Funsa . . 1

Xpnia=—2— for a#i. (6.18 > kitk- @)xix)  =| ni+ > a;, (6.26
Wnpyan ],k 4

Finally, we construct new “fundamental” matrix ele- whereF| is a Fourier component of thiéh component of the

ments from the diagonal matrix elements of the canonicajorce anda, is a Maslov index. Let us write these equations
commutation relations. Toward this end, we solve the succinctly as

equationsi(=1, ... n)

WV ,(2)=0, (6.27

2 Xy jm@mj= 5 (619 \yherea is a label that enumerates in turn the equation set
(6.295 and (6.26), putting them in a one to one correspon-

for xm+| . These equations replace the quantum conditionslence with the Fourier components and with the frequencies.
for the action variables, used in the semiclassical approxima=orrespondinglyz={z,} = {Xic, @i}
tion, and, as already stated, play the same role as the latter We now treat these equations as if they are true for a
did in providing additional equations needed to have a detereontinuous range afi and compute the first and second de-
mined set. We have thus identified the three distinct elementdvatives, leading to the equations,
that are used in an iteration cycle: the commutation relations,

the equations of motion for the “driving” matrix elements, I¥a %:S , (6.28
and the equations of motion for the “small” matrix ele- 9z, on; '
ments.
oV, 9%z, PV, 92y 92,
C. Quantum corrections to the semiclassical approximation 9z, ﬁnianj (yzb(yzc (?n (9n, : (6.29

we ;tart_ by reminding the reader that the. semiclassica]here the column matriss,;, consisting of all zeros and a
approximation to the energ¥(n)=(n|H|n) (in a one- ai>

dimensional notation, is obtained by expanding energy d|f
ferences and quantum matrix elements about certain valu

single value of unity, has its origin in the right-hand side of
Eg. (6.26. Both of the above sets of equations are linear and
(?ﬁhomogeneous and will have a solution provided that the

that are identified as semiclassical ones and dropping highanatnx
order terms. With the definitions
1 1 v,
o(n)=E(n+ 3)—E(n— 3), (6.20 Sap= 7z (6.30

k=n"—n’, (621 s nonsingular.(See Sec. VI for further discussion of the

— uses of this matriy. The solutions of these equations pro-
n=z(n"+n"), (6.22  vides us with the necessary input for calculating the leading

uantum corrections to the energy.
we have, to second order, q 9y

x(n) 1 dzxk(n) D. Numerical illustrations
’ "\ _ " (n— 2
(n’IxIn")=x(n)+(n—n) 2 n d’n We consider first the one-dimensional inverted quartic po-
(6.23 tential
1 _dw(n H= 1 (p?+x?)+bx* 6.3
E(n+k)—E(n)=ka(n)+ 5k’ d(n) 2 (P (639
with b<<0. For this model, as well as for the two-

1, 1 d?w(n) dimensional model considered below, it is understood that

* 6 2_4k d%n 6.24  these potentials do not define quantum-mechanical systems.

Nevertheless, diagonalization in a large, but not too large,

where the derivation of the second of these equations redasis will yield eigenvalues that we can treat as those of a

quires attention to the definitiof®.20. bound system. Correspondingly, the approximation methods

To obtain quantum corrections to the energy, we mustlescribed above will also yield values that we can take seri-
retain and compute the values of the first and second derivausly and compare with the “exact” results. In the following
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TABLE Il. Representative values of the energy for staiesf a one-dimensional quartic oscillator, for
several values of the anharmonicity paramdxeE; ., denotes the energy calculated by direct diagonaliza-
tion, E. is the semiclassical approximatiof,.+ AE includes the leading quantum correction to the semi-
classical result, an&, is the quantum result obtained by the Heisenberg method.

b n Egiag Esc EsctAE Eq
~0.002 0 0.498489 0.499248 0.498500 0.498489
5 5.405378 5.406235 5.405521 5.405377

10 10.145887 10.146877 10.146244 10.145887

—0.005 0 0.496182 0.498112 0.496249 0.496182
5 5.249313 5.252083 5.250752 5.249314
10 9.484437 9.489854 9.493750 9.484438
+0.002 0 0.501490 0.500748 0.501500 0.501490
5 5.588750 5.588081 5.588840 5.588750

