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Despite the seminal connection between classical multiply periodic motion and Heisenberg matrix mechan-
ics and the massive amount of work done on the associated problem of semiclassical Einstein-Brillouin-Keller
~EBK! quantization of bound states, we show that there are, nevertheless, a number of previously unexploited
aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a
quantum variational principle that implies the classical variational principle for invariant tori. We also expose
the more indirect connection between commutation relations and quantization of action variables. In the special
case of a one-dimensional system a different and succinct algebraic derivation of the WKB quantization rule
for bound states is given. With the help of several standard models with one or two degrees of freedom, we
then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain
quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe
and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several
modified applications of EBK quantization.@S1050-2947~96!06608-5#

PACS number~s!: 03.65.Ca, 21.60.Ev, 21.60.Jz

I. INTRODUCTION

Though applications of great interest~and increasing
complexity! continue to be developed, e.g.,@1,2#, the theory
of the semiclassical quantization of invariant tori by the ap-
plication of Einstein-Brillouin-Keller ~EBK! quantization
conditions@3–5# appears to be a closed~or at least quiescent!
sector in the study of the relationship between the quantum
mechanics and the classical mechanics of nonseparable sys-
tems.~For exceptions, see the work of Jaffe and collabora-
tors @6–8# and the even more recent work of Morehead@9#.!
Focusing on systems with two degrees of freedom, we can
divide the many methods that have been developed and ap-
plied to this subject into two main subcategories those based
on the solution of Hamilton’s equations as an initial-value
problem, i.e., the calculation of trajectories, and those based
on algebraic methods involving trajectories indirectly or not
at all. Within this subdivision, referred to asM1 andM2,
respectively, we may distinguish principally the following.

M1a. Independent actions are computed from closed
curves, signaling invariant tori, generated by the intersection
of trajectories on two independent surfaces of section@10–
12#.

M2a. If invariant tori exist, the dynamical variables can
be represented as multiply periodic functions of the angle
variables, with Fourier coefficients that depend only on the
frequencies or, equivalently, actions. Equations of motion for
the Fourier coefficients are obtained in either Hamiltonian or
Lagrangian form and for each there is an associated varia-
tional principle. The equations of motion are solved either
perturbatively or nonperturbatively and the quantized actions
and energy calculated in terms of the known Fourier coeffi-
cients@13–21#. This is the approach of paramount interest to
us.

M1b. Consider the system Hamiltonian to be a sum of an

integrable part and a perturbation. The latter is turned on
adiabatically over a timeT. From the assumption that the
actions computed initially for the unperturbed system are
approximate adiabatic invariants, it is possible to obtain
quantum energies@22,23# ~sometimes even for values of the
coupling strength at which associated invariant tori no longer
exist!.

M2b. The Hamilton-Jacobi equation is solved iteratively,
using a Fourier series expansion, thus providing the generat-
ing function for the appropriate action-angle variables@24#.
~In contrast, the Fourier series constructed inM2a are to be
understood as the explicit equations of transformation from
the original dynamical variables to the action-angle set.!

M1c. It can be shown@25,26# that a finite set of adjacent
nonquantized trajectories with the same total energy can be
used to calculate accurate values of the actions for one of
them. Quantized energies and associated actions are com-
puted by linear extrapolation. In this method it is necessary
to propagate trajectories until they almost close on them-
selves.

M2c. Following the ideas of Birkhoff and Gustavson@27#,
several groups@28–31# have carried out increasingly ambi-
tious programs for transforming a given Hamiltonian to nor-
mal form by a succession of canonical transformations. The
resulting Hamiltonian is quantized and energy values ob-
tained.

M1d. Trajectories propagated over a sufficiently large
multiple of the elementary periods of a multiply periodic
orbit can be Fourier transformed to yield the Fourier repre-
sentation of the fundamental dynamical variables. Applying
Percival’s formulas@17#, the actions are computed. Initial
conditions are varied until quantized orbits are found@32–
34#.

For further discussion and a more exhaustive list of refer-
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ences, we refer the reader to Refs.@32,33,35#.
Despite all this effort, there remains a gap in the study of

the relationship between quantum mechanics and the theory
of invariant tori, especially as it relates to the work that uti-
lizes the description of invariant tori in terms of Fourier se-
ries. This assertion is grounded on the observation that each
form of quantum mechanics is associated in a natural way
with a corresponding version of classical mechanics. Thus,
in the same sense that Schro¨dinger wave mechanics is natu-
rally associated with the Hamilton-Jacobi equation and the
classical limit of the path-integral method is Hamilton’s
variational principle, it is equally true that the classical limit
of Heisenberg matrix mechanics for bound systems are the
equations of motion for multiply periodic systems. Though
some of the work cited is based, in the sense of the corre-
spondence principle, on this passage between quantum and
classical descriptions and the passage itself is in some re-
spects well known~see@6–8#, for instance!, the main thesis
of this paper is that this route for passing from the quantum
to classical theory has not been fully explored. A possible
explanation is that, although the basic correspondence is well
known, it is hardly known outside the circle of the authors
and former associates that matrix mechanics can be derived
from a different variational principle@36–39# called the trace
variational principle~see also@40#! and that the classical
limit of this principle is the variational principle for invariant
tori @21#.

Guided by this relationship, the main purpose of this work
is to study the transition from the quantum to the classical
domain more thoroughly than heretofore for both the dynam-
ics and the kinematics~quantization conditions!. This has led
to some results that we find it difficult to believe are not
known, but for which we do not have an independent refer-
ence. In Sec. II we supply a brief but self-contained account
of our version of matrix mechanics, with emphasis on the
variational basis. The passage to the semiclassical limit is
then carried out in Secs. III and IV, where we show that the
limit of the quantum variational principle is the variational
principle for invariant tori. We find, however, that the rela-
tionship between the commutation relations and the EBK
quantization conditions is more indirect, the former corre-
sponding in the classical limit to the Poisson bracket rela-
tions and the latter to the Lagrange bracket relations@41#. In
Sec. V we study the commutation relationsper se, the most
tangible result being another derivation of the WKB quanti-
zation condition, applicable to one-dimensional systems.
Section VI is devoted to some illustrative numerical studies.
We describe in turn and then apply algorithms for carrying
out the semiclassical calculations, the associated matrix
quantum calculations, and a method for calculating directly
quantum corrections to the semiclassical result. The need for
the latter as a separate approach arises from the fact that the
matrix quantum calculations are designed to give better re-
sults than the semiclassical one for low-lying states, but do
not go over in any limit to the EBK calculation. Finally, Sec.
VII contains several suggestions for alternative ways to use
the semiclassical quantization scheme. In Sec. VIII, we make
some proposals for further work. Preliminary accounts of the
main theoretical results of this paper can be found in@42,43#.

II. MATRIX MECHANICS

A. Variational principles and equations of motion

We begin with a brief description of a variational prin-
ciple, the so-called trace variational principle, from which
one can derive Heisenberg’s form of quantum mechanics.
Though a version of this principle was suggested more than
three decades ago@36# and subsequently several publications
have been devoted to its exposition and further development
@37–39#, it appears to be largely unknown by the community
at large. Except for one brief allusion,@21#, it has not been
applied to the problem at hand.

Most of the important elements are already present for a
system with one degree of freedom and we therefore focus
attention on the Hamiltonian

H5
1

2
p21V~x!, ~2.1!

with equations of motion

@x,H#5 ip, ~2.2!

@ ip,H#5dV/dx[V8, ~2.3!

derived by utilization of the commutation relation (\51)

@x,p#5 i . ~2.4!

In practice we are usually concerned with the matrix ele-
ments of~2.2!–~2.4! in the representation in whichH is di-
agonal, with eigenvaluesEn , namely,

~En2Em!xmn5 ipmn ,

~En2Em!ipmn5~V8!mn , ~2.5!

and

@x,p#nm5 idnm , ~2.6!

wherexnm5^nuxum&. We shall feel free to use both notations
interchangeably.

In early work@44# we have shown, for polynomial poten-
tials, how the energy differences and the matrix elements
xmn ,pmn can be obtained from Eqs.~2.5! and~2.6!. The pri-
macy of these elements can be seen by using the complete-
ness relation for the evaluation of matrix elements of a prod-
uct. The eigenvalues themselves can be found by the direct
evaluation of the expectation values

En5Hnn5^nuHun&5(
n8

1

2
upnn8u

21^nuV~x!un&, ~2.7!

where the application of completeness is illustrated in the
kinetic-energy term. Ultimately, we shall be concerned with
extending the previous algorithms to the multidimensional
case.

