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An effort is continued to define quantum probabilities for continuous histories. The sum-over-paths approach
used in Prog. Theor. Phys.87, 77 ~1992! is critically reviewed, improved, and applied again. Consistency
between wave nature and particle nature is the criterion used to judge the definability of the probabilities and
is formulated as the path classifiability condition~C1! and the no-interference condition~C2!. A set of classes
of histories satisfying these two conditions is considered as a space-time analog of observables. In particular,
Feynman’s paths for a nonrelativistic particle are considered as histories and the definability of probabilities for
classes of paths is investigated, where classes are defined by classifying paths according to their behavior with
respect to a rectangular space-time regionV[DX3DT. Confining ourselves to cases where C1 is satisfied, we
examine C2 for some sets of classes of paths. Although C2 does not hold in general, some examples are found
where C2 holds. In all the examples, the initial wave function is restricted. In some examples, the location of
V and/or the potential in the region also affect the success of C2. Due to these restrictions, the resultant
probabilities for classes of paths take reasonable values. A puzzling example in which probabilities cannot be
defined for histories contrary to intuition is resolved by considering an appropriate coarse graining of classes
of paths. Considering a rectangular potential barrier, we show that the reflection and the transmission prob-
abilities are special cases of probabilities for histories, and also that probability densities of transmission and
reflection times cannot be defined. This study may be taken to be a study of the consistent-histories approach
notwith discrete histories defined by products of projection operators but with continuous histories defined by
Feynman’s paths in configuration space.

PACS number~s!: 03.65.Bz

I. INTRODUCTION

Quantum mechanics~QM! incorporates wave-particle du-
ality into the theory. From a particle point of view, we have
the following question.

Question 1: What is the probability of finding a particle in
a space-time region?This appears to be a very simple-
minded question. However, in QM, the absence of the notion
of a real physical pathalong which a particle actually moves
makes this question difficult to answer in a unique way. Ac-
tually, Bloch and Burba@1# showed that the probability in
question takes different values depending on how the particle
detection in the space-time region is designed. A similar con-
clusion was also obtained recently by Marolf@2#. One may
feel that, among formulations of QM, Feynman’s sum-over-
paths formulation is better suited to answering the question.
Actually, Feynman@3# himself considered the possibility of
defining ‘‘the probability that the path lies in a particular
regionR of space-time’’ when he was developing the idea of
sums over paths. This motivates us to pose the following
question, which sounds more general than Question 1.

Question 2: Is it possible to define probabilities for histo-
ries of a particle? If possible, what are the values of the
probabilities?This is the question we deal with in this paper.

Although the above question sounds natural from a par-
ticle point of view, it is relatively recently that clear and

agreeable frameworks have appeared in which Question 2
can be answered. They are theconsistent-histories approach
constructed by Griffiths@4# with extensions by Omne`s @5#
and thegeneralized quantum mechanics@6,7# by Gell-Mann
and Hartle. Although they are not exactly the same, the basic
ideas are essentially the same, and we shall often refer to
these frameworks simply as the ‘‘histories approach.’’ The
histories approach has been of growing interest for several
years. When seeing Question 2, one may naturally imagine
continuous histories. However, most of the studies of the
histories approach have been ondiscretehistories, which are
snapshots of continuous histories at different moments of
time. The consistent-histories approach deals only with dis-
crete histories. The generalized quantum mechanics is ca-
pable of dealing with continuous histories, but most of the
studies have focused on discrete histories. It is safe to say
that the definability of probabilities for continuous histories
and the interpretation of the resultant probabilities have been
less well understood than that for discrete histories. In view
of this, we investigate Question 2 with continuous histories
of a nonrelativistic particle in one-dimensional space. Even
this simplest model would help us understand how the his-
tories approach works for continuous histories and what the
resultant probabilities mean. The cases of continuous histo-
ries of a relativistic particle and those in a nonabelian gauge
theory have been studied recently by Whelan@8#. We confine
ourselves to nonrelativistic cases to work on a firm platform
where the probability interpretation of the conventional
theory is well established.

The histories approach does not always define probabili-
ties for histories. The condition to determine when probabili-
ties can be defined is called theconsistency conditionin the
consistent-histories approach and thedecoherence condition
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in the generalized quantum mechanics. Among several ver-
sions of the decoherence condition@9#, the ‘‘weak’’ decoher-
ence condition was also arrived at independently, but later,
by the present author and Takagi@10#, who called it the
‘‘no-interference condition.’’ This condition was used to
search for probability-definable examples in Refs.@10–12#,
and some of such examples were actually found in@11,12#,
where the success of the no-interference condition was the
result of restricting the initial condition of the particle of
interest. However, those examples were not fully satisfactory
~too special or a failure of normalization!, the general struc-
ture of the approach was not necessarily clear, and the inter-
pretation given of the resultant probabilities lacked general-
ity. The aim of this paper is to overcome these shortcomings
and to apply the framework to an unsettled problem in quan-
tum physics, that is, the so-called tunneling time problem
@13#. This is worthwhile in today’s situation where the his-
tories approach is of growing interest, but not much has been
studied about probabilities for continuous histories.

From a wider point of view, the problem we deal with is
one of ‘‘nonlocal-in-time’’ problems in QM such as the tun-
neling time problem, continuous measurements, quantum
mechanical Zeno’s paradox, quantum mechanical retrodic-
tion, and so on, which are all ultimately related to the special
role played by time in QM. To relate the present study to all
of these issues is beyond the scope of this paper, and we treat
one of them, the tunneling time, as an interesting application
of the present method. We also point out that the no-
interference condition can be understood as a consistency
condition between wave nature and particle nature because,
when the condition is satisfied, the superposition principle
~wave nature! and the probability sum rule~particle nature!
do not ‘‘conflict’’ with each other. Although this way of
understanding the condition does not play any practical role
~at least in this paper!, it extracts the essence of our approach
~and hence the essence of the histories approach! in simple
physical terms, and it is of interest from the wider viewpoint,
since consistency between wave and particle natures is often
the core of nonlocal-in-time problems.

We proceed as follows. In Sec. II we critically review to
reorganize the approach used in Refs.@10–12#. Though we
have not mentioned it yet, there is another condition called
the ‘‘path classifiability condition.’’ The definability of prob-
abilities for histories is judged by checking whether or not
the path classifiability condition~denoted by C1! and the
no-interference condition~denoted by C2! hold. We try to
clarify how the conditions are arrived at. We emphasize that
a set of classes of histories satisfying the two conditions is a
space-time analog of observables in Hilbert space. We also
point out that the combination of the two conditions can be
said to be a consistency condition between wave nature and
particle nature. We restrict our attention to cases where C1
holds. In Sec. III we check C2 for some sets of classes of
histories defined by their behavior with respect to a rectan-
gular space-time region. To make connections with ‘‘space-
time coarse graining’’ of histories discussed in the general-
ized quantum mechanics, we begin with a set of classes of
paths which consists of as many classes as possible but still
allows a situation where C2 holds. Section III A illustrates
the method of calculations. The so-called branch wave func-
tions are introduced and they provide clearer perspectives on

the problem. Some properties of branch wave functions are
discussed in Sec. III B. Section III C summarizes the
probability-definable examples which the present author has
found so far. In all examples, the initial condition of the
particle is appropriately restricted in such a way that C2
holds. The examples include a case where a coarse graining
results in the fulfillment of C2~Sec. III C 3!, cases where
restrictions other than those on the initial condition also play
important roles in the fulfillment of C2~Sec. III C 4!, and a
case of a particle tunneling through a rectangular potential
barrier~Sec. III C 6!, where we find that the tunneling prob-
abilities~the reflection and the transmission probabilities! are
special cases of probabilities for continuous histories. In Sec.
IV, we consider the meaning of probabilities for continuous
histories. The tunneling example is very important for this
purpose. We conclude that, in general, probabilities for con-
tinuous histories defined by our approach cannot be inter-
preted as probabilities that a particle actually follows the
histories. In Sec. V the approach is applied to the tunneling
time problem. Calculating interferences between classes of
histories spending different times in the barrier region, we
conclude that the probability densities of transmission and
reflection times cannot be defined within the present frame-
work, and hence within the framework of the histories ap-
proach, which is true no matter how we restrict the initial
condition of the particle. A summary and concluding re-
marks are given in Sec. VI.

Although we follow the procedures of Refs.@10–12#, re-
sults obtained in this paper may also be seen, unless other-
wise stated, as consequences of the generalized quantum me-
chanics with the weak~often the medium! decoherence
condition.

II. FRAMEWORK

A. The path classifiability condition
and the no-interference condition

In this subsection we attempt to construct a framework
which can answer Question 2, without assuming any knowl-
edge of the histories approach. If the attempt succeeds, we
will be able to define probabilities for histories, and we may
then call histories ‘‘events,’’ at least in a mathematical sense.
But even in the construction of the framework, it is conve-
nient to let histories correspond to ‘‘events’’ for explanatory
purpose. As histories in QM, we consider Feynman’s virtual
paths, i.e., the space-time paths used in configuration space
path integrals for a particle. A single path~with appropriate
boundary conditions! then corresponds to a simple~or inde-
composable! event, and all paths~satisfying the boundary
conditions! corresponds to the whole sample space. We in-
vestigate the definability of probabilities forclassesof paths,
not for individual paths.~When there is no risk of confusion,
we will simply say ‘‘probabilities for paths’’ instead of
‘‘probabilities for classes of paths.’’! A class of paths corre-
sponds to a compound event or a union of events. All the
classes again correspond to the whole sample space if a path
belonging to a class does not belong to any other classes; we
deal with such classes. Various geometrical regions in space-
time may be used to define classes of paths. For example, if
we classify all paths connecting two space-time points
A5(XA ,TA) and B5(XB ,TB) (TA,TB) according to
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whether or not they enterV[DX3DT at least once, we
may consider two classes of paths,C Y andC N , whereC Y is
the class of paths which enterV at least once andC N the
class of paths never entering the region.~ReadY andN as
‘‘yes’’ and ‘‘no,’’ respectively.! The set of the two classes,
$C Y ,C N%, corresponds to one possible representation of the
whole sample space. Finer classifications of the paths define
more than two classes, and the set of all classes is written as
$C j%, where j runs integers~for simplicity, we assume that
classes are countable!. In the case of$C Y ,C N%, identify, say,
C 15C Y and C 25C N . Question 2 asks if probabilities
$Pj% are definable for classes of paths$C j%.

Apparently, this is too vague a question, and there should
be various definitions. But whatever the definition is,$Pj%
must obey the probability axioms

Pj>0, ~2.1a!

Pj~k5Pj1Pk ~ jÞk!, ~2.1b!

(
j
Pj51, ~2.1c!

wherePj~k is the probability for the classC j~k defined by
the sum of classesC j andC k . In addition to the probability
axioms, let us require

lim
V→DX

PY5E
DX
dXuC~X,T!u2, ~2.2!

where the limit letsDT ~the temporal interval ofV) vanish,
andT is the time at which the resultant spatial regionDX is
referred to. We shall call these two requirements,~2.1! and
~2.2!, the ‘‘minimal requirements.’’ The question which we
deal with is then as follows.

Question 3: Is it possible to define quantities {Pj }
for classes of paths {C j } in such a way that the minimal
requirements are satisfied?

