PHYSICAL REVIEW A VOLUME 54, NUMBER 2 AUGUST 1996

Derivation and physical interpretation of the optimum detection operators
for coherent-state signals

Masao Osaki: Masashi Bar?, and Osamu Hiroth
!Research Center for Quantum Communications, Tamagawa University, Tamagawa-gakuen 6-1-1, Machida, Tokyo 194, Japan
2Advanced Research Laboratory, Hitachi, Ltd., Akanuma 2520, Hatoyama, Saitama 350-03, Japan
(Received 14 February 1996; revised manuscript received 17 April)1996

The optimum detection operators are derived for several linearly independent signal sets. The quantum
minimax strategy is applied to tHd-ary coherent state signals such as binary phase shift, ternary symmetric,
ternary phase shift, and quadrature phase shift. It is shown that the detection process induces a kind of quantum
interference between signal quantum states and measurement[Sa@50-294{©6)05508-4
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I. INTRODUCTION Il. QUANTUM DETECTION PROCESS

The quantum detection theory is an optimization theory A. Standard formalism
for the signal detection process based on the full quantum- Before the explanation of quantum detection theory, let us
mechanical treatment. It was pioneered by Helstfairand ~ show the quantum-mechanical redescription of the signal de-
established by Yuerwt al. and Holevo independentlj2,3]  tection process in comparison with the quantum mechani-
and predicts much superior detection performance than cor¢ally generalized one. In quantum mechanics, all signals and
ventional detection, such as homodyne or photon countingheir processes are represented by operators on the Hilbert
detection. This is because the detection operators which agpace. Consider aM-ary signal system, where a received
the mathematical description of a detection process are quasignal is represented by a signal quantum state with a density
tum mechanically generalized to be characterized by theperatorp; wherei=1,2,...,M. It is a non-negative Her-
probability operator valued measuf@OM). So far, the ap- Mmitian operator with unit trace:
plication of quantum detection theory was restricted to

evaluating the performance of detection systems, such as the pi=0, Vi,

average probability of error, channel capacity, cutoff rate, )
etc.[4-12. The derivation of the optimum detection opera-

tors which represent an optimum detection process has not R

been dond13] because of its complexity. In this paper we Trpi=1, Vi.

give the analytical representations of the optimum detection

operatc_)rs for some_si_gn_al sets. The optimum dete_ction opera- The first step of a detection process is a measurement
tor derived here minimizes the average probability of error,

X - : rocess, followed by a decision process. The measurement
since it is the simplest parameter to evaluate the performan?r

. . | ; ocess gives some value of thenumber variablex with
of a detection system. The signal sets treated in this papgLgpect to the probability density represented by a trace of a

consist of coherent states. In detail, the optimum detection.

operators for binary, ternary, and quadraturz phase shift, ansdgnal quantum state and a measurement opecat(x).

ternary symmetric signals with coherent states are derived. R

These results are relevant to quantum eavesdroffiilg p(x|i)dx=Trp;dM(x). 2
This paper consists of five sections. In Sec. Il, the quan-

tum detection process is summarized in comparison with the . —
standard detection process. Section Ill gives two criteria tol '€ measurement operator is a projection valued measure

minimize the average probability of error. The quantum(PVM) of a signal observable. The signal observable is an
Bayes and minimax strategies are explained and an assum%l_)servable with which the transmitted signal is modulated.
tion on signal sets is applied to make the strategies solvabléd  practice, it may be an amplitude X,
Section IV gives concrete optimum detection operators and (& exi{ — i¢]+a'exdi])/2, photon numbersi=a'a, or

the minimum average probability of error for the signal setsin the case of phase modulation, it can be regarded as
mentioned above. The quantum minimax strategy is basiquadrature amplitudeX.=(a+ a")/2 andX;=(a—a'")/2i,

cally applied to the derivations. In Sec. V, a physical inter-where a and &' are the photon annihilation and creation
pretation of the optimum detection processes is tried and ioperators, respectively. The measurement operator and typi-
results in a kind of quantum interference. Section VI is thecal receiver for each observable are given in Table I.
conclusion of this paper where the systematic derivation pro- The decision process which follows a measurement pro-
cess of the optimum detection operators by the quantumess prescribes which signal is received based on a measure-
minimax strategy is summarized. In the appendix, derivatiorment resulix. This corresponds to the division of the variable
of the optimum detection operators by the quantum BayespaceR :xeR into M subspacegR;} : j=1.2,... M.
strategy is also explained. The probability that signgl is chosen when signalis true is
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TABLE |. Measurement operator for each receiver.