Before proceeding to the discussion of a variational for-
mulation, we add a few remarks about the implementation of
the above formalism. Equations~2.5! and ~2.6! are, to start
with, an infinite set of sum rules that must be satisfied by the
exact eigenstates of the Hamiltonian. Starting at any point in
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the spectrum, sums spread without cutoff as far as the con-
figuration space will allow. To obtain closure, we must make
two kinds of approximation. The first is that the matrix ele-
ments are rapidly decreasing functions ofk5un2mu, so that
all matrix elements withk.kmax can be set to zero. The
second is that the matrix elements are, for sufficiently large
n andm, slowly varying functions ofn1m, so that for some
values sufficiently far from the center of interest in a given
calculation we can set̂ n1r uxum1r &5^nuxum& for ur u
! 1

2(m1n). With these assumptions Eqs.~2.5! and ~2.6! re-
duce to a finite set of equations, where in addition to the
retained matrix elements ofx and p, the additional un-
knowns are a set of elementary energy differences from
which all other energy differences can be composed. To de-
termine this collection of variables, it suffices to utilize all
the available equations of motion, but only the diagonal ele-
ments of the commutator. This is consistent with the result,
proved in Sec. II B, that the off-diagonal elements of the
commutator are a consequence of the equations of motion.

A natural question to ask is whether Eqs.~2.5! can be
derived from a variational principle. Here we wish to treat
the matrix elements ofx andp as variables in the variational
statementdEn5dHnn50. There are, however, two obstacles
to such an endeavor:~i! The matrix elements are not all
independent and~ii ! the same matrix elements appear in dif-
ferent energy functionals. Thuspnn8 occurs both inHnn and
in Hn8n8. For which is it to be a variational parameter? A
solution to the second problem posed is to form an average
of the stationary functionals. It turns out that in order to
derive the equations of motion as given above, it is necessary
to choose the most symmetrical possible average, namely,
the trace. Thus we require

d(
n

Hnn5d TrH50. ~2.8!

A solution to the first problem is to impose all the possible
kinematical constraints, namely,

d@x,p#nn850. ~2.9!

Multiplying ~2.9! by a Lagrange multiplier matrix
(2 i )Ln8n (L is Hermitian!, we add the result to~2.8! and
are thus led to a master variational principle

05dF[d Tr$H2 iL@x,p#%

5d Tr$H2 ip@L,x#%5d Tr$H1 ix@L,p#%. ~2.10!

The several forms are equivalent because of the assumed
cyclic invariance of the trace.~This is certainly unobjection-
able in practice where the trace is taken over a finite-
dimensional vector space.!

Carrying out the unconstrained variation of~2.10! with
respect to the matrix elementsxn8n and pn8n , keepingL
fixed, and using the explicit form~2.1! of H we obtain the
equations

pn8n52 i @x,L#nn8, ~2.11!

~V8!nn85 i @p,L#nn8. ~2.12!

Because of the invariance of the trace with respect to choice
of basis, the representationun& is, at this point, arbitrary. The
most convenient immediate choice is the one in which the
Hermitian operatorL is diagonal. By comparing with the
known equations of motion, we then identifyL as the
Hamiltonian.

The derivation of the equations of motion does not ex-
haust the consequences that can be drawn from the trace
variational principle. We shall now demonstrate from this
principle that the vanishing of the off-diagonal matrix ele-
ments of the canonical commutator is a consequence of the
equations of motion, leaving only the diagonal elements as
independent kinematical conditions. This result is consistent
with the ‘‘empirical’’ finding above that a dynamical scheme
is, in fact, completely determined by adjoining this one-
dimensional~diagonal! array of kinematical constraints to
the equations of motion.

To derive the off-diagonal elements of~2.6!, we make use
of the invariance of the trace under an infinitesimal change of
basis. In the new basis, the Hamiltonian will not be diagonal,
in general, and thus we must allow for a change in the
Lagrange multiplier matrix. We calculate

05dF5Tr$2 i ~dH !@x,p#%, ~2.13!

since all other contributions vanish as a consequence of the
equations of motion. If we express the infinitesimal change
of basis in the standard form

dun&52 i eQun&, ~2.14!

wheree is infinitesimal andQ is Hermitian, we recognize
that in a variation about the energy diagonal representation

d^nuHun&5 i e^nu@Q,H#un&50. ~2.15!

On the other hand, nondiagonal elements

d^nuHum&[^nudHum&[dHnm ~2.16!

can be assigned arbitrary infinitesimal values consistent with
Hermiticity. From this and~2.13! we conclude that the off-
diagonal elements of@x,p# vanish.

One additional result of great importance is that a solution
of the dynamical scheme proposed above guarantees that the
Hamiltonian is diagonal,Hn,n850, nÞn8. This result is de-
rived in the Appendix.

In place of Hamilton’s equations~2.5! it is often more
convenient to consider Newton’s equation

~En2Em!2xmn5~V8!mn . ~2.17!

This equation may be derived from its own variational prin-
ciple by substituting the first of Eqs.~2.5! into the previous
functionalF. The result is a new functionalG that can be
written in the alternative forms

G[Tr$H2H†x,@H,x#‡%5Tr$2 1
2 @x,H#@H,x#1V~x!%.

~2.18!

In the second form, we recognize thatG is the negative of
the trace of the Lagrangian. To obtain Newton’s~or
Lagrange’s! equations one variesG with respect to the ma-
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trix elements ofx, keeping the matrix elements of the Hamil-
tonian fixed. From the structure of~2.18!, this means keeping
the energy differencesfixed. This formulation of the quan-
tum theory is completed by adjoining a form of the canonical
commutator from which the momentum operator has also
been eliminated, namely,

dnm5†x,@H,x#‡nm5(
l

~2El2Em2En!xmlxln . ~2.19!

It should also be mentioned that the vanishing of the off-
diagonal matrix element of the commutator can equally well
be proved by paraphrasing for the functionalG the argument
presented for the functionalF.

Since our main interest in this paper is in autonomous
systems with at least two degrees of freedom, we must now
describe how the previous considerations are modified by
this generalization. We therefore consider a system withN
coordinatesx5(x1 , . . . ,xN) and a Hamiltonian of the form

H5(
i

1

2
pi
21V~x!. ~2.20!

The functionalF from which Hamilton’s equations are de-
rived takes the form

F5TrHH2 iL(
i

@xi ,pi #J , ~2.21!

where L is once again identified as the Hamiltonian.
Lagrange’s equations are derived from the functionalG,
where

G5TrH 2
1

2(i @xi ,H#@H,xi #1V~x!J . ~2.22!

Before providing any further details, we must mention the
problem of labeling the eigenvalues and eigenstates ofH. In
our earlier work@21#, we ‘‘naturally’’ assumed that the la-
beling could be done by a choice ofN integers
n5(n1 , . . . ,nN) of which we could keep track as we tuned
one or more coupling parameters, starting from values for
which the problem was integrable. The same assumption was
discussed rather more thoroughly by Percival@14–16#, who
emphasized that the validity of this assumption is cotermi-
nous, in the semiclassical limit, with the existence of invari-
ant tori.

With this understanding, it is not necessary to write the
equations of motion a second time, but only to remember
that there is now one equation for each value ofi and in each
of these equations to replace the integern by the correspond-
ing vectorn. There does remain one question to be addressed
that will be of some importance to us later. This is the ques-
tion of whether we can deduce from the variational principle
the separate vanishing, for each value ofi , of the off-
diagonal elements of the commutators@xi ,pi #. This follows
from the fact that the rows and columns of the matrixL are
each labeled by anN-dimensional vector, provided that the
set of nonvanishing matrix elements of the productxipi is
disjoint from the corresponding set for any other choice of
coordinate index. This will be true for any model that we

study. We have been somewhat cavalier in the present dis-
cussion, but the questions that we have slighted, in particu-
lar, why other elements of the algebra do not appear in the
constrained variational principle, will be considered in more
detail in the discussion that now follows.

B. Commutation relations and equations of motion

The canonical commutation relations must be constants of
the motion; this means that their time derivatives should van-
ish @45#. We show this for the class of Hamiltonians under
study. Consider first

d

dt
@pi ,pj #52F ]V

]xi
,pj G2Fpi , ]V

]xj
G50. ~2.23!

This calculation shows that in the energy-diagonal represen-
tation ~assuming no degeneracy! the commutator of two dif-
ferent components of momenta has no off-diagonal matrix
elements. If we choose the momenta to be imaginary Her-
mitian operators, it follows that the diagonal elements of the
commutator also vanish. Thus it is clear that the commuta-
tors @pi ,pj #50 may be omitted from the dynamical scheme.

Utilizing the previous result that the off-diagonal ele-
ments of the commutator@xi ,pi # vanish, we calculate

05
d

dt
@xi ,pi #5Fxi , ]V

]xi
G . ~2.24!

SinceV is to a large extent arbitrary, we may safely conclude
that the coordinates all commute with one another.

