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Derivation and physical interpretation of the optimum detection operators
for coherent-state signals
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The optimum detection operators are derived for several linearly independent signal sets. The quantum
minimax strategy is applied to theM-ary coherent state signals such as binary phase shift, ternary symmetric,
ternary phase shift, and quadrature phase shift. It is shown that the detection process induces a kind of quantum
interference between signal quantum states and measurement states.@S1050-2947~96!05508-4#
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I. INTRODUCTION

The quantum detection theory is an optimization the
for the signal detection process based on the full quant
mechanical treatment. It was pioneered by Helstrom@1# and
established by Yuenet al. and Holevo independently@2,3#
and predicts much superior detection performance than
ventional detection, such as homodyne or photon coun
detection. This is because the detection operators which
the mathematical description of a detection process are q
tum mechanically generalized to be characterized by
probability operator valued measure~POM!. So far, the ap-
plication of quantum detection theory was restricted
evaluating the performance of detection systems, such a
average probability of error, channel capacity, cutoff ra
etc. @4–12#. The derivation of the optimum detection oper
tors which represent an optimum detection process has
been done@13# because of its complexity. In this paper w
give the analytical representations of the optimum detec
operators for some signal sets. The optimum detection op
tor derived here minimizes the average probability of er
since it is the simplest parameter to evaluate the performa
of a detection system. The signal sets treated in this pa
consist of coherent states. In detail, the optimum detec
operators for binary, ternary, and quadrature phase shift,
ternary symmetric signals with coherent states are deriv
These results are relevant to quantum eavesdropping@14#.

This paper consists of five sections. In Sec. II, the qu
tum detection process is summarized in comparison with
standard detection process. Section III gives two criteria
minimize the average probability of error. The quantu
Bayes and minimax strategies are explained and an ass
tion on signal sets is applied to make the strategies solva
Section IV gives concrete optimum detection operators
the minimum average probability of error for the signal s
mentioned above. The quantum minimax strategy is b
cally applied to the derivations. In Sec. V, a physical int
pretation of the optimum detection processes is tried an
results in a kind of quantum interference. Section VI is t
conclusion of this paper where the systematic derivation p
cess of the optimum detection operators by the quan
minimax strategy is summarized. In the appendix, derivat
of the optimum detection operators by the quantum Ba
strategy is also explained.
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II. QUANTUM DETECTION PROCESS

A. Standard formalism

Before the explanation of quantum detection theory, let
show the quantum-mechanical redescription of the signal
tection process in comparison with the quantum mecha
cally generalized one. In quantum mechanics, all signals
their processes are represented by operators on the Hi
space. Consider anM -ary signal system, where a receive
signal is represented by a signal quantum state with a den
operatorr̂ i where i 51,2,. . . ,M . It is a non-negative Her-
mitian operator with unit trace:

r̂ i>0, ; i ,

~1!

Trr̂ i51, ; i .

The first step of a detection process is a measurem
process, followed by a decision process. The measurem
process gives some value of thec-number variablex with
respect to the probability density represented by a trace
signal quantum state and a measurement operatordM̂(x).

p~xu i !dx5Trr̂ idM̂~x!. ~2!

The measurement operator is a projection valued mea
~PVM! of a signal observable. The signal observable is
observable with which the transmitted signal is modulat
In practice, it may be an amplitude X̂f
[(â exp@2 if#1â†exp@if#)/2, photon numbersn̂[â†â, or
in the case of phase modulation, it can be regarded
quadrature amplitudesX̂c[(â1â†)/2 and X̂s[(â2â†)/2i ,
where â and â† are the photon annihilation and creatio
operators, respectively. The measurement operator and
cal receiver for each observable are given in Table I.

The decision process which follows a measurement p
cess prescribes which signal is received based on a mea
ment resultx. This corresponds to the division of the variab
spaceR_:_xPR into M subspaces$Rj% : j 51,2,. . . ,M .
The probability that signalj is chosen when signali is true is
1691 © 1996 The American Physical Society
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TABLE I. Measurement operator for each receiver.

Signal observable Quadrature amplitude Photon number Amplitud
Measurement operator uxf&^xfudxf un&^nu ua0&^a0ud2a0 /p
Typical receiver homodyne photon counting heterodyne
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P~ j u i !5E
Rj

p~xu i !dx5E
Rj

Trr̂ idM̂~x!. ~3!

The signal detection process consisting of the meas
ment and decision processes can be represented by a d
tion operator given as follows:

P̂j
SD5E

Rj

dM̂~x!. ~4!