10 10.813669 10.813058 10.813814 10.813668

+0.005 0 0.503687 0.501862 0.503746 0.503687
5 5.712896 5.711448 5.713323 5.712896
10 11.231303 11.230091 11.231885 11.231304

and for the two-dimensional model, we shall present a fewcalculation with quantum corrections will be an improve-
examples of the calculations that we have done. ment over the purely semiclassical calculation. This expec-
In Table Il we display the energies of the ground state andation is borne out with the exception of the value for
of two excited states calculated for several valueb,dioth b= —0.005,n=10. Since the maximum of the potential for
for the inverted quartic and the stable quartic oscillator. Foub<0 is at 1/16b|=12.5 for b=—0.005, then=10 level
different calculations have been carried out at each pointgets sufficiently close to this maximum that the assumptions
Eiag results from matrix diagonalizatio@@xact valug Eg.is  upon which our derivation of the semiclassical approxima-
the semiclassical resulE.+ AE is the semiclassical result tion and of the quantum corrections to it are based become
with leading quantum corrections, aikg, is the value ob- suspect. It was to illustrate this point that results for the
tained from Heisenberg matrix mechanics. For the latter, thetable quartic potential were included. Here there is no sign
bandwidth was chosen, when feasible, to give results in ewf the difficulty encountered with the inverted potential.
sential agreement withEg,g. This required values of In Fig. 1 we compare, as a function of the coupling con-
B=3-5. Our general expectation is that the semiclassicastant, semiclassical matrix elements with the two neighbor-

V=1/2x +bx'

1 T T T T
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TABLE Ill. Energies of states labeled hy, ,n, for the Hemon-Heiles model defined in the text, as a
function of the anharmonicity parameter for a fixed value ofb’. Ey,q denotes the energy calculated by
direct diagonalizationEg is the semiclassical approximatioB,.+ AE is the quantum-corrected semiclas-
sical approximation, an&, is the quantum result obtained by the Heisenberg method.

b b’ n n, Ediag Esc EotAE Eq

-0.04 0.01 0 0 0.999628 0.999600 0.999591 0.999628
2 2 4.989952 4.990623 4.990931 4.989952
4 4 8.967166 8.967137 8.966849 8.967164

-0.08 0.01 0 0 0.998504 0.998390 1.000118 0.998504
2 2 4.958779 4.958665 4.957205 4.958780
4 4 8.862238 8.862127 8.853510 8.862098

ing quantum matrix elements of which it should be the ap-gous to those presented in Table Il. Here the addition of
proximate average(The notation makes it clear that these quantum corrections to the semiclassical result is far from
results are for the reference state 10.) The expectation is satisfactory, often overshooting the exact value by more than
well satisfied for the largest matrix elements. We also se¢he starting error. An alternative method that is not strictly an
that except for the fundamental Fourier component, all otheexpansion in (1) is under investigation. Again, the accu-
matrix elements are rising exponentially with increasing cou+acy of the nonlinear calculations carried out for advertised
pling constant, promising an eventual breakdown of the&orm of Heisenberg matrix mechanics is to be noted.

theory. In Figs. 2 and 3 we compare semiclassical and quantum
We turn next to the two-dimensional generalizechbie-  matrix elements for the coordinatgsandy, respectively, in
Heiles model analogy with what is shown in the one-dimensional case.

The same general remarks apply here as for that case. Note
H= %(p>2<+ AX3) + %(p§+,uy2)+V(x,y), (6.32 that the range of parameters does not include those used in
Table IlI.

V(x,y)=by(x>+b'y?), (6.33

. VII. ADDITIONAL OBSERVATIONS AND SUGGESTIONS
where we choose.=1.69 andu=0.49, in order. to stay CONCERNING THE SEMICLASSICAL
away from low-order resonances. We shall consider a range AND CLASSICAL ANALYSES
of values ofb andb’ in order to expose different physical
situations. In this section, we raise a humber of issues related to the

In Table Il we display a limited number of results analo- semiclassical analysis that it may be profitable to explore.

V =1/2 0 + 1/2 py’ + by (C+b'y?)
A=1.69; n=0.49; b’=-b
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V=12 +1/2 uy2 + by(x2+b’y2)

A=1.69; n=0.49; b'=-b
10 T T T T T

2
I
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FIG. 3. Same comparison as in
Fig. 2, for the coordinatg.
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Since some of the suggestions put forth in this section arevhere w;;=(Jdw;/dn;). Work found in the literature, as far

speculative; they may also turn out to be worthless. as we are aware, uses only the linear approximation to this
result. As a second application, when we want to calculate
A. Fixed action quantization program solutions for a fixed Hamiltonian and for values of the action

We first consider other possible applications of Iinearneighboring those for which solutions are already known, the

variation about the semiclassical equations, as embodied ﬁ\OIUt'OnS of the linearized equations can be used.to o!otaln
Eq. (6.28. These equations are a special case of the equér_nproved starting values for the Newton-Raphson iteration.
tions (i) To obtain solutions for a neighboring Hamiltonian,

one can again use a form ¢f.1), with yet another driving
Sa.b0Zp=Sq, (7.1)  term easily derived from the structure of the original nonlin-
ear equations.
which has a number of possible applications, depending on An important question that should be susceptible to study
the choice of the source vectsr We discuss briefly several by the linearized formalism is the relation of an instability of
such applications. a solution of the nonlinear equations to the eigenvalues of
(i) There is first of all the basic algorithm of the Newton- the matrixS.
Raphson method. In this instance, we chosge —¥{”,
corresponding to ath approximation taz,, and the matrix