Signal observable Quadrature amplitude Photon number Amplitude
Measurement operator [X g0 (X gldXg [n){n| |ag){ao|d?ag /7
Typical receiver homodyne photon counting heterodyne

o ) o Since the generalized detection operators represent the
P(jli)= La p(x|i)dx= fR TrpidM(X). (3 whole detection process, it is difficult to distinguish the mea-
] ] surement and decision processes from their structure. The
The signal detection process consisting of the measurdobability given in Eq.(3) that signalj is chosen when

ment and decision processes can be represented by a det€i@nali is true is represented by a trace of a signal quantum
tion operator given as follows: state and a generalized detection operator:

ﬁjSD:J dM(x). 4) P(jli)=Trp;ll; . 8
Rj

Then the average probability of error results as
This type of detection operator is called the “standard detec-

tion operator”[15]. The average probability of error is de- M
fined as follows: Pe=1->, &Trpill;. 9
" " ) i=1
Pezl_igl §iP(i|i):1_i:El &TrpiIIPP, ()  Therefore the minimization of the average probability of er-
ror based on the generalized detection operators is not only
where¢, is a prior probability forith signal; namely, the optimization of the decision regions but also that of an

observable to be measured. This is the reason why the quan-
M tum detection theory has the possibility to predict much su-
E &=1. (6) perior performance to the SQL. The receiver whose average
=1 probability of error is quantum mechanically optimum is

Since the standard detection operators are only a quantu%alled the “optimum guantum receiver.

mechanical redescription of the conventional detection pro-

cess, the minimization of the average probability of error in . QUANTUM DETECTION CRITERIA
terms of them is just equal to the standard quantum limit
(SQL) which is referred to as the performance limit of a
conventional receivefl16]; namely, the optimization of the
standard detection operators is not for the whole detectio
operators but only for the decision regiof8;}.

The optimization criteria for the generalized detection op-

erators are formulated based on the similar concepts of the

ﬁlassical signal decision criteria; namely, the quantum Bayes

criterion is formulated by Helstrorfi], Yuenet al, [2] and

Holevo [3], and the quantum minimax criterion by Holevo

[17] and Hirota and Ikehargl8]. While the quantum Bayes

criterion can treat an arbitrary risk function, we restrict our-
The essential difference between the standard and quaselves to considering the average probability of error.

tum detection theories exists in the measurement process. In The quantum Bayes criterion minimizes the average prob-

guantum mechanics, an observable to be measured can Bhility of error when signal prior probabilities are known by

mathematically generalized to an arbitrary self-adjoint operaan observer. Hence its concept is

tor and the measurement operator is also generalized from a

projection valued measuf@®VM) into a probability operator min P.. (10

valued measuréPOM). Since the POM is the resolution of (i

identity, it can include the meaning of a decision process.

Consequently, we can define the “generalized detection opon the other hand, the concept of the quantum minimax

B. Generalized detection process

erator” based on the POM as criterion is represented as follows:
T 1t
I1;=T1;=0, max min P,=min max P,. (11
) & my {8

:i’ This criterion guarantees the minimum average probability
of error for unknown signal prior probabilities although it is

. the worst one obtained by the quantum Bayes criterion. In

wherel is the identity operator. The generalized detectionthe following, the necessary and sufficient conditions for the

operator means all detection operators except for the stamuantum Bayes and minimax criteria are summarized and

dard detection operators given by the PVM of a signal obsome assumptions are explained to make these conditions

servableg[15]. solvable.