There still may be various definitions. One natural defini-
tion is motivated by the following observation. Letv and
v̄, respectively, represent a spatial regionDX at timeT and

the spatial regionDX̄ also atT, where DX̄ is ~the entire
space! 2DX. Just as we consideredC Y andC N by classify-
ing paths with respect to a space-time regionV, we consider
C y and C n by classifying paths with respect to a spatial
regionv. Let C y andC n , respectively, be the class of paths
which intersectv on the way fromA to B and the class of
paths which intersectv̄ on the way. Let us define the ‘‘sum-
over-paths amplitude for classC y’’ by

Fy~B;A![ (
B←v←A

exp~ iS/\!, ~2.3!

where the sum is over the paths in classC y ~see Fig. 1!, and
S is the action; the sum( is to be understood as being
defined by Feynman’s path integral as the well-known infi-
nite dimensional integrals@3,14#. This sum over paths can be
evaluated by factoring the paths across the surface of con-
stant timeT, noting that each path intersects the surface once
and only once, giving

Fy~B;A!5E
DX
dXF~B;X,T!F~X,T;A!, ~2.4!

where F(X9,T9;X8,T8) is the result of the sum over all
paths from (X8,T8) to (X9,T9) and is therefore the Feynman
kernel, or the propagator. The sum-over-paths amplitude for
classC n , denoted byFn(B;A), is defined in the same way
as the sum over the paths going throughv̄. We define the
sum-over-paths amplitude for classC y~n by

Fy~n~B;A!5Fy~B;A!1Fn~B;A!, ~2.5!

which is finally equal to the propagatorF(B;A), but what is
important here is the property that, when classes of paths are
combined into one class, the sum-over-paths amplitude for
the resultant class is defined by the superposition of respec-
tive sum-over-paths amplitudes. Now, letC beC y , C n , or
C y~n , and define a positive quantity forC by

PC[E dXBU E dXAFC ~B;A!C~A!U2, ~2.6!

whereC(A) is the wave function at timeTA , which we call
the initial wave function. By using the explicit expressions
for FC (B;A) @such as~2.4!# with the following property of
the propagator:

E dXBF* ~B;X,T!F~B;X8,T!5d~X2X8!, ~2.7!

we find that~2.6! gives

Py5E
v
dXuCu2, Pn5E

v̄
dXuCu2,

Py~n5Py1Pn , ~2.8!

where C5C(X,T), and Py[PC y
, Pn[PC n

, and Py~n

[PC y~n
. At first glance, the substitution of~2.5! into ~2.6!

for C5C y~n appears to give a cross term violating the sum
rule, but the cross term vanishes due to~2.7! and the sum
rule is not violated. Equation~2.8! explicitly shows that
Py , Pn , andPy~n satisfy the probability axioms, provided
that C, and thereforeC(A), are normalized in the usual
way, i.e.,

FIG. 1. Typical paths contributing to~2.3!.
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E dXAuC~A!u251. ~2.9!

Let us call probabilities such as~2.8! spatial probabilities,
emphasizing their relevance to spatial regions. What has
been shown is that we may use~2.6!, in lieu of ~2.8!, as the
formula for spatial probabilities.1 We call~2.6! thesum-over-
paths constructionof spatial probabilities and~2.8! the con-
ventional construction. An essential difference between the
two constructions is that probabilities are added in the con-
ventional construction as seen in~2.8!, whereas amplitudes
are added in the sum-over-paths construction as seen in~2.5!.
This difference has appeared as the difference in how the
sum rule comes out. Remember that~2.7! is essential for the
recovery of the sum rule in the sum-over-paths construction.
The importance of~2.7! in the sum-over-paths construction
is also seen from the following point of view. The probabil-
ity density that a particle is found at positionX at timeT,
namely,uC(X,T)u2, is expressed as

lim
DX→0

1

DXE dXBU E dXAS (
B←DX←A

eiS/\DC~A!U2, ~2.10!

whereDX is supposed to be taken aroundX at timeT and
the sum over paths is identical to~2.3!. At first sight,
*dXBu*dXA•••u2 appears to be of the order of (DX)2, but it
is actually of the order ofDX due to~2.7!, which guarantees
that the resultant probability density is not identically zero.
Also note that~2.7! guarantees that*dXBu*dXA•••u2 gives
the probability of finding a particle inDX at timeT regard-
less ofthe width ofDX.

Now, what if we replacev with V in the preceding para-
graph to define positive quantitiesPY[PC Y

, PN[PC N
, and

PY~N[PC Y~N
as straightforward generalizations ofPy ,

Pn , andPy~n , respectively? SincePY reduces toPy asV
approachesv, one of the minimal requirements is manifestly
satisfied by this generalization.2 All that is left is then to
check whether or not the positive quantities satisfy the prob-
ability axioms. Let us formulate this idea.

The sum-over-paths amplitude for a class of pathsC is
generally defined by

FC ~B;A![(
C

exp~ iS/\!, ~2.11!

where the sum is over the paths in classC ~although not
written out explicitly, paths are fromA to B!. Let nowC be
eitherC 15C Y , C 25C N , or C 1~2(5C Y~N). The sums for
C 1 , C 2 , and forC 1~2 are, respectively, over those paths
that enterV, avoidV, and go throughVøV̄ ~see Fig. 2!,
whereV̄[DX3DT, and ‘‘to enterV ’’ means to enterDX at
least once betweenDT, and ‘‘to avoidV ’’ means never to
enter DX during DT. We define positive quantities
Pj[PC j

andPj~k[PC j~k
( jÞk) by substituting~2.11! into

~2.6!.3 Let us check the probability axioms. Positivity is ob-
vious. To check the sum rule, we use

F j~k~B;A!5F j~B;A!1Fk~B;A! ~ jÞk!, ~2.12!

where F j[FC j
and F j~k[FC j~k

, to find that Pj~k

5Pj1Pk12 ReD@ j ;k#, where

D@ j ;k#[E dXBE E dXAdXA8F j* ~B;A!Fk~B;A8!

3C* ~A!C~A8!, ~2.13!

which is nothing but thedecoherence functionalintroduced
by Gell-Mann and Hartle@6# in more general contexts. The
sum rule is violated unless ReD50. At this stage we have
two choices. One is to give up further investigations, for the
sum rule is generally violated. Another choice, which the
author believes more interesting, is to investigate the possi-
bility of the recovery of the sum rule in appropriately re-
stricted situations. The condition for the recovery of the sum
rule is

ReD@ j ;k#50 ~ jÞk!. ~2.14!

This is the weak decoherence condition in the generalized
quantum mechanics, and is called the no-interference condi-
tion and denoted by C2 in Refs.@10–12#. Last, the normal-
ization can be proved as follows:

1AlthoughFC (B;A) contains information about the future ofv
~i.e., information later thanT!, ~2.6! does not depend on the future
information as~2.8! shows explicitly. This property is called the
‘‘future indifference’’ in the generalized quantum mechanics and
was also pointed out in@15#.
2Not only doPy , Pn , andPy~n satisfy the probability axioms,

they are also physical probabilities. For example,Py is the prob-
ability for the physical eventy that the particle is found inDX at
time T. In general, classes of paths correspond to physical events
through~2.6! when classes are defined by path classifications across
constant time surfaces. It is then natural to expect that classes of
paths would also correspond to some physical events through~2.6!
even when classes are defined by more general path classifications.
What is behind the minimal requirements is this expectation.

3PC thus defined also have the property of ‘‘future indifference.’’
More generally, the decoherence functional~2.13! has this property.
They do not depend on information about the future ofV.

FIG. 2. Solid curve is a typical path contributing toFC Y
(B;A)

and the broken one is that toFC N
(B;A).
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(
j
Pj5E dXBU E dXAS (

j
F j~B;A! DC~A!U2

5E dXBU E dXAF~B;A!C~A!U2

5E dXBuC~B!u251, ~2.15!

where the first equality assumes the fulfillment of C2. In
passing from the first line to the second, we have used

(
j

F j~B;A!5F~B;A!, ~2.16!

which is because we just classified paths into classes and
thus the classes reproduce all the paths when they are recom-
bined. Thus the proof of the probability axioms formally
ends. However, note that we have not shown yet that the path
classification in question is actually possible, in other words,
that F j (B;A) can be meaningfully defined. In the case of
$C Y ,C N%, and also in all cases we will study in later sec-
tions,F j (B;A) are meaningfully defined. In general, how-
ever, a bit of caution is necessary because Feynman’s virtual
paths, like Brownian paths, are not differentiable with re-
spect to time~see, e.g., p. 177 of Ref.@14#!; more precisely,
virtual paths which are differentiable in time are of zero mea-
sure and thus do not contribute to a path integral. As a result,
we cannot make a meaningful classification of paths accord-
ing to, for example, how many times they crossV, because
they may cross the ‘‘temporal boundaries’’ ofV ~by which
we mean the ones of constantX! even an infinite number of
times. Thus the sum-over-paths amplitudeF j (B;A) for
crossing the space-time region for a finite number of timesj
vanishes, so thatF j (B;A) do not add up to the total propa-
gatorF(B;A), i.e., ~2.16! fails. Equation~2.16! can thus be
viewed as the condition for the path classification in question
to be meaningful. Following Refs.@10–12# we call~2.16! the
path classifiability condition and denote it by C1.4 The rea-
son C1 holds for$C Y ,C N% is because ‘‘to enterV ’’ and ‘‘to
avoid V ’’ are ‘‘coarser’’ as information than how many
times paths cross the temporal boundaries ofV. In general,
C1 fails if the path classification in question refers to the
number of times paths cross the temporal boundaries, or to
finer information than that. Such cases were studied in Refs.
@16,10#, where surfaces on which time is not constant were
used to define classes of paths. In later sections, we consider
such cases where C1 holds, and thus only C2 is our actual
concern.

Although we have illustrated the framework with classes
of paths labeled by discrete labelj , the extension to cases of
continuously labeled classes is straightforward, but with a bit
of caution on the form of the probability density formula. Let
l be the continuous label. Dividing thel axis into nonover-
lapping regionsDl j , we have discrete classes$C j%. Writing

C1 and C2 for the discrete classes and taking the limit
Dl j→0, we find that C1 and C2 for the continuously labeled
classes$C l% are, respectively,

E dlFl~B;A!5F~B;A!, ~2.17a!

ReD@l;l8#5d~l2l8!Pl , ~2.17b!

wherePl , which may be called a probability density if C1
and C2 hold, is given by

Pl5 lim
Dl→0

1

DlE dXBU E dXAE
Dl
dlFl~B;A!C~A!U2,

~2.18!

whereDl is taken aroundl andFl(B;A) is the sum over
the paths in class C l . Note that Pl is not
*dXBu*dXAFl(B;A)C(A)u2, which gives incorrect results
whenl is the position of intersectionX of a constant time
surface@see~2.10!#. If C2 holds,*dXBu*dXA•••u2 is of the
order ofDl and thus theDl→0 limit does not vanish iden-
tically. If C2 fails, it is of the order of (Dl)2 and thus
Pl[0. Continuously labeled classes of paths are treated in
Sec. V B. In cases where paths are classified into more than
two classes, C2 is checked forall pairs of classes; it is only
when ReD vanishes for all pairs that C2 holds. If ReD van-
ishes for some pairs but not for the others, we do not define
probabilities for any classes.

To summarize, we have reached the following answer to
Question 3: We can define probabilities for classes of paths
according to Eq.~2.6!, provided that both the path classifi-
ability condition C1 and the no-interference condition C2
hold. We do not define probabilities if either of the two con-
ditions fails. In cases where paths are divided into more than
two classes, C2 is checked forall pairs of classes; it is only
when ReD vanishes for all pairs that C2 holds. If ReD van-
ishes for some pairs but not for the others, we do not define
probabilities for any classes.

B. The status of the conditions: Assuring a consistency
between wave and particle natures

and defining a space-time analog of observables

Before going to explicit examples, it is instructive to re-
call how the two conditions came to hold in the case of
$C y ,C n% ~more generally in cases where classes of paths are
defined by path classifications across constant time surfaces!.
The success of C1 was the result of

E dXF~B;X,T!F~X,T;A!5F~B;A!, ~2.19!

which is the composition law of the propagator across a sur-
face of constant time, or equivalently, the classification of
the paths connectingA andB with respect to intersectionX
of an intermediate surface of constant timeT. The nondif-
ferentiable property of paths does not prevent us from clas-
sifying paths in this way, because they move only forward in
time to cross the surface once and only once. Equation~2.19!
is an alternative expression of

E dXuX&^Xu51, ~2.20!

4In the generalized quantum mechanics, Eq.~2.16! appears as the
operator equation(aCa5exp(2iHT/\), whereH is the Hamil-
tonian andCa are the class operators, which in the position repre-
sentation correspond to our sum-over-paths amplitudes.
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where the right-hand side represents the identity operator in
Hilbert space. Condition C1, a generalization of~2.19!, is
therefore a generalization of the completeness~2.20! to cases
of classes of continuous paths. We may alternatively call C1
the ‘‘completeness condition.’’ Next, it is Eq.~2.7! which
made C2 hold for$C y ,C n%, and is an alternative expression
of

E dX^XuX8&5d~X2X8!. ~2.21!

Condition C2, a generalization of~2.7!, is therefore a gener-
alization of the orthogonality to cases of classes of continu-
ous paths. We may alternatively call C2 the ‘‘orthogonality
condition.’’

In this way, C1 and C2 generalize the completeness and
the orthogonality of state vectors in Hilbert space to cases of
classes of continuous paths in space-time. We may say, with
some abuse of language, that the two conditions define a
space-time analog of observables~the word ‘‘observables’’
means observables in Hilbert space!; a set of classes of paths
satisfying the two conditions might be said to be a space-
time analog of observables. Eigenvalue problems of observ-
ables give real eigenvalues and they directly correspond to
possible outcomes of measurements. By contrast, it is not
clear how classes of paths satisfying C1 and C2 can be re-
lated to measurements in a general way, although probabili-
ties are definable for them. Nevertheless, a set of classes of
paths satisfying the two conditions is expected to havesome
physical meaning, since~2.6! with C1 and C2 is a natural
generalization of physical probabilities~2.8!. To examine
this expectation, we will study some explicit examples in
Sec. III.

