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Probabilities for histories in nonrelativistic quantum mechanics
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An effort is continued to define quantum probabilities for continuous histories. The sum-over-paths approach
used in Prog. Theor. Phy87, 77 (1992 is critically reviewed, improved, and applied again. Consistency
between wave nature and particle nature is the criterion used to judge the definability of the probabilities and
is formulated as the path classifiability conditi@®1) and the no-interference conditig@2). A set of classes
of histories satisfying these two conditions is considered as a space-time analog of observables. In particular,
Feynman'’s paths for a nonrelativistic particle are considered as histories and the definability of probabilities for
classes of paths is investigated, where classes are defined by classifying paths according to their behavior with
respect to a rectangular space-time rediba AX X AT. Confining ourselves to cases where C1 is satisfied, we
examine C2 for some sets of classes of paths. Although C2 does not hold in general, some examples are found
where C2 holds. In all the examples, the initial wave function is restricted. In some examples, the location of
Q and/or the potential in the region also affect the success of C2. Due to these restrictions, the resultant
probabilities for classes of paths take reasonable values. A puzzling example in which probabilities cannot be
defined for histories contrary to intuition is resolved by considering an appropriate coarse graining of classes
of paths. Considering a rectangular potential barrier, we show that the reflection and the transmission prob-
abilities are special cases of probabilities for histories, and also that probability densities of transmission and
reflection times cannot be defined. This study may be taken to be a study of the consistent-histories approach
notwith discrete histories defined by products of projection operators but with continuous histories defined by
Feynman'’s paths in configuration space.

PACS numbd(s): 03.65.Bz

[. INTRODUCTION agreeable frameworks have appeared in which Question 2
can be answered. They are thensistent-histories approach
Quantum mechanio®QM) incorporates wave-particle du- constructed by Griffithg4] with extensions by Omrse[5]
ality into the theory. From a particle point of view, we have and thegeneralized quantum mechani&7] by Gell-Mann
the following question. and Hartle. Although they are not exactly the same, the basic

Question 1: What is the probability of finding a particle in ideas are essentially the same, ﬁm_d we shall often r,fafer to
a space-time regionThis appears to be a very simple- these frameworks simply as the “histories approach.” The

minded question. However, in QM, the absence of the notiorrglstorles approach has been of growing interest for several

of a real physical patlalong which a particle actually moves years. When seeing Question 2, one may naturally imagine

kes thi tion difficult t . . A continuous histories. However, most of the studies of the
Makes tis question dificult to answer in a uniqué way. AC-pjstqrieg approach have been discretehistories, which are
tually, Bloch and Burbd1] showed that the probability in

! - X . snapshots of continuous histories at different moments of
question takes different values depending on how the particlgme  The consistent-histories approach deals only with dis-

detection in the space-time region is designed. A similar congyete histories. The generalized quantum mechanics is ca-
clusion was also obtained recently by Marf#]. One may  paple of dealing with continuous histories, but most of the
feel that, among formulations of QM, Feynman’s sum-over-studies have focused on discrete histories. It is safe to say
paths formulation is better suited to answering the questionthat the definability of probabilities for continuous histories
Actually, Feynmar{3] himself considered the possibility of and the interpretation of the resultant probabilities have been
defining “the probability that the path lies in a particular less well understood than that for discrete histories. In view
regionR of space-time” when he was developing the idea ofof this, we investigate Question 2 with continuous histories
sums over paths. This motivates us to pose the followingf a nonrelativistic particle in one-dimensional space. Even
guestion, which sounds more general than Question 1. this simplest model would help us understand how the his-
Question 2: Is it possible to define probabilities for histo- tories approach works for continuous histories and what the
ries of a particle? If possible, what are the values of theresultant probabilities mean. The cases of continuous histo-
probabilities?This is the question we deal with in this paper. ries of a relativistic particle and those in a nonabelian gauge
Although the above question sounds natural from a partheory have been studied recently by Wheléh We confine
ticle point of view, it is relatively recently that clear and ourselves to nonrelativistic cases to work on a firm platform
where the probability interpretation of the conventional
theory is well established.

*Present address: Nano Electron Material Group, The Institute of The histories approach does not always define probabili-
Physical and Chemical ResearRIKEN), Wakou, Saitama 351- ties for histories. The condition to determine when probabili-
01, Japan. ties can be defined is called tikensistency conditiom the
Electronic address: nori@postman.riken.go.jp consistent-histories approach and ttezoherence condition
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in the generalized quantum mechanics. Among several vethe problem. Some properties of branch wave functions are
sions of the decoherence conditii®], the “weak” decoher- discussed in Sec. llIB. Section IllC summarizes the
ence condition was also arrived at independently, but lateprobability-definable examples which the present author has
by the present author and Tak&diO], who called it the found so far. In all examples, the initial condition of the
“no-interference condition.” This condition was used to Particle is appropriately restricted in such a way that C2
search for probability-definable examples in Réfk0—17, holds. The examples include a case where a coarse graining
and some of such examples were actually founfilih 12, results in the fulfillment of C2ASec. Il C 3, cases where
where the success of the no-interference condition was th€strictions other than those on the initial condition also play
result of restricting the initial condition of the particle of ImPortant roles in the fulfillment of C2Sec. Il1C 4, and a

interest. However, those examples were not fully satisfactor ase of a particle tunneling thrpugh a rectangulgr potential
(too special or a failure of normalizatigrthe general struc- arrier(Sec. Il C 6, where we find that the tunneling prob-

ture of the approach was not necessarily clear, and the intefﬂ—b'“t'.els(the reflfectlokr; z?)r_ﬁ_theftransn:]ssmn pr:_ott)at_)llmaim S
pretation given of the resultant probabilities lacked general—Specla cases or probabiliies for continuous NISIONes. In Sec.
V, we consider the meaning of probabilities for continuous

ity. The aim of this paper is to overcome these shortcomings. tories. The t i o i ) tant for thi
and to apply the framework to an unsettled problem in quan- IStories. 1he tunneling example 1S very important for this
urpose. We conclude that, in general, probabilities for con-

tum physics, that is, the so-called tunneling time problent; S : .
[13]. This is worthwhile in today’s situation where the his- tinuous histories (_Jl_efmed by our approach cannot be inter-
reted as probabilities that a particle actually follows the

tories approach is of growing interest, but not much has beeh. = ™" . . .
studied about probabilities for continuous histories. istories. In Sec. V the. approach is applied to the tunneling
From a wider point of view, the problem we deal with is time problem. Qalcu!atmg |nt'erfere_nces betw_een CI"."SSGS of
one of “nonlocal-in-time” problems in QM such as the tun- histories spending d'ﬁeref‘_t times in the barrier region, we
neling time problem, continuous measurements, quanturﬁoncmde that the probability densities of transmission and

mechanical Zeno's paradox, quantum mechanical retrodicr_eflection times cannot be defined within the present frame-
tion, and so on, which are all ultimately related to the speciavvork’ and henc_e within the framework of the .hlstone_s.e_lp—
role played by time in QM. To relate the present study to a”proagh, which is true no matter how we restrict th? initial

of these issues is beyond the scope of this paper, and we tre%qnd't'on of the particle. A summary and concluding re-

P - : o ks are given in Sec. VI.
one of them, the tunneling time, as an interesting appllcanorllnar
of the present method. We also point out that the no- Although we follow the procedures of Re{s.0-12, re-

interference condition can be understood as a consistent%{y.gg so,[gi:'(;]e:s'got:'s paper ma¥ tﬁlso be selgn, dunlesst other-
condition between wave nature and particle nature becaus ' X sequences of the generalized quantum me-

when the condition is satisfied, the superposition principIeChanICS with the weakoften the medium decoherence

(wave naturg and the probability sum ruléparticle naturg condition.
do not “conflict” with each other. Although this way of
understanding the condition does not play any practical role Il. FRAMEWORK
(at least in this papgrit extracts the essence of our approach
(and hence the essence of the histories appjaackimple
physical terms, and it is of interest from the wider viewpoint,
since consistency between wave and particle natures is often In this subsection we attempt to construct a framework
the core of nonlocal-in-time problems. which can answer Question 2, without assuming any knowl-
We proceed as follows. In Sec. Il we critically review to edge of the histories approach. If the attempt succeeds, we
reorganize the approach used in R¢fid—12. Though we will be able to define probabilities for histories, and we may
have not mentioned it yet, there is another condition calledhen call histories “events,” at least in a mathematical sense.
the “path classifiability condition.” The definability of prob- But even in the construction of the framework, it is conve-
abilities for histories is judged by checking whether or notnient to let histories correspond to “events” for explanatory
the path classifiability conditioidenoted by ClL and the purpose. As histories in QM, we consider Feynman’s virtual
no-interference conditioidenoted by CRhold. We try to  paths, i.e., the space-time paths used in configuration space
clarify how the conditions are arrived at. We emphasize thapath integrals for a particle. A single patiith appropriate
a set of classes of histories satisfying the two conditions is &oundary conditionsthen corresponds to a simpler inde-
space-time analog of observables in Hilbert space. We alscomposablg event, and all pathgsatisfying the boundary
point out that the combination of the two conditions can beconditiong corresponds to the whole sample space. We in-
said to be a consistency condition between wave nature andestigate the definability of probabilities folasseof paths,
particle nature. We restrict our attention to cases where Chot for individual paths(When there is no risk of confusion,
holds. In Sec. Ill we check C2 for some sets of classes ofve will simply say “probabilities for paths” instead of
histories defined by their behavior with respect to a rectan-probabilities for classes of paths)’A class of paths corre-
gular space-time region. To make connections with “spacesponds to a compound event or a union of events. All the
time coarse graining” of histories discussed in the general€lasses again correspond to the whole sample space if a path
ized guantum mechanics, we begin with a set of classes dfelonging to a class does not belong to any other classes; we
paths which consists of as many classes as possible but stileal with such classes. Various geometrical regions in space-
allows a situation where C2 holds. Section IIl A illustratestime may be used to define classes of paths. For example, if
the method of calculations. The so-called branch wave funcwe classify all paths connecting two space-time points
tions are introduced and they provide clearer perspectives o= (X5, Ta) and B=(Xg,Tg) (Ta<Tg) according to

A. The path classifiability condition
and the no-interference condition
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whether or not they ented=AXXAT at least once, we B(Xg, Tp)
may consider two classes of paths, and %, whereZ is
the class of paths which enté€r at least once an@" the
class of paths never entering the regi@ReadY andN as
“yes” and “no,” respectively) The set of the two classes,
{Zv,%\}, corresponds to one possible representation of the T AX
whole sample space. Finer classifications of the paths define
more than two classes, and the set of all classes is written as
175}, wherej runs integergfor simplicity, we assume that
classes are countablén the case of Zv, %}, identify, say,
z1=7y and ,=7%. Question 2 asks if probabilities
{P;} are definable for classes of patfts;}. X

Apparently, this is too vague a question, and there should
be various definitions. But whatever the definition {8, } FIG. 1. Typical paths contributing t2.3).
must obey the probability axioms

P,=0, (2.19 ®y(B;A)= JAXdXd)(B;X.T)‘D(X,T;A), 2.9

A(Xa, Ty)

Pivk=Pj+Pc (1#k), 219 \where (X", T": X', T') is the result of the sum over all

paths from K’,T') to (X", T”) and is therefore the Feynman
2 P=1, (2.19 kernel, or the propagator. The sum-over-paths amplitude for
j class?,,, denoted byd,(B;A), is defined in the same way
as the sum over the paths going throughWe define the

wherePj,  is the probabiﬁlity for the_ glass*']-\/k defined .b.y sum-over-paths amplitude for class, , by
the sum of classes; and 7. In addition to the probability

axioms, let us require ®y n(B;A)=D(BA)+ D (B;A), (2.5
. _ 5 which is finally equal to the propagatdr(B;A), but what is
QIL”;XPY_ LXdXW(X’TH ' (2.2 important here is the property that, when classes of paths are

combined into one class, the sum-over-paths amplitude for
the resultant class is defined by the superposition of respec-
tive sum-over-paths amplitudes. Now, letbe 7, 7, or
Zyyn» and define a positive quantity fof by

where the limit letsAT (the temporal interval of)) vanish,
andT is the time at which the resultant spatial regidX is
referred to. We shall call these two requiremerigs]) and
(2.2), the “minimal requirements.” The question which we
deal with is then as follows. P, = f A,
Question 3: Is it possible to define quantities ;YP
for classes of paths¥;} in such a way that the minimal
requirements are satisfied?
There still may be various definitions. One natural defini-
tion is motivated by the following observation. Let and
w, respectively, represent a spatial regidbK at timeT and

the spatial regionAX also atT, where AX is (the entire

space —AX. Just as we consideredl, and % by classify- f dXg®* (B;X,T)®(B; X", T)=86(X—X"), (2.7
ing paths with respect to a space-time regidnwe consider
Zy and 7, by classifying paths with respect to a spatial
regionw. Let #, and?,,, respectively, be the class of paths
which intersectw on the way fromA to B and the class of
paths which interseab on the way. Let us define the “sum- Py=f dX|v|?, P,= fidXI‘I’IZ,
over-paths amplitude for class,” by ¢ @