=

]

M
>
=1
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A. Quantum Bayes strategy guantum minimax strategy can provide a simplification of

Let us explain the quantum Bayes strategy first given b>;he derivatio_n processes for the optimum detection operators
Helstrom. When a binary signal is represented by quanturfompared with the cases of Bayds].
statesp, and p, with their prior probabilitiesé; and &,,
respectively, the optimum detection operators can be defined
in terms of the eigenvectors of the following eigenvalue In the most general case, a quantum signal set will consist
equation: of mixed or linearly dependent states. However, in such a

- - case, the analytical derivation of the optimum detection op-

(p2=Npo)|m)=milm), (120 erators is too difficulf1,19). Hence we consider, in this pa-
per, only linearly independent signal sets so that the follow-
ing Kennedy’s lemma can be applied to the derivation of the
optimum detection operators.

Kennedy's lemma. When the signal quantum states are
~ linearly independent, the optimum POM for the average
II,= Z U(—= )| 7 ml probability of error is projection valued20].

! Under this condition the optimum detection operators are
(13 projectors, so that they can be supposed to be orthonormal
R bases of a subspace of the total Hilbert spHcén this case,
IL=>, U(7)| 77, the optimum detection operators are uniquely determined
i from Eqgs. (15 and (16) or Eq. (18) [21]. Therefore this
lemma is very useful in derivation of the optimum detection
operators[22]. Let us call this subspace a “signal space”
Hs since it is spanned by signal quantum states

C. Some assumptions on quantum signal sets

wherex=¢,/&,, and »; and|7;) are an eigenvalue and an
eigenvector, respectively. That is, the optimum detection op
erators for the binary signal set are

whereU(x) is the unit step function defined as follows:

1, x>0, ~
{lwi):pi=1w)¥il}; namely,
Ux)=1{ 12, x=0, (14)
0, x<O0. HCH,
(19
After Helstrom, the quantum Bayes strategy was general- M
ized toM-ary S|gnal_sets by Yugat al. and Holevo md_e-_ |¢>EHS=E cily)  |eiect
pendently. It results in the following necessary and sufficient i=1
conditions: i .
where C stands for the complex number field. The signal
ﬁ'[?ﬁ"éﬁi]ﬁi:Oy Vi, j, (15  space for arM-ary signal set is aM-dimensional Hilbert
2R space in which the optimum detection operators can be rep-
f—éif?i?() Vi (16)  resented by its orthonormal basge;)}:
I =} wi,

whereT is called a “Lagrange operator” defined by (20

M
A A wi|w Y= 68,
P=3 epl. a7 (wle)=2;
=1 where{|w;)} is called a “measurement state.” Then the de-
Since the operatdAF is Hermitian, Eq(16) indicates that the tection operators given by them are generalized dete(_:tlon
~ - : . operators because they are not related to the PVM of a signal
operator (I'= & p) must be a non-negative Hermitian 0p- gpseryable. The observable is not mentioned and the resolu-
erator. tion of identity is valid only for the signal space.
Since the measurement states are orthonormal bases of a

B. Quantum minimax strategy signal space, the signal quantum stdtes)} must be repre-

Let us explain here the quantum minimax strategy. Thesented by them with variableg;=(w;|¢;) as follows:
necessary and sufficient conditions of the quantum minimax

criterion derived by Hirota and Ikehara are as follgds]: |#1) X i) o)
. . S I : (22)
Trilipi=TrlLp;, Vi, o) | Lxan o X d L @)
M(&p— &pITT=0, Vij, (18)  Substituting this representation into the necessary and suffi-
cient conditions of Bayes in Eqél5) and(16), the operator
—&pi=0, Vi. equations for{p;} and {II;} are turned into the ordinary

c-number algebraic equations fpr;; }. That is, the necessary
The second and third equations are equal to the conditions @ind sufficient conditions for the quantum Bayes criterion can
the quantum Bayes strategy, so that the first equation givbe written down as follows:
the minimax point where the average probability of error is
maximized with respect to the signal prior probabilities. This ExiXi — €x;xj; =0, Vi,j, (22)
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TO=0, Vi, (23)  shift of the measurement state, i.¢w;)—|w/)e', so it
makes no difference to the consequently obtained optimum
where T0) is a matrix representation of the operator detection operators.
(I'—&pi) with its elements defined as follows:

0 IV. DERIVATION OF THE OPTIMUM DETECTION
tmn= EmXmmXnm™ &iXmiXni - (249 OPERATORS BY THE QUANTUM MINIMAX STRATEGY

Since the operatord{— ¢;p;) is Hermitian, T() is also a Her- Almost every application of quantum detection theory to
mitian matrix. Equation(23) requires the Hermitian non- practical signal sets has been an investigation into the aver-
negativeness of the matrix. The necessary and sufficient comge probability of error. We give the analytical solutions of
ditions to be a non-negative Hermitian matrix are as followsthe optimum detection operators for some practical quantum
signal sets[13]. The quantum minimax strategy with

defrV=0, Kennedy’s lemma is used in the following derivation of the
0 optimum detection operators for the cases of binary phase
defl"(ks.kz, ... ks)=0 shift, ternary symmetric, ternary phase shift, and quadrature
phase shift coherent state signal sets. The application of the
for (kikz, ... ks=12,... . M;s=12,....M), quantum Bayes strategy with Kennedy’s lemma to some of
(29 these signal sets is given in the Appendix.
where det(ky,k,, ... k) means a principal minor of

T, A. Binary phase-shift coherent-state signal

In practical use of the quantum Bayes strategy, @) In the case of a binary phase-shift coherent-state signal

givesM (M —1)/2 equations foM? variables. Sowe need to set, signal quantum states are represented as
combine them wittM (M +1)/2 equations for inner products [| 4 ,),|4,)]1=[|a),|—a)]. The inner product matrix of

of signal quantum states: these signal quantum states becomes
M M 1
Kij=(¢i|<ﬂj>:gl<¢i|wk><wk|¢j>:gl XkiXi o (26) [kij1=] « 1], (29)

where we assumed that the inner products are the known

observers. Then we hawd? equations foM? variables, so Where «=(a|—a)=exd—2|o|’]. The equations to be
that the solution will be obtained. Since the equations argolved are as follows:

nonlinear, the solution has some variations. Equat&8) is

used to judge which of the solutiofs;} is correct. |X11*= %29,
In the case of the quantum minimax strategy, B®) is
also represented as follows: E1X15,— EoX1X5,= 0,
.. 2: P 2 i i
|xii| *= x5, Vi, X142+ |X0q 2= 1, (30
EXiXji — &xijx5=0, Vi,j, (27)

X127+ %22 *=1,
TO=0, Vi.
X11X1pF Xg1X55= K.
While the first equation in the above condition reduces
(M —1) unknown variables, the prior probabilities are turnedwith the assumption that the variablés;;} are real num-

into (M —1) variables in the case of the minimax strategy.bers, we can obtain the solutions by elementary algebra:
However, these prior probabilities are sometimes assumed to

be equal to each other. This is the reason why the quantum \/—2
minimax strategy can provide a simplification of the deriva- . 1£N1-«
tion process for the optimum detection operators. X117 X22= = 2 '

Finally, the optimum measurement states can be ex-
plained by signal quantum states with the solutjap}:

|ﬁf1> |¢/’1>

=[x;]17*

lom) [¢m) _
The reason why all the variabl¢s;;} are assumed to be real
Furthermore, in practical derivation of the variablesnumbers is that the inner products of the signal quantum
{x;i}, we can assume thgx;;} is not a complex number but states are all real numbers. At the same time, the signal prior
a real number even if some of the inner products of signaprobabilities which give the minimax point of the average
guantum states are complex numbers. This is because suprobability of error are also derived gs=£&,=1/2. The so-
posing{x;} to be complex numbers corresponds to a phasédution which satisfies the condition in E(R3) is as follows:

X12: XZl: + —_—. (31)
(28) 2
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1+ \/1—K2 100

X117 X20= : X
11 22 2 §~\\ @)
-5 X% \\
10 e “ S— -~
Y ~

1-V1-«? T~
X12=X91= T (32) Q® 10°10. \\‘ ™~ -

While the negative version of the above solutidr; X;;}, 1015 e
also satisfies the condition in E(®23), it corresponds to the
phase shift of the measurement states given by(&2). 1018 S

With Egs.(28), (20), and(9), the optimum detection op- 0 2 4 1o 6 8 10

erators and the average probability of error derived by the
guantum minimax strategy are given as follows:

05

~ 1
lem[{l-i- Vi—« }|a><a|+{1— Vi—k }|—a>
(—al=«k(la)(—al+|=a)a])],

04

33) 03

~ 1
M= 57— L1 V1= W)l {14 V1=~ )

(=al=r(la)(~al+|=a)a)], . .
and 1073 102 10! 10°

le?
2
pOPT_ 1-V1-«
e 2 .