Combining the previous two results, we next verify that

d

dt
@xi ,pj #5@pi ,pj #1Fxi , ]V

]xj
G50. ~2.25!

Finally, we check compatibility by the calculation

d

dt
@xi ,xj #5@xi ,pj #1@pi ,xj #50. ~2.26!

We have thus shown that the commutation relations are
compatible with the equations of motion for the class of
Hamiltonians under consideration. For the practical problem
of constructing a calculus based on Heisenberg matrix me-
chanics, the consequence of our deliberations is that at most
only the elements diagonal in the energy representation of
the commutators of a coordinate and the corresponding mo-
mentum can enter, if we use all the available equations of
motion.

III. SEMICLASSICAL LIMIT:
MATHEMATICAL PRELIMINARIES

The purpose of this section and the one to follow is to
show that the semiclassical theory of invariant tori is the
‘‘natural’’ limit of the quantum theory of the preceding sec-
tion. We shall first collect in the form of lemmas some of the
mathematical statements that we need. In the following we
shall use the notation lim̂nuOun& to signify the leading term
in the semiclassical limit of the designated matrix element.
HereO is generally a product of elementary operators. We
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consider first the one-dimensional case and define for a real
Hermitian operatorA,

Ak~n![^n2 1
2 kuAun1 1

2 k&5A2k~n!. ~3.1!

Notice that this quantity is an analytic continuation of a
nearby physical matrix element and is our definition of the
semiclassical limit of the matrix element^nuAun1k&. As
shown in a previous work@20#, this choice can be used to
provide a completely algebraic basis for the standard WKB
quantization rule for a vibrational degree of freedom.

We note that with the definition~3.1!, we have, for the
first two terms of a Taylor expansion,

^nuAun6k&>Ak~n!6
1

2
k

]Ak~n!

]n
. ~3.2!

Next, with the array of amplitudesAk(n), for fixed n and
varying k we associate a formal Fourier series

A~n,u!5 (
k52`

`

Ak~n!exp~ iku!, ~3.3!

though in practice we shall always deal with severely re-
stricted sums. Below, we shall then make extensive use of
the average

^ABC•••&[~2p!21E duA~n,u!B~n,u!C~n,u!•••,

~3.4!

which is just the constant term in the Fourier series of the
product.

With the above preliminaries, we are prepared to state and
prove a series of elementary propositions.

Lemma 1:

lim^nuABun&5^AB&. ~3.5!

For the proof we write

lim^nuABun&5 lim(
k.0

kmax

@^nuAun1k&^n1kuBun&

1^nuAun2k&^n2kuBun&#. ~3.6!

Here we have assumed thatn is sufficiently large that the
sum overk can be extended far enough in both directions, to
kmax, to obtain numerical convergence. This establishes the
limited and nonrigorous sense in which the word proof is to
be understood both here and below.

If we now apply~3.2! in sequence first to the matrix ele-
ments ofA, for example, and subsequently to the matrix
elements ofB, we find

lim^nuABun&5(
all k

Ak~n!B2k~n!@11O~n22!#

5^AB&@11O~n22!#. ~3.7!

The error estimate arises from the assumption that a deriva-
tive with respect ton is of relative order (1/n). That the error

is of second order is a consequence of our choice of defini-
tion ~3.1!. The sum on the right-hand side of~3.7! has the
value required by the lemma.

Lemma 1(a). With the same assumptions as before,
Lemma 1 can be extended to a product of more than two
factors,

lim^nuABC•••un&5^ABC•••&

5( dk11k21k31•••,0Ak1
~n!Bk2

~n!Ck3
~n!•••. ~3.8!

The proof is carried out by ordering the various upward-
going, downward-going, and mixed contributions to the mul-
tiple sum so that Eq.~3.2! can be applied.

Lemma 1(b!. The previous lemmas can be extended to the
multidimensional case. Extending the boldface notation now
to designate, in addition to the quantum numbersn, also the
integer vectork for the components of a multiple Fourier
series and the vectoru for an array of angle variables, we
introduce a formal multiple Fourier series

A~n,u!5(
k
Ak~n!exp~ ik•u!. ~3.9!

The lemma then applies to the average

^AB&[~2p!2NE duA~n,u!B~n,u!5(
all k

Ak~n!B2k~n!

~3.10!

and to corresponding multiple products.
Lemma 2:

lim^nuOun1k&5Ok~n!5~2p!21E du exp~2 iku!O~n,u!.

~3.11!

HereO is a product of two or more elementary operators,
since for a single operator the previous statement is only a
combination of the definitions~3.1! and ~3.3!. The same
equation applies in boldface notation. We shall not actually
need this lemma, since its application would be to obtain the
semiclassical limit of the equations of motion directly. Our
procedure, however, will be to obtain that limit for the varia-
tional principle and then derive the equations of motion from
the latter.

We do require expressions for limits of commutators. We
consider the usual Poisson bracket

@A,B#PB[(
i

F]A~n,u!

]u i

]B~n,u!

]ni
2

]A~n,u!

]ni

]B~n,u!

]u i
G .

~3.12!

We can now state the following.
Lemma 3:

lim^nu@A,B#un1k&5 i ^@A,B#PB&k , ~3.13!

where the notion on the right-hand side is understood as the
kth Fourier component of the Poisson bracket~3.12!. This
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lemma can be extended to multiple commutators. In practice,
we shall only require the double commutator, for which we
find the following.

Lemma 3(a):

lim^nu@A,@B,C##un1k&5~ i !2^@A,@B,C#PB#PB&k . ~3.14!

We shall utilize these results to develop the dynamics and
kinematics of a semiclassical quantization scheme. Before
turning to this task, we note an important consequence of the
results in this section. Whereas in quantities such as
^nuABCun& different base values ofn will occur, it is a con-
sequence of the elementary reasoning applied above that in
the expression lim̂nuABCun& only the reference value ofn
occurs. Thus, in the semiclassical limit a trace decomposes
into a sum of independent terms.

IV. SEMICLASSICAL LIMIT: DYNAMICAL
AND KINEMATICAL SCHEME

A. EBK scheme

We now apply the reasoning and results of the preceding
section to obtain the semiclassical limit of the~Lagrangian!
form of the trace variational principle. We are interested in a
value of the vectorn for which the corresponding energy and
eigenstate may be described accurately by the semiclassical
approximation. We should then form the trace over a space
of states extending to both smaller and larger values ofn
compared to the reference state. From the results of the pre-
ceding section, however, it follows that for the purpose of
deriving equations of motion we may suppress the trace, be-
cause in the limit considered, as we have already pointed out
and in contrast to the quantum case, the states decouple. It
thus suffices to focus attention on a given state.~At the end
of this section, however, we shall have occasion to restore
the trace.!

We consider first the kinetic energyT. If E(n) is the
energy of the state identified byn, then here we shall en-
counter the correspondence principle in the form

v i~n![E~n1 , . . . ,ni1
1
2 , . . . ,!2E~n1 , . . . ,ni2

1
2 , . . . ,!

>@]E~n!/]ni #, ~4.1!

i.e., the classical frequenciesv(n)5(v1 , . . . ,vN) approach
the quantum energy differences. We then find by a perfectly
straightforward examination that

lim2^nuTun&5 lim(
i

^nu@xi ,H#@H,xi #un&

5 lim(
i ,k

@E~n1k!2E~n!#2

3^nuxi un1k&^n1kuxi un&

5(
i ,k

~k•v!2xi ,k~n!xi ,2k~n!5^2T&. ~4.2!

We note that the same result may be found by applying
Lemma 3 for the classical limit of a Fourier component of a
commutator, provided that we recognize that the classical

Hamiltonian is a function only of the action variablesn. This
follows from the fact that the formal Fourier series intro-
duced to represent the solution of the classical problem de-
fines a canonical transformation to the correct action angle
variables~see below!.

For the quantity just evaluated, as well as for the potential
energy,

lim^nuVun&5^V&, ~4.3!

the relative error is of order (1/n2), provided that we use the
definition ~3.1!.

If we combine Eqs.~4.2! and ~4.3! we have

lim^nuLun&5^L&. ~4.4!

Since this expression is the semiclassical limit of a quantity
stationary with respect to variations of matrix elements of the
coordinates, keeping energy differences fixed, we expect
~4.4! to be stationary with respect to variations of the asso-
ciated Fourier components, keeping the frequency compo-
nents fixed. Conversely, requiring the stationary property

d^L&
dxi ,2k

50, ~4.5!

keeping the frequencies fixed, yields Lagrange’s equations in
Fourier component form, namely,

~k•v!2xi ,k~n!5
]^V&
]xi ,2k

. ~4.6!