Sis also known in this approximation. The solution(#1) B. Solutions at fixed frequency: Applications
determines the next approximationg, namely, We now restrict our attention to the solutions of the equa-
(v+1) () tions of motion(6.29 for fixed frequency, i.e., we study the
Zy =2y 1 0z,. (720 purely classical problem, setting aside for the moment the

- _ ~ question of how to adjoin a quantization feature. Let us

(ii) If the above solution converges, we thereby define amagine that we are interested in obtaining the Fourier coef-
“stability matrix” S. As we have already seen, it is this ficients as functions of the frequency values. There arises the
quantity that occurs when we differentiate E¢8.25 and  practical problem of how to choose a sensible grid of fre-
(6.26) with respect ton;, leading to Egs(6.28 and(6.29.  quency values. This problem can be solved presumably by
In addition to the application already described in Sec. Vl,perturbation theory for small coupling and we can use a form
we can think of several other applications of these equationsf the linearized analysis described above to show us how to
We consider only6.28), but (6.29 could be brought in. For  change frequencies locally. As a first approximation to quan-
example, they allow us to compute the energy of neighboringization, if only energies are of interest, we can compute
states, according to the formutewo-dimensional example  values of the action from the Fourier coefficients and the

frequencies and write

1
E(n1+ dl,n2+d2): E(nl,n2)+widi+ Ew”d,d] f (73)

N=

J=r+1%, (7.4
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where we have used the tilde to indicate a nonquantized@his is useful provided the average Lagrangian is truly an
value, so that; is not an integer. We can then extrapolate toextremum. It would then appear that a suitable choice of the
the nearest quantized values of the energy by usingE8). constantc, both as to magnitude and sign would move the
If we want also the Fourier amplitudes for the quantizedaverage Lagrangian to its extreme value. The reason that we
invariant tori, we have to successively modify the frequen-must allow the constant to depend on the order of approxi-
cies until they assume values associated with quantized acation is that we want to guarantee that the retained first-
tions. For this purpose we might use the formula order correction is larger than the omitted second-order

terms. This means that we must start out with conservatively
_doi small values of the constant and let it increase toward unity
_(9_3]. J_m(ni_ri)‘ (7.9 as(if) we approach convergence.

If we carry out a calculation at fixed action, we have to

The most practical way of calculating the required secondonsider the equation
derivatives would probably be from a grid of energy values.

We finally note another possibly interesting way of utiliz- s(L” )
ing a grid of fixed frequency solutions to quantize a system. Sw; =Jim=di. (7.9
Consider, as a simple example, a two-dimensional nonreso-
nant system. Write the classical Hamiltonian in the normala comparison with(7.7) suggests that we choose
form

d°H
5wi

5w1=bJJ] (nO sun. (71@
— my M2

H 2 AmymyJy J5 " (7.6 From this assumption, the assumption of fixedand (7.8
we can derive a pair of linear equations fgr, namely,
It would appear at first sight that the number of points on our
grid of solution values will determine the number of terms aJ; aJ; &(L)
that we can use in this equation, which yields a set of linear z 90 0T T o . C. (7.11
: . i j ik O%jk
inhomogeneous values for the coeff|C|eag$lm2. We would

then quantize the resulting Hamiltonian by using the EBKHere indices indicating the order of approximation are omit-
quantization conditions or some variant, following the dis-ted. In the present case, there is no guarantee that the two
cussion of Ref[31]. If we consider the usual procedure for first-order correction terms ifv.7) are of the same sign and

constructing a form such 43.6), however, we would guess thys the way that convergence may be achieved, if at all, is
that our previous remarks are much too naive. One’s abilitsomewhat more problematic.

to carry the expansion to a higher and higher order is con-
tingent upon obtaining a perturbation expansion to the appro-
priate order. To make contact with methods based on Fourier
series, we must note that an analysis can be carried out that In this paper we have presented a different view of the
informs us which Fourier components must be included taransition from Heisenberg matrix mechanics to the theory of
guarantee equivalence to a perturbation expansion up to igvariant tori. We have suggested a number of possible ap-
prescribed order. The solution of a nonlinear scheme includplications of the ideas that were presented mainly in Secs. Il
ing only these components, at the same time that it contains/, and VII. We have applied the ideas developed in Secs. Il
a selective(and uncontrollel summation of higher-order and IV to several standard models. The most important fea-
terms, is at least perturbatively correct to some controlledure that has emerged from these applications is that the
order. It is this latter order that would determine how manyHeisenberg mechanics can be developed into a quantum cal-
terms are allowed in the expansiéneé). To our knowledge culus that is only modestly more complicated than the semi-
this relationship between the methods based on Fourier exlassical calculations associated with the theory of invariant
pansion and those based on normal forms has not been cofri. This can be done in two ways; either by starting with the

VIIl. CONCLUDING REMARKS

sidered previously. semiclassical approximation and building a correction
scheme about it or else by constructing a fully quantum
C. Direct use of the variational principle scheme starting from the ground state.