This type of detection operator is called the ‘‘standard det
tion operator’’ @15#. The average probability of error is de
fined as follows:

Pe512(
i 51

M

j i P~ i u i !512(
i 51

M

j iTrr̂ iP̂i
SD, ~5!

wherej i is a prior probability forith signal; namely,

(
i 51

M

j i51. ~6!

Since the standard detection operators are only a quan
mechanical redescription of the conventional detection p
cess, the minimization of the average probability of error
terms of them is just equal to the standard quantum li
~SQL! which is referred to as the performance limit of
conventional receiver@16#; namely, the optimization of the
standard detection operators is not for the whole detec
operators but only for the decision regions$Rj%.

B. Generalized detection process

The essential difference between the standard and q
tum detection theories exists in the measurement proces
quantum mechanics, an observable to be measured ca
mathematically generalized to an arbitrary self-adjoint ope
tor and the measurement operator is also generalized fro
projection valued measure~PVM! into a probability operator
valued measure~POM!. Since the POM is the resolution o
identity, it can include the meaning of a decision proce
Consequently, we can define the ‘‘generalized detection
erator’’ based on the POM as

P̂j5P̂j
†>0,

~7!

(
j 51

M

P̂j5 Î ,

where Î is the identity operator. The generalized detect
operator means all detection operators except for the s
dard detection operators given by the PVM of a signal
servable@15#.
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Since the generalized detection operators represent
whole detection process, it is difficult to distinguish the me
surement and decision processes from their structure.
probability given in Eq.~3! that signal j is chosen when
signal i is true is represented by a trace of a signal quant
state and a generalized detection operator:

P~ j u i !5Trr̂ iP̂j . ~8!

Then the average probability of error results as

Pe512(
i 51

M

j iTrr̂ iP̂i . ~9!

Therefore the minimization of the average probability of e
ror based on the generalized detection operators is not
the optimization of the decision regions but also that of
observable to be measured. This is the reason why the q
tum detection theory has the possibility to predict much
perior performance to the SQL. The receiver whose aver
probability of error is quantum mechanically optimum
called the ‘‘optimum quantum receiver.’’

III. QUANTUM DETECTION CRITERIA

The optimization criteria for the generalized detection o
erators are formulated based on the similar concepts of
classical signal decision criteria; namely, the quantum Ba
criterion is formulated by Helstrom@1#, Yuenet al., @2# and
Holevo @3#, and the quantum minimax criterion by Holev
@17# and Hirota and Ikehara@18#. While the quantum Bayes
criterion can treat an arbitrary risk function, we restrict ou
selves to considering the average probability of error.

The quantum Bayes criterion minimizes the average pr
ability of error when signal prior probabilities are known b
an observer. Hence its concept is

min
$P̂%

Pe . ~10!

On the other hand, the concept of the quantum minim
criterion is represented as follows:

max
$j%

min
$P̂%

Pe5min
$P̂%

max
$j%

Pe . ~11!

This criterion guarantees the minimum average probab
of error for unknown signal prior probabilities although it
the worst one obtained by the quantum Bayes criterion
the following, the necessary and sufficient conditions for
quantum Bayes and minimax criteria are summarized
some assumptions are explained to make these condi
solvable.
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A. Quantum Bayes strategy

Let us explain the quantum Bayes strategy first given
Helstrom. When a binary signal is represented by quan
statesr̂1 and r̂2 with their prior probabilitiesj1 and j2,
respectively, the optimum detection operators can be defi
in terms of the eigenvectors of the following eigenval
equation:

~ r̂22lr̂1!uh i&5h i uh i&, ~12!

wherel[j1 /j2, andh i and uh i& are an eigenvalue and a
eigenvector, respectively. That is, the optimum detection
erators for the binary signal set are

P̂15(
i

U~2h i !uh i&^h i u,

~13!

P̂25(
i

U~h i !uh i&^h i u,

whereU(x) is the unit step function defined as follows:

U~x!5H 1, x.0,

1/2, x50,

0, x,0.

~14!

After Helstrom, the quantum Bayes strategy was gene
ized to M -ary signal sets by Yuenet al. and Holevo inde-
pendently. It results in the following necessary and suffici
conditions:

P̂j@j j r̂ j2j i r̂ i #P̂i50, ; i , j , ~15!

Ĝ2j i r̂ i>0, ; i , ~16!

whereĜ is called a ‘‘Lagrange operator’’ defined by

Ĝ5(
i 51

M

j i r̂ iP̂i . ~17!

Since the operatorĜ is Hermitian, Eq.~16! indicates that the
operator (Ĝ2j i r̂i) must be a non-negative Hermitian o
erator.