Considered from the purely classical point of view, the
solution of Eq.~4.6! may be undertaken from several stand-
points. The choice of real Fourier coefficients, adhered to
throughout the present development, has already determined
half of the initial conditions, namely, all components of the
velocity vanish initially. If we then specifyN fundamental
Fourier components of the coordinates, we thereby define a
scheme, provided that a solution exists, that determines the
remaining Fourier components as well as theN frequencies.
An alternative scheme, more integral to the variational prin-
ciple, is to specifyN ~incommensurable! frequencies and cal-
culate the Fourier amplitudes from the equations of motion.
In this paper, however, our interest will be in adjoiningN
quantization conditions to the equations of motion. The re-
sulting set, if it has a solution, must then determine the Fou-
rier amplitudes and the frequencies.

We apply the EBK quantization condition~restoring\ for
the instant!

I i5~ni1
1
4 a i !\, ~4.7!

where a i , the Maslov index, has the value 2 for an un-
coupled vibrational degree of freedom and for the models
studied in Sec. VII.~For a more general discussion of the
significance of this index and how it is determined in a given
case, see Ref.@5#.! The actionI i is given by the equivalent
expressions@13,17,21#

I i[
d^L&
dv i

5(
k
ki~k•v!xkx2k5 K p– ]

]u i
xL , ~4.8!
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where, in the last form,p is the momentum vector of the
system. This completes the formal statement of the semiclas-
sical quantization for invariant tori.

B. Connection between EBK quantization
and commutation relations

We have, in fact, given two quantization schemes in this
paper: the completely quantum one consisting of Heisen-
berg’s equations of motion adjoined to diagonal elements of
the canonical commutation relations and the semiclassical
one consisting of the classical equations of motion in Fourier
component form adjoined to EBK quantization conditions.
But a part of the logical story is clearly missing. On the one
hand, we have derived the classical equations of motion from
the quantum ones using correspondence principle arguments
modified only minimally from historical forms. On the other
hand, although EBK quantization can also be derived, up to
the value of the Maslov index, from the correspondence prin-
ciple, what has not been made clear is the relationship be-
tween the canonical commutation relations and the EBK
quantization conditions. Though it is hard to believe that this
question has not been addressed at some point in the history
of quantum mechanics, we have never encountered such a
discussion in the literature. Therefore, for the sake of com-
pleteness, we include it at this juncture.

Consider first the diagonal matrix element of the commu-
tation relation

lim^nu@xi ,@H,xi ##un&52 i lim^nu@xi ,pi #un&

5K (
j

F ]xi
]u j

]pi
]nj

2
]xi
]nj

]pi
]u j

G L
5(

j ,k

]

]nj
kj~k•v!xi ,kxi ,2k . ~4.9!

The basic result exhibited here, that follows from Lemma 3,
is that the limit of the diagonal element of the commutator is
the time average of the corresponding Poisson bracket~PB!.
On the other hand, we observe that the time average of the
fundamental Lagrange bracket$u i ,ni% has the value

^$u i ,ni%&[K (
j

F ]xj
]u i

]pj
]ni

2
]xj
]ni

]pj
]u i

G L
5

]

]ni
(
j ,k

ki~k•v!xj ,kxj ,2k

5
]

]ni
I i51. ~4.10!

Thus the EBK quantization condition is related to the
Lagrange bracket~LB! rather than to the PB.

It is, of course, well known@41# that one set of fundamen-
tal brackets implies the other. But for this purpose we must
consider the full brackets rather than just their time averages
over the torus. We illustrate the argument for one degree of
freedom. We thus wish to show that the formal Fourier series

x~n,u!5(
q

xq~n!exp~ iqu!,

p~n,u!5(
q

iqvxq~n!exp~ iqu! ~4.11!

satisfy the PB condition

@x,p#PB5@x,p#u,n51. ~4.12!

provided, of course, that Eqs.~4.11! satisfy the equations of
motion. In that case the Fourier series represent the canonical
transformation between the given canonical coordinatesx,p
and the exact angle-action variablesu,n. By working out the
Fourier series for the PB, requiring that the constant term be
unity and that the other Fourier components vanish, we find,
with the help of a linear transformation of the summation
indices, that

dq,05(
k

F S k22 1

4
q2D xk1~1/2!q

]

]n
~vx2k1~1/2!q!

1S k2
1

2
qD 2vx2k1~1/2!q

]

]n
xk1~1/2!qG . ~4.13!

In the sum,k takes on both integral and half integral values.
For q50 this expression reduces to the one-dimensional
form of ~4.9!. The vanishing of the remaining Fourier com-
ponents must be a consequence, we suspect, of the vanishing
of the off diagonal elements of the commutator, i.e., it must
be the classical limit of this property. This can be verified
directly, using Lemma 3~a!. As we emphasized at the begin-
ning of this discussion, the equations of motion must be in-
volved, as indeed they are, in the vanishing of these off-
diagonal elements.

Using the results derived in Sec. II B, we can extend the
detailed considerations just given to the multidimensional
problem. This is in fact the interesting case, since in the
one-dimensional case the PB and LB are indistinguishable, a
fact that will be used later to derive the WKB quantization
condition from the commutation relation. The correct value
of the Maslov indices must somehow also be implied in the
multidimensional derivation of the EBK quantization condi-
tions. The only derivation we can supply at the moment is
one based on starting with a separable system and assuming
adiabatic invariance as one turns up the coupling.

It may be of some interest to derive theqÞ0 part of
~4.13! directly from the classical variational principle. For
this purpose, we find it necessary to retain the full structure
of the quantum variational principle, so that in the classical
limit we have not only an average over a given torus, but, in
addition, from the trace operation, an integral over all tori. In
other words, we consider an average over phase space and
indicate it by a double bracket notation, e.g.,

^^L&&[E dnduL~u,n!, ~4.14!

where the phase average ofL has the form
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^L&5
1

2
i 2K S ]x

]u D 2S ]H

]n D 2L 2^V&. ~4.15!

We now subject the system to an arbitrary infinitesimal ca-
nonical transformation about the exact solution. As a conse-
quence of the equations of motion, the only nonvanishing
contribution comes from the first term of~4.15! and has the
form

d^^L&&52 K K S ]x

]u D 2 ]H

]n
d

]H

]n L L
5 K K dHF]2H]n2 S ]x

]u D 21 ]H

]n

]

]n S ]x

]u D 2G L L .
~4.16!

Here the second line has been obtained by an integration by
parts with respect ton with boundary terms dropped. This
requirement is clearly the classical analog of the invariance
of the trace, as is the requirement that~4.16! vanish. Finally,
if we assume thatdH is expanded in a Fourier series with no
constant term and otherwise arbitrary Fourier coefficients,
we are forced to the conclusion that all Fourier components
of the expression in square brackets, other than the constant
term, vanish. It is in fact easy to see that this conclusion
coincides with the corresponding statement contained in
~4.13!.

It is, finally, important to refer to the classical limit of the
property that the quantum theory is formulated in the repre-
sentation in whichH is diagonal. The limit of this property is
precisely the condition that when the canonical transforma-
tion to the exact action-angle variables has been carried out,
it is signaled by the vanishing of the Fourier series for the
classicalH, other than the constant term. In applications, we
shall utilize this requirement in both its quantum and classi-
cal aspects as a test of the convergence of our solutions. For
example, in the classical limit, the difference

^H2&2^H&25 (
kÞ0

HkH2k ~4.17!

should vanish.
We summarize in Table I the analogy that has now been

fully established between Heisenberg matrix mechanics in
the energy-diagonal representation and the theory of invari-
ant tori. For the sake of simplicity, the notation appropriate
to one degree of freedom has been utilized. All entries have
been described in the preceding text. Note that we have in-
cluded the Hamiltonian rather than the Lagrangian form of
the variational principle.

V. FURTHER STUDY
OF THE COMMUTATION RELATIONS

A. One dimension and the WKB quantization rule

In the following lines we present a derivation of the WKB
quantization rule for bound states that is simpler than the one

TABLE I. Concepts of the theory of invariant tori as the classical limit of the concepts associated with
Heisenberg matrix mechanics in the energy-diagonal representation.

Quantum Semiclassical

1 Matrix elements ofx,p Fourier components ofx(I ,u),p(I ,u)
^nuxum&,^nupum& xk(I ),pk(I )

2 Trace variational principle Constrained variational principle

d Tr(H2 ip@H,x#)50 dKSH2vp
]x

]uDL50

3 Matrix element of equation of motion Fourier component of equation of motion

~En1k2En!
2xn1k,n5SdVdxD

n1k,k
(kv)2xk5

d^V&
dx2k

4 Commutation relations Quantization of the action

^nu@x,p#un&5 i I5Kp ]x

]u L5n1

1
2

5 Energy is the diagonal element ofH Energy is the phase average ofH
En5^nuHun& E(I )5^H&

6 Quantum frequency Classical frequency
vn1k,n[En1k2En v5dE(I )/dI

7 Operator Dynamical variable
A(x,p) A„x(I ,u),p(I ,u)…

8 Matrix elements Fourier coefficients

^nuAun1k& Ak~I!5E du

2p
A~I,u!exp~2iku!