If one were now to ask for the most important next step
at one could take with the Heisenberg methods, an excel-
lent candidate for an answer would be to produce solutions
Sfor a globally chaotic system such as the one studied by

Can one use the variational principle directly to simply,[h
solution of the nonlinear equations? L@t)(*) be the vth
approximation to the average Lagrangian. Expanding to fir

order, Martenset al. [46]. It would also be worthwhile to revisit
S(LY S(LY® some old ground. As an example, we might restudy the
(Ly={(LY"+ 5% SXi + 5 Sw; . (7.77  edges of the regions, as a function of coupling strength and
ik ' i

quantized actions, beyond which converged solutions of our
equations cannot be found. Though some of this was done in
the present work, the issue is somewhat muddied for the
(LYW m_odel chosen, since i_t doe_s not, strictly speaking, possess a
) _ (7.8  Hilbert space. There is evidence, based on calculations for
OX; k the standard mappingt7,4§, that this failure represents an

Consider first the fixed frequency case and choose

OXj k=C
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independent method for studying the disappearance of inef motion, we can derive, in a way that is obvious from the

variant tori. right-hand side of what follows, the equation
Another idea that might be reexamined is that of approxi-
mate tori. Reinhardt and associates have championed this 2| ((E)— En) 2+ (En—E)) 2 XemXimm

idea, which permits EBK quantization to be applied past the
point of breakdown of the associated invariant torus. This
idea is suggested both by their work on the quantization of =XV +V'X)mn=2(XV") mn. (A1)
normal-form Hamiltonian$29,30 and on adiabatic switch-
ing [23]. It reappears in the work of Martens and Ezra
[32,33 in that trajectories that appear to be associated with
locally chaotic regions show enough well-defined Fourier (pz)mn=—2 (E;— En)(Eqn—EDXmiXin - (A2)
components so that quantized actions can be calculated. In- !
dependently, we realized that this phenomenon would man
fest itself in our work as follows: The nonlinear equations
underlying our approach yield a solution when only a small
number of Fourier components are retained, but the solution (En—Em)?(X®)mn=—2(pD)mnt2(V'X)mn, ~ (A3)
blows up when an attempt to add components is made. By
contrast, when invariant tori exist, this is signaled by insenwhich is the matrix element of the equation
sitivity of the solution to the addition of Fourier components Lo o, ,
beyond a fixed number. The finite Fourier sums describe 2[[X5HLH]=—p*+ (V' X)mn. (A4)
approx_imate invariant_tori _in the same genera_l sense, thouan the other hand, by adding twi¢2.5) and (A1), we find
in a different approximation, as the approximate normal-the results
form Hamiltonians.

The transition from the quantum to the classical domai
by the methods of this paper presents a different aspect of tﬂE (2= Em—En) XmXin=2(P%)mat 2V'X. (AS5)
study of the consequences of the order in which the two'

limits #—0 andt—c are taker{49|. For the order studied Equation(A5) will be used to prove thaH is diagonal in

in this paper, in which the time limit is taken first, it is quite conjynction with another relation, which is a further conse-
impossible to strictly reach the regime of multiply periodic quence of the equations of motion, namely
motion, as has already been pointed out in the body of our

work. It may be of interest to to undertake a further study of 5

the equations that can be obtained in this limit. There may (En_Em)EI (2B = Em—En)XmXin

also be some connection of these ideas with the idea of ap-

proximate tori. ==2i(V'p+pV")mnt 2(E,—E) (V' X)mn. (AB)

From (2.5 we may write

iEquations(Al) and (2.5 can be combined in several useful
ways. Thus by subtracting twig@.5) from (A1) we find
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Comparing(A4) with (A8), we conclude that
APPENDIX: PROOF THAT SOLVING THE EQUATIONS
OF MOTION DIAGONALIZES THE HAMILTONIAN 2P mat 2V X) o=~ 4Vina+ 2V X) s (A9)

We prove directly that a solution of the equations of mo-g,
tion and of the commutation relations guarantees that the
Hamiltonian has been rendered diagonal. From the equations Hmn=3% (P> mnt Vmn=0, m#n. (A10)
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