2
f dX,® ,(B: AT (A)| | (2.6

whereW (A) is the wave function at tim&,, which we call
the initial wave function. By using the explicit expressions
for ®4(B;A) [such ag2.4)] with the following property of
the propagator:

we find that(2.6) gives

Pyyn=Py+Pp, 2.9

<Dy(B;A)EB > expiS/h), 2.3

— W

where ¥=%(X,T), and PyEP%yv P,=P, , and Py,

where the sum is over the paths in clasg(see Fig. 1, and = P%yvn. At first glance, the substitution @B.5) into (2.6

S is the action; the sunE is to be understood as being for Z=7, , appears to give a cross term violating the sum
defined by Feynman’s path integral as the well-known infi-rule, but the cross term vanishes due(2o07) and the sum
nite dimensional integrals$,14]. This sum over paths can be rule is not violated. Equatiori2.8) explicitly shows that
evaluated by factoring the paths across the surface of co®y, P,, andP,, , satisfy the probability axioms, provided
stant timeT, noting that each path intersects the surface onc¢hat ¥, and therefore¥ (A), are normalized in the usual
and only once, giving way, i.e.,
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J dXa| ¥ (A)|2=1. (2.9

Let us call probabilities such a®.8) spatial probabilities,

emphasizing their relevance to spatial regions. What has

been shown is that we may ug6), in lieu of (2.8), as the /

formula for spatial probabilitiesWe call(2.6) the sum-over- J/

paths constructiorf spatial probabilities an@2.8) the con- L

ventional construction. An essential difference between the

two constructions is that probabilities are added in the con- T

ventional construction as seen (2.8), whereas amplitudes A

are added in the sum-over-paths construction as se@mGn

This difference has appeared as the difference in how the X

sum rule comes out. Remember t217) is essential for the

recovery of the sum rule in the sum-over-paths construction. FIG. 2. Solid curve is a typical path contributing 4o, (B;A)

The importance of2.7) in the sum-over-paths construction and the broken one is that tb,, (B;A).

is also seen from the following point of view. The probabil-

ity density that a particle is found at positiofiat time T, where the sum is over the paths in class(although not

namely,|¥ (X, T)|?, is expressed as written out explicitly, paths are frorA to B). Let now Z” be
eitherz =72y, Z,=7y, or Z1,,2(= Zyn). The sums for

21 “1, 75, and for 7y, , are, respectively, over those paths

(2.10 that enter(}, avoid (), and go througfQ U () (see Fig. 2,
whereQ=AXX AT, and “to enter{)” means to enteA X at

whereAX is supposed to be taken arouKdat timeT and  least once betweeAT, and “to avoid()” means never to

the sum over paths is identical t®2.3. At first sight, enter AX during AT. We define positive quantities

JdXg|fdX,- - -|? appears to be of the order chK)?, but it PJEP((J_ a”dpi\/kEP%Nk (j #k) by substituting(2.11) into

is actually of the order oA X due to(2.7), which guarantees (2.6).3 Let us check the probability axioms. Positivity is ob-

that the resultant probability density is not identically zero.vious. To check the sum rule, we use

Also note that(2.7) guarantees thafdXg|fdX,- - - |2 gives

the probabili_ty of finding a particle id X at timeT regard- D, k(B;A)=D;(B;A)+Dy(B;A) (j#k), (2.12

less ofthe width of AX.

Now, what if we replaces with () in the preceding para- \here cpqu)%j and q’i\/qu)%,-vk’ to find that P;,
graph to define posmvg quantmés{:P((Y, PN= PgN, and  _ P+ Py+2 ReD[]:k], where
PYVNEP”WN as straightforward generalizations &, ,

P,, andPy, ., respectively? Sinc®y reduces taP, as() . .

approaches, one of the minimal requirements is manifestly D[] ?k]Ef dXBf f dXadXa @5 (B;A)D(B;A")
satisfied by this generalizatinAll that is left is then to

check whether or not the positive quantities satisfy the prob- XW*(A)W(A), (213
ability axioms. Let us formulate this idea.

The sum-over-paths amplitude for a class of pathés  which is nothing but thelecoherence functionahtroduced
generally defined by by Gell-Mann and Hartl¢6] in more general contexts. The
sum rule is violated unless Re=0. At this stage we have
two choices. One is to give up further investigations, for the
sum rule is generally violated. Another choice, which the
author believes more interesting, is to investigate the possi-
bility of the recovery of the sum rule in appropriately re-
LAlthough @ ,(B:A) contains information about the future af st:ict_ed situations. The condition for the recovery of the sum
rule is

1 2
lim — | dXg )
AX*)OAX

fdxA( > eis’h>qf(A)
B—AX—A

@(B;A)z; exp(iS/h), (2.11)

(i.e., information later thafT), (2.6) does not depend on the future
information as(2.8 shows explicitly. This property is called the
“future indifference” in the generalized quantum mechanics and ReD[j;k]=0 (j#k). (2.19

was also pointed out ifil5].

“Not only doP,, P,, andP,, , satisfy the probability axioms, This is the weak decoherence condition in the generalized
they are also physical probabilities. For exampe,is the prob-  quantum mechanics, and is called the no-interference condi-
ability for the physical eveny that the particle is found imX at  tion and denoted by C2 in Refgl0-12. Last, the normal-
time T. In general, classes of paths correspond to physical eventgation can be proved as follows:
through(2.6) when classes are defined by path classifications across
constant time surfaces. It is then natural to expect that classes of
paths would also correspond to some physical events thr(igh 3p,, thus defined also have the property of “future indifference.”
even when classes are defined by more general path classificatioddore generally, the decoherence functiof®all3 has this property.
What is behind the minimal requirements is this expectation. They do not depend on information about the futureof
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2 C1 and C2 for the discrete classes and taking the limit
ANj—0, we find that C1 and C2 for the continuously labeled
classed7,} are, respectively,

> Pj:J dXs
J

:JdXB

=f dXg|¥(B)|?=1, (2.19 ReD[ANJ=8(N=N")Py, (2.17b

whereP, , which may be called a probability density if C1
where the first equality assumes the fulfilment of C2. Inand C2 hold, is given by
passing from the first line to the second, we have used 1

Z ®;(B;A)=P(B;A), (2.16 AN—0
i

deA(Ej) <I>J-(B;A))‘P(A)

2
deACID(B;A)\If(A)

f dA®, (B;A)=d(B;A), (2.173

2
J dXAfMd)\(I)A(B;A)\P(A) ,

(2.18
?‘herem\ is taken around. and®, (B;A) is the sum over

which is because we just classified paths into classes an ths | I P Note that P. i i
thus the classes reproduce all the paths when they are reco X p‘?jxsq) mB':?I?SAJAZ. h'ohe nat oIS nol
bined. Thus the proof of the probability axioms formally 8l/ LA A(B: ) ( )l. » Which gives incorrect resuits
ends. However, note that we have not shown yet that the patif€nA is the position of intersectioi of a constant time
classification in question is actually possible, in other Wordszlr"ézcgf[Ziefﬁé%'ug t?é;;\mdg'ﬁ r(::iiB('j{) g;(?]'o.t.\bas;s?]fi:jheen

. ; ; — -
that ©,(B;A) can be meaningfully defined. In the case OfticaII If C2 fails, it is of the order of AN)? and thus
{#y,%\}, and also in all cases we will study in later sec- y. ; ' .
tions, ®;(B;A) are meaningfully defined. In general, how- P,=0. Continuously labeled classes of paths are treated in

ever, a bit of caution is necessary because Feynman’s virtu§1ec' Y B. In cases V‘r’]herlf ga;th“s are cle;sslified ithp _morel than
paths, like Brownian paths, are not differentiable with re- WO classes, C2 is checked fali pairs of classes; it is only

spect to time(see, e.g., p. 177 of RefL4]); more precisely, yvhen R® vanisheg for all pairs that C2 holds. If Bevan- .
virtual paths which are differentiable in time are of zero mea-/Shes f‘?f SOmE pairs but not for the others, we do not define
sure and thus do not contribute to a path integral. As a resulProbabilities for any classes.

we cannot make a meaningful classification of paths accord- To summarize, we h%"e reacheq.t.he following answer 1o
ing to, for example, how many times they cras because Question 3: We can define probabilities for classes of paths

they may cross the “temporal boundaries” 6f (by which acpprding tc.).Eq(2.6), provided th.at both the path c;l_assifi—
we mean the ones of constaXit even an infinite number of ability condition Cl_ and the r_p_—mte_:rfe_rence condition C2
times. Thus the sum-over-paths amplituds(B;A) for h_o_ld. We_do not define probabilities if e|_th_er of_the two con-
crossing the space-time region for a finite number of tijnes ditions fails. In cases where paths are divided into more than
vanishes, so thab,(B;A) do not add up to the total propa- two classes, Q2 is checked fe_xH pairs of classes; it is only
gator®(B;A), i.e., (2.16 fails. Equation(2.16) can thus be yvhen R® vanlshe.s for all pairs that C2 holds. If Bevan- ,
viewed as the condition for the path classification in questior{Shes f‘?T SOME pairs but not for the others, we do not define
to be meaningful. Following Ref§10—12 we call(2.16) the probabilities for any classes.
path classifiability condition and denote it by €The rea-
son C1 holds fof #, %} is because “to entef)” and “to
avoid )’ are ‘“coarser” as information than how many
times paths cross the temporal boundarie$)ofin general,
C1 fails if the path classification in question refers to the Before going to explicit examples, it is instructive to re-
number of times paths cross the temporal boundaries, or te2ll how the two conditions came to hold in the case of
finer information than that. Such cases were studied in Refd.?y, %} (more generally in cases where classes of paths are
[16,10, where surfaces on which time is not constant weredefined by path classifications across constant time sujfaces
used to define classes of paths. In later sections, we considéhe success of C1 was the result of
such cases where C1 holds, and thus only C2 is our actual
concern. ) ) f dXP(B; X, T)P(X,T;A) =P (B;A), (2.19
Although we have illustrated the framework with classes
of paths labeled by discrete lakjglthe extension to cases of
continuously labeled classes is straightforward, but with a bi
of caution on the form of the probability density formula. Let
\ be the continuous label. Dividing the axis into nonover-
lapping regions\\;, we have discrete classgs;}. Writing

B. The status of the conditions: Assuring a consistency
between wave and particle natures
and defining a space-time analog of observables

which is the composition law of the propagator across a sur-
face of constant time, or equivalently, the classification of
the paths connecting andB with respect to intersectiok
of an intermediate surface of constant tifie The nondif-
ferentiable property of paths does not prevent us from clas-
sifying paths in this way, because they move only forward in

_ _ time to cross the surface once and only once. Equafdr9)
“4In the generalized quantum mechanics, 16 appears as the is an alternative expression of
operator equatior> ,C,=exp(—iHT/4), where H is the Hamil-

tonian andC,, are the class operators, which in the position repre- _
sentation correspond to our sum-over-paths amplitudes. dX| X><X| =1 (2.20
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where the right-hand side represents the identity operator i€1 also does not refer to external degrees of freedom. Thus a
Hilbert space. Condition C1, a generalization (@19, is  set of classes of paths satisfying C1 and C2, a space-time
therefore a generalization of the completen@s20 to cases analog of observables, is an intrinsic property of the system,
of classes of continuous paths. We may alternatively call Cjust as “an observable of a system” is an intrinsic property
the “completeness condition.” Next, it is Eq2.7) which ~ of the system itselfalthough environments play important

made C2 hold fo{#,, 7}, and is an alternative expression roles when it comes to how the property intrinsic to the
of system is probed and recorded in the process of a measure-

ment; the intrinsic property itself is irrelevant to environ-
ments.