9 Energy is diagonal Hamiltonian independent of angles

(
kÞ0

^nuHun1k&^n1kuHun&50 (
kÞ0

HkH2k50
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that we have previously published@20#. A diagonal element
in a staten of the canonical commutation relation may be
written ~using reality conditions!

(
n850

`

2xnn8ipnn851. ~5.1!

Changen→n9 and sum this equation from 0 ton. Divide the
resulting double sum into two terms. The first, defined by
taking both sums from 0 ton, vanishes by antisymmetry~the
matrix elements ofx are symmetric under exchange of indi-
ces, those ofp antisymmetric!. We are left with the sum

(
n950

n

(
n85n11

`

2xn9n8ipn9n85n11. ~5.2!

With our standard definition

xn82n@
1
2 ~n1n8!#[xnn8 ~5.3!

and a change of indices

n95n2n, n85n1k2n, ~5.4!

~5.2! becomes

2(
k51

`

(
n50

k21

xkS n1
1

2
k2n D ipkS n1

1

2
k2n D5n11. ~5.5!

Equation~5.5! is still exact and can be used in quantum
calculations. Expanding about the semiclassical valuexk(n)
and keeping terms that contribute at most to ordern and to
order unity, we find

(
k51

` F2kxk~n!ipk~n!1
d

dn
@kxk~n!ipk~n!#1••• G5n11.

~5.6!

~To obtain the form of the second term on the left-hand side
of this equation requires a careful examination and grouping
of terms that contribute.! The way to read this equation is to
understand that the first term contains contributions of order
n and smaller, whereas the second term is at most of order
unity and at the same time is half the derivative with respect
to n of the first term. It follows that this second term has the
value 1

2. We thus derive the one-dimensional Cartesian WKB
quantization rule

2(
k51

`

kxk~n!ipk~n!5n1
1

2
. ~5.7!

A similar tour de force does not work in two or more
dimensions. We omit the uninspiring details. The moral of
the story is that we are ‘‘lucky’’ to have the EBK quantiza-
tion rules for semiclassical quantization. Our aim when we
started the investigation of this section was to discover an
alternative semiclassical scheme based directly on the com-
mutation relations. The conclusion, which we believe to be
firm, is that this is not possible except in the one-dimensional
case.

B. Remarks on quantum aspects

Consider a two-dimensional system and suppose it to pos-
sess only bound states.~In any event we use a notation with
discrete labels only.! We can write a Heisenberg scheme that
should be valid whether we deal with the ‘‘regular’’ spec-
trum or the ‘‘irregular’’ one@17#. We simply order the en-
ergy levels of a two-dimensional system with coordinates
x,y, in a linear sequence,N50,1, . . . . Acalculation can be
based on the equations

~EN82EN!2xNN852~Fx!NN8,

~EN82EN!2yNN852~Fy!NN8, ~5.8!

(
N8

~EN82EN!uxNN8u
251, ~5.9!

(
N8

~EN82EN!uyNN8u
251, ~5.10!

whereEN are the exact eigenvalues. These equations can be
viewed in two ways, either as a set of sum rules to be satis-
fied by the exact solutions of the quantum mechanical prob-
lem, found by some other means such as matrix diagonaliza-
tion in a basis, or else as the foundation for a computational
scheme involving the solution of nonlinear equations. For a
well-defined quantum system~Hamiltonian bounded from
below!, we shall certainly be able to do a diagonalization and
subsequently check the above equations. Since this should be
possible both for the regular and for the irregular spectrum,
this raises the hope that some version of the quantum matrix
method can also be applied to the chaotic regime.

Toward this end, we note that by summing the commuta-
tion relations from 0 toN, we can replace~5.9! by the posi-
tive sums~this involves the same argument as in the one-
dimensional case!

(
N85N11

`

(
N950

N

~EN82EN9!uxN9N8u
25N11,

(
N85N11

`

(
N950

N

~EN82EN9!uyN9N8u
25N11. ~5.11!

These relations are interesting because they guarantee the
convergence of certain sums and thus imply that the matrix
elements cannot spread out too far as a function of energy
differences.

VI. APPLICATION OF MATRIX MECHANICS
AND COMPARISON WITH THE SEMICLASSICAL

APPROXIMATION

In this section we present illustrative applications of the
matrix mechanics method for several simple models and
compare the results with those of the semiclassical approxi-
mation as well as with the results of exact diagonalization.
With a given semiclassical approximation, as defined below,
we shall associate the matrix method, which will be de-
scribed as a sequence of approximations that should ap-
proach more and more closely to the exact result. Therefore
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we may anticipate that at a sufficiently high order of approxi-
mation its accuracy will exceed that of the semiclassical re-
sult. It is not, however, guaranteed to do this automatically
for the simple reason that the quantum method that we shall
describe does not have a true semiclassical limit, but is spe-
cifically designed to be most accurate for small quantum
numbers. For this reason, we shall also describe an alterna-
tive method that starts with the EBK theory and specifically
calculates quantum corrections to it. Numerical results for all
three methods are presented at the end of this section.

Imagine that we have a two-dimensional system described
by a Hamiltonian

H5
p1
2

2
1
p2
2

2
1
1

2
l1~x

1!21
1

2
l2~x

2!21Vanharmonic~x1,x2!

[
p2

2
1

ul•xu2

2
1Vanharmonic~x!. ~6.1!

However, the methods described here are more general and
can be used with a system with many degrees of freedom.
We shall describe these methods, in general, by referring to
an n-dimensional system and give examples and show re-
sults for the specific casesn51 and n52. For improved
clarity, we have shifted the coordinate index from subscript
to superscript.

For the solution of the algebraic formulation of the semi-
classical approximation we utilize an iterative method de-
scribed by Percival and Pomphrey@15,16#. For the corre-
sponding fully quantum calculations, we shall describe a
quantum extension of this method. We have also carried out
calculations using the Newton-Raphson method, but these
will not be discussed here.

A. Semiclassical iterative method

Following Percival and Pomphrey, this method utilizes
the semiclassical equations of motion, given for Fourier
componentsk ~in terms of the above Hamiltonian!,

@l2~k•v!2#xk5Fk~x…, ~6.2!

where

F~x!52¹Vanharmonic~x!, ~6.3!

andv5(v1 ,v2 , . . . ,vn) is the vector of frequencies of the
system. When there is no anharmonic driving force,
v i
25l i . The vectork is ann-dimensional sequence of inte-

gers, positive and negative:k5(k1 ,k2 , . . . ,kn). It is also
useful, here, to define the vectors15(1,0,0,. . . ,0),
25(0,1,0,. . . ,0), i5(0, . . . ,1, . . . ,0),where the 1 is in the
i th place and all other indices are zero. Thusk• i5ki . In
order to solve the equations that describe the semiclassical
limit in algebraic terms, we must truncate the Fourier series
by specifying a maximum integer vectorzK z. The meaning of
the absolute value is that we define this limit symmetrically
with respect to the origin ink space. We setxk

i 50 for
uku.uK u.

The procedure begins from the harmonic limit, where the
only nonzero Fourier components arex6 i

i As an example,
for a two-dimensional system, where we writex15x and

x25y, the only nonzero components, initially, arex61,0 and
y0,61. All others vanish. We shall refer to these as the driv-
ing components. The values of these initial nonzero compo-
nents are computed from the action conditions Eq.~4.8!,
namely,x6 i

i 5AI i /2v i , whereI i is the action of thei th de-
gree of freedom, as given by Eq.~4.7!.

With these initial values, we can then calculate initial val-
ues for the Fourier components of the nonharmonic part of
the force. Improvements to the frequenciesv i are then ob-
tained from the equations of motion for the driving compo-
nents,

v i
25l i2

F i
i

xi
i . ~6.4!

With these new and improved frequencies, other Fourier
components can be obtained from the remaining equations of
motion. In particular, we compute

xk
i 5

Fk
i ~x!

l i2~k•v!2
for kÞ i. ~6.5!

This completes one cycle of iteration. We now return to
the EBK quantum conditions, and using the calculated values
of the frequencies and of the nondriving Fourier components
we compute new and improved values for the driving com-
ponents. Explicitly,

xi
i5A 1

2v i
F I i2(

kÞ i
ki~k•v!xkx2kG . ~6.6!