It should be emphasized that the decoherence functional
~2.13!, and therefore condition C2, have nothing to do with
outer degrees of freedom, i.e., environments.5 This is be-
cause C2 is a straightforward generalization of~2.21!. When
we read ReD[ j ;k]50 as ‘‘there is no interference between
two classes of paths,’’ we must be aware that our usage of
the word ‘‘interference’’ is different from the normal one.
That is, the absence of interference between classes of paths
meant by ReD50 is not the one that is achieved by coarse
graining~tracing out! the variables of environments. Rather,
it is a property of the system itself~a particle here!, just as
orthogonality~2.21! is a property of the system itself in the
sense that it holds regardless of external degrees of freedom.
To emphasize this, we may say that C2 is the condition for
classes of paths to beintrinsically noninterfering. Condition

C1 also does not refer to external degrees of freedom. Thus a
set of classes of paths satisfying C1 and C2, a space-time
analog of observables, is an intrinsic property of the system,
just as ‘‘an observable of a system’’ is an intrinsic property
of the system itself~although environments play important
roles when it comes to how the property intrinsic to the
system is probed and recorded in the process of a measure-
ment; the intrinsic property itself is irrelevant to environ-
ments!.

Condition C2 is mathematically the condition that Eq.
~2.12!—the principle of superposition in the context of sum
over paths—does not result in the violation of the sum rule
~2.1b!. Since the principle of superposition is a reflection of
wave nature of a quantum mechanical particle and the sum
rule is a reflection of particle nature, C2 is physically taken
to be a consistency condition between wave nature and par-
ticle nature in the space-time region used to define classes of
paths. More precisely, the combination of C1 and C2 should
be said to be a consistency condition between the two na-
tures, because both of them were assumed to hold in the
proof of normalization of the probabilities.

C1 may be regarded as the ‘‘normalization’’ condition on
sum-over-paths amplitudes and~2.12! as representing the
‘‘exclusiveness’’ at the level of sum-over-paths amplitudes.
We may therefore say that a set of classes of paths with C1
and ~2.12! is an ‘‘exhaustive set of mutually exclusive
classes of paths,’’ in which, however, note that the words
‘‘exhaustive’’ and ‘‘exclusive’’ are used at the level of am-
plitudes but not at the level of probabilities or events. This
terminology is often used in the generalized quantum me-
chanics, but is not used in this paper. Instead, we would like
to reserve the words exhaustive and exclusive for use at the
level of probabilities or events, not at the level of amplitudes.
If both C1 and C2 hold for a set of classes of paths, we
regard the set of classes of paths as anexhaustive set of
mutually exclusive events~ESEE!, because quantities satisfy-
ing the probability axioms are considered as being defined
for some ESEE and because C1 and C2 together guarantee
that quantities~2.6! defined for the set of classes of paths
satisfy the probability axioms. Roughly speaking, if C2
holds, an ‘‘exhaustive set of mutually exclusive classes of
paths’’ turns into an ESEE in the sense that quantities~2.6!
come to satisfy all the probability axioms. In general, how-
ever, we have to distinguish the two notions—an ESEE and
an exhaustive set of mutually exclusive classes of paths—
because C2 does not hold in general. One~maybe only one!
exceptional case is when the classes of paths are defined
according to where paths intersect a surface of constant time;
in this case C2 holds identically as shown in Sec. II A and
hence we may identify the two notions.

Looking back, we have started from virtual paths and ar-
rived at a certain scheme to define probabilities for classes of
paths. This means that we have been in effect engaged in the
construction of a method which judges whether or not a set
of classes of paths is an ESEE by using virtual paths instead
of real physical paths.

5This is a bit of an exaggeration; environments can affect C2
through the preparation of the initial wave functionC(A) and a
potential is an idealization of some environments. It is more accu-
rate to say that C2 is written fully in terms of variables of the
system.
6This statement is intended for the present model. If we have a

particle coupled to environments, we may write down the decoher-
ence functional for the total system. Integrating out the variable of
the environments, we arrive at a reduced decoherence functional for

the distinguished particle. In this way, a certain type of ‘‘environ-
mental no-interference’’ can be discussed with decoherence func-
tionals in general; see@17#.
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III. EXAMPLES OF PROBABILITIES FOR HISTORIES

Here we study some explicit sets of classes of paths de-
fined by path classifications with respect to a space-time re-
gion V5DX3DT. We take DX5@a,b#(a,b) and DT
5@TI ,TII #(TI,TII ), and denote the spatial regionsX,a,
a,X,b, andX.b by R1, R0, andR2, respectively~see
Fig. 3!. Section III A illustrates calculations, and Sec. III C
summarizes probability-definable examples.

Reminder: The probability-definable situations found in
this section are very simple ones, and one may be disap-
pointed at the ‘‘triviality’’ of the results after following rela-
tively long arguments. To prevent such improper impres-
sions, the author would like to repeat here that probabilities
for continuous histories have not been well understood in the
histories approach, so that even a simple example is impor-
tant. Probabilities for histories are generalizations of prob-
abilities for observables, so that no example should be con-
sidered ‘‘trivial.’’ If we feel the results ‘‘trivial,’’ it is simply
because the results are consistent with our intuition, which in
turn means that our approach is a successful one.

A. Illustrating sum-over-paths calculations
for particular classes

Consider all paths connecting end pointsA andB such
that TA,TB , and classify them according to the following
criterion: which spatial regionRj ( j50,1,2) paths cross at
times TI and TII (TA,TI,TII,TB), and whether or not
paths enterV. Let us denote byC k,s, j the class of paths
which start fromA, go throughXIPRj at timeTI , enterV
(s51) or avoidV (s52), go throughXIIPRk atTII , and
arrive atB.7 Note that labelsk,s, j are time ordered with the
earliest to the right. The number of times paths cross the
temporal boundaries ofV is not used as a label of classifi-
cation, so that C1 holds. All paths can be classified into the
following 11 nonempty classes~see Fig. 4!:

$C k,s, j u~k,s, j !5~0,1,0!,~1,1,0!,~2,1,0!,~1,1,2!,

~0,1,2!,~2,1,1!,~0,1,1!,~1,1,1!,

~2,1,2!,~1,2,1!,~2,2,2!%. ~3.1!

We express each (k,s, j ) by an integer J by letting
(0,1,0) correspond toJ51, (1,1,0) to J52, . . . , and
(2,2,2) to J511. For example,C 3[C 2,1,0 , C 5[C 0,1,2 ,
C 9[C 2,1,2 , etc.

To calculate~2.11! for ~3.1!, decompose the sum over
paths into three sums over partial paths and two integrations:
a sum over partial paths fromA to I , that fromI to II , that
from II to B, and integrations over intermediate positions
XI andXII ; symbolically

(
C J

5E
Rk

dXII (
B←II

E
Rj

dXI(
C̃ J

(
I←A

, ~3.2!7Symbols I and II , which, respectively, represent space-time
points (XI ,TI) and (XII ,TII ), do not implyXIPR1 nor XIIPR2 .

FIG. 3. Configuration ofV in Secs. III and V.

FIG. 4. Representative paths from each of the 11 classes
$C JuJ51,2, . . . ,11%. Only the @TI ,TII # part of the path is shown
for classesC 2 , . . . ,C 11.
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whereC̃ J represents the@TI ,TII # part of C J , and we have
used the convention thatk and j are specified byJ according
to the correspondence betweenJ and (k,s, j ) ~for example,
J53 impliesk52 andj50!, the convention used in the rest
of this paper. In~3.2!, integration signs are used to represent
ordinary integrals and summation signs to represent sums
over paths. The sum( I←A is over all paths fromA to I and
thus gives the propagatorF(I ;A). For the same reason,
(B←II givesF(B;II ). As for ( C̃ J

, we have three cases.~1!

For J51,2, . . . ,7, the sum is over all paths fromI to II to
giveF(II ;I ). ~2! For J510 and 11, paths are subject to the
restriction that they must not enterV on their way fromI
and II , so that the sum is over such paths that move only in
Rj . Just as the sum over all paths connecting two end points
on the entire spaceR([R1øR0øR2) gives the propagator
F between the points inR, the sum over all paths connecting
two end points on the restricted spaceRj gives the propaga-
tor ~‘‘restricted propagator’’! between the points inRj ,
which we shall denote byFRj . The sum over paths in ques-

tion then givesFRj(II ;I ).8 ~For exampleFR1 is the propa-
gator in the presence of an infinite potential barrier blocking
up the regionx.a, i.e., the solution to the Schro¨dinger
equation satisfying thed function initial condition and the
Dirichlet boundary condition atx5a.! ~3! For J58 and 9,
the paths are such that they enter and then come out ofV,
which are therefore~all paths connectingI andII unrestrict-
edly! 2 ~all paths that connectI and II by moving only in
the restricted spaceRj ). Thus the sum over paths in question
gives

wRj~ II ;I ![F~ II ;I !2FRj~ II ;I !, ~3.3!

whereXI ,XIIPRj . Putting all these together, and using

Q i~X![H 1, XPRi

0, otherwise ~3.4!

we arrive at

FJ~B;A!55
E E dXII dXIQk~XII !Q j~XI !F~B;II !F~ II ;I !F~ I ;A!, J51,2, . . . ,7

E E dXII dXIQk~XII !Q j~XI !F~B;II !wRj~ II ;I !F~ I ;A!, J58,9

E E dXII dXIQk~XII !Q j~XI !F~B;II !FRj~ II ;I !F~ I ;A!, J510,11,

~3.5!

whereFJ[FC J
. From ~3.5! with the help of the composition law~2.19!, it is easily shown that

(
J51

11

FJ~B;A!5F~B;A!. ~3.6!

This should be taken for granted, for we know from the earlier argument that C1 holds in the present case.
To study C2, it is very useful to introduceCJ(II ), ‘‘branches’’ ofC(II ), which in the present case is given by

CJ~ II ![5
Qk~XII !E dXIF~ II ;I !Q j~XI !C~ I !, J51,2, . . . ,7

Qk~XII !E dXIw
Rj~ II ;I !Q j~XI !C~ I !, J58,9

Qk~XII !E dXIF
Rj~ II ;I !Q j~XI !C~ I !, J510,11,

~3.7!

whereC(I )5*dXAF(I ;A)C(A). BranchesCJ(II ) satisfy

C~ II !5(
J

CJ~ II !, ~3.8!

which is a direct consequence of~3.6!. The decoherence functional is now compactly expressed as

8One may feel that this argument is rather naive, which is basically the same argument as the method-of-image calculation of a restricted
sum over paths@18#. It is naive but is correct; the naive handling of paths could be justified by using a sum-over-paths method on a
space-time lattice@19#. Alternatively, though less rigorous than the lattice method, we can use the functionF defined by integral equation
~5.12! introduced later to calculate the restricted sum over paths in the manner described in Sec. 2.2 in Chap. III of@20#. All these methods
give the same result.
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D@J;J8#5E dXII E dXII 8d~XII2XII 8!CJ* ~ II !CJ8~ II 8!

5E dXIICJ* ~ II !CJ8~ II !, ~3.9!

whereII 8[(XII 8,TII 8) such thatTII 85TII , and thed func-
tion results from theXB integration in~2.13! carried out by
use of~2.7!. Since the effective integration range in the sec-
ond line of ~3.9! is RkùRk8,

D@J;J8#50 when RkùRk85f, ~3.10!

which is true regardless ofC(I ) and reduces the number of
D ’s we have to calculate to check C2. The formula for prob-
abilities ~2.6!, valid when C2 holds, is simplified to be

PJ~[PC J
5D@J;J# !5E dXII uCJ~ II !u2. ~3.11!

Equations~3.7!–~3.11! are the main results of this subsec-
tion. They, except~3.7!, have generality over the present
particular set of 11 classes of paths.