Condition C2 is mathematically the condition that Eq.
(2.12—the principle of superposition in the context of sum
over paths—does not result in the violation of the sum rule
(2.1b. Since the principle of superposition is a reflection of
Condition C2, a generalization ¢2.7), is therefore a gener- wave nature of a quantum mechanical particle and the sum
alization of the orthogonality to cases of classes of continurule is a reflection of particle nature, C2 is physically taken
ous paths. We may alternatively call C2 the “orthogonalityto be a consistency condition between wave nature and par-
condition.” ticle nature in the space-time region used to define classes of

In this way, C1 and C2 generalize the completeness angaths. More precisely, the combination of C1 and C2 should
the orthogonality of state vectors in Hilbert space to cases dfe said to be a consistency condition between the two na-
classes of continuous paths in space-time. We may say, wittures, because both of them were assumed to hold in the
some abuse of language, that the two conditions define proof of normalization of the probabilities.
space-time analog of observablgbe word “observables” C1 may be regarded as the “normalization” condition on
means observables in Hilbert space set of classes of paths sum-over-paths amplitudes ar{#.12 as representing the
satisfying the two conditions might be said to be a spacetexclusiveness” at the level of sum-over-paths amplitudes.
time analog of observables. Eigenvalue problems of obserw/e may therefore say that a set of classes of paths with C1
ables give real eigenvalues and they directly correspond tand (2.12 is an “exhaustive set of mutually exclusive
possible outcomes of measurements. By contrast, it is nailasses of paths,” in which, however, note that the words
clear how classes of paths satisfying C1 and C2 can be reé‘exhaustive” and “exclusive” are used at the level of am-
lated to measurements in a general way, although probabilplitudes but not at the level of probabilities or events. This
ties are definable for them. Nevertheless, a set of classes tdrminology is often used in the generalized quantum me-
paths satisfying the two conditions is expected to hewm@e  chanics, but is not used in this paper. Instead, we would like
physical meaning, sinc€.6) with C1 and C2 is a natural to reserve the words exhaustive and exclusive for use at the
generalization of physical probabilitie®.8). To examine level of probabilities or events, not at the level of amplitudes.
this expectation, we will study some explicit examples inlf both C1 and C2 hold for a set of classes of paths, we
Sec. lll. regard the set of classes of paths asexhaustive set of

It should be emphasized that the decoherence functionahutually exclusive eventE SEB, because quantities satisfy-
(2.13, and therefore condition C2, have nothing to do withing the probability axioms are considered as being defined
outer degrees of freedom, i.e., environméenthis is be- for some ESEE and because C1 and C2 together guarantee
cause C2 is a straightforward generalizatiof221). When  that quantities(2.6) defined for the set of classes of paths
we read RB[j;k] =0 as “there is no interference between satisfy the probability axioms. Roughly speaking, if C2
two classes of paths,” we must be aware that our usage diolds, an “exhaustive set of mutually exclusive classes of
the word “interference” is different from the normal one. paths” turns into an ESEE in the sense that quantit&6)

That is, the absence of interference between classes of patbsme to satisfy all the probability axioms. In general, how-
meant by RB=0 is not the one that is achieved by coarse ever, we have to distinguish the two notions—an ESEE and
graining (tracing ouj the variables of environments. Rather, an exhaustive set of mutually exclusive classes of paths—
it is a property of the system itself particle herg just as  because C2 does not hold in general. @maybe only ong
orthogonality(2.21) is a property of the system itself in the exceptional case is when the classes of paths are defined
sense that it holds regardless of external degrees of freedomccording to where paths intersect a surface of constant time;
To emphasize this, we may say that C2 is the condition foin this case C2 holds identically as shown in Sec. Il A and
classes of paths to listrinsically noninterfering Condition  hence we may identify the two notions.
Looking back, we have started from virtual paths and ar-
rived at a certain scheme to define probabilities for classes of
5This is a bit of an exaggeration; environments can affect C2paths. This means that we have been in effect engaged in the
through the preparation of the initial wave functidn(A) and a  construction of a method which judges whether or not a set
potential is an idealization of some environments. It is more accuof classes of paths is an ESEE by using virtual paths instead
rate to say that C2 is written fully in terms of variables of the of real physical paths.
system.
5This statement is intended for the present model. If we have &
particle coupled to environments, we may write down the decoherthe distinguished particle. In this way, a certain type of “environ-
ence functional for the total system. Integrating out the variable ofmental no-interference” can be discussed with decoherence func-
the environments, we arrive at a reduced decoherence functional feionals in general; segl7].

J dX(X|X')=8(X—X"). (2.20)
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FIG. 3. Configuration of) in Secs. Il and V. I 1

Tr|----

IIl. EXAMPLES OF PROBABILITIES FOR HISTORIES

Here we study some explicit sets of classes of pathsde-___._.___.[ ) | ... —~J ol
fined by path classifications with respect to a space-time re- 1
gion Q=AXXAT. We take AX=[a,b](a<b) and AT (k,0,3)=(1,+,0) (J=2)
=[T,,T,1(T,<T,), and denote the spatial regiods<a, === I/ ---------
a<X<b, andX>b by R;, Ry, andR,, respectively(see T
Fig. 3). Section Ill A illustrates calculations, and Sec. IIIC "~~~ 7777 /
summarizes probability-definable examples. | L~ 1
Reminder: The probability-definable situations found in / o /
this section are very simple ones, and one may be disap----------L~— 1. __._._.
pointed at the “triviality” of the results after following rela- E
tively long arguments. To prevent such improper impres- ko 9)=(2+0) (3=3) --------- >
sions, the author would like to repeat here that probabilities
for continuous histories have not been well understood inthe 1
histories approach, so that even a simple example is impor-  ~~_[
tant. Probabilities for histories are generalizations of prob- \
abilities for observables, so that no example should be con-
sidered “trivial.” If we feel the results “trivial,” it is simply ~ ---------
because the results are consistent with our intuition, which in
turn means that our approach is a successful one.

A. lllustrating sum-over-paths calculatons ~ --------- =
for particular classes \{
Consider all paths connecting end poitsand B such
that To,<Tg, and classify them according to the following  --------
criterion: which spatial regioR; (j=0,1,2) paths cross at . o 3
(%,6,3)=(0,+,2) (J=5) (x,0,3)=(2,-2) (3=11)

times T, and T|; (TA<T,<T, <Tg), and whether or not
paths ente). Let us denote byZ, ,; the class of paths
which start fromA, go throughX, e R; at time T, , enter(}
(o= +) oravoidQ) (o= —), go throughX,, e R, atT,, , and
arrive atB.” Note that label, o,j are time ordered with the
earliest to the right. The number of times paths cross the

temporal boundaries d is not used as a label of classifi- . ) )
cation, so that C1 holds. All paths can be classified into théVe express eachk(o,j) by an integerJ by letting

FIG. 4. Representative paths from each of the 11 classes
{7313=1,2,...,13. Only the[T,,T,] part of the path is shown
for classes?s, ... ,%21;.

following 11 nonempty classesee Fig. 4 (0,4,0) correspond toJ=1, (1,+,0) to J=2,..., and
(2,—,2) to J=11. For exampleZ3=%,, o, £5=%0+ 2,
{gi(,(f,j|(kla-’j ) = (0!+ !O) 1(11+ 10)!(2!+ 50)1(11+ 12)1 ((//QE g72'+'21 etc

To calculate(2.11) for (3.1), decompose the sum over
paths into three sums over partial paths and two integrations:
a sum over partial paths frow to |, that froml to I, that
from Il to B, and integrations over intermediate positions

(0,+,2),(2,+,1),(0,+,1),(1,+,1),

(2+,2,(1,—-,1,(2—,2)}. (3.) X, andX,, ; symbolically
’Symbols | and Il, which, respectively, represent space-time 2 =J dX, E dX,Z E , (3.2
points (X, ,T,) and (X, ,T;;), do not implyX, e R; nor X;, € R,. E Rc Bl JR 7y 1=A
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where 7 represents thgT,,T,,] part of #;, and we have tion then givesPRi(ll;1).® (For exampled® is the propa-
used the convention thatandj are specified by according  gator in the presence of an infinite potential barrier blocking
to the correspondence betwegmnd (,o,j) (for example, up the regionx>a, i.e., the solution to the Schdinger
J=3 impliesk= 2 andj=0), the convention used in the rest equation satisfying the function initial condition and the
of this paper. In(3.2), integration signs are used to representDirichlet boundary condition at=a.) (3) For J=8 and 9,
ordinary integrals and summation signs to represent sumikie paths are such that they enter and then come o, of
over paths. The sul,_, is over all paths fromA to | and  which are therefor¢all paths connecting andll unrestrict-
thus gives the propagatob(l;A). For the same reason, edly) — (all paths that connedtand!l by moving only in
Sg_ gives®(B;ll). As for E;J, we have three cased)  the restricted spadg;). Thus the sum over paths in question

ForJ=1,2,...,7, the sum is over all paths fromto Il to  9Ves
give ®(I1;1). (2) ForJ=10 and 11, paths are subject to the Ri(11- )= N AR
restriction that they must not ent€r on their way froml er(Ih=o0lEn =R, @3
andll, so that the sum is over such paths that move only inyhereX, X, e R;. Putting all these together, and using
R;. Just as the sum over all paths connecting two end points

on the entire spacBR(=R;URyUR,) gives the propagator 1, XeR,

® between _the points iR, th_e sum over a_II paths connecting ®i(X)={0  otherwise (3.9
two end points on the restricted spaRggives the propaga-

tor (“restricted propagator) between the points irR;,

which we shall denote b$Ri. The sum over paths in ques- we arrive at

.
f f dX dX, 0 (X)) ;(X)P(B;IND(I1;HP(1;A),  J=1.2,....7

®,(B;A)= fdeudNk(Xu)®j(X|)<I>(B;II)@Ri(ll;I)<I>(I;A), J=8.9 (3.5

f f dX; dX 0 (X)) O (XD (B I DRi(I1;1)D(1;A), J=10,11,

\

whereCIDJECD((J. From (3.5 with the help of the composition law2.19), it is easily shown that

11
JZl ®,(B;A)=D(B;A). (3.6)

This should be taken for granted, for we know from the earlier argument that C1 holds in the present case.