For the special casen52, we have

x61,0

5
AI x2 (

~k1 ,k2!Þ~61,0!
k1~xk1 ,k2

2 1yk1 ,k2
2 !~k1v11k2v2!

2v1
,

~6.7!

y0,61

5
AI y2 (

~k1 ,k2!Þ~0,61!
k2~xk1 ,k2

2 1yk1 ,k2
2 !~k1v21k2v2!

2v2
.

~6.8!

Once more we calculate the improved values of the frequen-
cies and then of the remaining components and continue to
loop until the energy converges.

B. Quantum iterative method

In this section we discuss the modifications to the semi-
classical perturbative method that are necessary in order to
have a completely quantum calculation. The major compli-
cation of the quantum approach is that in our version of the
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Heisenberg method, we must consider the coupling of eigen-
states both in the equations of motion and in the commuta-
tion relations. To deal with this problem in a practical way
will necessitate the introduction of two cutoff parameters,
compared to the one used in the semiclassical case.

To explain this difference within the simplest context, we
return to a one-dimensional notation and recall how the
semiclassical approximation is defined. In the quantum
theory, together with the matrix element

^n2 1
2 kuxun1 k&[xk~n!, ~6.9!

which is the focus of a given semiclassical calculation, we
will also encounter, for a fixed value ofk, matrix elements
such as

xk~n1b!5xk~n!1b
dxk~n!

dn
1•••. ~6.10!

In the quantum theory, we treat on an equal footing a certain
range of values ofb, symmetrically disposed with respect to
b50, and refer to the maximum value ofb thus included as
the bandwidthB. Normally it is necessary to include still
larger values ofb in our equations in order to be consistent
numerically. For these we normally make the closure ap-
proximation@cf. ~6.10!#

xk~n1B1a!>xk~n1B!, ~6.11!

valid for smalla. The introduction of a closure approxima-
tion is an invariable aspect of all approximate calculations
made by the form of matrix mechanics described in this
work; it plays the role of reducing the number of unknowns
to the number of equations utilized. Finally, the significance
of the parameterK, the maximum Fourier component, is the
same for the quantum as for the classical calculation. Similar
ideas apply to calculations that work from the ground state
up ~and therefore do not have a semiclassical limit!, except
that the values of the ‘‘Fourier’’ indexk and of the parameter
b take on only positive values, as we shall now see.

Consider a typical matrix element^muOun& of an operator
O ~in general a coordinate!. If we have chosen an ordering of
the integer vectors, we can suppose thatn.m is defined and
k[n2m is the analog of a Fourier component. Since the
first state always considered in the quantum method to be
described is the ground statem50, K coincides with the
maximum value ofn that we include in the calculation.
However, this specification does not completely define the
calculation. The crudest way to define a closed scheme for
fixedK is to allow only matrix elements withm50. But the
equations of motion for the matrix elements^0uOun& will
necessarily bring in matrix elements withmÞ0. In order to
have a closed scheme involving only the quantities specified,
we must adjoin a closure approximation that relates the un-
wanted matrix elements to those that belong to the allowed
set. The crudest such approximation is to relate matrix ele-
ments by an equal displacement of both sets of quantum
numbers, in analogy with~6.11!,

^muOun&>^0uOun2m&. ~6.12!

~However, a better approximation at this point is to use
harmonic-oscillator results for the large matrix elements that
are nonvanishing in the uncoupled limit.! Equation ~6.12!
defines the zero bandwidth,B50 approximation in the
present case.

To improve the scheme, we increase the bandwidthB.
Thus, in aB51 approximation, in analogy with the one-
dimensional case, we treat without closure those values of
m that comprise both the ground state and those states that
are coupled to the ground state by harmonic-oscillator matrix
elements. By suitable extension we can define a scheme for
arbitraryB, with the understanding that the maximum value
of m, calledM , cannot exceedK . A closure approximation,
generalizing~6.12!, needs to be applied now only to relate
matrix elements outside the expanded scheme to those in
which the left-hand state isM . As B increases, we find that
the values obtained for low-lying states become more and
more accurate, as well as insensitive to the closure approxi-
mation. The values ofB and ofK determine the number of
equations of motion and commutation relations that have to
be used to evaluate the set of included matrix elements and
energy differences. This number is a small multiple ofB
times the number of equations for the semiclassical approxi-
mation associated with the same value ofK .

Turning to the detailed scheme, we begin from the har-
monic limit. In this limit, all the energies are equally spaced.
Thus, if we define quantum frequencies to be the energy
differences

^nuHun&2^muHum&5En2Em[vn,m , ~6.13!

then the harmonic limit is defined by

vn6 i,n56Al i . ~6.14!

Here the vectori is the same as was introduced above,
namely, it is ann-dimensional vector whose entries are all
zero except for thei th one, whose value is unity.

From the well-known solution for the harmonic oscillator,
we also know the driving matrix elementsxn1i,n

i It is integral
to our method that this result need not be put in from the
outside but follows by application of the canonical commu-
tation relations, given the result expressed by~6.14!. Actu-
ally, the full statement is that for the harmonic case, as is
well known, the simultaneous solution of the equations of
motion and of the commutation relations yields the starting
values of the quantum frequencies and of the driving matrix
elements. In turn, we can calculate the lowest approximation
to the forceFn,n1i

i . This completes a single cycle of the
quantum iteration procedure.

Next, the quantum frequencies are improved by using the
generalization of Eq.~6.4!,

vn1 i,n
2 5l i2

Fn,n1 i
i

xn,n1 i
i . ~6.15!

For further work, we write

vn,m5vm1a,m , ~6.16!

a5a111a221•••1ann. ~6.17!
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It is straightforward to write this energy difference as a sum
of fundamental energy differences or quantum frequencies in
which just one of the quantum numbers changes by a unit.
This is important in counting that the number of variables in
the problem is determined by the equations of motion and a
set of diagonal elements of the commutation relations. With
the new and improved energy differences, it is possible to
compute the perturbative quantum matrix elements from the
equations of motion

xn,n1a
i 5

Fn,n1a
i

vn1a,n
2 for aÞ i. ~6.18!

Finally, we construct new ‘‘fundamental’’ matrix ele-
ments from the diagonal matrix elements of the canonical
commutation relations. Toward this end, we solve then
equations (i51, . . . ,n)

(
m

~xi ! j ,m
2 vm,j5

1

2
~6.19!

for xm1 i,m
i These equations replace the quantum conditions

for the action variables, used in the semiclassical approxima-
tion, and, as already stated, play the same role as the latter
did in providing additional equations needed to have a deter-
mined set. We have thus identified the three distinct elements
that are used in an iteration cycle: the commutation relations,
the equations of motion for the ‘‘driving’’ matrix elements,
and the equations of motion for the ‘‘small’’ matrix ele-
ments.

C. Quantum corrections to the semiclassical approximation

We start by reminding the reader that the semiclassical
approximation to the energyE(n)5^nuHun& ~in a one-
dimensional notation, is obtained by expanding energy dif-
ferences and quantum matrix elements about certain values
that are identified as semiclassical ones and dropping higher-
order terms. With the definitions

v~n!5E(n1 1
2 )2E(n2 1

2 ), ~6.20!

k5n92n8, ~6.21!

n̄5 1
2 ~n81n9!, ~6.22!

we have, to second order,

^n8uxun9&5xk~n!1~ n̄2n!
dxk~n!

dn
1
1

2
~ n̄2n!2

d2xk~n!

d2n
,

~6.23!

E~n1k!2E~n!5kv~n!1
1

2
k2
dv~n!

dn

1S 16 k32 1

24
kD d2v~n!

d2n
, ~6.24!

where the derivation of the second of these equations re-
quires attention to the definition~6.20!.

To obtain quantum corrections to the energy, we must
retain and compute the values of the first and second deriva-

tive terms in~6.23! and ~6.24!. These equations are expan-
sions in (1/n) and we need terms up to second order because,
as we have shown, the first-order terms do not contribute to
the energy.

The calculation is straightforward. Reverting to an
n-dimensional notation, we recall that the semiclassical
quantization program is based on the equations

~k•v!2xk
i 5Fk

i , ~6.25!

(
j ,k

ki~k•v!xk
j x2k

j 5S ni1 1

4
a i D , ~6.26!

whereFk
i is a Fourier component of thei th component of the

force anda i is a Maslov index. Let us write these equations
succinctly as

Ca~z!50, ~6.27!

wherea is a label that enumerates in turn the equation set
~6.25! and ~6.26!, putting them in a one to one correspon-
dence with the Fourier components and with the frequencies.
Correspondingly,z5$za%5$xk

i ,v i%.
We now treat these equations as if they are true for a

continuous range ofn and compute the first and second de-
rivatives, leading to the equations,

]Ca

]zb

]zb
]ni

5sai , ~6.28!

