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In the paper with the above-noted title, D. T. Gillesfihys. Rev. A49, 1607(1994] claims that the theory
of Markov stochastic processes cannot provide an adequate mathematical framework for quantum mechanics.
In conjunction with the specific quantum dynamics considered there, we give a general analysis of the asso-
ciated dichotomic jump processes. If we assume that Gillespie’s “measurement probabditietie transi-
tion probabilities of a stochastic process, then the process must have an in@anarindependentprobabil-
ity measure. Alternatively, if we demand the probability measure of the process follow the quantally
implemented(via the Born statistical postulatevolution, then we arrive at the jump process whazm be
interpreted as a Markov process if restricted to a suitable duration time. However, there is no corresponding
Markov process consistent with tt#, event space assumption, if we require its existence for all times
e R, . [S1050-294{@6)01708-9

PACS numbd(s): 03.65—w

Before[1] we have contested the general statement due tohastic jump process, with the outcome that the quantum
Gillespie [2] about the generic contradiction between themechanical evolution is at variance with the canonical form
probabilistic concepts appropriate for quantum theory anaf the master equation appropriate for the probJ&gs.(13)
those proper to the common-sense theory of stochéistic in Ref.[2]].
particular, Markoy processes. Our argument was based on The above transition probabilities constitute & 2 tran-
invoking the standard, configuration space, Sdhrger pic-  sition matrix p®(t,s) with elements
ture quantum dynamics which, if combined with the Born

statistical interpretation postulate, allows for a consistent de- p‘fl(t,s)zcosz(t—s)z p?z(t,s), 2
scription in terms of Markov processes of diffusion type, in
conformity with the rich theory developed so f@-9]. pS(t,s)=sim(t—s)=pS(t,s).
However, our arguments did not pertain to stochastic
jump processes which were the main objective of Ref. To avoid any possible confusion, let us recaiée, e.g.,

Let us therefore consider a simple two-level quantum systerkef, [17]) that a stochastic process &g, if considered on a
undergoing the Schainger evolution: finite time interval, saf0,T], is to be given by a hierarchy
of transition probabilitieqthey are an easy transcription of
those conventionally utilized in the framework of continuous

and concentrate on its probabilistic analysis, with an addiProcesses
tional motivation coming from the series of papers due to

Y(t)=exp(—ict)coswt|1) —i exp(—ict)sinwt|2) (1)

other authorg§10-15, where the Markov property has been p(o,t), Ost<T C)
attributed to analogous dynamical problems; see, however,
Ref. [16]. We shall slightly simplify(1) by rescaling the P(oy,tyfop,t), O<t,<t;<T
dimensional constants to achiewe= 1.

The discussion of Ref[2] departs from the following p(oq,ty|os,ta,05,t3), Ostz<t,<t;<T

epistemologicainput: “If the system is known to be in state

1 at times, then the probabilities of finding the system at and so on, where each indexequals either 1 or 2.

any timet>s to be in states 1 and 2 are é¢s—s) and In the abovep(o,t)=u{we Q: X(w)=0c}, =12 de-
sirf(t—s), respectively, and similarly that if the system is fines a probability measure of the stochastic procesggn
known to be in state 2 at time then the probabilities of i.e., probabilities with which the dichotomic random variable
finding the system at any tinte>s to be in states 2 and 1 are takes values along concrete samglemping paths in the
cog(t—s) and sif(t—s), respectively.” These “measure- event space). The probability measure of the process is
ment probabilities” are then utilized dransition probabili-  then propagatetbr left invarian} by the transition probabil-
ties of a certain(presumed to be consistently definedo- ity p(oq,ti|os,t5).
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The probabilitieg(3) have to satisfy the so-called consis-

tency conditions: pij(t1,t2)=0, X pjj(ty,t2)=1,
(i) £,p(ot)=1, |
(i) 2, p(oy,tsoz,t)=1 and

Eo'zp(o-litl|0-2!t2) p(o2,tr)=p(oy,ty), 2 Pij(t1,t2) Pj(t2) = pi(ty).
(i) 2, p(o1.ta|0a,t2,03,t3) =1,