To study C2, it is very useful to introduc&;(11), “branches” of W(I11), which in the present case is given by

,
00 [ aXR(1NO (X)W, I=12....7

W (1= ®k(xl.>f dXeRi(1;N0;(X)W(1),  JI=89 3.7

k(X”)fdX@RJ’(II;I)@j(X,)\I’(I), J=10,11,

\
whereW (1) = fdX,®(I;A)V(A). BranchesV (1) satisfy

qf(u):}J) Wi(ll), (3.9

which is a direct consequence &.6). The decoherence functional is now compactly expressed as

80ne may feel that this argument is rather naive, which is basically the same argument as the method-of-image calculation of a restricted
sum over path$18]. It is naive but is correct; the naive handling of paths could be justified by using a sum-over-paths method on a
space-time latticg19]. Alternatively, though less rigorous than the lattice method, we can use the fufctiefined by integral equation
(5.12 introduced later to calculate the restricted sum over paths in the manner described in Sec. 2.2 in Chgg0]lIAtfthese methods
give the same result.
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D[JiJ']:J dxllf dXy 80K = Xy HWT AW (117)

Where” ,E(X”I,T” /) SUCh tha.tT“/:T” y and the§ funC'
tion results from theXy integration in(2.13 carried out by

use of(2.7). Since the effective integration range in the sec-

ond line of(3.9) is RyNRy,

D[J,J’]:O when kaer:d), (31@

which is true regardless oF (I) and reduces the number of

D’s we have to calculate to check C2. The formula for prob-

abilities (2.6), valid when C2 holds, is simplified to be

Py(=P,,~D[3:3)= | X, W, (312
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T, andT,, to consider th¢T,,T] part of the paths iy, we
can define the “branch wave function® ;(X,T) as the re-
sult of the time evolution o® ;(X,)W(I) by that part of the
paths; the branch wave functions satisty;¥ ;(X,T)
=V (X,T) at an arbitrary intermediate time Although we
say that “¥;(X,T) is the result of the time evolution of
0,;(X))¥(l),” this expression should be used with caution.
In general,¥;(X,T) does not agree witl® ;(X,)¥(l) as
T—T,. [On the other hand¥ ;(X,T) agrees with¥(Il) at
time T, for all J.] This is because the sum over the
[T,,T] part of the paths does not form a propagator in gen-
eral. For example, in the case &.7), Vg(X,T) is given by
JdX o™X, T;HW (1), where oR1(X,T;I) is (3.3 with I
replaced by X,T) (XeRy); ¢™(X,T:1) is not a propagator
since it vanishes a3 —T,. ThereforeWg(X,T) also van-
ishes in the limit. By contrast,Wo(X,T) tends to
O,(X)¥(1) in the limit becausabR:(X,T;1) is a propaga-
tor. Equation(3.8) with (3.12 should be understood as the
decomposition o (11)«W¥(l) into the sum of branch mo-
tions. Note that it is the motion of the wave function from

Equations(3.7)-(3.11) are the main results of this subsec- 1, 1o T, , not simply the wave function at tini, , that gets
tion. They, except(3.7), have generality over the present yecomposed. This point is important.

particular set of 11 classes of paths.

B. Branch wave functions

Since branches a¥ (I1) play important roles in the fol-

As understood from above, there is no general law of
evolution for branch wave functions. HoWw,(X, T) evolves
depends on how the relevant clasg (and hencez)) is
defined. If the class has some special propetty(X,T)

lowing discussion, let us here give the general definition oPb€ys some special rule of evolution accordingly. An inter-
branches and illustrate some of the properties. For simplicity®Sting case is, as we saw, that a class of paths forms a propa-
however, we still consider cases where classes of paths ag&tor on an appropriate space. In this case, the motion of the

defined by path classifications with respecfXoGiven a set
of classes of path§7;}, branches ofV’(11) are defined by

%(ll)zwxl.)f dX.(Z e‘S’ﬁ)@)J(xl)\If(l),

Z3
(3.12

where 04(X), a generalization 0f3.4), represents class-
dependent restrictionéf any) on the range ofX.° If C1
holds, the branches satis{$.8). Compare(3.12 with

«Ir(u):fdxI HZH eS| (1), (3.13

where the sum in the parentheses gives the propagator

d(11;1). If we substitute(3.12) into the right-hand side of
(3.8), we get(3.13; conversely we are naturally led 8.9

relevant branch wave function is norm conserviagbit of
caution is necessary at the final tifig as explained beloy

as a resultP; can be calculated from the information at time
T,. To illustrate this, consider again the 11 classes of paths.
ThenE;Je‘S’ﬁ for J=10 and 11 form restricted propagators

®R1 anddRe, respectively, having the property

fdx"[chi(x",T";X’,T’)]*@Rj(x",T”;x,T')
R:
‘ = 5(X'=X). (3.14

Thus(3.11) reduces to

szf dx,|¥w()|?, J=10,11. (3.19
R|

with (3.12 by decomposing all paths between the two sur-The other nine branch motions are not norm conserving, so

faces of timeT, and timeT,, into a sum of classes of paths
3. Just asW(ll) is the result of the time evolution of
W (l) by all paths froml to Il (in the sense that the propa-
gator is contributed from all paths¥;(I1) might be said to
be the result of the “time evolution o ;(X,)W(l) by the
paths inZz7;.” If we take an intermediate tim& between

9Since®,(X) and®,(X,) are parts of the definition dAf’J, it is
not necessary to write them explicitly {8.12. But we have exhib-
ited them to remind ourselves that, in general, Xpentegration is
restricted to some ranges and also tHg{(11) vanishes in some
ranges due to the definition &f; .

that the above expression is not valid for otlderFor ex-
ample, let us consideP (X, T). This branch wave function
starts a®d (X)) ¥ (1) anddoesundergo unitary time evolu-
tion by the unrestricted propagatdr(ll;l) from T, to just
before T, , but at timeT,, the result of the unitary time
evolution is projected ontoR, because of the factor
Oy(X,)) involved in the definition of ;(I1). The norm con-
servation of¥ (X, T) breaks down at this moment, and thus
the norms of¥ ,(I1) and®y(X,)¥(l) are not the same. This
is the reason branch motions are not norm conserving for
J=12,...,7. AstoJ=8 and 9,27 ¢'5" does not form a

propagator{since (3.3) does not have the property corre-
sponding to(2.7)], so thatWg(X,T) and ¥4(X,T) do not
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undergo unitary time evolutions even before tifg, and

thus the two branch motions are not norm conserving. j dX, [ ,(11 )|2:J dX|w(%  J=1,23
In terms of branch wave functions, our approach is sum- P;= R

marized as follows: C2 is the condition that the real part of 0, otherwise,

the overlap integral between branch wave functions at time (3.18

T, vanishes for all different pairs of branches; values of the

probabilities defined when C2 holds are given by the abso-

lute squares of the norms of branch wave functions at timavhere we have usedV,(11)=W(Il) for X, eR, for

T, . We stressed in Sec. Il B that C2 is a consistency condid=1.,2,...,7, which follows from(3.7) and(3.17). In addi-

tion between wave nature and particle nature. In terms ofion to the initial localization, if¥’(I1) is also assumed to be

branch wave functions, this is understood as followslocalized in, sayR;, we haveP,= 1. (The localization com-

When C2 is satisfied, we can expresy, ; in two pletely in R; at time T,, cannot be realized because the

ways: fdx”|\1rJ(||)+\1rJ,(||)|2 and fdx“|\11J(||)|2 packet spreads as it moves, but we can think of a perfect

+ [dX,| ¥ (1|2 The former is in favor of wave nature localization inR; as an ideal limid.

and the latter is in favor of particle nature. The two expres-

sions do not conflict when C2 holds, so that C2 can be taken 2. Particle moving in R (“approximate probabilities”)

to be a consistency condition between the two natures.
Equation (3.8 is the sum-over-paths counterpart of the

operator identity called “a resolution of the pure initial state

The above example is the only one that the present author
has found so far in which C2 holdsactlyfor the set of 11
) ) . classes. If we allow an approximate satisfaction of C2, a
into branches” introduced by Gell-Mann and Hartle for dis- __ - . '
crete historiegsee Eq.(4 lO)yof Ref. [17]]. (It should be variety of examples are available. As an example, suppose
e ' o that a wave packet is localized Ry (far from the left bound-
understood as the resolution of the motion of a wave func- : . :
. : - : ary of (}) at time T, with an appropriate momentum so that
tion from a given initial state to the final state, rather than thelt is not reflected at the left boundary 61 (see Fig. 5
resolution of the initial statg.Their use of the notion of Because of the initial localizationy (”y) can be nogﬁ e.ro
branches goes back [6(a)]. A relativistic version of branch J z

: - : nly for J=6,7,8,10, from which together witt8.16) it fol-
mirfri;usngsovr:/i;’\l/:rzsg(]ad in the recent study of continuou ows that we have only to chedR®[8;10]. In the assumed

situation, the motion of the packet is not greatly affected

even if the whole region outsid®, is covered with an infi-

C. Probability-definable examples nitely high potential barrier. This means that the time evolu-

tion of the packet by the propagatdr(ll;l) on the entire

_ ) spaceR is almost the same as that by the restricted propaga-
Consider(3.1). C2 requires .that the real part (ﬁ_.9) be tor ®,(11;1) on the restricted spade,, so that¥g(11)~0

zero for 55 (=1,C,) combinations ofJ andJ’. Owing to  gnqd thusD[8;10]~0. Therefore C2 holds approximately,

(3.10, however, we have only to check the following 15 \hich we shall call approximate decoherence. Consequently,

1. Particle initially localized in Ry

combinations: we obtain P;o~1, which is reasonable, and
Pg\,10~Ps+ P1o. It might be said that “approximate prob-
(3,9")=(1,9,(1,7,(2,4,(2,8,(2,10,(3,6),(3,9), abilities” are definable with a small violation of the prob-
ability axioms. But a caution is necessary about what this
(3,11,(4,8),(4,10,(5,7),(6,9,(6,11), means. First, by the word approximate we never mean that

probabilities(true probabilities given by our theory can be
tested only up to some precision in actual experimental situ-
(8,10,(9,1D. (3.16 ations. Rather our approximate probabilities are given by the

theory itself. Second, the current situation must be distin-
Although Ré® # 0 in general for these combinations, the de-guished from cases where probabilities can be defined for a
pendence oD[J;J’] on ¥ (I) through(3.7) leaves the pos- closed system but only approximately for its subsystem due
sibility that C2 holds for restricted (1), which we shall call to the interaction between the subsystem and the other de-
the initial wave function from now on. One simple example grees of freedom of the closed system. Rather, our approxi-
showing that this occurs is whe#i(1) is localized inRy, mate probabilities are defined for a closed systarparticle
ie., itself.

3. Particle crossingQ (a puzzling result and its resolution)

J dX|¥(1)|?=1, W¥(1)=0onR, andR,. o _ ,

Ro Suppose that a wave function is localizedRp at time
(3.19 T, crosses) from left to right, and is localized iR, at

time T, (see Fig. 6. (We consider a perfect localization in

It follows that ¥,(I1)=0 exceptJ=1,2,3, and therefore R, atT,, as an ideal limi). Since the packet cross€sfrom
D[J;J'] vanishes for all the pairs listed i3.16. Thus we left to right, we expect that the probability for the class of
conclude that, if the initial condition of a particle satisfies paths crossing the region is unity, i.€=1. However, in
(3.17), C2 holds and probabilities can be defined for the sethe assumed situation, our approach does not define prob-
of 11 classes of paths. Values of the probabilities are, accordrbilities for the 11 classes of patfi8.1). To see this, note
ing to (3.17), that Eq.(3.8) is now
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V() =We(l)+Wg(ll)+Tq(I1). (3.19  amplitude forz , ;,,,... is the sum of the respective ampli-

) , tudes[see(2.12)]. It generally follows that
This follows from ¥,(l11)=0 for J=1,...,5,9,11 since

¥ (I)=0onR, andR, and fromW¥,(11)=0 sinceW(Il) is D] INEAVAPAVARRSN AVA AVERRY

assumed to be zero dR,. The three branches on the right-

h i ishing. By usif®&19 for X;, e R

hg\rllgl side are nonvanishing. By usif®&19 for X, e R;, we :f dxlleleva(”)‘I'Ji\/JQVW(”)’ (3.23
0=Wg(I1)+WI1), (3.20  WhereJ; and Ji are some values of and¥; ,,;,.,...(II)

=3J;¥J;(11). Therefore
which is in fact valid on the entire space due to the factor
0 (X)) involved in the definition of¥;(Il). In spite of . :f * _
(3.20, we do not remove the last two terms from the right- DLI;8V10]= | dXy W5 (ID[Wey10(11)]=0
hand side of(3.19 or, more generally, we treat the right- (3.29

hand side of(3.9) in such a way that all nonvanishing due to(3.20. Thus C2 does hold and probabilities can be

wy(11) S aré left on it, even t.hough.some of them add up t.odefined for(3.22. Values of the probabilities are found to be
zero as in the present case; we will then notice later an in-

teresting correspondence between the “naturalness” of the Ps=1, P;=0 forJ#6. (3.29
decomposition into branches and the definability of prob-
abilities for histories. It follows from(3.20 that Our expectation is thus met. In this way, we cannot define

probabilities for the set of 11 classes but ganfor the set of
ten classes in the situation we have assumed.