B. Branch wave functions

Since branches ofC(II ) play important roles in the fol-
lowing discussion, let us here give the general definition of
branches and illustrate some of the properties. For simplicity,
however, we still consider cases where classes of paths are
defined by path classifications with respect toV. Given a set
of classes of paths$C J%, branches ofC(II ) are defined by

CJ~ II ![QJ~XII !E dXIS (
C̃ J

eiS/\DQJ~XI !C~ I !,

~3.12!

where QJ(X), a generalization of~3.4!, represents class-
dependent restrictions~if any! on the range ofX.9 If C1
holds, the branches satisfy~3.8!. Compare~3.12! with

C~ II !5E dXI S (
II←I

eiS/\DC~ I !, ~3.13!

where the sum in the parentheses gives the propagator
F(II ;I ). If we substitute~3.12! into the right-hand side of
~3.8!, we get~3.13!; conversely we are naturally led to~3.8!
with ~3.12! by decomposing all paths between the two sur-
faces of timeTI and timeTII into a sum of classes of paths
C̃ J . Just asC(II ) is the result of the time evolution of
C(I ) by all paths fromI to II ~in the sense that the propa-
gator is contributed from all paths!, CJ(II ) might be said to
be the result of the ‘‘time evolution ofQJ(XI)C(I ) by the
paths inC̃ J . ’’ If we take an intermediate timeT between

TI andTII to consider the@TI ,T# part of the paths inC̃ J , we
can define the ‘‘branch wave function’’CJ(X,T) as the re-
sult of the time evolution ofQJ(XI)C(I ) by that part of the
paths; the branch wave functions satisfy(JCJ(X,T)
5C(X,T) at an arbitrary intermediate timeT. Although we
say that ‘‘CJ(X,T) is the result of the time evolution of
QJ(XI)C(I ), ’’ this expression should be used with caution.
In general,CJ(X,T) does not agree withQJ(XI)C(I ) as
T→TI . @On the other hand,CJ(X,T) agrees withCJ(II ) at
time TII for all J.# This is because the sum over the
@TI ,T# part of the paths does not form a propagator in gen-
eral. For example, in the case of~3.7!, C8(X,T) is given by
*dXIw

R1(X,T;I )C(I ), wherewR1(X,T;I ) is ~3.3! with II
replaced by (X,T) (XPR1); wR1(X,T;I ) is not a propagator
since it vanishes asT→TI . ThereforeC8(X,T) also van-
ishes in the limit. By contrast,C10(X,T) tends to
Q1(XI)C(I ) in the limit becauseFR1(X,T;I ) is a propaga-
tor. Equation~3.8! with ~3.12! should be understood as the
decomposition ofC(II )←C(I ) into the sum of branch mo-
tions. Note that it is the motion of the wave function from
TI to TII , not simply the wave function at timeTII , that gets
decomposed. This point is important.

As understood from above, there is no general law of
evolution for branch wave functions. HowCJ(X,T) evolves
depends on how the relevant classC̃ J ~and henceC J) is
defined. If the class has some special property,CJ(X,T)
obeys some special rule of evolution accordingly. An inter-
esting case is, as we saw, that a class of paths forms a propa-
gator on an appropriate space. In this case, the motion of the
relevant branch wave function is norm conserving~a bit of
caution is necessary at the final timeTII as explained below!;
as a result,PJ can be calculated from the information at time
TI . To illustrate this, consider again the 11 classes of paths.
Then( C̃ J

eiS/\ for J510 and 11 form restricted propagators

FR1 andFR2, respectively, having the property

E
Rj

dX9@FRj~X9,T9;X8,T8!#*FRj~X9,T9;X,T8!

5d~X82X!. ~3.14!

Thus ~3.11! reduces to

PJ5E
Rj

dXI uC~ I !u2, J510,11. ~3.15!

The other nine branch motions are not norm conserving, so
that the above expression is not valid for otherJ. For ex-
ample, let us considerC1(X,T). This branch wave function
starts asQ0(XI)C(I ) anddoesundergo unitary time evolu-
tion by the unrestricted propagatorF(II ;I ) from TI to just
before TII , but at timeTII the result of the unitary time
evolution is projected ontoR0 because of the factor
Q0(XII ) involved in the definition ofC1(II ). The norm con-
servation ofC1(X,T) breaks down at this moment, and thus
the norms ofC1(II ) andQ0(XI)C(I ) are not the same. This
is the reason branch motions are not norm conserving for
J51,2, . . . ,7. As toJ58 and 9,( C̃ J

eiS/\ does not form a
propagator@since ~3.3! does not have the property corre-
sponding to~2.7!#, so thatC8(X,T) andC9(X,T) do not

9SinceQJ(XII ) andQJ(XI) are parts of the definition ofC̃ J , it is
not necessary to write them explicitly in~3.12!. But we have exhib-
ited them to remind ourselves that, in general, theXI integration is
restricted to some ranges and also thatCJ(II ) vanishes in some
ranges due to the definition ofC̃ J .
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undergo unitary time evolutions even before timeTII , and
thus the two branch motions are not norm conserving.

In terms of branch wave functions, our approach is sum-
marized as follows: C2 is the condition that the real part of
the overlap integral between branch wave functions at time
TII vanishes for all different pairs of branches; values of the
probabilities defined when C2 holds are given by the abso-
lute squares of the norms of branch wave functions at time
TII . We stressed in Sec. II B that C2 is a consistency condi-
tion between wave nature and particle nature. In terms of
branch wave functions, this is understood as follows.
When C2 is satisfied, we can expressPJ~J8 in two
ways: *dXII uCJ(II )1CJ8(II )u

2 and *dXII uCJ(II )u2
1*dXII uCJ8(II )u

2. The former is in favor of wave nature
and the latter is in favor of particle nature. The two expres-
sions do not conflict when C2 holds, so that C2 can be taken
to be a consistency condition between the two natures.

Equation ~3.8! is the sum-over-paths counterpart of the
operator identity called ‘‘a resolution of the pure initial state
into branches’’ introduced by Gell-Mann and Hartle for dis-
crete histories@see Eq.~4.10! of Ref. @17##. ~It should be
understood as the resolution of the motion of a wave func-
tion from a given initial state to the final state, rather than the
resolution of the initial state.! Their use of the notion of
branches goes back to@6~a!#. A relativistic version of branch
wave functions was used in the recent study of continuous
histories by Whelan@8~a!#.

C. Probability-definable examples

1. Particle initially localized in R0

Consider~3.1!. C2 requires that the real part of~3.9! be
zero for 55 (511C2) combinations ofJ and J8. Owing to
~3.10!, however, we have only to check the following 15
combinations:

~J,J8!5~1,5!,~1,7!,~2,4!,~2,8!,~2,10!,~3,6!,~3,9!,

~3,11!,~4,8!,~4,10!,~5,7!,~6,9!,~6,11!,

~8,10!,~9,11!. ~3.16!

Although ReDÞ0 in general for these combinations, the de-
pendence ofD@J;J8# onC(I ) through~3.7! leaves the pos-
sibility that C2 holds for restrictedC(I ), which we shall call
the initial wave function from now on. One simple example
showing that this occurs is whenC(I ) is localized inR0 ,
i.e.,

E
R0

dXI uC~ I !u251, C~ I !50 onR1 andR2 .

~3.17!

It follows that CJ(II )50 exceptJ51,2,3, and therefore
D@J;J8# vanishes for all the pairs listed in~3.16!. Thus we
conclude that, if the initial condition of a particle satisfies
~3.17!, C2 holds and probabilities can be defined for the set
of 11 classes of paths. Values of the probabilities are, accord-
ing to ~3.11!,

PJ5H E dXII uCJ~ II !u25E
Rk

dXII uC~ II !u2, J51,2,3

0, otherwise,

~3.18!

where we have usedCJ(II )5C(II ) for XIIPRk for
J51,2, . . . ,7, which follows from~3.7! and~3.17!. In addi-
tion to the initial localization, ifC(II ) is also assumed to be
localized in, say,R1 , we haveP251. ~The localization com-
pletely in R1 at time TII cannot be realized because the
packet spreads as it moves, but we can think of a perfect
localization inR1 as an ideal limit.!

2. Particle moving in R1 (‘‘approximate probabilities’’)

The above example is the only one that the present author
has found so far in which C2 holdsexactlyfor the set of 11
classes. If we allow an approximate satisfaction of C2, a
variety of examples are available. As an example, suppose
that a wave packet is localized inR1 ~far from the left bound-
ary ofV) at timeTI with an appropriate momentum so that
it is not reflected at the left boundary ofV ~see Fig. 5!.
Because of the initial localization,CJ(II ) can be nonzero
only for J56,7,8,10, from which together with~3.16! it fol-
lows that we have only to checkD@8;10#. In the assumed
situation, the motion of the packet is not greatly affected
even if the whole region outsideR1 is covered with an infi-
nitely high potential barrier. This means that the time evolu-
tion of the packet by the propagatorF(II ;I ) on the entire
spaceR is almost the same as that by the restricted propaga-
tor F1(II ;I ) on the restricted spaceR1 , so thatC8(II )'0
and thusD@8;10#'0. Therefore C2 holds approximately,
which we shall call approximate decoherence. Consequently,
we obtain P10'1, which is reasonable, and
P8~10'P81P10. It might be said that ‘‘approximate prob-
abilities’’ are definable with a small violation of the prob-
ability axioms. But a caution is necessary about what this
means. First, by the word approximate we never mean that
probabilities~true probabilities! given by our theory can be
tested only up to some precision in actual experimental situ-
ations. Rather our approximate probabilities are given by the
theory itself. Second, the current situation must be distin-
guished from cases where probabilities can be defined for a
closed system but only approximately for its subsystem due
to the interaction between the subsystem and the other de-
grees of freedom of the closed system. Rather, our approxi-
mate probabilities are defined for a closed system~a particle!
itself.

3. Particle crossingV (a puzzling result and its resolution)

Suppose that a wave function is localized inR1 at time
TI , crossesV from left to right, and is localized inR2 at
time TII ~see Fig. 6!. ~We consider a perfect localization in
R2 at TII as an ideal limit.! Since the packet crossesV from
left to right, we expect that the probability for the class of
paths crossing the region is unity, i.e.,P651. However, in
the assumed situation, our approach does not define prob-
abilities for the 11 classes of paths~3.1!. To see this, note
that Eq.~3.8! is now
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C~ II !5C6~ II !1C8~ II !1C10~ II !. ~3.19!

This follows from CJ(II )50 for J51, . . .,5,9,11 since
C(I )50 onR0 andR2 and fromC7(II )50 sinceC(II ) is
assumed to be zero onR0 . The three branches on the right-
hand side are nonvanishing. By using~3.19! for XIIPR1 , we
have

05C8~ II !1C10~ II !, ~3.20!

which is in fact valid on the entire space due to the factor
Qk(XII ) involved in the definition ofCJ(II ). In spite of
~3.20!, we do not remove the last two terms from the right-
hand side of~3.19! or, more generally, we treat the right-
hand side of~3.8! in such a way that all nonvanishing
CJ(II )’s are left on it, even though some of them add up to
zero as in the present case; we will then notice later an in-
teresting correspondence between the ‘‘naturalness’’ of the
decomposition into branches and the definability of prob-
abilities for histories. It follows from~3.20! that

D@8;10#52E dXII uC10~ II !u2521, ~3.21!

where the last equality follows from the property that the
branch motionC10(II )←Q1(XI)C(I ) is norm conserving
as argued in Sec. III B. Therefore C2 fails due to the inter-
ference between the two classes of paths, namely, the class
of paths crossingV and the class of paths reflecting off the
left boundary ofV. Thus probabilities cannot be defined and
our expectationP651 is betrayed. In the terminology of
Griffiths ~extended to cases of continuous histories!, the 11
classes of paths arenot consistentin the situation where the
wave packet crossesV from left to right. It is possible, how-
ever, to find such classes thatare consistent in the situation
and to haveP651. Such classes are constructed by coarse
graining the 11 classes as follows.

Let us combineC 8 andC 10 into one classC 8~10, and
then ask if probabilities can be defined for the resultant ten
classes

$C JuJ51,2, . . . ,7,8~10,9,11% ~3.22!

in the same situation as we assumed above. We already
know thatD@J;J8#50 if J andJ8 are chosen from 1, . . . ,7,
9, and 11, and thus all that is left isD@J;8~10#. To evaluate
this, we go back to~2.13! and recall that the sum-over-paths

amplitude forC J1~J2~•••

is the sum of the respective ampli-
tudes@see~2.12!#. It generally follows that

D@J1~J2~•••;J18~J28~•••#

5E dXIICJ1~J2~•••* ~ II !CJ
18~J

28~•••~ II !, ~3.23!

whereJi and Ji8 are some values ofJ andCJ1~J2~•••(II )

[(JiCJi(II ). Therefore

D@J;8~10#5E dXIICJ* ~ II !@C8~10~ II !#50

~3.24!

due to ~3.20!. Thus C2 does hold and probabilities can be
defined for~3.22!. Values of the probabilities are found to be

P651, PJ50 for JÞ6. ~3.25!

Our expectation is thus met. In this way, we cannot define
probabilities for the set of 11 classes but wecan for the set of
ten classes in the situation we have assumed.

Equation~3.8! for ~3.22! is

C~ II !5C6~ II !. ~3.26!