B. Quantum minimax strategy

Let us explain here the quantum minimax strategy. T
necessary and sufficient conditions of the quantum minim
criterion derived by Hirota and Ikehara are as follows@18#:

TrP̂i r̂ i5TrP̂j r̂ j , ; i , j ,

P̂j@j j r̂ j2j i r̂ i #P̂i50, ; i , j , ~18!

Ĝ2j i r̂ i>0, ; i .

The second and third equations are equal to the condition
the quantum Bayes strategy, so that the first equation
the minimax point where the average probability of error
maximized with respect to the signal prior probabilities. Th
y
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quantum minimax strategy can provide a simplification
the derivation processes for the optimum detection opera
compared with the cases of Bayes@13#.

C. Some assumptions on quantum signal sets

In the most general case, a quantum signal set will con
of mixed or linearly dependent states. However, in suc
case, the analytical derivation of the optimum detection
erators is too difficult@1,19#. Hence we consider, in this pa
per, only linearly independent signal sets so that the follo
ing Kennedy’s lemma can be applied to the derivation of
optimum detection operators.

Kennedy’s lemma. When the signal quantum states
linearly independent, the optimum POM for the avera
probability of error is projection valued@20#.

Under this condition the optimum detection operators
projectors, so that they can be supposed to be orthono
bases of a subspace of the total Hilbert spaceH. In this case,
the optimum detection operators are uniquely determi
from Eqs. ~15! and ~16! or Eq. ~18! @21#. Therefore this
lemma is very useful in derivation of the optimum detecti
operators@22#. Let us call this subspace a ‘‘signal space
Hs since it is spanned by signal quantum sta
$uc i&: r̂ i5uc i&^c i u%; namely,

Hs#H,
~19!

uf&PHs5(
i 51

M

ci uc i& uciPC%,

where C stands for the complex number field. The sign
space for anM -ary signal set is anM -dimensional Hilbert
space in which the optimum detection operators can be
resented by its orthonormal bases$uv i&%:

P̂i5uv i&^v i u,
~20!

^v i uv j&5d i j ,

where$uv i&% is called a ‘‘measurement state.’’ Then the d
tection operators given by them are generalized detec
operators because they are not related to the PVM of a si
observable. The observable is not mentioned and the res
tion of identity is valid only for the signal space.

Since the measurement states are orthonormal bases
signal space, the signal quantum states$uc i&% must be repre-
sented by them with variablesxji [^v j uc i& as follows:

F uc1&
A

ucM&
G5F x11 . . . xM1

A � A

x1M . . . xMM

GF uv1&
A

uvM&
G . ~21!

Substituting this representation into the necessary and s
cient conditions of Bayes in Eqs.~15! and~16!, the operator
equations for$r̂ i% and $P̂j% are turned into the ordinary
c-number algebraic equations for$xji %. That is, the necessar
and sufficient conditions for the quantum Bayes criterion c
be written down as follows:

j ixii xj i* 2j j xi j xj j* 50, ; i , j , ~22!
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T~ i !>0, ; i , ~23!

where T( i ) is a matrix representation of the operat
(Ĝ2j i r̂ i) with its elements defined as follows:

tmn
~ i ! 5jmxmmxnm2j ixmixni . ~24!

Since the operator (Ĝ2j i r̂ i) is Hermitian,T( i ) is also a Her-
mitian matrix. Equation~23! requires the Hermitian non
negativeness of the matrix. The necessary and sufficient
ditions to be a non-negative Hermitian matrix are as follow

detT~ i !50,

detT~ i !~k1 ,k2 , . . . ,ks!>0

for ~k1 ,k2 , . . . ,ks51,2, . . . ,M ;s51,2, . . . ,M !,
~25!

where detT( i )(k1 ,k2 , . . . ,ks) means a principal minor o
T( i ).

In practical use of the quantum Bayes strategy, Eq.~22!
givesM (M21)/2 equations forM2 variables. So we need t
combine them withM (M11)/2 equations for inner product
of signal quantum states:

k i j 5^c i uc j&5 (
k51

M

^c i uvk&^vkuc j&5 (
k51

M

xk jxki* , ~26!

where we assumed that the inner products are the kn
observers. Then we haveM2 equations forM2 variables, so
that the solution will be obtained. Since the equations
nonlinear, the solution has some variations. Equation~23! is
used to judge which of the solutions$xji % is correct.

In the case of the quantum minimax strategy, Eq.~18! is
also represented as follows:

uxii u25uxj j u2, ; i , j ,

j ixii xj i* 2j j xi j xj j* 50, ; i , j , ~27!