24, P(01,t1]07,t5,03,t3) P(02,t5|05,t3) The last identity is equivalent tp(tq,t,)p(ty) =p(ty), un-
=p(o1,t1]03,t3) derstood as the matrix-vector operation in the linear space.
1 1 ) . . y .y - G - .
Egap(o']_,t1|0'2.t2,0'3,t3)p(0'2,t2|0'3,t3)p(0'3,t3) If Gillespie’s transition matrixp~(t,s), (2), is to define a

consistent stochastic process, in view of its breaking the
Chapman-Kolmogorov identity, the higher rank conditional
probabilities need to be introduced. Unfortunately, they are
not given in Ref[2].

Nevertheless, let us take for granted that this supplemen-
tary step can be made so thpft(t,s) is a transition matrix of

2 plo1.ty] o2, 1) P07t 03,t3) = p(oy,ty| o3, t3), a well defined(non-Markovian stochastic proces¥; with

72 4) values inZ,. It is natural to ask for the probability measure
w of this process, i.e., for its probability vectp(t). It must
i.e., the Chapman-Kolmogorov equation. Then, the hierarchgatisfy the consistenciin fact, propagationcondition
is closed and the process is completely specified by giving its G
initial probability measurend its transition probabilities. p~(t,s)p(s)=p(t) @)

Let us point out that in Re{2] the random dynamics was for all s<t. Let us analyze the issue in some detail
characterized exclusively in terms of transition probabilities If b(0 N bi yze ! | densi | ) .
and with no reference to a probability measure of the pro- p(0) is an arbitrary initial density, we can always write
cess. The probabilistic description of random jumpsZsn
patterned aftef10,11] is given in terms of the “probability p(0)=

=p(o1,ti|o2,1)p(o,,ty), etc.

For a Markov process we would have
p(O’l,t1|0'2,t2,0'3,t3):p(O’l,tl|O'2,t2) in Wh|Ch Case(iii)
would reduce to a single identity

: ®

vector” (probability measure in the present case 1-a
Pa(t) with a€[0,1]. Then, for alls>0 we have
py=| ], (5)
pa(t) (8)=p5(501p(0) (aco§s+(1—a)sinzs) .
s)=p"(s, = .
PLD=0, Po(0)=0, py(t)+pa()=1 PEITPHSOPI T asirts+ (1-a)cods
and the transition probability and for everyt>s
(tyt) = P1a(ty,tp) p12(t1,t2)) ® )= 0C(t.01(0) acogt+(1—a)sirft 10
Pl ta)= P2i(ty,ty)  PaaAty,ta))’ P(H=p*(t0)p(0)= asirft+(1—a)cost)’
Pij(t1,tz) =p(i taljt), 0,j=1,2 On the other hand, it holds that

. _(co§(t—s)[acos’-s+(1—a)sinzs]+sin2(t—s)[asinzs+(1—a)co§s])
P(=p=(tS)p(s)= sirf(t—s)[acogs+ (1—a)sir’s]+cog(t—s)[asirPs+(1—a)coss] | (1
|
Since(10) and (11) must be equal, we get the identity p(o,to) = const which is independent of=1,2, then for all
t>t, there isp(o,t)=p(o,ty)=const. This follows from

(a—3)sin2(t—s)sin2s=0 (12)  the observation

to be valid for all 0<s<t. It impliesa= 3 and consequently
p(o,t)=2 p(o.tlog.to)plog,to)=consd, p(a,t|og,to)
a0 a0

1/2
) 13

p(0)= ( 172

is the only admissible initial choice gf(0).
Moreover,p®(t,s) is a symmetric matrix, which implies
the following important property: if for somig we deal with As a consequence, by utilizing®(t,s) as a transition

=consd, p(oy,t|o,ty)=const. (14)
70
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probability appropriate for the stochastic process, we would<s<t<u=< /4, by inspectior(with some help of trigono-
arrive at the process whose probability measure is conservauetric identitieg we find the Chapman-Kolmogorov equa-
in time, tion to be valid,