Compare this with~3.19!. Both of them are mathematically
identical, but~3.19! looks ‘‘odd’’ or ‘‘unnatural’’ in the situ-
ation where a particle crossesV from left to right, because
two branch motions C8(II )←Q1(XI)C(I ) and
C10(II )←Q1(XI)C(I ) do not reflect any characteristic fea-
tures of the motion of the total wave function. For example,
the branch motionC10(II )←Q1(XI)C(I ) is such that it
bounces off the left boundary ofV, and this reflects none of
the characteristic features of the motion of the total wave
function crossingV from left to right. By contrast,~3.26! is
a very ‘‘natural’’ decomposition, since in the assumed situ-
ation the branch motionC6(II )←Q1(XI)C(I ) is identical
to the motion of the total wave function. It can be said that
~3.26! reflects characteristic features of the motion of the
total wave function in the most trivial way. Although the
present author does not have a definite idea of defining
‘‘natural’’ decompositions, it is suggestive that C2 fails
~branch motions are inconsistent! when decomposition~3.8!
takes an unnatural form but it holds~they are consistent!
when the decomposition takes a natural form. This is also the
case in the examples found below.

The ‘‘21 interference’’~3.21! is essentially the same as
that pointed out by Hartle in@7~a!# ~the first full paragraph in
the right-hand column on p. 3188!. There, a coarse graining
of paths was considered according to whether a particle is to

FIG. 5. A particle is localized inR1 away from the left boundary
of V at timeTI with a momentum as indicated by the arrow. Even
if the whole region outsideR1 is covered by an infinitely high
potential barrier, the motion of the packet is not greatly affected.
The no-interference condition holds approximately. It might be said
that approximate probabilities are definable for the set of 11 events
~3.1!.

FIG. 6. Wave function initially localized inR1 crossesV to
arrive inR2 at TII . Naive expectationP651 is betrayed ifC 6 is
treated as a member of the set~3.1!, but it is met if we coarse grain
~3.1! into ~3.22! to treatC 6 as a member of the set~3.22!.
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the left or right ofX50 or both over an extended range of
time T; the resulting classes of paths were denoted by
{ C 10

H ,C 01
H ,C 11

H }, where Hartle’s rule for subscript differs
from ours, and the superscriptH has been attached to indi-
cate his notation. These three classes are theb→a limit of
{ C 10,C 11,C 4~6~8~9} with a50. ~Classes C J for
J51,2,3,5,7 become empty in the limit.! The relevant non-
vanishing branches areC10

H (II )[C10(II ), C01
H (II )

[C11(II ), andC11
H (II )[C4~6~8~9(II ). Consider again a

wave packet initially localized inX,0 @the initial packet
was localized inX.0 in @7~a!#, which simply results in ap-
propriate changes of subscript below#. In this situation,
C01

H (II )50, C11
H (II )5C6~8(II ), and we already know

that the decomposition ofC(II ) into branches for~3.1! is
given by ~3.19!; thus, for Hartle’s three classes, the decom-
position isC(II )5C11

H (II )1C10
H (II ). C2 does not hold for

his three classes because*dXII @C11
H (II )#*C10

H (II )
5*dXIIC8* (II )C10(II )521 @note that C6(II ) and
C10(II ) do not overlap#. Thus the set of three classes con-
sidered by Hartle and the set of 11 classes considered in this
paper share the same reason for the undefinability of prob-
abilities under the assumed initial condition. The difference
between the two sets lies in the following point. A set of
decohering classes,~3.22!, can be constructed by performing
a coarse graining on the set of 11 classes that combinesC 8
andC 10, whereas it is not possible to do a similar thing for
his three classes becauseC 6 andC 8 are already combined
into C 11

H . Leaving these two classes separate but instead
combiningC 8 andC 10 is essential in order for us to find the
decohering set of classes of paths~3.22!, for which probabili-
ties can be defined.

In passing, the right-hand side of~3.23! can be written as
(Ji

(J
i8
D@Ji ;Ji8#. An important consequence of this is that a

coarse-grained set of such a set that satisfies C2 also satisfies
C2. For instance, if we coarse grain~3.22! into
$C 6 ,C 1~•••~5~7~•••~11%, it also satisfies C2 in the situation
we assumed, and we have P651 and
P1~•••~5~7~•••~1150.

4. Antisymmetric initial conditions

Let us consider

$C 1~2~•••~9 ,C 10,C 11%. ~3.27!

This is a coarse-grained set of~3.1! but not of ~3.22!. We
already knowD@10;11#50. ForJ510 and 11, we have from
~3.23!

D@1~2~•••~9;J#5E dXIIC1~•••~9* ~ II !. ~3.28!

If C2 holds, i.e., if the real part of~3.28! vanishes for
J510 and 11, probabilities can be defined for~3.27! with
values given by

P1~2~•••~95E dXII uC1~•••~9~ II !u25E
R0

dXI uC~ I !u2,

~3.29a!

PJ5E
Rj

dXI uC~ I !u2 ~J510,11!, ~3.29b!

where we have used~3.15! to obtain ~3.29b!; to obtain
~3.29a!, substitute C(II )5C1~•••~9(II )1C10(II )
1C11(II ) into *dXII uC(II )u251, use the assumption that
C2 is satisfied, and then use~3.29b! to have
*dXII uC1~•••~9(II )u21*R1øR2

dXI uC(I )u251, from which

together with*dXI uC(I )u251 we obtain the final expres-
sion. Now, by insight, we can find the following two situa-
tions where C2 actually holds.

Example 1: LetR0 be a,X,b. Consider aC(I ) such
that it is antisymmetric with respect toX5a and is localized
in 2DX aroundX5a ~see Fig. 7!. Then~3.28! vanishes for
J511 becauseC11(II )50. We further assume no potential
~or at most a potential symmetric with respect toX5a!
throughoutDT so that the wave function evolves keeping its
initial symmetry. If we pay attention toC(II )←C(I ) on
R1 , we cannot distinguish it fromC10(II )←Q1(XI)C(I ) on
R1 . ThusC10(II )5C(II ) on R1 , and therefore

C1~•••~9~ II !5C~ II !2 (
J510,11

CJ~ II ! ~3.30!

is zero onR1 . By definition,C10(II )50 outsideR1 . There-
foreC1~•••~9(II ) andC10(II ) are nonoverlapping and thus
D@1~2~•••~9;10# vanishes and C2 holds. Values of the
resultant probabilities are, from~3.29!,

P1~2~•••~95E
a

b

dXI uC~ I !u25
1

2
, ~3.31a!

P105
1

2
, P1150. ~3.31b!

These values look reasonable due to the conservation of the
symmetry of the wave function duringDT. Equation~3.8! is
nowC(II )5C1~•••~9(II )1C10(II ), and this is understood
as the decomposition of the motionC(II )←C(I ) of the
wave function into two branches: One is the branch motion
C10(II )←Q1(XI)C(I ) and this coincides with
C(II )←C(I ) ‘‘projected’’ onto R1 , and the other branch
motion is the ‘‘sum’’ of the branch motions
CJ(II )←Q j (XI)C(I ) for J51,2, . . . ,9~the branch motions
are null for J54, 5, and 9! and this coincides with
C(II )←C(I ) ‘‘projected’’ onto R0 . The decomposition

FIG. 7. A situation where probabilities can be defined for the set
of three classes of paths~3.27!. The wave function at timeTI is
antisymmetric with respect toX5a and is localized within 2DX.
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into these two branch motions looks ‘‘natural’’ from the
viewpoint of symmetry. Again, C2 holds when decomposi-
tion ~3.8! takes a ‘‘natural’’ form. By the way, it is worth-
while to note that the present example is an explicit case
where the form of a potential inV is crucial for the success
or failure of C2. Any deviations from a potential symmetric
with respect toX5a lead to the failure of C2 when the initial
wave function is antisymmetric as assumed.

Example 2: The above example motivates us to try an
initial wave function which is antisymmetric with respect to
a and b. Such a function is periodic, so that it is not nor-
malizable on the entire space which has been assumed to be
unbounded. This is the difficulty we had in@12#, which can,
however, be overcome by working in a bounded space. Sup-
pose that the entire space is now 0,X,L. We assume that
the spatial location ofV satisfies the following commensu-
rability condition:

L

a
5p and

L

L2b
5q for positive integersp andq.

~3.32!

We assume no potential throughoutDT for simplicity. We
further assume thatC(I ) is antisymmetric with respect to
X5a and b; such a function is generally expressed as
A2/L(n51

` an sin(npqpX/L), where(nuanu251 and we have
imposed the Dirichlet boundary condition atX50 andL.
Because of the symmetry of the problem,C10(II ) agrees
with C(II ) on R1 and vanishes elsewhere,C11(II ) agrees
with C(II ) on R2 and vanishes elsewhere, and therefore
C1~•••~9(II ) agrees withC(II ) on R0 and vanishes else-
where. ThereforeC1~•••~9(II ), C10(II ), andC11(II ) are
nonoverlapping, and thus C2 holds. Values of the resultant
probabilities are found to be

P1~2~•••~9512S 1p1
1

qD , P105
1

p
, P115

1

q
, ~3.33!

where we have used~3.29! with symmetry considerations.
These values are reasonable from the symmetry of
the problem. Equation~3.8! is now C(II ) 5C1~•••~9
1C10(II )1C11(II ), and this looks ‘‘natural’’ from the
viewpoint of symmetry. As in Example 1, the form of a
potential inV is crucial for the success or failure of C2. A
potential symmetric with respect toX5a,b and (a1b)/2
does not change the above results@20#, but any deviations
from this lead to the failure of C2 when the initial wave
function has the assumed symmetry. Moreover, in this ex-
ample, the spatial location ofV is also important for C2 to
hold. The two examples studied here illustrate that, along
with restrictions on the initial condition, any elements in-
volved in the decoherence functional can affect the success
or failure of C2.

5. Probabilities for {C Y ,C N}

C 1~2~•••~9 is nothing but classC Y considered in Sec. II,
andC 10~11 is classC N . The set of two classes$C Y ,C N% is
a coarse-grained set of~3.1! and also that of~3.27!. From
what has been studied, we can give three situations in which
C2 holds for$C Y ,C N%. They are~1! whenC(I ) satisfies
~3.17!, ~2! whenC(I ) satisfies the antisymmetric initial con-

dition considered in Example 1 in Sec. III C 4, and~3! when
C(I ) satisfies the antisymmetric initial condition and when
V satisfies the commensurability condition considered in Ex-
ample 2 in Sec. III C 4. Values of the resultant probabilities
are (PY ,PN)5(1,0), ~1/2,1/2!, and (121/p21/q,1/p
11/q) in the order mentioned. Note that$C Y ,C N% is not a
coarse-grained set of~3.22!; in the situation considered in
Sec. III C 3, C2 does not hold for$C Y ,C N% and thusPY and
PN cannot be defined.

6. Transmission and reflection probabilities as special cases
of probabilities for histories

If the initial wave functionC(I ) is localized in R1 ,
CJ(II )50 for J51,2, . . . ,5,9,11. By combining these
‘‘null’’ classes into one, and also combining classes ofJ58
and 10 into another, we consider the following set of four
classes of paths:

$C1~2~•••~5~9~11,C6 ,C7 ,C8~10%. ~3.34!

Equation~3.8! now becomes

C~ II !5C6~ II !1C7~ II !1C8~10~ II !. ~3.35!

For the three terms on the right-hand side, we have from Eq.
~3.7!

CJ~ II !5Qk~XII !E dXIF~ II ;I !C~ I ! ~3.36a!

5Qk~XII !C~ II !, J56,7,8~10 ~3.36b!

where the factorQ1(XI) has been dropped in the first line
due to the assumption of the initial localization inR1 . The
three branchesC6(II ), C7(II ), and C8~10(II ) are thus
nonoverlapping, so that C2 holds and probabilities can be
defined for~3.34!, whose values are found to be

PJ~ II !5E dXII uCJ~ II !u2, J56,7,8~10 ~3.37a!

PJ~ II !50, J51~2~•••~5~9~11. ~3.37b!

Now let us further impose the following restrictions. We
assume that the initial packet is moving towardV from the
left, and also that the special regionDX of V is occupied by
a square potentialV(X)[Q0(X)V, whereV is a positive
constant. This sets up a simple tunneling problem of a par-
ticle incident from the left-hand side of the potential. The
standard treatment of QM tells us how the incident packet
evolves in time@21#. Reaching the barrier region, the wave
function begins to split into two parts, and their overlap be-
comes smaller as time goes on. After a sufficiently long time,
the overlap becomes negligible, and we can clearly identify
the reflected packetCR moving backwards in regionR1 and
the transmitted packetCT moving forward in regionR2 .