T~ i !>0, ; i .

While the first equation in the above condition reduc
(M21) unknown variables, the prior probabilities are turn
into (M21) variables in the case of the minimax strateg
However, these prior probabilities are sometimes assume
be equal to each other. This is the reason why the quan
minimax strategy can provide a simplification of the deriv
tion process for the optimum detection operators.

Finally, the optimum measurement states can be
plained by signal quantum states with the solution$xji %:

F uv1&
A

uvM&
G5@xji #

21F uc1&
A

ucM&
G . ~28!

Furthermore, in practical derivation of the variabl
$xji %, we can assume that$xii % is not a complex number bu
a real number even if some of the inner products of sig
quantum states are complex numbers. This is because
posing$xii % to be complex numbers corresponds to a ph
n-
:

n

e

s

.
to
m
-

x-

l
up-
e

shift of the measurement state, i.e.,uv i&→uv i8&e
iw, so it

makes no difference to the consequently obtained optim
detection operators.

IV. DERIVATION OF THE OPTIMUM DETECTION
OPERATORS BY THE QUANTUM MINIMAX STRATEGY

Almost every application of quantum detection theory
practical signal sets has been an investigation into the a
age probability of error. We give the analytical solutions
the optimum detection operators for some practical quan
signal sets @13#. The quantum minimax strategy wit
Kennedy’s lemma is used in the following derivation of th
optimum detection operators for the cases of binary ph
shift, ternary symmetric, ternary phase shift, and quadra
phase shift coherent state signal sets. The application of
quantum Bayes strategy with Kennedy’s lemma to some
these signal sets is given in the Appendix.

A. Binary phase-shift coherent-state signal

In the case of a binary phase-shift coherent-state sig
set, signal quantum states are represented
@ u c 1&,uc2&] 5@ ua&,u2a&]. The inner product matrix of
these signal quantum states becomes

@k i j #5F 1 k

k 1G , ~29!

where k5^au2a&5exp@22uau2#. The equations to be
solved are as follows:

ux11u25ux22u2,

j1x11x21* 2j2x12x22* 50,

ux11u21ux21u251, ~30!

ux12u21ux22u251,

x11x12* 1x21x22* 5k.

With the assumption that the variables$xji % are real num-
bers, we can obtain the solutions by elementary algebra

x115x2256A16A12k2

2
,

x125x2156A17A12k2

2
. ~31!

The reason why all the variables$xji % are assumed to be rea
numbers is that the inner products of the signal quant
states are all real numbers. At the same time, the signal p
probabilities which give the minimax point of the avera
probability of error are also derived asj15j251/2. The so-
lution which satisfies the condition in Eq.~23! is as follows:
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x115x225A11A12k2

2
,

x125x215A12A12k2

2
. ~32!

While the negative version of the above solution,$2xji %,
also satisfies the condition in Eq.~23!, it corresponds to the
phase shift of the measurement states given by Eq.~32!.

With Eqs.~28!, ~20!, and~9!, the optimum detection op
erators and the average probability of error derived by
quantum minimax strategy are given as follows:

P̂15
1

2~12k2!
@$11A12k2%ua&^au1$12A12k2%u2a&

^2au2k~ ua&^2au1u2a&^au!#,
~33!

P̂25
1

2~12k2!
@$12A12k2%ua&^au1$11A12k2%u2a&

^2au2k~ ua&^2au1u2a&^au!#,

and

Pe
OPT5

12A12k2

2
. ~34!

They are just equal to those derived by the quantum Ba
strategy withj15j251/2 ~see the Appendix!. It is easy to
see that the average probability of error by the minimax
terion is the worst one by the Bayes criterion.

The average probability of error by the optimum quantu
receiver in Eq.~34! is compared with that by well-known
receivers, such as homodyne and Kennedy receivers@23# in
Fig. 1. The homodyne receiver can be realized by curr
technology and its average probability of error correspo
to the SQL of this signal set. That is,

Pe
SQL5Erfc@A4uau2#, ~35!

where Erfc@x# is the complementary error function define
as follows:

Erfc[
1

A2p
E

x

`

exp@2t2/2#dt. ~36!

Kennedy receiver is a receiver whose average probabilit
error is near optimum while its construction is very simp
Its average probability of error is as follows:

Pe
Kennedy5 1

2 exp@24uau2#. ~37!

