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Comment on ‘‘Why quantum mechanics cannot be formulated as a Markov process’’
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In the paper with the above-noted title, D. T. Gillespie@Phys. Rev. A49, 1607~1994!# claims that the theory
of Markov stochastic processes cannot provide an adequate mathematical framework for quantum mechanics.
In conjunction with the specific quantum dynamics considered there, we give a general analysis of the asso-
ciated dichotomic jump processes. If we assume that Gillespie’s ‘‘measurement probabilities’’are the transi-
tion probabilities of a stochastic process, then the process must have an invariant~time independent! probabil-
ity measure. Alternatively, if we demand the probability measure of the process follow the quantally
implemented~via the Born statistical postulate! evolution, then we arrive at the jump process whichcan be
interpreted as a Markov process if restricted to a suitable duration time. However, there is no corresponding
Markov process consistent with theZ2 event space assumption, if we require its existence for all timest
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Before@1# we have contested the general statement du
Gillespie @2# about the generic contradiction between t
probabilistic concepts appropriate for quantum theory a
those proper to the common-sense theory of stochastic~in
particular, Markov! processes. Our argument was based
invoking the standard, configuration space, Schro¨dinger pic-
ture quantum dynamics which, if combined with the Bo
statistical interpretation postulate, allows for a consistent
scription in terms of Markov processes of diffusion type,
conformity with the rich theory developed so far@3–9#.

However, our arguments did not pertain to stochas
jump processes which were the main objective of Ref.@2#.
Let us therefore consider a simple two-level quantum sys
undergoing the Schro¨dinger evolution:

c~ t !5exp~2 ict !cosvtu1&2 i exp~2 ict !sinvtu2& ~1!

and concentrate on its probabilistic analysis, with an ad
tional motivation coming from the series of papers due
other authors@10–15#, where the Markov property has bee
attributed to analogous dynamical problems; see, howe
Ref. @16#. We shall slightly simplify ~1! by rescaling the
dimensional constants to achievev51.

The discussion of Ref.@2# departs from the following
epistemologicalinput: ‘‘If the system is known to be in stat
1 at times, then the probabilities of finding the system
any time t.s to be in states 1 and 2 are cos2(t2s) and
sin2(t2s), respectively, and similarly that if the system
known to be in state 2 at times then the probabilities of
finding the system at any timet.s to be in states 2 and 1 ar
cos2(t2s) and sin2(t2s), respectively.’’ These ‘‘measure
ment probabilities’’ are then utilized astransition probabili-
ties of a certain~presumed to be consistently defined! sto-
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chastic jump process, with the outcome that the quan
mechanical evolution is at variance with the canonical fo
of the master equation appropriate for the problem@Eqs.~13!
in Ref. @2# #.

The above transition probabilities constitute a 232 tran-
sition matrixpG(t,s) with elements

p11
G ~ t,s!5cos2~ t2s!5p22

G ~ t,s!, ~2!

p12
G ~ t,s!5sin2~ t2s!5p21

G ~ t,s!.

To avoid any possible confusion, let us recall~see, e.g.,
Ref. @17#! that a stochastic process onZ2 , if considered on a
finite time interval, say@0,T#, is to be given by a hierarchy
of transition probabilities~they are an easy transcription o
those conventionally utilized in the framework of continuo
processes!:

p~s,t !, 0<t<T ~3!

p~s1 ,t1us2 ,t2!, 0<t2,t1<T

p~s1 ,t1us2 ,t2 ,s3 ,t3!, 0<t3,t2,t1<T

and so on, where each indexs equals either 1 or 2.
In the above,p(s,t)5m$vPV:Xt(v)5s%, s51,2 de-

fines a probability measure of the stochastic process onZ2 ,
i.e., probabilities with which the dichotomic random variab
takes values along concrete sample~jumping! paths in the
event spaceV. The probability measure of the process
then propagated~or left invariant! by the transition probabil-
ity p(s1 ,t1us2 ,t2).
1733 © 1996 The American Physical Society
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The probabilities~3! have to satisfy the so-called consi
tency conditions:

~i! (sp(s,t)51,
~ii ! (s1

p(s1 ,t1us2 ,t2)51 and

(s2
p(s1 ,t1us2 ,t2) p(s2 ,t2)5p(s1 ,t1),

~iii ! (s1
p(s1 ,t1us2 ,t2 ,s3 ,t3)51,

(s2
p(s1 ,t1us2 ,t2 ,s3 ,t3) p(s2 ,t2us3 ,t3)