0.2

0.1

(34) FIG. 1. Average probability of error for binary phase-shift

coherent-state signal) Moderate value ofa|?; (b) small value of
They are just equal to those derived by the quantum Baye@|2- The solid line stands for the optimum quantum receiver, the
strategy with&;=¢&,=1/2 (see the Appendix It is easy to dashed line for the homodyne recei&QL), and the dotted line
see that the average probability of error by the minimax crifor Kennedy receiver.
terion is the worst one by the Bayes criterion.
The average probability of error by the optimum quantum
receiver in Eq.(34) is compared with that by well-known

1 k k
receivers, such as homodyne and Kennedy rece[\23jsin A
Fig. 1. The homodyne receiver can be realized by current [ij]= k 1 k , (39)
technology and its average probability of error corresponds kK K 1
to the SQL of this signal set. That is,
PS=Erfd V4|a|?], (35  wherek=(0|a)=(0|— a)=exd —|a|?/2]. It is assumed that

the variablesx;;} are real numbers. Furthermore, the prior
where Erf¢x] is the complementary error function defined probabilities for signals 2 and 3 are assumed to be equal
as follows: (&,=£3) because the inner product matrix is symmetric and

the minimax point for classical ternary symmetric signals has

1 o0 . .
Erfc= extf — 72/2]d. (30) ']Eh:ls prqperty. Then we can reduce the number of variables as
o) x ollows:
Kennedy receiver is a receiver whose average probability of a d d
error is near optimum while its construction is very simple. b ¢c e
Its average probability of error is as follows: [xjil= b e c ' (39
PEeeM= 5 exd — 4|al?]. (37

where the conditiom?=c? is not applied yet because its use
B. Ternary symmetric coherent-state signal at this stage complicates the derivation. Substituting them
In the case of a ternary symmetric coherent-state signdnt0 Ed.(27), the equations to be solved become
set, signal quantum states are represented as
[l #1).|42).| ¢ =[10).|@).| - @)]. Then the inner product trad— 15
matrix can be given as follows: ! 2

bc=0,
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a?+2d%=1,

b*+c?+e’=1, (40)

ab+cd+de=k,
b2+2ce=k*,

whereé, is a prior probability for signal 1. The first equation
in the above equations is used to determine the prior prob-
abilities, and the second through the last equations can be
solved in terms ob [1]. After that, the conditiora®=c? is
applied toa andc to deriveb as a function ofk. By this
procedure we have eight variations of the solution. By means
of Eq. (23) the appropriate solution can be selected. It results
in a change of the two solutions with respect to the square of
amplitude| a|2.

The optimum detection operators for three-dimensional
signals| 1), ), #3)] can be represented as follows:

1
1= a{mi 2 YDl +my 15 )

X throl + M 19 tha) (gl + My o1 o) (hra| + ;2] )
X (W] + 1 od o) (hra| + My g1 ) (Y| + 1y 50l 3)
X (o] + 0 3q tha)( 3l } (41)
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In the case of the ternary symmetric signal, the parameters FIG. 2. Average probability of error for ternary symmetric

are
d=4(1-k??(1+k%H?(1—k%,
my 11=4(1— k% (1+k%2F?
My 15~ My 137 My 21~ My 31
=4(1—k*(1+k*F{b(1—k? —kF},

My 2= My 23= My 3= My 35= 4(1— k) {b(1—-k?) —KF}?,

My 11= Mg 1,=D?, (42)
My, 15= My 51= M3 13= Mz 3= —DE,
My,13= My, 31= Mg 1,= M3 ;= DE_,
My 23= My 35= Mg 53= Mg 3= —E L E_,
My 0= M3 33~ Ei )
My 35— Mg 2= E2,
where
b=(—B+BZ—4AC)/2 for |a|?<In[1+ 2],
(43
(-B—BZ—4AC)/2 for |a|?>In[1+ 2],
with

A= —2{(k*+2k>—1)2+8k?,

coherent-state signal) Moderate value of|?; (b) small value of
|@|?. The solid line stands for the optimum quantum receiver and
the dashed line for the homodyne recei{®QL).