]Ca

]zb

]2zb
]ni]nj

52
]2Ca

]zb]zc

]zb
]ni

]zc
]nj

. ~6.29!

Here the column matrixsai , consisting of all zeros and a
single value of unity, has its origin in the right-hand side of
Eq. ~6.26!. Both of the above sets of equations are linear and
inhomogeneous and will have a solution provided that the
matrix

Sa,b5
]Ca

]zb
~6.30!

is nonsingular.~See Sec. VII for further discussion of the
uses of this matrix.! The solutions of these equations pro-
vides us with the necessary input for calculating the leading
quantum corrections to the energy.

D. Numerical illustrations

We consider first the one-dimensional inverted quartic po-
tential

H5 1
2 ~p21x2!1bx4, ~6.31!

with b,0. For this model, as well as for the two-
dimensional model considered below, it is understood that
these potentials do not define quantum-mechanical systems.
Nevertheless, diagonalization in a large, but not too large,
basis will yield eigenvalues that we can treat as those of a
bound system. Correspondingly, the approximation methods
described above will also yield values that we can take seri-
ously and compare with the ‘‘exact’’ results. In the following
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and for the two-dimensional model, we shall present a few
examples of the calculations that we have done.

In Table II we display the energies of the ground state and
of two excited states calculated for several values ofb, both
for the inverted quartic and the stable quartic oscillator. Four
different calculations have been carried out at each point:
Ediag results from matrix diagonalization~exact value!, Esc is
the semiclassical result,Esc1DE is the semiclassical result
with leading quantum corrections, andEq is the value ob-
tained from Heisenberg matrix mechanics. For the latter, the
bandwidth was chosen, when feasible, to give results in es-
sential agreement withEdiag. This required values of
B5325. Our general expectation is that the semiclassical

calculation with quantum corrections will be an improve-
ment over the purely semiclassical calculation. This expec-
tation is borne out with the exception of the value for
b520.005,n510. Since the maximum of the potential for
b,0 is at 1/16ubu512.5 for b520.005, then510 level
gets sufficiently close to this maximum that the assumptions
upon which our derivation of the semiclassical approxima-
tion and of the quantum corrections to it are based become
suspect. It was to illustrate this point that results for the
stable quartic potential were included. Here there is no sign
of the difficulty encountered with the inverted potential.

In Fig. 1 we compare, as a function of the coupling con-
stant, semiclassical matrix elements with the two neighbor-

TABLE II. Representative values of the energy for statesn of a one-dimensional quartic oscillator, for
several values of the anharmonicity parameterb. Eidiag denotes the energy calculated by direct diagonaliza-
tion, Esc is the semiclassical approximation,Esc1DE includes the leading quantum correction to the semi-
classical result, andEq is the quantum result obtained by the Heisenberg method.

b n Ediag Esc Esc1DE Eq

20.002 0 0.498489 0.499248 0.498500 0.498489
5 5.405378 5.406235 5.405521 5.405377
10 10.145887 10.146877 10.146244 10.145887

20.005 0 0.496182 0.498112 0.496249 0.496182
5 5.249313 5.252083 5.250752 5.249314
10 9.484437 9.489854 9.493750 9.484438

10.002 0 0.501490 0.500748 0.501500 0.501490
5 5.588750 5.588081 5.588840 5.588750
10 10.813669 10.813058 10.813814 10.813668

10.005 0 0.503687 0.501862 0.503746 0.503687
5 5.712896 5.711448 5.713323 5.712896
10 11.231303 11.230091 11.231885 11.231304

FIG. 1. Comparison of semiclassical matrix
elements~Fourier components! for the inverted
quartic oscillator and the reference staten510
with the quantum matrix elements that they most
closely approximated, as a function of the anhar-
monicity parameterb. The square of the value is
plotted with the semiclassical result shown as a
dashed line and the associated quantum values as
full lines.
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ing quantum matrix elements of which it should be the ap-
proximate average.~The notation makes it clear that these
results are for the reference staten510.! The expectation is
well satisfied for the largest matrix elements. We also see
that except for the fundamental Fourier component, all other
matrix elements are rising exponentially with increasing cou-
pling constant, promising an eventual breakdown of the
theory.

We turn next to the two-dimensional generalized He´non-
Heiles model

H5 1
2 ~px

21lx2!1 1
2 ~py

21my2!1V~x,y!, ~6.32!

V~x,y!5by~x21b8y2!, ~6.33!

where we choosel51.69 andm50.49, in order to stay
away from low-order resonances. We shall consider a range
of values ofb andb8 in order to expose different physical
situations.

In Table III we display a limited number of results analo-

gous to those presented in Table II. Here the addition of
quantum corrections to the semiclassical result is far from
satisfactory, often overshooting the exact value by more than
the starting error. An alternative method that is not strictly an
expansion in (1/n) is under investigation. Again, the accu-
racy of the nonlinear calculations carried out for advertised
form of Heisenberg matrix mechanics is to be noted.

In Figs. 2 and 3 we compare semiclassical and quantum
matrix elements for the coordinatesx andy, respectively, in
analogy with what is shown in the one-dimensional case.
The same general remarks apply here as for that case. Note
that the range of parameters does not include those used in
Table III.

VII. ADDITIONAL OBSERVATIONS AND SUGGESTIONS
CONCERNING THE SEMICLASSICAL

AND CLASSICAL ANALYSES

In this section, we raise a number of issues related to the
semiclassical analysis that it may be profitable to explore.

TABLE III. Energies of states labeled byn1 ,n2 for the Hénon-Heiles model defined in the text, as a
function of the anharmonicity parameterb, for a fixed value ofb8. Ediag denotes the energy calculated by
direct diagonalization,Esc is the semiclassical approximation,Esc1DE is the quantum-corrected semiclas-
sical approximation, andEq is the quantum result obtained by the Heisenberg method.

b b’ n1 n2 Ediag Esc E sc1DE Eq

-0.04 0.01 0 0 0.999628 0.999600 0.999591 0.999628
2 2 4.989952 4.990623 4.990931 4.989952
4 4 8.967166 8.967137 8.966849 8.967164

-0.08 0.01 0 0 0.998504 0.998390 1.000118 0.998504
2 2 4.958779 4.958665 4.957205 4.958780
4 4 8.862238 8.862127 8.853510 8.862098

FIG. 2. For the potential shown at the top of
the figure, a comparison for the state
(n15n254) of quantum values and of the asso-
ciated semiclassical approximation for selected
matrix elements of the coordinatex. The full
lines represent the quantum results and the
dashed lines the semiclassical values.
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Since some of the suggestions put forth in this section are
speculative; they may also turn out to be worthless.

A. Fixed action quantization program

We first consider other possible applications of linear
variation about the semiclassical equations, as embodied in
Eq. ~6.28!. These equations are a special case of the equa-
tions

Sa,bdzb5sa , ~7.1!

which has a number of possible applications, depending on
the choice of the source vectors. We discuss briefly several
such applications.

~i! There is first of all the basic algorithm of the Newton-
Raphson method. In this instance, we choosesa52Ca

(n) ,
corresponding to anth approximation toza , and the matrix
S is also known in this approximation. The solution to~7.1!
determines the next approximation toza , namely,

za
~n11!5za

~n!1dza . ~7.2!

~ii ! If the above solution converges, we thereby define a
‘‘stability matrix’’ S. As we have already seen, it is this
quantity that occurs when we differentiate Eqs.~6.25! and
~6.26! with respect toni , leading to Eqs.~6.28! and ~6.29!.
In addition to the application already described in Sec. VI,
we can think of several other applications of these equations.
We consider only~6.28!, but ~6.29! could be brought in. For
example, they allow us to compute the energy of neighboring
states, according to the formula~two-dimensional example!

E~n11d1 ,n21d2!5E~n1 ,n2!1v idi1
1

2
v i j didj , ~7.3!

wherev i j5(]v i /]nj ). Work found in the literature, as far
as we are aware, uses only the linear approximation to this
result. As a second application, when we want to calculate
solutions for a fixed Hamiltonian and for values of the action
neighboring those for which solutions are already known, the
solutions of the linearized equations can be used to obtain
improved starting values for the Newton-Raphson iteration.

~iii ! To obtain solutions for a neighboring Hamiltonian,
one can again use a form of~7.1!, with yet another driving
term easily derived from the structure of the original nonlin-
ear equations.

An important question that should be susceptible to study
by the linearized formalism is the relation of an instability of
a solution of the nonlinear equations to the eigenvalues of
the matrixS.