B. Ternary symmetric coherent-state signal

In the case of a ternary symmetric coherent-state sig
set, signal quantum states are represented
@ u c 1&,uc2&,uc3&] 5@ u0&,ua&,u2a&]. Then the inner produc
matrix can be given as follows:
e

es

i-

nt
s

of
.

al
as

@k i j #5F 1 k k

k 1 k4

k k4 1
G , ~38!

wherek5^0ua&5^0u2a&5exp@2uau2/2#. It is assumed that
the variables$xji % are real numbers. Furthermore, the pri
probabilities for signals 2 and 3 are assumed to be eq
(j25j3) because the inner product matrix is symmetric a
the minimax point for classical ternary symmetric signals h
this property. Then we can reduce the number of variable
follows:

@xji #5F a d d

b c e

b e c
G , ~39!

where the conditiona25c2 is not applied yet because its us
at this stage complicates the derivation. Substituting th
into Eq. ~27!, the equations to be solved become

j1ad2
12j1

2
bc50,

FIG. 1. Average probability of error for binary phase-sh
coherent-state signal.~a! Moderate value ofuau2; ~b! small value of
uau2. The solid line stands for the optimum quantum receiver,
dashed line for the homodyne receiver~SQL!, and the dotted line
for Kennedy receiver.
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a212d251,

b21c21e251, ~40!

ab1cd1de5k,

b212ce5k4,

wherej1 is a prior probability for signal 1. The first equatio
in the above equations is used to determine the prior p
abilities, and the second through the last equations can
solved in terms ofb @1#. After that, the conditiona25c2 is
applied toa and c to deriveb as a function ofk. By this
procedure we have eight variations of the solution. By me
of Eq. ~23! the appropriate solution can be selected. It res
in a change of the two solutions with respect to the squar
amplitudeuau2.

The optimum detection operators for three-dimensio
signals@ u c 1&,uc2&,uc3&] can be represented as follows:

P̂ i5
1

d
$mi ,11uc1&^c1u1mi ,12uc1&

3^c2u1mi ,13uc1&^c3u1mi ,21uc2&^c1u1mi ,22uc2&

3^c2u1mi ,23uc2&^c3u1mi ,31uc3&^c1u1mi ,32uc3&

3^c2u1mi ,33uc3&^c3u%. ~41!

In the case of the ternary symmetric signal, the parame
are

d54~12k2!2~11k4!2~12k4!,

m1,1154~12k4!~11k4!2F2,

m1,125m1,135m1,215m1,31

54~12k4!~11k4!F$b~12k2!2kF%,

m1,225m1,235m1,325m1,3354~12k4!$b~12k2!2kF%2,

m2,115m3,115D2, ~42!

m2,125m2,215m3,135m3,3152DE1 ,

m2,135m2,315m3,125m3,215DE- ,

m2,235m2,325m3,235m3,3252E1E- ,

m2,225m3,335E1
2 ,

m2,335m3,225E2
2 ,

where

b5~2B1AB224AC!/2 for uau2< ln@11A2#,

~43!

~2B2AB224AC!/2 for uau2. ln@11A2#,

with

A522$~k412k221!218k2%,
b-
be

s
ts
of

l

rs

B58kA~12k 8!~11k4!,

C5~11k4!$~k412k221!22~12k8!%,

and

D52b~11k4!A12k4,

E6 5@~12k2!~11k4!6A12k4$2bk1~12k2!F%#,
~44!

F5A122b21k4.

The average probability of error is also obtained as follow

Pe
OPT512

1

2
$12~1/2A 2!~B222AC6BAB224 AC!

1A12k82@~12k4!/A2#~B222AC6BAB224 AC!%,

~45!

where 1 of 6 is valid for uau2< ln@11A2# and 2 is for
uau2. ln@11A2#.

In Fig. 2, the average probability of error by the optimu

FIG. 2. Average probability of error for ternary symmetr
coherent-state signal.~a! Moderate value ofuau2; ~b! small value of
uau2. The solid line stands for the optimum quantum receiver a
the dashed line for the homodyne receiver~SQL!.
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quantum receiver in Eq.~45! is compared with that by a
homodyne receiver since it is the SQL of this signal s
namely,

Pe
SQL5 4

3 Erfc@Auau2#, ~46!

where the equal prior probability of signals is assumed.