Hence, if we choose timeTII to be such a time at which
the overlap is negligible, we may write

C~ II !5CR~ II !1CT~ II !. ~3.38!

194 54NORIFUMI YAMADA



Comparing this with~3.36b!, we find that

C6~ II !5CT~ II !, C7~ II !50, C8~10~ II !5CR~ II !.
~3.39!

Therefore

P65E dXII uCT~ II !u25transmission probability, ~3.40a!

P8~105E dXII uCR~ II !u25reflection probability, ~3.40b!

PJ50, J57,1~2~•••~5~9~11. ~3.40c!

It has now turned out that the tunneling probabilities~the
reflection and the transmission probabilities! are special
cases of probabilities for classes of continuous histories. This
is the main result in this subsection. It should be noted that
the reflection probability is contributed not only fromC8 but
also fromC10 enteringV.

By the way, Eq.~3.40c! shows that there is no reason to
keepC 1~2~•••~5~9~11 andC 7 uncombined so long as we
deal with asymptotic situations whereTII is sufficiently later
than TI . But in general,C 7 is of the same importance as
C 6 andC 8~10. If TII is not sufficiently later thanTI , Eq.
~3.37!, which is valid for an arbitraryTII (.TI), gives a
nonzero value ofP7 . This probability, which decreases as
TII becomes large, deserves to be called the ‘‘trapped prob-
ability.’’ The normalization of probabilities is generally such
that the sum of three time-dependent probabilities, the reflec-
tion, the transmission, and the trapped probabilities, is equal
to one. ~From the standard terminology, however, it is an
abuse of language to callP6 andP8~10 the transmission and
the reflection probabilities, respectively, when the wave
function is not yet split into two nonoverlapping parts.!

IV. INTERPRETATION

From the result of Sec. III C 6, we can draw an important
conclusion as to the interpretation of probabilities for con-
tinuous histories. That is,probabilities for continuous histo-
ries defined by our approach (and hence by the generalized
quantum mechanics) are, in general, not probabilities for a
particle to actually follow the histories. More precisely, it is
not generally the case that the fulfillment of C2 means the
existence of a real physical path which falls within class
C J with probability PJ . This is because we know that the
reflection and the transmission probabilities arenot the prob-
abilities that a particle actually follows such paths that reflect
off or penetrate the potential barrier.

Nevertheless, the probability-definable examples we have
found in Sec. III C give us an impression that probabilities
for continuous histories defined by the present approach are
more or less informative about the particle’s behavior before
timeTII , or in other words, an impression that the probabili-
ties can be used for retrodiction. The present author has no
idea to what extent such an impression has generality. It
would be that the no-interference condition is too broad a
condition and other requirements such as restrictions on the
type of classes of paths are needed in addition to C2 to say
something definite as to what the probabilities mean. For

example, if a classC is such that( C̃e
iS/\ forms a propagator

on an appropriate region of space, the time evolution of the
relevant branch wave function is norm conserving. This spe-
cial property enables us to retrodict that the particle had been
in that spatial region with such and such probability. This is
indeed the case in Sec. III C 4. Without such special proper-
ties, it would be that only a formal~but general! statement is
available. A formal statement is as follows. Let us note that
*dXII uC(II )u251 expresses the existence of a particle at
timeTII . If C2 holds, the left-hand side becomes the sum of
square norms ofCJ(II ) over all classes, and thus

(
J

PJ5E dXII uC~ II !u251. ~4.1!

C2 also guarantees

PJ~J8~•••

5PJ1PJ81•••. ~4.2!

These equations, just Eq.~2.15! rewritten in terms of
branches, read as follows:Each classC J contributes to the
existence of a particle at time TII by the amount PJ , and the
contributions from respective classes are additive and sum
up to unity.10 One might be tempted to propose more detailed
and physical statements, for instance that ‘‘the motion of the
total wave functionC(X,T) agrees with that of a branch
wave functionCJ(X,T) with probability PJ . ’’ However,
Eqs. ~4.1! and ~4.2! do not warrant such statements beyond
the formal one given above.

V. APPLICATION TO TUNNELING TIME
PROBABILITY DENSITIES

A. Introduction

How long a quantum particle spends in a potential region,
the tunneling time problem, has been controversial for more
than 60 years@13#. Although several characteristic time
scales have been proposed based upon different ideas of
measuring~or defining! the time of tunneling, no tunneling
time as a universally acceptable concept has been
established.11 In view of this, some authors argue that there
is no such thing as ‘‘the tunneling time’’ and one can only
associate some characteristic time scales with tunneling pro-
cesses. Undoubtedly, it is of practical importance to study
such characteristic time scales, but, at the same time, the
search for ‘‘the tunneling time’’ should be continued as well
because of its fundamental importance in QM.

10Although we have been using a rectangular space-time region,
this statement would remain unchanged even if more than one rect-
angular space-time region or regions which are not necessarily rect-
angular are used to define classes of paths, provided that timeTII is
identified to be the latest time of the regions.
11This is very similar to the situation surrounding Question 1. It

does not have a unique answer in QM, as mentioned in Sec. I;
different answers~different values of the probability! are obtained
depending on how the particle detection in the space-time region is
designed. Looking for an answer to Question 1 and looking for an
answer to the tunneling time are considered different aspects of the
same desire, that is, the desire to see things from the particle point
of view in a space-time region.
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‘‘The tunneling time,’’ if definable, cannot be completely
unique. It should depend on the shape of the potential barrier
and on the initial condition of the incident wave packet. Just
as the position where a particle is found is described by a
probability density and its mean position under a given initial
condition is calculated by using the density function, it is
reasonable to expect, given an initial condition, that the tun-
neling time is calculated as a quantum mechanical average
with respect to a probability density of tunneling time which
depends on the shape of the potential barrier. In an attempt to
define such a probability density, the following two points
should be taken into account. The first point is that the den-
sity should be independent of the method of measuring the
time of tunneling, or more generally external degrees of free-
dom, just as the probability density of a particle’s position is
independent of how we measure the position; this means that
we expect the tunneling time to have an observablelike prop-
erty. The second point is that the method of processing am-
plitudes ~tunneling time amplitudes! into probabilities~tun-
neling time probabilities! should have generality in QM.
That is, when the method is applied to cases where correct
answers are known, it must reproduce the correct answers.
As such cases, we can think of the probability density of a
particle’s position and, especially in connection with tunnel-
ing, the reflection and the transmission probabilities.

Thinking in this way, and looking back at the arguments
of Secs. II B and III C 6, we find that our approach is suited
to investigating the definability of tunneling time probability
densities.

B. Calculation

We again consider the simple tunneling situation consid-
ered in Sec. III C 6. Starting from~3.34!, we classify paths
connecting two surfaces of constant timeTI andTII accord-
ing to the amount of time paths spent in the barrier region.
Before doing this, let us note the following. If probability
densities are definable for tunneling times~the reflection
time and the transmission time!, these densities integrated
over possible times should reproduce the tunneling probabili-
ties ~the reflection and the transmission probabilities!. Since
the tunneling probabilities can be defined only asymptoti-
cally ~i.e., whenTII is sufficiently later thanTI),

12 it is a
contradiction if tunneling time probabilities should be defin-
able for an arbitraryTII later thanTI . TakingTII sufficiently
later thanTI , and combiningC 7 andC 1~2~•••~5~9~11 into
C 0[C 1~2~•••~5~7~9~11, we consider the following three
classes of paths:

$C 0 ,C cuc5T,R%, ~5.1!

whereC T[C 6 andC R[C 8~10; readc as ‘‘channel.’’ Let
us now ‘‘fine grain’’ C c with respect to the amount of time
t paths spend in the barrier region. The resultant classes are
labeled by the discrete indexc and the continuous indext.
The set~5.1! is fine grained into

$C 0 ,C c,tuc5T,R,0<t<TII %, ~5.2!

where we have setTI50; C c,t is the class of paths which
belong to classC c andspend timet in the barrier region. It
follows that13

(
C c

eiS/\5E
0

TII
dt(

C c,t

eiS/\, ~5.3!

which is also true if we replaceC c and C c,t by C̃ c and
C̃ c,t (C̃ is the @0,TII # part ofC ), respectively, and thus

Cc~ II !5E
0

TII
dtCc,t~ II !, ~5.4!

where

Cc,t~ II ![E dXIS (
C̃ c,t

eiS/\DC~ I !. ~5.5!

This gives nonzero branches ofC(II ) for ~5.2!. „The other
branchC0(II ) is zero because we know from Sec. III C 6
that C1~2~•••~5~9~11(II )50 @sinceC(I ) is localized in
R1# andC750 ~sinceTII is sufficiently later thanTI).… Not-
ing ~3.39! and substituting~5.4! into ~3.35!, we have

C~ II !5 (
c5T,R

E
0

TII
dtCc,t~ II !, ~5.6!

which is Eq.~3.8! written for ~5.2!. Now the no-interference
condition for ~5.2! is given by, according to~2.17b!,

ReD@~c,t!;~c8,t8!#5dc,c8d~t2t8!Pc,t , ~5.7!

where

D@~c,t!;~c8,t8!#5E dXIICc,t* ~ II !Cc8,t8~ II !, ~5.8!

andPc,t is given by, according to~2.18!,

Pc,t5 lim
Dt→0

1

DtE dXBU E dXAE
Dt
dtFc,t~B;A!C~A!U2

~5.9a!

5 lim
Dt→0

1

DtE dXIIU E
Dt
dtCc,t~ II !U2, ~5.9b!

whereFc,t(B;A)[(C c,t
eiS/\ and we have used

(
C c,t

eiS/\5E dXII E dXIF~B;II !S (
C̃ c,t

eiS/\DF~ I ;A!

~5.10!

12This is not true in the case of tunneling by a particle having a
fixed energy. But such a case is an ideal limit of tunneling by a
particle described by a wave packet, which is the case we deal with.

13As will be explained later, a careful treatment is necessary for
t50 for c5R. The following equations in this paragraph need to be
modified accordingly. We will do this later. For now, with the fol-
lowing somewhat inaccurate equations, the author would like to
sketch the essence of how the history approach is going to be ap-
plied to the tunneling time problem.
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to obtain~5.9b!. If C2 holds,Pc,t deserves to be called the
probability density of transmission time forc5T and the
probability density of reflection time forc5R; C2 guaran-
tees that the densities integrated fromt50 to TII reproduce
the transmission and the reflection probabilities. Unfortu-
nately, however, C2 does not hold and the probability den-
sities cannot be defined. We prove this below. Now we must
implement~5.3! explicitly. @Although the conclusion is nega-
tive, how the decomposition~5.6! can actually be accom-
plished with a slight modification is an interesting problem in
its own right. Our secondary aim in this subsection is to
show the process of decomposition in detail.#

Equation~5.3! assumes that the amount of timet a given
path spends in the barrier region can be meaningfully de-
fined. This is not obvious at all, for Feynman’s paths are
nondifferentiable in time. In this paragraph, we argue that a
meaningful way of definingt is the following ~see Fig. 8!:

t[Tf2Ti , ~5.11!

whereTi is the first time the path hitsX5a ~the left bound-
ary ofV) for bothc5T andR, while Tf is the last time the
path hitsX5b ~the right boundary ofV) for c5T andX5a
for c5R.14 Of course,Ti andTf must be proved to be mean-
ingful when paths are nondifferentiable in time. As evidence
of the meaningfulness ofTi ~it is enough to consider either
Ti or Tf), we show that paths can be classified according to
the first time they hit a fixed position.15 From a space-time
point of view, it is convenient to call a fixed positionX a
‘‘surface’’ of constantX, which we shall denote bySX .
Consider if the paths from (X8,T8) to (X9,T9) can be clas-
sified according to the timeTi of their first hit of SX . We

consider the caseX8,X,X9. If this classification is pos-
sible, the following composition law should hold:16

F~X9,T9;X8,T8!5E
T8

T9
dTiF~X9,T9;X,Ti !F~X,Ti ;X8,T8!,

~5.12!

where functionF(X,Ti ;X8,T8) is defined to be the result of
the sum over paths from (X8,T8) to (X,Ti) never hitting
SX before the arrival at (X,Ti). This composition law can be
regarded as the Volterra integral equation of the first kind for
the unknown functionF. Does ~5.12! have a unique solu-
tion? If it does, we may take it as a proof of the meaningful-
ness ofTi .

17 Because of the time translation invariance of
the problem, we may write

F~X9,T9;X8,T8!5F~T92T8uX9,X8!,

F~X,Ti ;X8,T8!5F~Ti2T8uX,X8!. ~5.13!

Equation~5.12! is now of convolution type and we can solve
it for F by performing Laplace transformation on both sides.
The formal solution is found to be18

F~TuX,X8!5
1

2p i Eg2 i`

g1 i`

dsesT
F̃~suX9,X8!