5p(s1 ,t1us3 ,t3),
(s3

p(s1 ,t1us2 ,t2 ,s3 ,t3)p(s2 ,t2us3 ,t3)p(s3 ,t3)

5p(s1 ,t1us2 ,t2)p(s2 ,t2), etc.
For a Markov process we would hav

p(s1 ,t1us2 ,t2 ,s3 ,t3)5p(s1 ,t1us2 ,t2) in which case~iii !
would reduce to a single identity

(
s2

p~s1 ,t1us2 ,t2!p~s2 ,t2us3 ,t3!5p~s1 ,t1us3 ,t3!,

~4!

i.e., the Chapman-Kolmogorov equation. Then, the hierar
is closed and the process is completely specified by giving
initial probability measureand its transition probabilities.

Let us point out that in Ref.@2# the random dynamics wa
characterized exclusively in terms of transition probabilit
and with no reference to a probability measure of the p
cess. The probabilistic description of random jumps onZ2
patterned after@10,11# is given in terms of the ‘‘probability
vector’’ ~probability measure in the present case!:

p~ t !5S p1~ t !p2~ t !
D , ~5!

p1~ t !>0 , p2~ t !>0 , p1~ t !1p2~ t !51

and the transition probability

p~ t1 ,t2!5S p11~ t1 ,t2! p12~ t1 ,t2!

p21~ t1 ,t2! p22~ t1 ,t2!
D , ~6!

pi j ~ t1 ,t2!5p~ i ,t1u j ,t2!, i , j51,2
y
ts

s
-

pi j ~ t1 ,t2!>0 , (
i
pi j ~ t1 ,t2!51,

(
j
pi j ~ t1 ,t2!pj~ t2!5pi~ t1!.

The last identity is equivalent top(t1 ,t2)p(t2)5p(t1), un-
derstood as the matrix-vector operation in the linear spa

If Gillespie’s transition matrixpG(t,s), ~2!, is to define a
consistent stochastic process, in view of its breaking
Chapman-Kolmogorov identity, the higher rank condition
probabilities need to be introduced. Unfortunately, they
not given in Ref.@2#.

Nevertheless, let us take for granted that this supplem
tary step can be made so thatpG(t,s) is a transition matrix of
a well defined~non-Markovian! stochastic processXt with
values inZ2 . It is natural to ask for the probability measu
m of this process, i.e., for its probability vectorp(t). It must
satisfy the consistency~in fact, propagation! condition

pG~ t,s!p~s!5p~ t ! ~7!

for all s,t. Let us analyze the issue in some detail.
If p(0) is an arbitrary initial density, we can always wri

p~0!5S a

12aD , ~8!

with aP@0,1#. Then, for alls.0 we have

p~s!5pG~s,0!p~0!5S a cos2s1~12a!sin2s

a sin2s1~12a!cos2sD ~9!

and for everyt.s

p~ t !5pG~ t,0!p~0!5S a cos2t1~12a!sin2t

a sin2t1~12a!cos2t D . ~10!

On the other hand, it holds that
p~ t !5pG~ t,s!p~s!5S cos2~ t2s!@a cos2s1~12a!sin2s#1sin2~ t2s!@a sin2s1~12a!cos2s#

sin2~ t2s!@a cos2s1~12a!sin2s#1cos2~ t2s!@a sin2s1~12a!cos2s#
D . ~11!
Since~10! and ~11! must be equal, we get the identity

~a2 1
2 !sin2~ t2s!sin2s50 ~12!

to be valid for all 0,s,t. It impliesa5 1
2 and consequently

p~0!5S 1/21/2D ~13!

is the only admissible initial choice ofp(0).
Moreover,pG(t,s) is a symmetric matrix, which implies

the following important property: if for somet0 we deal with
p(s,t0)5const which is independent ofs51,2, then for all
t.t0 there is p(s,t)5p(s,t0)5const. This follows from
the observation

p~s,t !5(
s0

p~s,tus0 ,t0!p~s0 ,t0!5const(
s0

p~s,tus0 ,t0!

5const(
s0

p~s0 ,tus,t0!5const. ~14!