C. Ternary phase-shift coherent-state signal

In the case of a ternary phase-shift coherent-state si
set @ u c 1&,uc2&,uc3&] 5 @ ua&,uae2ip /3&,uae22ip /3&] the in-
ner product matrix becomes as follows:

@k i j #5F 1 Kc1 iK s Kc2 iK s

Kc2 iK s 1 Kc1 iK s

Kc1 iK s Kc2 iK s 1
G , ~47!

where Kc5kcos@(A3/2)uau2#, Ks5k sin@(A3/2)uau2#, and
k5exp@23uau2/2#. With the analogy of the classical min
max solution, all signal prior probabilities are assumed to
equal. Then the variable matrix can be supposed to be

@xji #5F a b1 ic b2 ic

b2 ic a b1 ic

b1 ic b2 ic a
G . ~48!

Then we need to solve the following equations:

a212b212c251,

2ab1b22c25Kc , ~49!

22ac12bc5Ks .

For this signal set, the solution also has some variations s
larly to the case of a ternary symmetric signal set. Ea
variation must be checked for its Hermitian no
negativeness. Finally, the accurate solution can be ident
and the optimum detection operators and the average p
ability of error are obtained. The form of the optimum d
tection operators is as in Eq.~41!. The parameters are a
follows:

d518S2I 2,

m1,115m2,225m3,335G2,

m1,125m1,13* 5m 1,21* 5m1,315m2,125m 2,235m2,21* 5m2,32*

5m 3,13* 5m3,235m3,315m 3,32* 5GH* , ~50!

m1,225m1,335m2,115m2,335m3,115m3,225uH u 2,

m1,235m1,32* 5m 2,13* 5m2,315m3,125m 3,21* 5H2,

where

G5A2J~S1A2I !,

H52J~ I 2A2S!13iK sA112Kc,
t;

al

e

i-
h

ed
b-

I 5A~112Kc!J, ~51!

J5A11S2Kc,

S5A~12Kc!
223Ks

2.

The average probability of error becomes

Pe
OPT5

2~32S2A2I !

9
. ~52!

On the other hand, the SQL of this signal set is given
the heterodyne receiver. It results in

Pe
SQL5

pe112~pe231pe2!22pe23pe2

3
, ~53!

where

pe15ErfcFA2~9uau224ln2!

12uau G ,
pe235ErfcFA2~9uau214ln2!

12uau G , ~54!

pe25ErfcFA6uau
2 G .

The average probability of error by the optimum quantu
receiver in Eq.~52! and that by the heterodyne receiver
Eq. ~53! are compared in Fig. 3.

D. Quadrature phase-shift coherent-state signal

In the case of a quadrature phase-shift coherent-state
nal set@ uc1&, uc2&, uc3&, uc4&] 5@ ua&,u ia&,u2a&,u2 ia&],
the inner product matrix becomes

@k i j #5F 1 Kc1 iK s k2 Kc2 iK s

Kc2 iK s 1 Kc1 iK s k2

k2 Kc2 iK s 1 Kc1 iK s

Kc1 iK s k2 Kc2 iK s 1

G , ~55!

where

k5exp@2uau2#,

Kc5k cos@ uau2#, ~56!

Ks5k sin@ uau2#.

With the symmetry of the inner product matrix and the a
sumption that all prior probabilities are equal, the variab
to be determined can be supposed to be

@xji #5F a b1 ic d b2 ic

b2 ic a b1 ic d

d b2 ic a b1 ic

b1 ic d b2 ic a
G . ~57!
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Then we have the equations to be solved as follows:

a21d212~b21c2!51,

2b~a1d!5Kc ,

~58!

22c~a2d!5Ks ,

2~ad1b22c2!5k2.

There are 16 variations of the solution and some of th
satisfy the Hermitian non-negative condition in Eq.~23! par-
tially. In detail, similarly to the case of the ternary symmet
signal, the optimum detection operators have two variatio
one is valid fornp<uau2,p/21np and the other is for
p/21np<uau2,(n11)p.

The full description of the optimum detection operato
for a quaterary signal set becomes too long, so we simpli
as follows:

P̂i5(
j 51

4

(
k51

4

t i j t ik* uc j&^cku. ~59!

The optimum parameters are

FIG. 3. Average probability of error for ternary phase-sh
coherent-state signal.~a! Moderate value ofuau2; ~b! small value of
uau2. The solid line stands for the optimum quantum receiver a
the dashed line for the heterodyne receiver~SQL!.
s;

it

t115t225t335t445
A

4~A22B2!
2

C

4~C22D2!
,

t125t235t345t415t14* 5t21* 5t32* 5t43*

52
B

4~A22B2!
2 i

D

4~C22D2!
, ~60!

t135t245t315t425
A

4~A22B2!
1

C

4~C22D2!
,

and

A5
B~11k224B2!

Kc
,

B5

A11k22A~11k2!224Kc
2

2A2
,

~61!