B=8k\(1-k®)(1+K9,
C=(1+kH{(k*+2k?>—1)%2—(1—Kk8)},
and
D=2b(1+k*1-K*,

E.=[(1—-K?(1+k% = J1—Kk¥2bk+(1-k?F}],
(44)

F=\1-2b%+k"

The average probability of error is also obtained as follows:

1
POPT=1- E{1— (1/2A%)(B2—2AC*=BVB?—4 AC)

+v1-k8—[(1—-k%/A%(B2-2AC=B\B?~4 AC)!,

(45)

where + of * is valid for |a|?<In[1+2] and — is for
|a|?>In[1+2].
In Fig. 2, the average probability of error by the optimum
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guantum receiver in Eq45) is compared with that by a I=(1+2K,)J, (51)
homodyne receiver since it is the SQL of this signal set;

namely, J=V1+S—-K,,
pSQ— ¢Erid \[al2], (46) S=(1-Ko)?=-3KE.

where the equal prior probability of signals is assumed. 1o average probability of error becomes

C. Ternary phase-shift coherent-state signal pOPT_ 2(3—S—- \/EI) (52
In the case of a ternary phase-shift coherent-state signal ¢ 9 '
set[| ¢ 1)), [¥)] = [la),|ae® ™), |ae™?7 )] the in-
ner pméﬁuct ?%atrigz becomzas as fongws; ) On the other hand, the SQL of this signal set is given by
the heterodyne receiver. It results in
1 Ko+iKs Ke—iKg o 2
i i e +2(pexytpe;) —2pespe
[al=| KemiKe 1 KetiKe|, @7 pgoPATIPEATRRITIREDE sy
Kot+iKs Ke—iKg 1
where
where K. =kcog(y/3/2)|a|?], Ks=k sin(y3/2)|a|?], and
k=exd —3|¢|¥2]. With the analogy of the classical mini- V2(9|al?~4In2)
max solution, all signal prior probabilities are assumed to be pe,=Erfc 17a] ,
equal. Then the variable matrix can be supposed to be
. : 2(9|al?+4In2
a b+ic b-ic peys=Erfc] V2 |12||a| ) : (54)
— +'
[X;i1= b—ic a b+ic | (48)
b+ic b—ic a V6lal
pe,=Erfc > |

Then we need to solve the following equations: . .
The average probability of error by the optimum quantum

a?+2b%+2c2=1, receiver in Eq.(52) and that by the heterodyne receiver in
Eq. (53) are compared in Fig. 3.
2ab+b?—c?=K,, (49
D. Quadrature phase-shift coherent-state signal

—2ac+2be=Ks. In the case of a quadrature phase-shift coherent-state sig-

For this signal set, the solution also has some variations simf?& setl[y1), |2), [¥3), |9a)] =[le)lia).|—a),[=-ia)],
larly to the case of a ternary symmetric signal set. Eacfin® inner product matrix becomes

variatipn must_ be checked for its_ Hermitian_ non- 1 Ko+iKg k2 K.—iKg
negativeness. Finally, the accurate solution can be identified K.—iK. 1 Ko+ iK. K2

and the optimum detection operators and the average pro?k__]z (55)
ability of error are obtained. The form of the optimum de-~ " k2 Ko—iKg 1 Ko+iKg!'
tection operators is as in E¢41). The parameters are as K +iK K2 K —iK 1
follows: c s ¢© s
d=18522, where
, k=exd —|a|?],
My 11= My 25= M3 33= G*,
K.=k cog|a|?], (56)

My 1= m;lS: m*1,21: M1 31= My 1= M3 r3= m§,21: m;,sz .
K=k sin|a|?].
=M’ 13= Mg 3= Mg 3= M3 3= GH*, (50)
With the symmetry of the inner product matrix and the as-
My 2= My 33= My 11= My 35= M3 3= M3 55=|H | 2 sumption that all prior probabilities are equal, the variables
to be determined can be supposed to be
My 23= m’1‘,32: rn*2,13: My 31= M3 15= mg,le H?,
a b+ic d b—ic
b—ic a b+ic d