As a consequence, by utilizingpG(t,s) as a transition
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probability appropriate for the stochastic process, we wo
arrive at the process whose probability measure is conse
in time,

p~0!5p~ t !5S 1/21/2D ~15!

for all t.0.
The random dynamics induced bypG(t,s) is thus appro-

priate exclusively for systems with an invariant probabil
measure. It certainly has nothing in common with the qu
tally implemented evolution of the probability measure as
ciated~via the Born postulate! with the explicit solution~1!,
i.e., with the probability vectorp(t) whose components rea
p(1,t)5cos2t, p(2,t)5sin2(t).

We believe that a consistent approach towards a prob
listic reinterpretation of the quantum dynamics proper sho
result in the construction of a stochastic process~Markovian
if possible! which is compatible with the quantum Schr¨-
dinger picture evolution~1!. This issue has received attentio
in the literature, see, e.g., Refs.@3–9# and Refs.@10–16# in
particular.

Let us follow this, alternative with respect to the reaso
ing of Ref. @2#, idea and demonstrate that the restriction
symmetric transition matrices~Gillespie’s case, see, e.g
Ref. @18# for more detailed discussion! implies that there is
no consistent Markov jump process which can be associ
with the Schro¨dinger dynamics~1! for all times.

Indeed, for the time dependent probability vectorp(t), at
time t05p/4 we have

p~ t0!5S cos2~p/4!

sin2~p/4!
D 5S 1/21/2D ~16!

and the previous result follows for times exceedingp/4.
However, we can construct a Markov process running

the finite time interval@0,p/4#.
We have

p~ t !5S cos2tsin2t D .
Let us definep(t,s):

p11~ t,s!5p22~ t,s!5
cos2t2sin2s

cos2s
, ~17!

p12~ t,s!5p21~ t,s!512p11~ t,s!5
cos2s2cos2t

cos2s
,

where 0<s,t<p/4. All these matrix coefficients are non
negative in the time interval@0,p/4#. Moreover, for
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0<s,t,u<p/4, by inspection~with some help of trigono-
metric identities! we find the Chapman-Kolmogorov equa
tion to be valid,

p~u,t !p~ t,s!5p~u,s!, ~18!

and so the Markov property is established. Obviously,
propagation formula

p~ t,s!S cos2ssin2sD 5S cos2tsin2t D ~19!

holds true. Also, we have limt↓sp(t,s)5I where I denotes
the unit 232 matrix. It corresponds to the matrix eleme
propertyp( i ,su j ,s)5d i j for all i , j51,2.

The major steps of our analysis,~3!–~19!, did not rely on
any ‘‘quantum measurement’’ epistemology and merely
voked mathematical features of stochastic jump processe
Z2 . However, the main difference between the approach
Ref. @2# and this of Refs.@10,11# is rooted in the preferred
choice of the connection between mathematics and phy
~here, pertaining to the concept of measurement in quan
theory!.

The theory of stochastic processes is normally regar
by physicists as a macroscopic theory in the sense that
can probe the system without significantly perturbing
Then, it is not surprising that such a theory may be viewed
inconsistent with the ordinary quantum mechanics. This l
of thought is followed in Ref.@2#.

On the other hand, instead of viewing the stochastic p
cess as a description of one system evolving fromt52` to
t51`, one might view it as a theory for an infinite en
semble of systems, all starting either in the same initial s
or with some initial probability distribution over the possib
states at timet50. The ensemble is allowed to evolve un
we possibly decide to stop the systems. Viewed this way,
theory of stochastic processes might very well describe
evolution of a quantum system between measurements~com-
pare, e.g., in this connection the two time localization fram
work of Ref. @19#!. And that is the admissible interpretatio
of our previous discussion. In this case, on suitable ti
scales we have found the Markov property to persist.

Let us stress that if the zero point of the time axis is tak
to be the time of the measurement on the system, where
systemwas found to be in state 1, then there is no disagre
ment between our example~17!–~19! and the results of Ref
@2#. The propagation froms50 can be safely extended to a
arbitrary time instantT.0 interpreted as a subsequent me
surement of the system. However, to analyze the time e
lution of the probability measurep(t) between those fixed
time interval boundaries, we must define the transition pr
ability p(t,s) for all intermediate time instants. Obviously
this corresponds to transitions betweenunobservedinterme-
diate states and, as~18! shows, for not too long time interval
of interest such stochastic interpolation is Markovian un
interrupted~terminated! by the measurement.

Both authors receive financial support from KBN R
search Grant No. 2 P302 057 07.
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