F̃~suX9,X!
, ~5.14!

whereg is an appropriate real number, andF̃ is the Laplace
transform ofF, i.e.,

F̃~suX9,X8![E
0

`

dTe2sTF~TuX9,X8!. ~5.15!

Unless the potential is ill behaved, the complex integral
~5.14! is expected to exist to give a uniqueF. As an illus-
tration of this, and also for our later purpose, we calculate
~5.14! for a free particle. In this case we may further write

14As pointed out by Schulman and Ziolkowski@22#, this definition
of t overestimates the duration, because the path can exit and re-
enter the region betweenTi and Tf . To do the estimation ‘‘cor-
rectly,’’ we must know when and how many times the path crosses
the temporal boundaries ofV. This is, however, impossible because
Feynman’s paths are nondifferentiable in time; they cross a ‘‘sur-
face’’ of constantX even an infinite number of times.Ti andTf are
the most detailed information we can meaningfully talk about.
15This is a quantum mechanical version of the so-called ‘‘first

passage~hitting! time,’’ which is one of the standard subjects in the
field of stochastic processes.

16Studies of the integral equation~5.12! in the context of path
classifications go back to@23#. Recently it was rediscovered in the
study of multidimensional tunneling and called the path decompo-
sition expansion~PDX! @24#.
17Strictly speaking, the existence of a unique solution is only a

necessary condition forTi to be meaningful. More rigorously, we
could discretize both space and time~real time! to defineTi on the
space-time lattice in the manner described in Sec. 2.2 in Chap. III of
@20#. We can then complete the path classification in question on
the lattice, which is an easy task because we have only to deal with
a countable number of paths on the lattice, to obtain an equation
expressing the lattice-path classification. Equation~5.12! is then
derived by taking an appropriate continuum limit. We can then
follow the present procedure to arrive at~5.14!. Hence the mean-
ingfulness ofTi and the existence of a unique solution of~5.12! can
be regarded as the same thing. Working on the lattice, we could also
derive ~5.19! directly @i.e., without using~5.12!# as a sum over
lattice paths.
18As usual, the integration contour for~5.14! is an infinite vertical

line in the complexs plane, and the constantg must be chosen in
such a way that all the singularities of the integrand are on the
left-hand side of the contour.

FIG. 8. The timet a Feynman’s path spends in the barrier
region is defined as the difference between the timeTf at which it
leaves the region for the last time and the timeTi at which it enters
the region for the first time. The casec5T is illustrated. Though a
smooth path is drawn here for legibility, Feynman’s paths are non-
differentiable in time.
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F~T92T8uX9,X8!5F~T92T8uX92X8!,

F~Ti2T8uX,X8!5F~Ti2T8uX2X8!. ~5.16!

The Laplace transform of the free propagatorF(TuX) is @we
use the unitsm/\51 (m is the particle’s mass!#

F̃~suX!5A 1

2is
eiA2isX

2
, ~5.17!

and thus

F̃~suX92X8!

F̃~suX92X!
5eiA2is~X2X8!252 i

]

]X
F̃~suX2X8!. ~5.18!

Substituting this result into~5.14! and changing the order of
*ds and]/]X , which can be justified, we finally obtain

F~TuX!52 i
]

]X
F~TuX! ~5.19a!

5S X2

2p iT3D 1/2expS i X2

2TD , ~5.19b!

whereF is the free propagator. This is the explicit expres-
sion for the ‘‘first hitting amplitude’’F(TuX) for a free par-
ticle; it is the sum ofeiSf ree /\ (Sfree is the free action! over
the paths starting from (0,0) and ending at (X,T) without
hitting the surfaceSX before timeT. Although the variableX
in F(TuX) is supposed to be positive in the context of our
derivation, the final result~5.19b! is valid regardless of the
sign of X. The explicit expression forF for a free particle
with arbitrary end points follows immediately from~5.19b!
with ~5.13! and ~5.16!. In passing,~5.19b! satisfies the fol-
lowing equation:

E
0

T8
dTF~T82TuX8!F~TuX!5F~T8uuXu1uX8u!. ~5.20!

Hence the first hitting amplitudeF evolves, as it were, in
space, just as the propagatorF evolves in time according to
Eq. ~2.19!. What is behind~5.20! is the following path clas-
sification. Let us assumeX,X8.0 for simplicity. The right-
hand side corresponds to the paths which start from (0,0)
and end at (X1X8,T8) without hitting SX1X8 before time
T8. Such paths intersect the intermediate surfaceSX , and the
number of times of intersection is, in general, more than one.
By classifying the paths according to the first timeT they hit
SX , we have~5.20!.19

Definition ~5.11! is incomplete forc5R, for whichTi and
Tf cannot be defined for the paths inC 10. Since they spend
no time in the barrier region, we define thatt50 for them.

This, together with~5.11!, completes our definition oft. Ac-
cordingly, Eq.~5.3! for c5R has to be replaced by

(
C R

eiS/ \5(
C 10

eiS/ \1E
0

TII
dt (

C 8,t

eiS/ \, ~5.21!

where C 8,t is the subclass ofC 8 consisting of the paths
spending timet in the barrier region. FortÞ 0, we may
write C R,t for C 8,t , because a path inC R spending nonzero
time in the barrier region inevitably belongs toC 8. By con-
trast, we may not writeC R,0 for C 10, because those paths in
C 8 for whichTi5Tf also belong toC R,0; as will be clarified
later, their contribution needs a careful treatment, and we
will be led to consider the contribution from those paths in
C R that spend less thane .0 in the barrier region, which is
formally expressed as

(
C R,0<t<e

eiS/ \[(
C 10

eiS/ \1E
0

e

dt (
C 8,t

eiS/ \. ~5.22!

Taking this point into account in advance and noting
C 8,t5C R,t for tÞ0 we rewrite Eq.~5.21! as

(
C R

eiS/ \5 (
C R,0<t<e

eiS/ \1E
e

TII
dt (

C R,t

eiS/ \. ~5.23!

Accordingly, the reflected packet can be decomposed as

CR~ II !5CR,0<t<e ~ II !1E
e

TII
dtCR,t~ II !, ~5.24!

whereCR,t~ II ! is defined by~5.5! and

CR,0<t<e ~ II ![E dXI S (
C̃ R,0<t<e

eiS/ \D C~ I !. ~5.25!

This modification means that we consider the set of classes
of paths

$C 0,C R,0<t<e,C c,tuc5T,R e,t<TII for c5R,

0<t<TII for c5T % ~5.26!

rather than~5.2!; classC 0 can be dropped from elements
because it is null in the sense ofC0(II )50 and thus irrel-
evant for C2. Condition C2 for~5.26! is ~5.7!, in which
t,t8.e for reflection, plus

ReE dXIICR,0<t<e* ~ II !CR,t~ II !50, ~5.27!

wheret . e for CR,t(II ). In passing, if C2 holds for~5.26!,
the probability that the reflection time is less thane is given
by PR,0<t<e5*dXII uCR,0<t<e(II )u2.

Now let us implement~5.3! for c5T and~5.23! explicitly
to obtain branchesCR,0<t<e(II ), CR,t(II ), andCT,t(II ).
Any path inC̃ T can be split into three parts: the part fromI
to the first hit ofSa at timeTi , the part from (a,Ti) to the
last hit ofSb at timeTf , and the part from (b,Tf) to II . The
last part can be reinterpreted as the first hit ofSb at time
TII2Tf after starting fromX5XII at T50. For reflection, a
similar splitting can be applied only to those paths in class
C 8. Thus we have

19In the present context,~5.20! has appeared in connection with a
free particle in one-dimensional space. Interestingly, the same iden-
tity appears in connection with a particle in a weak potential in
three-dimensional space~see, e.g., p. 131 of Ref.@14#!.
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(
C̃ T

eiS/\5Q2~XII !Q1~XI !E
0

TII
dTfE

0

Tf
dTiF~TII2Tf uXII2b!F~Tf2Ti ub,a!F~Ti ua2XI !. ~5.28a!

(
C̃R

eiS/\5Q1~XII !Q1~XI !E
0

TII
dTfE

0

Tf
dTiF~TII2Tf ua2XII !F~Tf2Ti ua,a!F~Ti ua2XI !. ~5.28b!

Note thatF ’s are those defined in the absence of a potential@i.e., given by~5.19!# because the relevant paths stay out of the
barrier region beforeTi and afterTf , whereasF ’s are the propagators in the presence of the rectangular potential@25#. By
changing the integration variablesTf andTi to t andu[Ti , we can rewrite~5.28! into the form oft integrations, whose
integrands are found to be

(
C̃ T,t

eiS/\5Q2~XII !Q1~XI !F~tub,a!E
0

TII2t

duF~TII2t2uuXII2b!F~uua2XI !

52 iQ2~XII !Q1~XI !F~tub,a!
]

]XII
F f ree~TII2tuXII2XI2b1a!, ~5.29a!

(
C̃ 8,t

eiS/\5Q1~XII !Q1~XI !F~tua,a!E
0

TII2t

duF~TII2t2uua2XII !F~uua2XI !

5 iQ1~XII !Q1~XI !F~tua,a!
]

]XII
F f ree~TII2tu2a2XI2XII !, ~5.29b!

where we have used Eq.~5.20! to carry out the u integrations, and then used Eq.~5.19a!; F f ree is the free
propagator. Now it is clear why we have to make a special treatment fort50 for reflection; due toF(tua,a), ~5.29b! behaves
ast21/2 for small t and thus diverges att50, but converges when integrated fromt50. This means that it does not make
sense to consider the contribution from those paths inC 8 whoseTi andTf are exactly the same, which in turn means that
C8,0(II ) and thusCR,0(II ) do not make sense.@We need well-defined branches ofC(II ) to check C2.# As mentioned earlier,
a proper treatment is to consider the contribution from those paths inC 8 whoseTi andTf differ up to e ; their contribution

converges and thus it makes sense to considerCR,0<t<e(II ) defined by~5.25! and ~5.22! with C replaced byC̃ . Now the
nonvanishing branches ofC(II ) for ~5.26! are obtained as follows.CT,t(II ) andCR,t(II ) are obtained by substituting~5.29!
into ~5.5!, noting thatC̃ R,t5C̃ 8,t for tÞ0; cR,0<t<e(II ) is obtained by substituting~5.29b! and( C̃10

eiS/ \5FR1(II ;I ), which

is the restricted propagator onR1, into ~5.22! with C replaced byC̃ and then using~5.25!. Finally, going back to the standard
notation @i.e., writing F f ree(TII2tuXII2XI2b1a)5F f ree„XII2(b2a),TII2t;XI ,0…, etc.# and recoveringm and \, we
arrive at

CT,t~II !5Q2~XII !F~b,t;a,0!
\

im

]

]XII
C f ree„XII2~b2a!,TII2t…, ~5.30a!

CR,t~II !52Q1~XII !F~a,t;a,0!
\

im

]

]XII
C f ree~2a2XII ,TII2t!, ~5.30b!

CR,0<t<e~II !5Q1~XII !EdXIFR1~II ;I!C~I!1E
0

e

dt CR,t~II !, ~5.30c!

where

C f ree~X,T![E dX8F f ree~X,T;X8,0!C~X8,0!, ~5.31!

where the factorQ1(X8) has been dropped from the inte-
grand because the initial packet has been assumed to be lo-
calized inR1 . CT,t(II ) is a part of the transmitted packet
that ‘‘spends the amount of timet in the barrier region’’ in
the sense that the paths contributing to it spend that amount
of time in the region, and analogously forCR,t(II ) and
CR,0<t<e(II ) . In ~5.30b!, 2a2XII is the mirror reflection of
XII with respect toX5a. Note that the contributions from
the motions inside and outside the barrier region are factor-
ized in ~5.30a! and ~5.30b!; in the former, for example, the

factorF(b,t;a,0) corresponds to the motion of the particle
spending t in the potential region, and
C f ree„XII2(b2a),TII2t… corresponds to the free motion
before and after the tunneling; the appearance of
( im)21\]/]XII , the ‘‘velocity operator,’’ is the direct con-
sequence of~5.19a! and is natural, since the first time a par-
ticle hitsSX should be related to its velocity, and it implies
that higher momentum components of the initial packet
make greater contributions toCT,t(II ). By the very con-
struction of the branches ofC(II ), they satisfy

CR,0<t<e~ II !1E
e

TII
dt CR,t~ II !1E

0

TII
dt CT,t~ II !