D[8;10]= _J dX ¥ (1D[*=~1, 3.2 Equation(3.9) for (3.22 is

where the last equality follows from the property that the W) =We(ll). (326

branch motionW ,o(11) < ©,(X,)¥ (1) is norm conserving  compare this with(3.19. Both of them are mathematically
as argued in Sec. lll B. Therefore C2 fails due to the interyentical but(3.19 looks “odd” or “unnatural” in the situ-

ference between the two classes of paths, namely, the claggon where a particle crossés from left to right, because
of paths crossing) and the class of paths reflecting off the o pranch  motions We(11)—0,(X)¥(1) and
left boundary_ of(). Thus probabilities cannot be deflned and‘l’lo(||)<—®1(x|)‘1'(|) do not reflect any characteristic fea-
our expectationPg=1 is betrayed. In the terminology of yres of the motion of the total wave function. For example,
Griffiths (extended to cases of continuous historigke 11 the branch motion¥ ,(I11)—®,(X,)¥(l) is such that it
classes of paths areot consistenin the situation where the bounces off the left boundary 61, and this reflects none of

wave packet crossd3 from left to right. Itis possible, how- e characteristic features of the motion of the total wave
ever, to find such classes thete consistent in the situation ¢,tion crossing from left to right. By contrast(3.26) is
and to havePg=1. Such classes are constructed by coarsg yery “natural” decomposition, since in the assumed situ-
graining the 11 classes as follows. B ation the branch motioW 4(11)— @ ,(X,)¥ (1) is identical

Let us combineZ’s and 77 into one class’g, 10, a0d 15 the motion of the total wave function. It can be said that
then ask if probabilities can be defined for the resultant teq3_26) reflects characteristic features of the motion of the
classes total wave function in the most trivial way. Although the
present author does not have a definite idea of defining
“natural” decompositions, it is suggestive that C2 fails
ranch motions are inconsist¢mthen decompositiori3.8)
kes an unnatural form but it holdthey are consistent
when the decomposition takes a natural form. This is also the
case in the examples found below.

The “—1 interference”(3.2)) is essentially the same as
that pointed out by Hartle ifi7(a)] (the first full paragraph in

{7,

J=12,...,7,8/10,9,12 (3.22

in the same situation as we assumed above. We alreaég
know thatD[J;J']=0 if J andJ’ are chosen from,1 . .,7,
9, and 11, and thus all that is left3{ J;8\/10]. To evaluate
this, we go back t¢2.13 and recall that the sum-over-paths

\P/(H\) the right-hand column on p. 3188There, a coarse graining
S of paths was considered according to whether a particle is to
Q Y1)

_________ eI
Y1)
________ /_\.//___
Q

FIG. 5. A particle is localized ifR; away from the left boundary ed
of () at timeT, with a momentum as indicated by the arrow. Even __/_\‘_P_(_I}_
if the whole region outsiddR; is covered by an infinitely high
potential barrier, the motion of the packet is not greatly affected. FIG. 6. Wave function initially localized iR, crosses() to
The no-interference condition holds approximately. It might be saidarrive in R, at T,, . Naive expectatiorPg=1 is betrayed ifZ is
that approximate probabilities are definable for the set of 11 eventseated as a member of the $8t1), but it is met if we coarse grain
(3.1. (3.1 into (3.22 to treat%Z as a member of the sé€3.22).
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the left or right of X=0 or both over an extended range of
time T; the resulting classes of paths were denoted by
{4, 28, 71}, where Hartle’s rule for subscript differs
from ours, and the superscript has been attached to indi-
cate his notation. These three classes arebthe limit of
{%10.711:% 468,08 With  a=0. (Classes #; for
J=1,2,3,5,7 become empty in the limifThe relevant non-
vanishing branches areW! (11)=¥4(11), W5 (I1)

< AX i< AX >

=W,,(11), and P!, (11) =P, 6, 8,0(11). Consider again a X=a X=b
wave packet initially localized inrX<0 [the initial packet o _
was localized inX>0 in [7(a)], which simply results in ap- FIG. 7. A situation where probabilities can be defined for the set

propriate changes of subscript belpwin this situation, of three classes of path8.27). The wave function at timd, is

PpH (11)=0 PH (1= (1), and we already know antisymmetric with respect t§=a and is localized within 2 X.
01 =Y, ¥ =Yy )

that the decomposition a¥(Il) into branches fo(3.1) is

given by (3.19; thus, for Hartle’'s three classes, the decom- PJ:I dx|¥(H2 (3=10,11 (3.29H

position isW (11)=¥", (1) + W (11). C2 does not hold for R; o

his three classes becausgdX,[¥ (11)]*WwhI1) . _

— X, PE(1)¥0(11)=—1 [note that We(ll) and where we have used3.15 to obtain (3.29h; to obtain

W¥,4(11) do not overlajp Thus the set of three classes con- (3:298,  substitute ‘Pz(”):‘Iflv---v9(”)+q'1,0(”)
sidered by Hartle and the set of 11 classes considered in thg ¥ 11(1) into JdX,[¥(11)[*=1, use the assumption that
paper share the same reason for the undefinability of probi=2 IS satisfied, ) and then use((23.29b to have
abilities under the assumed initial condition. The differencel Xl W1y --yo(ID[*+ &, ur,dXi[ W (1)[*=1, from which
between the two sets lies in the following point. A set of together with fdX,|¥(1)|?=1 we obtain the final expres-
decohering classe3.22, can be constructed by performing sion. Now, by insight, we can find the following two situa-
a coarse graining on the set of 11 classes that combies tions where C2 actually holds.
and 77, whereas it is not possible to do a similar thing for ~Example 1: LetR, be a<X<b. Consider a¥(l) such
his three classes becaugg and # are already combined that it is antisymmetric with respect ¥=a and is localized
into #%'. Leaving these two classes separate but insteatfh 2AX aroundX=a (see Fig. 7. Then(3.28 vanishes for
combining?# and %, is essential in order for us to find the J=11 because¥;(11)=0. We further assume no potential
decohering set of classes of patB22), for which probabili- ~ (or at most a potential symmetric with respect Xo-=a)
ties can be defined. throughoutAT so that the wave function evolves keeping its
In passing, the right-hand side (8.23 can be written as  initial symmetry. If we pay attention ta(11)—W (1) on
£5,25/D[J;:3{]. An important consequence of this is that a R;, we cannot distinguish it fror# ;o(11) 0, (X;) ¥ (I) on

coarse-grained set of such a set that satisfies C2 also satisfles 1NUSWaolll)=W(I1) on Ry, and therefore

C2. For instance, if we coarse grairf3.22 into

{Z6,%1y... /57y 11}, it @lso satisfies C2 in the situation W,y =(1)— > Wyl (3.30

we assumed, and we have Pg=1 and J=1011

P =0. . I .
Lv-veviv- Vit is zero onR; . By definition, ¥ 1o(11)=0 outsideR; . There-

fore Wq,,....,9(I1) and'¥(11) are nonoverlapping and thus
_ D[1\/2\/---\/9;10] vanishes and C2 holds. Values of the
Let us consider resultant probabilities are, froi3.29,

4. Antisymmetric initial conditions

12y 9 C10, Caat- 3.2 b 1
{ 1y2y---\v/9r 210 1]} ( 7) P1\/2\/-~\/9:jadxl|\1'(|)|2:§a (3313

This is a coarse-grained set (8.1) but not of (3.22. We

already knowD[ 10;11]=0. ForJ=10 and 11, we have from 1
(323) Plozz, Plj_: 0. (331b

These values look reasonable due to the conservation of the
D[1\v/2\/-- '\/9;3]:f dXyWi,...ye(11). (328 symmetry of the wave function duringT. Equation(3.8) is
nowW(Il)=w,,,....,o(l1)+W¥(I), and this is understood
as the decomposition of the motiol(11)—W¥(l) of the
wave function into two branches: One is the branch motion
V(1) —O(X)¥() and this coincides  with
P(I1)—¥(l) “projected” onto R,, and the other branch
motion is the “sum” of the branch motions
_ 2_ 2 V(1) —0,(X)W(l) forJ=1,2,...,9(the branch motions
Plvzv...vg—fdX|||‘1’1v--.v9(||)| —fROdX||\If(I)| ’ are null for J=4, 5, and 9 and this coincides with
(3.298  Y(lI)—w(l) “projected” onto Ry. The decomposition

If C2 holds, i.e., if the real part 0f3.28 vanishes for
J=10 and 11, probabilities can be defined f@:27) with
values given by
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into these two branch motions looks “natural” from the dition considered in Example 1 in Sec. Ill C 4, a8 when

viewpoint of symmetry. Again, C2 holds when decomposi-W(I) satisfies the antisymmetric initial condition and when

tion (3.9 takes a “natural” form. By the way, it is worth- () satisfies the commensurability condition considered in Ex-

while to note that the present example is an explicit casample 2 in Sec. Il C 4. Values of the resultant probabilities

where the form of a potential if is crucial for the success are Py,Py)=(1,0), (1/2,1/2, and (1-1/p—1/q,1l/p

or failure of C2. Any deviations from a potential symmetric +1/q) in the order mentioned. Note thét",,Z} is not a

with respect toX=a lead to the failure of C2 when the initial coarse-grained set dB.22); in the situation considered in

wave function is antisymmetric as assumed. Sec. lll C 3, C2 does not hold fd@izy, %} and thusPy and
Example 2: The above example motivates us to try arP, cannot be defined.

initial wave function which is antisymmetric with respect to

a and b Such a function is periodic, so that it is not nor- 6. Transmission and reflection probabilities as special cases

malizable on the entire space which has been assumed to be of probabilities for histories

unbounded. This is the difficulty we had 2], which can,

however, be overcome by working in a bounded space. Sugp

pose that the entire space is now B<L. We assume that

the spatial location of) satisfies the following commensu-

rability condition:

If the initial wave functionW(l) is localized in Ry,
(=0 for J=1,2,...,5,9,11. By combining these
“null” classes into one, and also combining classes)ef8
and 10 into another, we consider the following set of four
classes of paths:

L L
~=P and—=q for positive integersp andg. {C1y2y...vsyoy11,C6:C7,Cay 10} (3.39
(3.32 Equation(3.8) now becomes

We assume no potential throughah™ for simplicity. We
further assume tha¥ (I) is antisymmetric with respect to
X=a and b; such a function is generally expressed asp - :

or the three terms on the right-hand side, we have from Eq.
V2ILE?_ &, sin(pgmX/L), whereX |a,|?2=1 and we have 3.7 g g
imposed the Dirichlet boundary condition =0 andL.

V() =We(I)+W4(11)+ W, 1ol1).  (3.39

Because of the symmetry of the probled,(I1) agrees

with ¥'(I1) on R; and vanishes elsewher®,,(I1) agrees Wy(1 ):G)k(xll)j dX;@(11;1)Ww() (3.363
with ¥(1l) on R, and vanishes elsewhere, and therefore

Wi,...,9(l1) agrees with¥(11) on R, and vanishes else- —0(X,)¥(l), J=6,7,8/10 (3.36h

where. ThereforeV,, ..., ,o(11), W1o(11), and ¥4(I1) are
nonoverlapping, and thus C2 holds. Values of the resultant

probabilities are found to be where the facto®,(X,) has been dropped in the first line
1 1 1 due to the assumption of the initial localizationRy. The
Piay..yo=1—|=+=|, Pip==, Pyu==, (333 three branchesis(ll), W;(Il), and g, (1) are thus
p q p q nonoverlapping, so that C2 holds and probabilities can be

] ) ) defined for(3.34), whose values are found to be
where we have use@®.29 with symmetry considerations.