C5
D~12k224D2!

Ks
,

D656

A12k22A~12k2!224Ks
2

2A2
,

where the2 of 6 is for np<uau2,p/21np and1 is for
p/21np<uau2,(n11)p. The average probability of erro
by these optimum detection operators is

Pe
OPT512~A2C!2. ~62!

The average probability of error in Eq.~62! is compared with
the SQL, i.e., that of the heterodyne receiver, in Fig. 4. T
average probability of error by the heterodyne receiver is
follows:

Pe
SQL52Erfc@Auau2#2~Erfc@Auau2# !2. ~63!

V. PHYSICAL INTERPRETATION
OF THE OPTIMUM DETECTION PROCESS

The average probability of error derived in the previo
section is much superior to the standard quantum limit wh
is given by the optimum standard detection operators deri
from the conventional receivers in Table I. It is important
analyze the reason why the standard quantum limit is ov
come. In this section, we would like to interpret the physic
meaning of such improvement as a quantum interference
cause overcoming the standard quantum limit is a pur
quantum mechanical phenomenon@24,25#. That is, the detec-
tion process based on standard detection operators ca
completely described by a projection valued measure, so
the measurement operators never introduce quantum inte
ence. On the other hand, in the case of the detection pro
by the generalized detection operators introduced in Sec
the quantum interference is obvious since the detection
erators can be decomposed to the measurement states w
are linear combinations of the signal quantum states; nam
a measurement state is represented from Eq.~28! as follows:

d
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uv j&5 (
k51

M

ck juck&, ~64!

where$ck j% is an element of the matrix@xji #
21 in Eq. ~28!.

Therefore the quantum interference in a detection proces
some generalized detection operators can be visualize
follows:

P~ j u i !5Trr̂ iP̂j5u^c i uv j&u25U K c iUS (
k51

M

ck jUckL DU2

.

~65!

For the binary phase shift coherent state signal, one of
error probabilities is

P~2u1!5Trr̂1P̂25 z^auv2& z25 z^au~c12ua&1c22u2a&) z2

5c12
2 1c22

2 ^au2a&212c12c22̂ au2a&, ~66!

where

c1252A12A12k2

2~12k2!
,

c225A11A12k2

2~12k2!
, ~67!

FIG. 4. Average probability of error for quaternary phase-sh
coherent-state signal.~a! Moderate value ofuau2; ~b! small value of
uau2. The solid line stands for the optimum quantum receiver a
the dashed line for the heterodyne receiver~SQL!.
by
as

e

k5^au2a&5exp@22uau2#.

The third term of Eq.~66! explicitly represents the quantum
interference. This term is essential to explain the differen
between the optimum detection and a near optimum one
detail, the near optimum detection for the binary signal
well known as the Kennedy receiver@23#. The detection op-
erators of the Kennedy receiver become as follows@26#:

P̂15ua&^au,

~68!

P̂25 Î 2ua&^au.

In this representation, however, it may be difficult to see
quantum interference explicitly while the average probabi
of error is also much superior to the standard quantum lim

According to the detailed analysis of the effect of the ty
of quantum interference in Eq.~66!, rather the reduction of
the average probability of error is caused by the second t
with ^au2a&2 as well. Here this term should be regarded
a kind of quantum interference because of the following.The
detection operators by which the standard quantum limit
overcome do not commute with the signal observable, an
has been shown that the above statement correspond
quantum interference@15#. Thus our optimum quantum de
tection process is absolutely interpreted as the quantum
terference.

VI. CONCLUSION

The optimum detection operators and the average p
ability of error for several linearly independent signal se
were derived by the quantum minimax strategy w
Kennedy’s lemma. The effectiveness of Kennedy’s lem
and the minimax strategy lies in the following.

Kennedy’s lemma can convert the operator equations w
necessary and sufficient conditions into ordinaryc-number
algebraic equations because the optimum detection oper
are regarded as projection valued measures~PVM! on the
signal space. The signal space spanned by signal quan
states is a closed subspace of the total Hilbert space. Th
fore the derived optimum detection operators are orthon
mal resolutions of the identity on the signal space. T
uniqueness of the solution is also guaranteed. In prac
some of the variables can be assumed to be real num
even if the inner products are complex numbers. Furth
more, when the inner products are all real numbers, all v
ables can be assumed to be real. This assumption ha
effect on the optimum detection operators and the minim
average probability of error.