G=12J(S+21), [Xil=| d b—ic a b+icl- (57)

b+ic d b—ic a
H=—J(1—29)+3iK/1+2K,,

where
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100 A C
t11=t=1t33= t44:4(A2— B2 4(CZ_D?)"

tio=tyg=tg =ty =t],=t5=1t5=1t)3

107
a - A 60
- 4(A2_BZ) |4(CZ_D2)1 ( )
10710,
tig=ty=tg=t A + c
10_14 137 247 31— 42_4(A2_BZ) 4(C2_D2)a
0 2 4 o 6 8 10 and
B(1+k?—4B?)
AT
0.67 c
\/1+k2—\/(1+k2)2—4K§
B= ,
22
Q:) 0.33 (61)
_ D(1-k*-4D?)
e
%0 102 107! 10° \/1— k2—(1-k?)2—-4K3
lot? D.==+

i 2\2
FIG. 3. Average probability of error for ternary phase-shift . 2 .
coherent-state signals) Moderate value ofa/|?; (b) small value of where the— 02f * is for nm<|a|*<m/2+nm and + is for
|a|2. The solid line stands for the optimum quantum receiver and™2+nw<|a|*<(n+1)m. The average probability of error

the dashed line for the heterodyne recei(@®L). by these optimum detection operators is
PPT=1-(A-C)2 (62)
Then we have the equations to be solved as follows: The average probability of error in E(2) is compared with
the SQL, i.e., that of the heterodyne receiver, in Fig. 4. The
a’+d?+2(b%+c?)=1, average probability of error by the heterodyne receiver is as
follows:
2b(a+d)=Ke, PSe=2Erd \[al?] - (Erf[\[aPD2. (63
(58

V. PHYSICAL INTERPRETATION
—2c(a—d)=Kg, OF THE OPTIMUM DETECTION PROCESS

The average probability of error derived in the previous

2(ad+b?—c?) =k section is much superior to the standard quantum limit which
is given by the optimum standard detection operators derived

There are 16 variations of the solution and some of thenirom the conventional receivers in Table I. It is important to
satisfy the Hermitian non-negative condition in EB3) par-  analyze the reason why the standard quantum limit is over-

tially. In detail, similarly to the case of the ternary symmetric come. In this section, we would like to interpret the physical
signal, the optimum detection operators have two variationsneaning of such improvement as a quantum interference be-
one is valid fornw<|a|?><a/2+nm and the other is for cause overcoming the standard quantum limit is a purely

w2+ nw<|a|?<(n+1)m. quantum mechanical phenomeri@4,25. That is, the detec-

The full description of the optimum detection operatorstion process based on standard detection operators can be
for a quaterary signal set becomes too long, so we simplify itompletely described by a projection valued measure, so that
as follows: the measurement operators never introduce quantum interfer-

ence. On the other hand, in the case of the detection process
. 4 4 by the generalized detection operators introduced in Sec. I,
mL=> > tithl ) (vl - (59  the quantum interference is obvious since the detection op-
j=1k=1 erators can be decomposed to the measurement states which
are linear combinations of the signal quantum states; namely,
The optimum parameters are a measurement state is represented from(E8).as follows:
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FIG. 4. Average probability of error for quaternary phase-shi
coherent-state signal) Moderate value ofa|?; (b) small value of
|a|2. The solid line stands for the optimum quantum receiver and

the dashed line for the heterodyne recei(@®L).

M
|wj>:|(§=:1 Cyjl i)

100

(64)

where{c,;} is an element of the matri@«ji]*l in Eq. (28).
Therefore the quantum interference in a detection process yecessary and sufficient conditions into ordinarpumber
some generalized detection operators can be visualized aggebraic equations because the optimum detection operators

follows:

P(jli):TrIBiﬁj:|<¢i|wj>|2:‘<‘r//i

M
(Z Ck;j
k=1

2

(65)

)

1699

k={(a|—a)=exd —2|a|?].