B. Solutions at fixed frequency: Applications

We now restrict our attention to the solutions of the equa-
tions of motion~6.25! for fixed frequency, i.e., we study the
purely classical problem, setting aside for the moment the
question of how to adjoin a quantization feature. Let us
imagine that we are interested in obtaining the Fourier coef-
ficients as functions of the frequency values. There arises the
practical problem of how to choose a sensible grid of fre-
quency values. This problem can be solved presumably by
perturbation theory for small coupling and we can use a form
of the linearized analysis described above to show us how to
change frequencies locally. As a first approximation to quan-
tization, if only energies are of interest, we can compute
values of the action from the Fourier coefficients and the
frequencies and write

J̃i5r i1
1
2 , ~7.4!

FIG. 3. Same comparison as in
Fig. 2, for the coordinatey.
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where we have used the tilde to indicate a nonquantized
value, so thatr i is not an integer. We can then extrapolate to
the nearest quantized values of the energy by using Eq.~7.3!.
If we want also the Fourier amplitudes for the quantized
invariant tori, we have to successively modify the frequen-
cies until they assume values associated with quantized ac-
tions. For this purpose we might use the formula

dv i5
]v i

]Jj
dJj5

]2H

]Ji]Jj
~nj2r j !. ~7.5!

The most practical way of calculating the required second
derivatives would probably be from a grid of energy values.

We finally note another possibly interesting way of utiliz-
ing a grid of fixed frequency solutions to quantize a system.
Consider, as a simple example, a two-dimensional nonreso-
nant system. Write the classical Hamiltonian in the normal
form

H5( am1m2
J1
m1J2

m2 . ~7.6!

It would appear at first sight that the number of points on our
grid of solution values will determine the number of terms
that we can use in this equation, which yields a set of linear
inhomogeneous values for the coefficientsam1m2

. We would
then quantize the resulting Hamiltonian by using the EBK
quantization conditions or some variant, following the dis-
cussion of Ref.@31#. If we consider the usual procedure for
constructing a form such as~7.6!, however, we would guess
that our previous remarks are much too naive. One’s ability
to carry the expansion to a higher and higher order is con-
tingent upon obtaining a perturbation expansion to the appro-
priate order. To make contact with methods based on Fourier
series, we must note that an analysis can be carried out that
informs us which Fourier components must be included to
guarantee equivalence to a perturbation expansion up to a
prescribed order. The solution of a nonlinear scheme includ-
ing only these components, at the same time that it contains
a selective~and uncontrolled! summation of higher-order
terms, is at least perturbatively correct to some controlled
order. It is this latter order that would determine how many
terms are allowed in the expansion~7.6!. To our knowledge
this relationship between the methods based on Fourier ex-
pansion and those based on normal forms has not been con-
sidered previously.

C. Direct use of the variational principle

Can one use the variational principle directly to simply
solution of the nonlinear equations? Let^L& (n) be thenth
approximation to the average Lagrangian. Expanding to first
order,

^L&5^L&~n!1
d^L&~n!

dxi ,k
dxi ,k1

d^L&~n!

dv i
dv i . ~7.7!

Consider first the fixed frequency case and choose

dxi ,k5cn

d^L&~n!

dxi ,k
. ~7.8!

This is useful provided the average Lagrangian is truly an
extremum. It would then appear that a suitable choice of the
constantcn both as to magnitude and sign would move the
average Lagrangian to its extreme value. The reason that we
must allow the constant to depend on the order of approxi-
mation is that we want to guarantee that the retained first-
order correction is larger than the omitted second-order
terms. This means that we must start out with conservatively
small values of the constant and let it increase toward unity
as ~if ! we approach convergence.

If we carry out a calculation at fixed action, we have to
consider the equation

d^L&~n!

dv i
5Ji

~n!5Ji . ~7.9!

A comparison with~7.7! suggests that we choose

dv j5bjJj ~no sum!. ~7.10!

From this assumption, the assumption of fixedJ, and ~7.8!
we can derive a pair of linear equations forbj , namely,

(
j

]Ji
]v j

Jjbj52
]Ji

]xj ,k

d^L&
dxj ,k

c. ~7.11!

Here indices indicating the order of approximation are omit-
ted. In the present case, there is no guarantee that the two
first-order correction terms in~7.7! are of the same sign and
thus the way that convergence may be achieved, if at all, is
somewhat more problematic.

VIII. CONCLUDING REMARKS

In this paper we have presented a different view of the
transition from Heisenberg matrix mechanics to the theory of
invariant tori. We have suggested a number of possible ap-
plications of the ideas that were presented mainly in Secs. II,
IV, and VII. We have applied the ideas developed in Secs. II
and IV to several standard models. The most important fea-
ture that has emerged from these applications is that the
Heisenberg mechanics can be developed into a quantum cal-
culus that is only modestly more complicated than the semi-
classical calculations associated with the theory of invariant
tori. This can be done in two ways; either by starting with the
semiclassical approximation and building a correction
scheme about it or else by constructing a fully quantum
scheme starting from the ground state.

If one were now to ask for the most important next step
that one could take with the Heisenberg methods, an excel-
lent candidate for an answer would be to produce solutions
for a globally chaotic system such as the one studied by
Martenset al. @46#. It would also be worthwhile to revisit
some old ground. As an example, we might restudy the
edges of the regions, as a function of coupling strength and
quantized actions, beyond which converged solutions of our
equations cannot be found. Though some of this was done in
the present work, the issue is somewhat muddied for the
model chosen, since it does not, strictly speaking, possess a
Hilbert space. There is evidence, based on calculations for
the standard mapping@47,48#, that this failure represents an
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independent method for studying the disappearance of in-
variant tori.

Another idea that might be reexamined is that of approxi-
mate tori. Reinhardt and associates have championed this
idea, which permits EBK quantization to be applied past the
point of breakdown of the associated invariant torus. This
idea is suggested both by their work on the quantization of
normal-form Hamiltonians@29,30# and on adiabatic switch-
ing @23#. It reappears in the work of Martens and Ezra
@32,33# in that trajectories that appear to be associated with
locally chaotic regions show enough well-defined Fourier
components so that quantized actions can be calculated. In-
dependently, we realized that this phenomenon would mani-
fest itself in our work as follows: The nonlinear equations
underlying our approach yield a solution when only a small
number of Fourier components are retained, but the solution
blows up when an attempt to add components is made. By
contrast, when invariant tori exist, this is signaled by insen-
sitivity of the solution to the addition of Fourier components
beyond a fixed number. The finite Fourier sums describe
approximate invariant tori in the same general sense, though
in a different approximation, as the approximate normal-
form Hamiltonians.

The transition from the quantum to the classical domain
by the methods of this paper presents a different aspect of the
study of the consequences of the order in which the two
limits \→0 andt→` are taken@49#. For the order studied
in this paper, in which the time limit is taken first, it is quite
impossible to strictly reach the regime of multiply periodic
motion, as has already been pointed out in the body of our
work. It may be of interest to to undertake a further study of
the equations that can be obtained in this limit. There may
also be some connection of these ideas with the idea of ap-
proximate tori.
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APPENDIX: PROOF THAT SOLVING THE EQUATIONS
OF MOTION DIAGONALIZES THE HAMILTONIAN

We prove directly that a solution of the equations of mo-
tion and of the commutation relations guarantees that the
Hamiltonian has been rendered diagonal. From the equations

of motion, we can derive, in a way that is obvious from the
right-hand side of what follows, the equation

(
l

$~El2Em!21~En2El !
2%xmlxlm

5~xV81V8x!mn52~xV8!mn . ~A1!

From ~2.5! we may write

~p2!mn52(
l

~El2Em!~En2El !xmlxln . ~A2!

Equations~A1! and ~2.5! can be combined in several useful
ways. Thus by subtracting twice~2.5! from ~A1! we find

~En2Em!2~x2!mn522~p2!mn12~V8x!mn , ~A3!

which is the matrix element of the equation

1
2 †@x

2,H#,H‡52p21~V8x!mn . ~A4!

On the other hand, by adding twice~2.5! and ~A1!, we find
the results

(
l

~2El2Em2En!
2xmlxln52~p2!mn12V8x . ~A5!

Equation~A5! will be used to prove thatH is diagonal in
conjunction with another relation, which is a further conse-
quence of the equations of motion, namely,

~En2Em!(
l

~2El2Em2En!
2xmlxln

522i ~V8p1pV8!mn12~En2Em!~V8x!mn . ~A6!

Since

i ~V8p1pV8!mn52@V,H#mn52~En2Em!Vmn, ~A7!

we have, finally, formÞn, in place of~A5!,

(
l

~2El2Em2En!
2xmlxlm524Vmn12~V8x!mn . ~A8!

Comparing~A4! with ~A8!, we conclude that

2~p2!mn12~V8x!mn524Vmn12~V8x!mn , ~A9!

or

Hmn5
1
2 ~p2!mn1Vmn50, mÞn. ~A10!
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