The quantum minimax formula can reduce the number
variables with some analogy to the classical theory. Tha
the signal prior probabilities are governed by the signal
rangement so as to satisfy the minimax strategy. Then s
of the signal prior probabilities can be supposed to be eq
when the signal arrangement is symmetric. In practice,
ternary and quadrature phase-shift coherent-state signal
the prior probabilities for all signals, and for a ternary sym
metric coherent-state signal set those for signals 2 and 3
assumed to be equal before the derivations while the e

t

d
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signal prior probability is derived for a binary phase-sh
coherent-state signal set.

The equations to be solved are nonlinear, so that the
lution has some variations. Although Eq.~23! can identify
the accurate solutions, some of them must be switched
tween two solutions with respect to the square of the sig
amplitude.

Finally, the optimum detection operators and the mi
mum average probability of error are obtained with E
~28!, ~20!, and ~9!. They are related to quantum eavesdro
ping. The derived optimum detection operators guarantee
minimum average probability of error for unknown sign
prior probabilities, although it is the worst one attained
the quantum Bayes strategy. It is true that the quantum Ba
strategy can give the solutions for some of the above sig
sets by eigenvalue equations. However, the quantum m
max strategy can derive more solutions than the quan
Bayes strategy and its derivation process is much system

A physical interpretation of the optimum detection ope
tor is tried and it can be regarded as a kind of quant
interference. That is, the optimum detection process indu
the quantum interference in a measurement process with
timum control so as to reduce the average probability
error.

These derivations are based on Kennedy’s lemma wh
the signal quantum states is assumed to be linearly inde
dent. Therefore the derivation of the optimum detection
erators for signals with linearly dependent or mixed state
impossible with the above algorithm. We will find anoth
algorithm to derived the optimum detection operators w
linearly dependent signals.
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APPENDIX: DERIVATION OF
THE OPTIMUM DETECTION OPERATORS

BY THE QUANTUM BAYES STRATEGY

Even in the case of a binary phase-shift coherent-s
signal set@ u c 1&,uc2&] 5@ ua&,u2a&] the c-number equations
in Eqs. ~22! and ~23! based on the quantum Bayes strate
are too difficult to be solved. However, the eigenvalue eq
tion in Eq. ~12!, which is the alternative equation by th
quantum Bayes strategy, can give the solution for arbitr
prior probabilities. The eigenvalue equation becomes

~ u2a&^2au2lua&^au!uh i&5h i uh i& ~A1!

where l[j1 /j2. Two eigenvalues are obtained from th
above equation:

h15
12l

2
2R,

~A2!

h25
12l

2
1R,

where
o-

e-
al

-
.
-
he

es
al
i-
m
tic.
-

es
p-
f

re
n-
-
is

te

y
-

y

R5AS 11l

2 D 2

2lk 2, k5^au2a&5exp@22ua u 2#.

~A3!

Since h1,0 and h2.0, the optimum detection operato
should be represented by each eigenstate:

P̂15uh1&^h1u,
~A4!

P̂25uh2&^h2u.

In accordance with Kennedy’s lemma these eigenstates
respond to the measurement states

uh1&⇒uv1&,

~A5!

uh2&⇒uv2&.

Substituting the relation of Eq.~21! into Eq. ~A1! with the
assumption that all the variables$xji % are real numbers, we
can obtain the solutions although the calculation proces
very tedious and requires a skillful algorithm. The accur
solution is selected by the condition in Eq.~23!.

Finally, with Eq.~20! and Eq.~28!, the optimum detection
operators for arbitrary signal prior probabilities can be d
rived as follows:

P̂15
1

4R~12k2!
@$2R22lk21~11 l !%ua&^au1$2R12k2

2~11 l !%u2a&^2au2k~2R112l!~ ua&^2au1

u2a&^au!#,
~A6!

P̂25
1

4R~12k2!
@$2R12lk22~11 l !%ua&^au1$2R22k2

1~11 l !%u2a&^2au2k~2R211l!~ ua&^2au1

u2a&^au!#.

The average probability of error by these optimum detect
operators becomes

Pe
OPT5

12A124j1j2k
2

2
. ~A7!

It is also possible to derive the optimum detection ope
tors by the quantum Bayes strategy for ternary phase s
and quaternary phase-shift coherent-state signal sets, w
all the signal prior probabilities are assumed to be equal@1#.
However, this assumption is just equal to the results obtai
by the quantum minimax strategy. Furthermore, in the c
of the ternary symmetric signal set, the derivation of t
optimum detection operators is too difficult to obtain t
analytical solution. Hence we can say that the quantum m
max strategy is more effective in the derivation of the op
mum detection operators because it can provide more s
tions than the quantum Bayes strategy.
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