5C~ II !, ~5.32!
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which is taken for granted since C1 holds. As to C2, there is
a possibility that~5.27! holds ~at least approximately! for a
properly chosene. However, even if it should hold,~5.7!
must also hold in order for C2 to hold. Condition~5.7! has to
be checked only forc5c8, sinceCT,t(II ) andCR,t(II ) are
nonoverlapping. Substituting~5.30a! and ~5.30b! into ~5.8!
and changing the variable of integration fromXII to
XII2b1a for transmission and to2XII12a for reflection,
we have

D@~T,t!;~T,t8!#5F* ~b,t;a,0!F~b,t8;a,0!I ~t,t8;a!,
~5.33a!

D@~R,t!;~R,t8!#5F* ~a,t;a,0!F~a,t8;a,0!I ~t,t8;a!,
~5.33b!

wheret,t8.e for the latter and

I ~t,t8;a![S \

mD 2E
a

`

dXF ]

]X
C f ree* ~X,TII2t!G

3
]

]X
C f ree~X,TII2t8!. ~5.34!

D@(c,t);(c,t8)# depends on the initial condition through
I (t,t8;a) and on the potential throughF(b,t;a,0) or
f(a,t;a,0).

Apparently the real parts of~5.33! do not vanish in gen-
eral. All that is left for the success of C2 is the possibility
that the real parts vanish in some restricted situations. What
can be restricted are the initial conditionC(I ) and the pa-
rameters of the potential,a, b, andV. However,~5.33! ex-
plicitly shows that, regardless of such restrictions,
D@(c,t);(c,t8)# is a continuous function oft andt8, and so
its real part. Thus ReD@(c,t);(c,t8)# can never be propor-
tional tod(t2t8). Therefore, C2 does not hold irrespective
of C(I ), a, b, and V. We conclude that tunneling time
probability densities cannot be defined within the present
framework.@Incidentally,Pc,t vanishes identically since C2
fails. See the comment below~2.18!.# The decoherence func-
tionals would also be continuous int andt8 for more general
potential barriers, although their explicit expressions depend
on the shape of potential. Thus the negative conclusion
reached here for a rectangular barrier would also be true for
more general potential barriers.

Our conclusion is in sharp contrast with that of
Sokolovski, Connor, and Brouard@26#. They have proposed
several probability distributions~probability densities in our
terminology! of traversal time. A detailed review of their
work is out of the scope of this paper, and the present author
would like to point out only the essential differences between
their approach and ours. They also work within the frame-
work of path integral, but start from a different definition of
tunneling~traversal! time which is not~5.11! and use a dif-
ferent prescription to process an amplitude into a probability
density@our prescription is~2.18!#. The biggest difference is,
however, the absence of a criterion like our C2 which is used
to determine probability-definable situations. Probability
densities of tunneling times have also been discussed by Du-
mont and Marchioro@27#. Their discussion implicitly relies
on the assumption that a positive quantity
*dX*dTuC(X,T)u2 with appropriate integration ranges is

meaningful as a ‘‘dwell time’’ that a particle is in the barrier
region irrespective of whether it is eventually reflected or
transmitted. Although this assumption has been accepted by
many authors, it has been questioned by Olkhovsky and Re-
cami @28#. Hauge and Sto”vneng @13~c!# also warn that the
assumption is not universally accepted for wave packets, and
the present author shares the same opinion. Leavens, Aers,
and McKinnon@29# use the Bohm trajectory approach@30#
to define tunneling time probability densities. Unlike Feyn-
man’s paths, Bohm trajectories are associated with positive
weights, and thus the definition of tunneling time probability
densities is straightforward. However, the results heavily rely
on the properties of Bohm trajectories, whose physical mean-
ing is not necessarily clear, so that the reproduction of the
same results by some independent methods is hoped. The
Bohm trajectory approach by Leavens and co-workers and
the Feynman path approach by Sokolovski and co-workers
have been compared in@29~d!#. The present author has re-
cently learned that Leavens@31# had come to the conclusion
that mean transmission and reflection times are meaningless
concepts within the consistent-histories approach.

VI. SUMMARY AND CONCLUDING REMARKS

The main points are as follows.
~1! Most of the studies of the histories approach have

been on discrete histories defined by products of projection
operators in Hilbert space. By contrast, we have studied con-
tinuous histories defined by Feynman’s paths in configura-
tion space.

~2! Probabilities can be defined for a given set of classes
of paths, provided that both C1~the path classifiability con-
dition! and C2 ~the no-interference condition! hold. The
combination of C1 and C2 is considered as a consistency
condition between wave and particle natures. A set of classes
of paths satisfying the two conditions is considered as a
space-time analog of observables. We have focused on cases
where C1 holds.

~3! In general, the probability for a class of paths cannot
be regarded as the probability that the particle actually fol-
lows the paths in the class.

~4! We have found examples of sets of classes of paths for
which C2 holds and probabilities can be defined.

~5! In all the examples, the initial condition of the particle
of interest is appropriately restricted. The examples show,
however, that not only the initial condition but also other
elements entering into the definition of the decoherence
functional can be crucial to the success or failure of C2.

~6! In the examples, restrictions on the initial condition
and on the other elements are essential for the resultant prob-
abilities to take reasonable values consistent with intuition.

~7! The examples imply that C2 holds when decomposi-
tion ~3.8! takes a ‘‘natural’’ form reflecting characteristic
features of the motion of Schro¨dinger’s wave function with
respect toV.

~8! The transmission and the reflection probabilities~for a
rectangular potential barrier! are special cases of probabili-
ties for classes of continuous histories.

~9! Probability densities for the transmission and the re-
flection times cannot be defined for a rectangular potential
barrier no matter how the initial condition is restricted.
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The present approach does not always define probabilities
for histories. One may feel that this is uncomfortable; espe-
cially, one may insist that probabilities should be defined, if
they are definable at all, for an arbitrary initial condition.
This insistence arises perhaps from an implicit assumption
that in the conventional QM probabilities are defined for an
arbitrary initial condition. This is true for probabilities for
observables, but is not necessarily the case in general; such
probabilities that are not always definable also play impor-
tant roles in the conventional QM. For example, tunneling
probabilities, which are very important in understanding tun-
neling phenomena, are not always definable~consider, for
instance, the case when the initial wave packet is localized in
the barrier region!. Tunneling probabilities are special cases
of probabilities for histories, and hence it is not surprising
that probabilities for histories in general are not always de-
finable. However, it should be pointed out that, although C1
and C2 were explained earlier as conditions which define a
space-time analog of observables, the resultant probabilities
are not always definable. The property that probabilities are
always definable for observables is not owned by our analog
of observables. This is what is lost by our generalization of
observables. What is gained is an understanding that the
combination of C1 and C2 makes it possible to introduce the
concept of probabilities for histories into the sum-over-paths
formulation of QM as a natural generalization of probabili-
ties for observables.

All the examples found in Secs. III C are such that not
only C2 but also the medium decoherence condition@Eq.
~2.14! without ‘‘Re’’ # is satisfied. It remains a problem to
find cases, if any, in which the medium decoherence condi-
tion fails but C2 holds. In all the examples found in Sec.
III C, restrictions on the initial condition of a particle~and
also on other elements entering into the definition of the
decoherence functional! are essential for the success of C2,
while C2 always holds when classes of paths are defined by
path classifications across constant time surfaces. This im-
plies that it is only when constant time surfaces are used to
classify paths into classes that C2 holds without restrictions.
Investigation of this implication is of great interest. As to
tunneling time probability densities, we plan to investigate if
appropriate coarse graining of transmission and reflection
times leads to the success of C2. Analysis of other ap-
proaches to tunneling time probability densities from the
viewpoint of the histories approach is also interesting. More
broadly, investigations of the usefulness of the histories ap-
proach in other nonlocal-in-time problems are interesting.
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APPENDIX: ‘‘BY-HAND’’ NORMALIZATION

One might ask if there are other ways of defining prob-
abilities for histories in such a way that the minimal require-
ments are satisfied. Thereareother ways, and one of them is
the following: Abandon~2.6! for C j~k ( jÞk), while main-
taining it forC j andC k , and drop condition C2~we assume
that C1 holds!. Equation~2.15! is then invalid, since the first
equality fails. Let us now define

P̄ j[
Pj

(
k

Pk

, ~A1a!

P̄ j~k[ P̄j1 P̄k ~ jÞk!. ~A1b!

The probability axioms are satisfied byP̄. Considering
$C Y ,C N%, we can easily prove thatP̄Y tends to*dXuCu2 as
V→DX. Thus the above construction ofP̄ meets the mini-
mal requirements. When C2 is satisfied,~2.6! and ~A1! are
the same thing. But otherwise there is a big difference;~A1!
defines probabilities but our approach does not. Why have
we not chosen~A1!, which looks much simpler than our
approach? One reason is that the values which~A1! gives are
not acceptable, as illustrated later. Besides, the present au-
thor is not satisfied with~A1! for the following two reasons.
~1! The ‘‘amplitude sum rule’’~i.e., the superposition prin-
ciple! has not been taken into account, whereas the probabil-
ity sum rule has been forced to hold by adopting it as a
definition. By contrast, neither of the two sum rules is given
priority over the other in our approach; recall that C2 is the
condition for the two sum rules not to conflict.~2! The way
of obtaining normalized probabilities is artificial. Compare
the ‘‘by-hand’’ normalization~A1a! with our ‘‘automatic’’
normalization~2.15!, in which the normalization is a conse-
quence of the normalization at an initial time. By-hand nor-
malizations may be used if it isa priori clear that we are
dealing with an ESEE.20 But it is this very point that needs
careful treatment when we deal with histories, and thus by-
hand normalizations should not be used. It should also be
pointed out that the by-hand normalization is not possible for

20 This is because an ESEE is defined in this paper as a set of
classes of Feynman’s paths satisfying both C1 and C2 and because
the automatic normalization and the by-hand normalization give the
same result if C1 and C2 are satisfied. Note that the present author
is not opposed to the use of by-hand normalizations in general but
to the by-hand normalization of the positive quantities defined by
~2.6!. In fact, by-hand normalizations can be applied to classical
unnormalized probabilities and also to quantum unnormalized prob-
abilities for instantaneous events to get normalized probabilities. In
such cases, the notion of exhaustiveness and exclusiveness isa
priori clear and this, in the present author’s opinion, justifies the use
of by-hand normalizations.
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probability densitiesPl, becausePl[0 if C2 fails, as shown
in Sec. II A. Thus, the by-hand normalization cannot be a
universal procedure of normalization. It seems to the present
author that the ways of defining probabilities for histories are
fairly restricted if we require the following.~1! The approach
must be simple and meet the minimal requirements.~2! In
constructing probabilities from amplitudes, neither the prob-

ability axioms nor the superposition principle must be dis-
carded.~3! The normalization of probabilities should be a
direct consequence of the existence of a particle at an initial
time. All these are satisfied by our approach.

Now let us see by an example that~A1! is not a good
choice. We use results obtained in Sec. III A. The sum-over-
paths amplitude forC Y is calculated as

FY~B;A!5 (
J51

9

FJ~B;A!5F~B;A!2 (
j51,2

E
Rj

dXII E
Rj

dXIF~B;II !FRj~ II ;I !F~ I ;A!, ~A2!

where we have used~3.5! and ~3.6!. The second term~after the minus sign! on the right-hand side of~A2! is equal to
FN(B;A). Assume thatC(I ) is localized inR1 and also assume ideally thatC(II ) is completely localized inR2 ~the same
situation as shown in Fig. 6!. We put~A2! into ~2.6! for C5C Y . Noting *dXAF(I ;A)C(A)5C(I ) and defining

x j~ II ![E
Rj

dXIF
Rj~ II ;I !C~ I !, ~A3!

which vanishes forj52 because of the localization ofC(I ), we obtain

PY5E dXBuC~B!u222 ReE dXBC* ~B!E
R1

dXIIF~B;II !x1~ II !1E dXBU E
R1

dXIIF~B;II !x1~ II !U2. ~A4!

The right-hand side is evaluated as follows. The first term is
unity. The second term is zero because
*dXBC* (B)F(B;II )5C* (II ) and this is zero onR1 . The
third term is unity; to see this, use~2.7! to carry out theXB
integration to get*R1dXII ux1(II )u2, and then use~3.14! to

carry out theXII integration to have*R1dXI uC(I )u2, which
is unity because of the assumption of the initial localization.
Consequently we havePY52, and in the same way we get
PN51. Normalizing these results according to~A1a!, we ob-
tain

P̄Y5
2

3
, P̄N5

1

3
. ~A5!

It thus follows that the probabilities take these fixed values
when the initial and the final packets are localized inR1 and
R2, respectively. It is not reasonable that only these con-
straints completely determine the values of the probabilities.
In conclusion, not only is the by-hand normalization unsat-
isfactory in spirit, it also produces unacceptable results in
practice.
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