These values are reasonable from the symmetry of

the problem. Equation3.8) is now W(II) =¥,,,....,9 PJ(||)=de,.|\IfJ(II)|2, J=6,7,8,/10 (3.373
+W(I)+W¥ (1), and this looks “natural” from the

viewpoint of symmetry. As in Example 1, the form of a P,(1)=0, J=1y2\/---\/5\/9\/11. (3.37h

potential inQ is crucial for the success or failure of C2. A

potential symmetric with respect &=a,b and (a+Db)/2 Now let us further impose the following restrictions. We
does not change the above resyi§], but any deviations ,ssume that the initial packet is moving towadfrom the
from this lead to the failure of C2 when the initial wave |o¢ and also that the special regiarX of Q) is occupied by
function has the_ assum_ed syr_nmetry._ Moreover, in this exy square potentia¥/(X)=0,(X)V, whereV is a positive
ample, the spatial location d? is also important for C2 10 cqngtant. This sets up a simple tunneling problem of a par-
hold. The two examples studied here illustrate that, alongjq|e incident from the left-hand side of the potential. The
with restrictions on the initial condition, any elements in- standard treatment of QM tells us how the incident packet
volved in the decoherence functional can affect the succesg,gves in time[21]. Reaching the barrier region, the wave
or failure of C2. function begins to split into two parts, and their overlap be-
comes smaller as time goes on. After a sufficiently long time,

5. Probabilities for {7y, %} the overlap becomes negligible, and we can clearly identify

Z1y2y- -9 IS nothing but clasg’y considered in Sec. Il, the reflected packe¥ z moving backwards in regioR; and
and Zp,,11 is class?y . The set of two classgsry, 7} is  the transmitted packe¥ + moving forward in regiorR;.
a coarse-grained set ¢8.1) and also that 0f3.27). From Hence, if we choose tim&,, to be such a time at which

what has been studied, we can give three situations in whicthe overlap is negligible, we may write
C2 holds for{#y,%\}. They are(1) whenW¥(l) satisfies
(3.17), (2) whenW¥(I) satisfies the antisymmetric initial con- T =Tg(I)+T(11). (3.39
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Comparing this with(3.36b, we find that example, if a clasg is such that ;e'S'" forms a propagator
_ _ _ on an appropriate region of space, the time evolution of the
We(I)=P(11),  W7(I1)=0, Wg10(11)=Wr(l). relevant branch wave function is norm conserving. This spe-

(3.39 cial property enables us to retrodict that the particle had been
in that spatial region with such and such probability. This is
indeed the case in Sec. Ill C 4. Without such special proper-

ties, it would be that only a formdbut general statement is

Pe:f dX, | ¥+(11)|>=transmission probability, (3.408  available. A formal statement is as follows. Let us note that

fdX,|®(1)|?=1 expresses the existence of a particle at
time T,, . If C2 holds, the left-hand side becomes the sum of

P8\/10:j d X, |Wr(11)|?=reflection probability, (3.400  square norms o ,(11) over all classes, and thus

Therefore

P,=0, J=7,1,/2\---\/5\/9\/11. (3.400 > Pj=fdx,,|\1f(||)|2=1. 4.1
J

It has now turned out that the tunneling probabilitigise
reflection and the transmission probabilijieare special
cases of probabilities for classes of continuous histories. This Pyjary...=PytPy+---. (4.2)
is the main result in this subsection. It should be noted that
the reflection probability is contributed not only frafg but  These equations, just Eq2.15 rewritten in terms of
also fromC,, entering(}. branches, read as followEach classz; contributes to the

By the way, Eq.(3.400 shows that there is no reason to existence of a particle at time,Tby the amount P, and the
keep Z1,/2,...\/5,9,11 @nd Z7 uncombined so long as we contributions from respective classes are additive and sum
deal with asymptotic situations whefg, is sufficiently later  up to unity'® One might be tempted to propose more detailed
thanT,. But in general,Z7 is of the same importance as and physical statements, for instance that “the motion of the
Ze and Zg, 0. If T}, is not sufficiently later tharT,, Eq.  total wave functionW(X,T) agrees with that of a branch
(3.37), which is valid for an arbitraryl,, (>T,), gives a wave function¥;(X,T) with probability P;.” However,
nonzero value oP,. This probability, which decreases as Egs.(4.1) and(4.2) do not warrant such statements beyond
T, becomes large, deserves to be called the “trapped proshe formal one given above.
ability.” The normalization of probabilities is generally such
that the sum of three time-dependent probabilities, the reflec- V. APPLICATION TO TUNNELING TIME
tion, the transmission, and the trapped probabilities, is equal PROBABILITY DENSITIES
to one. (From the standard terminology, however, it is an
abuse of language to cds andPg, 1, the transmission and
the reflection probabilities, respectively, when the wave How long a quantum particle spends in a potential region,

C2 also guarantees

A. Introduction

function is not yet split into two nonoverlapping pajts. the tunneling time problem, has been controversial for more
than 60 yearg[13]. Although several characteristic time
IV. INTERPRETATION scales have been proposed based upon different ideas of

measuring(or defining the time of tunneling, no tunneling
From the result of Sec. Ill C 6, we can draw an importanttime as a universally acceptable concept has been
conclusion as to the interpretation of probabilities for con-established! In view of this, some authors argue that there
tinuous histories. That igrobabilities for continuous histo- is no such thing as “the tunneling time” and one can only
ries defined by our approach (and hence by the generalizedssociate some characteristic time scales with tunneling pro-
guantum mechanics) are, in general, not probabilities for acesses. Undoubtedly, it is of practical importance to study
particle to actually follow the historiedMore precisely, itis  such characteristic time scales, but, at the same time, the
not generally the case that the fulfillment of C2 means thesearch for “the tunneling time” should be continued as well
existence of a real physical path which falls within classbecause of its fundamental importance in QM.
Z3 with probability P;. This is because we know that the
reflection and the transmission probabilities ao¢the prob-
abilities that a particle actually follows such paths that reflect 1%Although we have been using a rectangular space-time region,
off or penetrate the potential barrier. this statement would remain unchanged even if more than one rect-
Nevertheless, the probability-definable examples we havangular space-time region or regions which are not necessarily rect-
found in Sec. Il C give us an impression that probabilitiesangular are used to define classes of paths, provided thaff{jnie
for continuous histories defined by the present approach afgientified to be the latest time of the regions.
more or less informative about the particle’s behavior before 'This is very similar to the situation surrounding Question 1. It
timeT,,, or in other words, an impression that the probabili-does not have a unique answer in QM, as mentioned in Sec. I;
ties can be used for retrodiction. The present author has ngifferent answergdifferent values of the probabilifyare obtained
idea to what extent such an impression has generality. epending on how the particle detection in the space-time region is
would be that the no-interference condition is too broad alesigned. Looking for an answer to Question 1 and looking for an
condition and other requirements such as restrictions on thenswer to the tunneling time are considered different aspects of the
type of classes of paths are needed in addition to C2 to sagame desire, that is, the desire to see things from the particle point
something definite as to what the probabilities mean. Fobf view in a space-time region.
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“The tunneling time,” if definable, cannot be completely {Z0,%¢clc=T,R0=<7<T}, (5.2
unique. It should depend on the shape of the potential barrier
and on the initial condition of the incident wave packet. Juswhere we have sef;=0; & . is the class of paths which
as the position where a particle is found is described by &elong to class’. andspend timer in the barrier region. It
probability density and its mean position under a given initialfollows that®
condition is calculated by using the density function, it is
reasonable to expect, given an initial condition, that the tun- S @ishhi= fT”dTE oS/t (5.3
neling time is calculated as a quantum mechanical average Te 0 Zer ’
with respect to a probability density of tunneling time which _
depends on the shape of the potential barrier. In an attempt which is also true if we replac&, and 7 . by 7. and
define such a probability density, the following two points . . (7 is the[0,T,;] part of ¥), respectively, and thus
should be taken into account. The first point is that the den-
sity should be independent of the method of measuring the W ()= JT”qu,c an, (5.4
time of tunneling, or more generally external degrees of free- -
dom, just as the probability density of a particle’s position is
independent of how we measure the position; this means thathere
we expect the tunneling time to have an observablelike prop-
erty. The second point is that the method of processing am- ¥, (Il )Ef dX,( E eislh)q,(l)_ (5.5
plitudes (tunneling time amplitudgsinto probabilities(tun- 7
neling time probabilities should have generality in QM.
That is, when the method is applied to cases where corredthis gives nonzero branches ¥f(11) for (5.2). (The other
answers are known, it must reproduce the correct answerbranchWy(11) is zero because we know from Sec. 11l C 6
As such cases, we can think of the probability density of ahat W4, 5,,...\/5,9,,12(11) =0 [since W(I) is localized in
particle’s position and, especially in connection with tunnel-R;] andW,=0 (sinceT), is sufficiently later tharT,).) Not-

Ze,

T

ing, the reflection and the transmission probabilities. ing (3.39 and substituting5.4) into (3.395, we have
Thinking in this way, and looking back at the arguments .
of Secs. Il B and Il C 6, we find that our approach is suited _ J' "
to investigating the definability of tunneling time probability Tn C:ET,R 0 dr¥e (1), ©9
densities.
which is Eq.(3.8) written for (5.2). Now the no-interference
B. Calculation condition for(5.2) is given by, according t62.17h,
We again consider the simple tunneling situation consid- ReD[(c,7);(c’,7")]= 8¢ 8(7—7")P ,, (5.7

ered in Sec. lll C 6. Starting fron8.34), we classify paths

connecting two surfaces of constant tifieandT,, accord- where

ing to the amount of time paths spent in the barrier region.

Before doing this, let us note the following. If probability N, :f *

densities are definable for tunneling timébe reflection DL(c,m):(c",7)]= | dXyWe (INWer (1), (5.8
time and the transmission timethese densities integrated o ]

over possible times should reproduce the tunneling probabili@"dPe,; is given by, according t¢2.18),

ties (the reflection and the transmission probabilitieSince 1

the tunneling probabilities can be defined onI31/2 gsymptoti-pC’T: lim -— | dXg deAf drd, (B;A)W(A)
cally (i.e., whenT,, is sufficiently later thanT|),” it is a Ar—0R T Ar

contradiction if tunneling time probabilities should be defin- (5.9a
able for an arbitrany;, later thanT, . TakingT,, sufficiently

later thanT,, and combiningZ7 and 27, ...\ 5,/9,/11 iNtO . f f
Z0=7%1y2y...y5,7,0,11, We consider the following three _A“TTOAT dX ATdT‘I’c,T(”)
classes of paths:

2

2
: (5.9b

where®, .(B;A)==, €'5" and we have used

{Z0,7c=T,R}, (5.
- - > eiS/h=fdx”f dX,®(B;11)| >, eS| d(1;A)
where Z =7 and Zg= g, 10; readc as “channel.” Let Cer Cer
us now “fine grain” % with respect to the amount of time (5.10

7 paths spend in the barrier region. The resultant classes are

labeled by the discrete indexand the continuous index.

The set(5.1) is fine grained into B3As will be explained later, a careful treatment is necessary for
7=0 for c=R. The following equations in this paragraph need to be
modified accordingly. We will do this later. For now, with the fol-

2This is not true in the case of tunneling by a particle having alowing somewhat inaccurate equations, the author would like to
fixed energy. But such a case is an ideal limit of tunneling by asketch the essence of how the history approach is going to be ap-
particle described by a wave packet, which is the case we deal wittplied to the tunneling time problem.
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consider the casX’'<X<X". If this classification is pos-
sible, the following composition law should hotfl:

T
@(X",T”;X’,T’)=f dT, (X", T"; X, T)F(X,T;; X', T'),
T’
(56.12

I Xea X=b where functionF(X,T;; X', T') is defined to be the result of
the sum over paths fromX(,T’) to (X,T;) never hitting
FIG. 8. The timer a Feynman’s path spends in the barrier Sx before the arrival atX,T;). This composition law can be
region is defined as the difference between the fimat which it ~ regarded as the Volterra integral equation of the first kind for
leaves the region for the last time and the tifheat which it enters  the unknown functiorF. Does(5.12 have a unique solu-
the region for the first time. The case=T is illustrated. Though a tion? If it does, we may take it as a proof of the meaningful-
smooth path is drawn here for legibility, Feynman's paths are nonness ofT; .1’ Because of the time translation invariance of

differentiable in time. the problem, we may write

to obtain(5.9b). If C2 holds, P, , deserves to be called the O(X", T X' T)=d(T"'-T'|X",X"),
probability density of transmission time fa=T and the

probability density of reflection time foc=R; C2 guaran- FOX, T X, T =F(T,—T'|X,X’). (5.13

tees that the densities integrated fram 0 to T, reproduce
the transmission and the reflection probabilities. Unfortu-Equation(5.12) is now of convolution type and we can solve
nately, however, C2 does not hold and the probability denit for F by performing Laplace transformation on both sides.
sities cannot be defined. We prove this below. Now we musThe formal solution is found to B&

implement(5.3) explicitly. [Although the conclusion is nega-

tive, how the decompositiof5.6) can actually be accom- 1 J7+‘°° TE)(SlX",X’)

plished with a slight modification is an interesting problem in F(TIX,X")= 2 y—ice S d(s|X",X) "’ (5.1

its own right. Our secondary aim in this subsection is to

show the process of decomposition in detail. . wherey is an appropriate real number, afhdis the Laplace
Equation(5.3) assumes that the amount of timex given  transform of®, i.e.