1/2 p(u,t)p(t,s)=p(u,s), (18
P(0)=p(t)= ( 1,2) (15

and so the Markov property is established. Obviously, the
for all t>0. propagation formula

The random dynamics induced Ipf(t,s) is thus appro-
priate exclusively for systems with an invariant probability

measure. It certainly has nothing in common with the quan- coss cost

tally implemented evolution of the probability measure asso- p(t,S)< sinzs) :( sin2t> (19

ciated(via the Born postulatewith the explicit solution(1),

i.e., with the probability vectop(t) whose components read

p(1t)=cogt, p(2t)=siré(t). holds true. Also, we have limp(t,s)=1 wherel denotes
We believe that a consistent approach towards a probabthe unit 2<2 matrix. It corresponds to the matrix element

listic reinterpretation of the quantum dynamics proper shoulgropertyp(i,s|j,s) = g foralli,j=1,2.

result in the construction of a stochastic proc@darkovian The major steps of our analysi®)—(19), did not rely on

if possiblg which is compatible with the quantum Schro any “quantum measurement” epistemology and merely in-
dinger picture evolutioril). This issue has received attention voked mathematical features of stochastic jump processes on

in the literature, see, e.g., Ref8—9] and Refs[10-16 in Z,. However, the main difference between the approach of
particular. Ref.[2] and this of Refs[10,11] is rooted in the preferred

Let us follow this, alternative with respect to the reason-choice of the connection between mathematics and physics
ing of Ref.[2], idea and demonstrate that the restriction to(here, pertaining to the concept of measurement in quantum
symmetric transition matrice¢Gillespie’s case, see, e.g., theory.

Ref. [18] for more detailed discussidimplies that there is The theory of stochastic processes is normally regarded
no consistent Markov jump process which can be associatedy Physicists as a macroscopic theory in the sense that one
with the Schrainger dynamicg1) for all times. can probe the system without significantly perturbing it.
Indeed, for the time dependent probability vegpgt), at ~ Then, itis not surprising that such a theory may be viewed as
time to= 7/4 we have inconsistent with the ordinary quantum mechanics. This line

of thought is followed in Ref{2].
On the other hand, instead of viewing the stochastic pro-
cess as a description of one system evolving ftem-« to
cog(m/4) 1/2 t=+o%, one might view it as a theory for an infinite en-
P(to =< Sir2(/4) ) = ( 1/2) (16) semble of systems, all starting either in the same initial state
or with some initial probability distribution over the possible
states at timeé=0. The ensemble is allowed to evolve until

and the previous result follows for times exceedink. we possibly decide to stop the systems. Viewed this way, the
However, we can construct a Markov process running irfheory of stochastic processes might very well describe the
the finite time interva[ 0,7/4]. evolution of a quantum system between measurenieats-
We have pare, e.g., in this connection the two time localization frame-

work of Ref.[19]). And that is the admissible interpretation
of our previous discussion. In this case, on suitable time
cost scales we have found the Markov property to persist.
p(t)= it | Let us stress that if the zero point of the time axis is taken
sinrt ,
to be the time of the measurement on the system, where the
systemwasfound to be in state 1, then there is no disagree-
Let us definep(t,s): ment between our examp(&7)—(19) and the results of Ref.
[2]. The propagation frons=0 can be safely extended to an
arbitrary time instanT >0 interpreted as a subsequent mea-
cogt —sirés surement of the system. However, to analyze the time evo-

P1a(t,S) = p2olt,s) = : (17)  |ution of the probability measurp(t) between those fixed

cos time interval boundaries, we must define the transition prob-
ability p(t,s) for all intermediate time instants. Obviously,
this corresponds to transitions betwaambservednterme-
coLs— colt diate states and, &$8) shows, for not too long time intervals

of interest such stochastic interpolation is Markovian until
interrupted(terminated by the measurement.

P1At,S)=Pas(t,8) = 1—puy(t,8) = — - —

where Oss<t=/4. All these matrix coefficients are non- Both authors receive financial support from KBN Re-
negative in the time interval0,7/4]. Moreover, for search Grant No. 2 P302 057 07.
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