path spends in the barrier region can be meaningfully de-

fined. This is not obvious at all, for Feynman’s paths are - o

nondifferentiable in time. In this paragraph, we argue that a ¢(S|X",X')Ej dTe *T®d(T|X",X").  (5.19

meaningful way of defining is the following (see Fig. & 0

Unless the potential is ill behaved, the complex integral
(5.19 is expected to exist to give a uniqe As an illus-
tration of this, and also for our later purpose, we calculate
whereT; is the first time the path hit&=a (the left bound- (5.1 for a free particle. In this case we may further write
ary of Q) for bothc=T andR, while T; is the last time the
path hitsX=b (the right boundary of)) for c=T andX=a
for c=R. Of course,T; andT; must be proved to be mean-  syydies of the integral equatiof.12 in the context of path
ingful when paths are nondifferentiable in time. As evidenceglassifications go back ®3]. Recently it was rediscovered in the
of the meaningfulness df; (it is enough to consider either study of multidimensional tunneling and called the path decompo-
T; or T¢), we show that paths can be classified according tGition expansior(PDX) [24].
the first time they hit a fixed positioh. From a space-time  Ystrictly speaking, the existence of a unique solution is only a
point of view, it is convenient to call a fixed positio @  necessary condition foF; to be meaningful. More rigorously, we
“surface” of constantX, which we shall denote bysy.  could discretize both space and tirfreal time to defineT; on the
Consider if the paths fromX’,T") to (X", T") can be clas- space-time lattice in the manner described in Sec. 2.2 in Chap. Il of
sified according to the tim@&; of their first hit of Sx. We  [20]. We can then complete the path classification in question on
the lattice, which is an easy task because we have only to deal with
a countable number of paths on the lattice, to obtain an equation
YAs pointed out by Schulman and ZiolkowgRi2], this definition  expressing the lattice-path classification. Equatibrid) is then
of r overestimates the duration, because the path can exit and reerived by taking an appropriate continuum limit. We can then
enter the region betweeh; and T;. To do the estimation “cor- follow the present procedure to arrive @14). Hence the mean-
rectly,” we must know when and how many times the path crossesngfulness ofT; and the existence of a unique solution(6f12 can
the temporal boundaries 6f. This is, however, impossible because be regarded as the same thing. Working on the lattice, we could also
Feynman'’s paths are nondifferentiable in time; they cross a “surderive (5.19 directly [i.e., without using(5.12] as a sum over
face” of constaniX even an infinite number of time$; andT; are  lattice paths.
the most detailed information we can meaningfully talk about. 18As usual, the integration contour f8.14) is an infinite vertical
5This is a quantum mechanical version of the so-called “firstline in the complexs plane, and the constant must be chosen in
passagéhitting) time,” which is one of the standard subjects in the such a way that all the singularities of the integrand are on the
field of stochastic processes. left-hand side of the contour.

=T:;—T;, (5.11
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(D(T”_T,|X”,X,):(I)(T”_T,|X”_X’),
F(Ti—=T'|X,X")=F(T;=T'|X=X"). (5.16

The Laplace transform of the free propagade(T| X) is [we
use the unitsn/A=1 (m is the particle’s mas$

— [l
(I)(S|X): Eel\/leXz,

(5.17

and thus

Y "n__ N1’
D (s|X"—X ):ei\/zis(X—X’)zz_

e ,
B(sIX"—X) i P(sIX=X"). (5.18

Substituting this result int¢5.14) and changing the order of

Jds andd/oX, which can be justified, we finally obtain

d
F(T|X)=—i(9—X<IJ(T|X)

X2 1/2 x2
:(m) ex”('ﬁ)’

(5.193

(5.19h

where ® is the free propagator. This is the explicit expres-

sion for the “first hitting amplitude”’F(T|X) for a free par-
ticle; it is the sum ofe'Stree/? (S . is the free actiopover
the paths starting from (0,0) and ending &) without
hitting the surfacey before timeT. Although the variable&X

in F(T|X) is supposed to be positive in the context of our

derivation, the final resul(5.19b is valid regardless of the
sign of X. The explicit expression foF for a free particle
with arbitrary end points follows immediately frof%.19H
with (5.13 and (5.16). In passing,(5.190 satisfies the fol-
lowing equation:

J'T’dTF(T’—T|X’)F(T|X)=F(T’||X|+|X’|). (5.20
0

Hence the first hitting amplitudé evolves, as it were, in
space, just as the propagatbrevolves in time according to
Eqg. (2.19. What is behind5.20) is the following path clas-
sification. Let us assum¥, X’ >0 for simplicity. The right-
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This, together with5.11), completes our definition of. Ac-
cordingly, Eq.(5.3 for c=R has to be replaced by

S eish=> eiS/ﬁ+fT"de gis/h
14

‘R Z10 0 ’8,r

(5.21

where £  is the subclass oty consisting of the paths
spending timer in the barrier region. For# 0, we may
write 2 , for % ., because a path ifig spending nonzero
time in the barrier region inevitably belongs #G;. By con-
trast, we may not writes g o for 474, because those paths in

Z g for which Tj=Ty also belong t&Z o; as will be clarified
later, their contribution needs a careful treatment, and we
will be led to consider the contribution from those paths in
Z r that spend less thae> 0 in the barrier region, which is
formally expressed as

>

ZR0<r<e

gsh= eiS/h+jEde e'Sh (5.22

Z10 0 Zg,

Taking this point into account in advance and noting
Zg.,=Cr,, for 7#+0 we rewrite Eq(5.21) as

2 elS/h— 2

ZR ZR0<r<e

eiS/ﬁ+JT”dTE eist (5.23
14

€ “R,7

Accordingly, the reflected packet can be decomposed as
T
\PR<H>=WR,O<T$E<H>+f drbe (1), (5.24

whereW (11) is defined by(5.5) and

p>

ZR0<r<e

\PR,0$T$E (II )EJ d)(l

eiS/’i) ¥(l). (5.29
This modification means that we consider the set of classes
of paths

{70, %Roree ZedC=T,R e<7<T,,

for c=T} (5.2

for c=R,
Os T$T||

rather than(5.2); class #, can be dropped from elements
because it is null in the sense #,(11)=0 and thus irrel-
evant for C2. Condition C2 fok5.26) is (5.7), in which
7,7 > ¢ for reflection, plus

hand side corresponds to the paths which start from (0,0)

and end at X+ X', T") without hitting Sy x: before time
T’. Such paths intersect the intermediate surfaceand the

Re d>(II E,OSTSE(”)‘PR,T(”):Ov (527)

number of times of intersection is, in general, more than onewherer> e for ¥ .(11). In passing, if C2 holds fof5.26),

By classifying the paths according to the first tifi¢hey hit
Sy, we have(5.20.%°

Definition (5.11) is incomplete foc=R, for whichT; and
T; cannot be defined for the paths 5. Since they spend
no time in the barrier region, we define that0 for them.

the probability that the reflection time is less thais given
by PR,Osrse:fdxll |WR,0§T$E(I I )|2

Now let us implement5.3) for c=T and(5.23 explicitly
to obtain branche®¥'g o< (I1), Vg (1), and W (II).
Any path in Z5 can be split into three parts: the part frdm
to the first hit of S, at time T;, the part from &,T;) to the
last hit of S, at timeT;, and the part fromlf,T;) toll. The

9n the present context5.20 has appeared in connection with a last part can be reinterpreted as the first hitSgfat time
free particle in one-dimensional space. Interestingly, the same idenF,, — T; after starting fromX=X,, at T=0. For reflection, a
tity appears in connection with a particle in a weak potential insimilar splitting can be applied only to those paths in class

three-dimensional spadsee, e.g., p. 131 of Reff14]).

Zg. Thus we have
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) T T
> e'S’h=®z<x|.)®1<x.)jo”deJO TR (Ty — T Xy —b) (T~ T |b,a)F(Ti|]a—X,). (5.288
o1

: T T
2 e'S’ﬁ=®1(x|.>®1<X.>f0 defo ATF(T, - Tla—X,)® (T~ T|a,a)F(T|a—X,). (5281
7R

Note thatF’s are those defined in the absence of a potehitial, given by(5.19] because the relevant paths stay out of the
barrier region beford; and afterT;, whereasb’s are the propagators in the presence of the rectangular potg2fiiaBy
changing the integration variabld§ and T; to 7 andu=T;, we can rewrite(5.28 into the form of = integrations, whose
integrands are found to be

) -7
Z e =0,(X))01(X)P(7]b,a) fo duF(Ty, — 7—u[X;; —b)F(ula—X;)

S//T,T

Jd
= _i®2(xll)1(X|)q)(7|bia)aT”q)free(Tll — 17X, —X,—b+a), (5.293

. TW-7
Z e¥"=0,(X)04(X)P(7]a,a) fo duF(T, — r—ula—X;)F(ula—X;)

“g

J

where we have used Eq5.20 to carry out theu integrations, and then used E@5.193; ®;... is the free
propagator. Now it is clear why we have to make a special treatmentforfor reflection; due tab(7|a,a), (5.290 behaves
as 7 '/2 for small r and thus diverges at=0, but converges when integrated fram0. This means that it does not make
sense to consider the contribution from those pathgdnwhoseT; and T; are exactly the same, which in turn means that
Vg o(11) and thus¥r o(11) do not make sensgWe need well-defined branchesW{11) to check C2] As mentioned earlier,
a proper treatment is to consider the contribution from those paths iwhoseT; and T; differ up to €; their contribution

converges and thus it makes sense to consltigp<,<.(l1) defined by(5.25 and(5.22) with £ replaced by? Now the
nonvanishing branches df(11) for (5.26 are obtained as followsl'r (1) andWg (1) are obtained by substituting.29
into (5.5), noting that” g ,= 7 , for 7#0; Yr o==(11) is Obtained by substitutings.29b andz7, e’ =®R(I1;1), which
is the restricted propagator &y, into (5.22) with Z replaced byZ and then using5.25. Finally, going back to the standard

notation [i.e., writing ®¢,co( Ty — 7/X); — X, —b+a) = P+0(X;, — (b—a),T;; — 7;X,,0), etc] and recoveringn and #, we
arrive at

=i0,(X)0(X)P(7]a,a) Dtree( Ty — 722— X — X)), (5.29h

i 0

\PT,T(” ):®2(X||)®(b,7';a,0) ﬁm\lrfree(X” - (b_ a) ,T|| - 7'), (5303
i 0
q’R,T(” ):_61(X”)q)(a,7';a,0) ﬁﬁT”\I,free(Za_X” ,T|| - T), (530b
\IIR,OQQ(II)z@l(xu)jdX'(I)Rl(ll ;l)\I’(D"FJdT‘I’R’T(“), (5.300
0
|
where factor ® (b, 7;a,0) corresponds to the motion of the particle

spending 7 in the potential region, and

VteeX) —(b—a), T, — 7) corresponds to the free motion
‘I’free(XvT)Ef AX Do X, T X ,00W(X",0), (5.3)  before and after the tunneling; the appearance of

(im) 1ol 9X,,, the “velocity operator,” is the direct con-

, . sequence of5.199 and is natural, since the first time a par-
where the factoi®,(X’) has been dropped from the inte- 4o hits Sy should be related to its velocity, and it implies

grand because the initial packet has been assumed to be I, higher momentum components of the initial packet
calized inRy. Wy (II) is a part of the transmitted packet .., greater contributions t&, (I1). By the very con-
that “spends the amount of timein the barrier region” in - ¢ ction of the branches oF(II):Tthey satisfy

the sense that the paths contributing to it spend that amount
of time in the region, and analogously farg (1) and
Wro<r=c(I1).In(5.300, 2a— X, is the mirror reflection of T T

X, with respect toX=a. Note that the contributions from Wrosr<e(lD)+ L d7 We(11)+ fo d7 W A(11)
the motions inside and outside the barrier region are factor-

ized in (5.309 and (5.30h; in the former, for example, the =P(ll), (5.32
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which is taken for granted since C1 holds. As to C2, there isneaningful as a “dwell time” that a particle is in the barrier

a possibility that(5.27) holds (at least approximatelyfor a  region irrespective of whether it is eventually reflected or
properly chosere. However, even if it should hold(5.7  transmitted. Although this assumption has been accepted by
must also hold in order for C2 to hold. Conditigh7) hasto  many authors, it has been questioned by Olkhovsky and Re-
be checked only foc=c’, since¥¢ (I1) and¥g ,(II) are  cami[28]. Hauge and Stimeng[13(c)] also warn that the
nonoverlapping. Substitutings.303 and (5.30h into (5.8 assumption is not universally accepted for wave packets, and
and changing the variable of integration frobi;, to the present author shares the same opinion. Leavens, Aers,
X, —b+a for transmission and te- X,, + 2a for reflection, and McKinnon[29] use the Bohm trajectory approafBo]

we have to define tunneling time probability densities. Unlike Feyn-
man’s paths, Bohm trajectories are associated with positive
D[(T,7);(T,7")]=®*(b,7;a,00®(b,7";a,0)l(7,7";a), weights, and thus the definition of tunneling time probability

(5.333  densities is straightforward. However, the results heavily rely
_ , . _ . . on the properties of Bohm trajectories, whose physical mean-
DI(R,7);(R,7")]=®*(a,ma,00d(a,75a,0)(7,7';2), ing is not necessarily clear, so that the reproduction of the
(5.330 same results by some independent methods is hoped. The
Bohm trajectory approach by Leavens and co-workers and
the Feynman path approach by Sokolovski and co-workers
i\2 [ have been compared {29(d)]. The present author has re-
= L dx[ﬂ‘y’fkree(xa-rll =) cently learned that Leavefi31] had come to the conclusion
that mean transmission and reflection times are meaningless
concepts within the consistent-histories approach.

where 7,7 > € for the latter and

I(7,7";a)=

J
X2 Vires X, Ty = 7). (5.3

D[(c,7);(c,7")] depends on the initial condition through VI SUMMARY AND CONCLUDING REMARKS

I(7,7";a) and on the potential througlb(b,r;a,0) or The main points are as follows.
#(a,7;a,0). (1) Most of the studies of the histories approach have
Apparently the real parts db6.33 do not vanish in gen- been on discrete histories defined by products of projection
eral. All that is left for the success of C2 is the possibility operators in Hilbert space. By contrast, we have studied con-
that the real parts vanish in some restricted situations. Whainuous histories defined by Feynman'’s paths in configura-
can be restricted are the initial conditioi(l) and the pa- tion space.
rameters of the potentiah, b, andV. However,(5.33 ex- (2) Probabilities can be defined for a given set of classes
plicitty shows that, regardless of such restrictions,of paths, provided that both Qthe path classifiability con-
D[(c,7);(c,7")] is a continuous function of andr’, and so  dition) and C2 (the no-interference conditipnhold. The
its real part. Thus Re[(c,7);(c,7’)] can never be propor- combination of C1 and C2 is considered as a consistency
tional to 8(7— 7'). Therefore, C2 does not hold irrespective condition between wave and patrticle natures. A set of classes
of w(I), a, b, andV. We conclude that tunneling time of paths satisfying the two conditions is considered as a
probability densities cannot be defined within the presenspace-time analog of observables. We have focused on cases
framework.[Incidentally, P . vanishes identically since C2 where C1 holds.
fails. See the comment belo®.18.] The decoherence func- (3) In general, the probability for a class of paths cannot
tionals would also be continuous irand 7' for more general be regarded as the probability that the particle actually fol-
potential barriers, although their explicit expressions depentbws the paths in the class.
on the shape of potential. Thus the negative conclusion (4) We have found examples of sets of classes of paths for
reached here for a rectangular barrier would also be true fawvhich C2 holds and probabilities can be defined.
more general potential barriers. (5) In all the examples, the initial condition of the particle
Our conclusion is in sharp contrast with that of of interest is appropriately restricted. The examples show,
Sokolovski, Connor, and Brouaf@6]. They have proposed however, that not only the initial condition but also other
several probability distributiongrobability densities in our elements entering into the definition of the decoherence
terminology of traversal time. A detailed review of their functional can be crucial to the success or failure of C2.
work is out of the scope of this paper, and the present author (6) In the examples, restrictions on the initial condition
would like to point out only the essential differences betweerand on the other elements are essential for the resultant prob-
their approach and ours. They also work within the frame-abilities to take reasonable values consistent with intuition.
work of path integral, but start from a different definition of  (7) The examples imply that C2 holds when decomposi-
tunneling(traversal time which is not(5.11) and use a dif- tion (3.8) takes a “natural” form reflecting characteristic
ferent prescription to process an amplitude into a probabilityfeatures of the motion of Schdmger’'s wave function with
density[our prescription i2.18]. The biggest difference is, respect t}.
however, the absence of a criterion like our C2 which is used (8) The transmission and the reflection probabiliiifes a
to determine probability-definable situations. Probabilityrectangular potential barrieare special cases of probabili-
densities of tunneling times have also been discussed by Dties for classes of continuous histories.
mont and Marchiord27]. Their discussion implicitly relies (9) Probability densities for the transmission and the re-
on the assumption that a positive quantity flection times cannot be defined for a rectangular potential
JdXSdT|W(X,T)|? with appropriate integration ranges is barrier no matter how the initial condition is restricted.
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The present approach does not always define probabilitiels. S. Schulman, and Professor R. D. Sorkin for helpful dis-
for histories. One may feel that this is uncomfortable; espeeussions regarding the contents other than Sec. V. This work
cially, one may insist that probabilities should be defined, ifwas financially supported by the Japan Society for the Pro-
they are definable at all, for an arbitrary initial condition. motion of Science.

This insistence arises perhaps from an implicit assumption

tha’g in th(_a _Cpnventio_n_al QM _pr(_)babilities are defi_n_e_d for an APPENDIX: “BY-HAND"” NORMALIZATION

arbitrary initial condition. This is true for probabilities for

observables, but is not necessarily the case in general; such One might ask if there are other ways of defining prob-
probabilities that are not always definable also play impor-abilities for histories in such a way that the minimal require-
tant roles in the conventional QM. For example, tunnelingments are satisfied. Theage other ways, and one of them is
probabilities, which are very important in understanding tun-the following: Abandon(2.6) for 7, i (j #K), while main-
neling phenomena, are not always definatdensider, for taining it for #; andZ, and drop condition C2we assume
instance, the case when the initial wave packet is localized ithat C1 holds Equation(2.15 is then invalid, since the first
the barrier region Tunneling probabilities are special casesequality fails. Let us now define

of probabilities for histories, and hence it is not surprising

that probabilities for histories in general are not always de- — P
finable. However, it should be pointed out that, although C1 = (Ala)
and C2 were explained earlier as conditions which define a EK Py

space-time analog of observables, the resultant probabilities
are not always definable. The property that probabilities are
always definable for observables is not owned by our analog Piyk=P;+Pr (j#Kk). (Alb)

of observables. This is what is lost by our generalization of

observables. What is gained is an understanding that th'ﬁhe probabi"ty axioms are SatiiﬁEd h? Considering
combination of C1 and C2 makes it possible to introduce thq %y, %}, we can easily prove th&y, tends tof dX| |2 as
concept of probabilities for histories into the sum-over—patth_AX_ Thus the above construction Bf meets the mini-

formulation of QM as a natural generalization of probabili- mal requirements. When C2 is satisfi¢,6) and (A1) are
tlei;‘lorhobservablles.f dins e hth the same thing. But otherwise there is a big differerid;)

the examples found In Secs. are such that notyefineg probabilities but our approach does not. Why have
only CZ. but also the. medyur_n decoherepce condifign. we not chosenAl), which looks much simpler than our
(.2'14) W|thoyt “Re’.'] IS _sat|sf|ed. It remains a problem to .approach? One reason is that the values wtid) gives are
f!nd ?qlsest; i anzy,hlnlo\llvhlch tTIe rrlnedlum dleco?eregcg Condlhot acceptable, as illustrated later. Besides, the present au-
tion fails but C2 holds. In all the examples found in Sec.y, . is ot satisfied wittiA1) for the following two reasons.
Il C, restrictions on the initial condition of a partickand (1) The “amplitude sum rule”(i.e., the superposition prin-
also on other e'eme”ts entering into the definition of theciple) has not been taken into account, whereas the probabil-
decoherence functionaare essential for the success of C2,itv sum rule has been forced to hold by adopting it as a

while C2 always holds when classes of paths are defined b efinition. By contrast, neither of the two sum rules is given

path classifications across constant time surfaces. This i Sriority over the other in our approach; recall that C2 is the
ondition for the two sum rules not to confli¢R) The way

plies that it is only when constant time surfaces are used t
classify paths into classes that C2 holds without restrictionsys oy aining normalized probabilities is artificial. Compare
the “by-hand” normalization(Ala) with our “automatic”

Investigation of this implication is of great interest. As to
tunneling time probability densities, we plan to investigate 'fnormalization(2.15), in which the normalization is a conse-
ﬂuence of the normalization at an initial time. By-hand nor-

appropriate coarse graining of transmission and reflectio
times leads to the success of C2. Analysis of other appjizations may be used if it ia priori clear that we are

proaches to tunneling time probability densities from theyejing with an ESEE But it is this very point that needs
viewpoint of th? h|§tor|es approach is also interesting. MOr&.areful treatment when we deal with histories, and thus by-
broadly, investigations of the usefulness of the histories a

h in oth local-in-ti bl . €S Phand normalizations should not be used. It should also be
proach in other nonlocal-in-time problems are interesting. pointed out that the by-hand normalization is not possible for
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probability densitied, , becausd, =0 if C2 fails, as shown ability axioms nor the superposition principle must be dis-
in Sec. Il A. Thus, the by-hand normalization cannot be acarded.(3) The normalization of probabilities should be a
universal procedure of normalization. It seems to the presertirect consequence of the existence of a particle at an initial
author that the ways of defining probabilities for histories aretime. All these are satisfied by our approach.

fairly restricted if we require the following1) The approach Now let us see by an example th@l) is not a good
must be simple and meet the minimal requireme(s.In choice. We use results obtained in Sec. lll A. The sum-over-
constructing probabilities from amplitudes, neither the probpaths amplitude fofz, is calculated as

9
Dy(B;A)= 2, ®y(B;A)=D(B;A)— >, dX..f dX, @ (B; 1) DRI(11;1)D(1;A), (A2)
J=1 i=12 JR R

where we have use(B.5 and (3.6). The second ternfafter the minus signon the right-hand side ofA2) is equal to
®\(B;A). Assume thatV (1) is localized inR; and also assume ideally thdt(11) is completely localized iR, (the same
situation as shown in Fig.)6We put(A2) into (2.6) for #=#+. Noting [dX,®(I;A)¥(A)=V¥(l) and defining

Xj(u)EJR_dx,chj(u;|)«1f(|), (A3)
]

which vanishes foj =2 because of the localization &f (1), we obtain

2
fR dX, ®(B;11)yx.(11)] . (A4)

Py=f dXg|W(B)[2-2 Ref de\P*(B)ledx”@(B;ll)X1(||)+f dXg

The right-hand side is evaluated as follows. The first term is _ 2 _ 1
unity. The second term is zero because Py=3. Pn=3 (AS5)
JdXgW*(B)®(B;l1)=P¥*(Il) and this is zero oR;. The

third term is unity; to see this, u;{é.?) to carry outtheXe ¢ 1y, follows that the probabilities take these fixed values
integration to getfr,dX;[xa(I)|*, and then usé3.14 to 1o the initial and the final packets are localizedinand

carry out theX,, integration to haveg dX|¥(1)|?, which R, respectively. It is not reasonable that only these con-
is unity because of the assumption of the initial localization.straints completely determine the values of the probabilities.
Consequently we havBy=2, and in the same way we get In conclusion, not only is the by-hand normalization unsat-
Pn=1. Normalizing these results according(fila), we ob-  isfactory in spirit, it also produces unacceptable results in

tain practice.
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