The third term of Eq(66) explicitly represents the quantum
interference. This term is essential to explain the difference
between the optimum detection and a near optimum one. In
detail, the near optimum detection for the binary signal is
well known as the Kennedy receivi23]. The detection op-
erators of the Kennedy receiver become as follp26:

I, =|a)(al,
(68)

ﬁ2=|A—|a)(a|.

In this representation, however, it may be difficult to see the
quantum interference explicitly while the average probability
of error is also much superior to the standard quantum limit.
According to the detailed analysis of the effect of the type
of quantum interference in E66), rather the reduction of
the average probability of error is caused by the second term
with {@| — a)? as well. Here this term should be regarded as
a kind of quantum interference because of the followiFige
detection operators by which the standard quantum limit is
overcome do not commute with the signal observable, and it
has been shown that the above statement corresponds to
guantum interferencgl5]. Thus our optimum quantum de-
tection process is absolutely interpreted as the quantum in-

ﬁterference.

VI. CONCLUSION

The optimum detection operators and the average prob-
ability of error for several linearly independent signal sets
were derived by the quantum minimax strategy with
Kennedy’'s lemma. The effectiveness of Kennedy’s lemma
and the minimax strategy lies in the following.

Kennedy's lemma can convert the operator equations with

are regarded as projection valued measyfgM) on the
signal space. The signal space spanned by signal quantum
states is a closed subspace of the total Hilbert space. There-
fore the derived optimum detection operators are orthonor-
mal resolutions of the identity on the signal space. The
unigueness of the solution is also guaranteed. In practice,

For the binary phase shift coherent state signal, one of theome of the variables can be assumed to be real numbers

error probabilities is

P(2|1)=Tr[)1ﬁ2=|<a|w2>|2=|<a|(clz| a)+Cyl — a))?

=cl,cofal— a)?+2cCof a| — a),

where
1-V1—«&?
C1p=— :
© 2(1— k2
1+ V1-«?
C22_ i

(66)

(67)

even if the inner products are complex numbers. Further-
more, when the inner products are all real numbers, all vari-
ables can be assumed to be real. This assumption has no
effect on the optimum detection operators and the minimum
average probability of error.

The quantum minimax formula can reduce the number of
variables with some analogy to the classical theory. That is,
the signal prior probabilities are governed by the signal ar-
rangement so as to satisfy the minimax strategy. Then some
of the signal prior probabilities can be supposed to be equal
when the signal arrangement is symmetric. In practice, for
ternary and quadrature phase-shift coherent-state signal sets
the prior probabilities for all signals, and for a ternary sym-
metric coherent-state signal set those for signals 2 and 3 are
assumed to be equal before the derivations while the equal
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signal prior probability is derived for a binary phase-shift 2

coherent-state signal set. R= —Ak?  k=(a|—a)=exd —2|a|?].

The equations to be solved are nonlinear, so that the so- (A3)
lution has some variations. Although E@®3) can identify
the accurate solutions, some of them must be switched b&jnce 5, <0 and 7,0, the optimum detection operator
tween two solutions with respect to the square of the signalpould be represented by each eigenstate:
amplitude.

Finally, the optimum detection operators and the mini- ﬁ1:|771><771|,
mum average probability of error are obtained with Egs.
(28), (20), and(9). They are related to quantum eavesdrop-
ping. The derived optimum detection operators guarantee the
minimum average probability of error for unknown signal
prior probabilities, although it is the worst one attained by|n accordance with Kennedy’s lemma these eigenstates cor-
the quantum Bayes strategy. Itis true that the quantum Bayggspond to the measurement states
strategy can give the solutions for some of the above signal

1+X\

2

(A4)

1:[2:|712><712|-

sets by eigenvalue equations. However, the quantum mini- | 71)=] 1),
max strategy can derive more solutions than the quantum (A5)
Bayes strategy and its derivation process is much systematic.

A physical interpretation of the optimum detection opera- | 72)=| w5).

tor is tried and it can be regarded as a kind of quantum

interference. That is, the optimum detection process induceSubstituting the relation of Eq21) into Eg. (A1) with the

the quantum interference in a measurement process with opssumption that all the variabl¢s; } are real numbers, we

timum control so as to reduce the average probability ofcan obtain the solutions although the calculation process is

error. very tedious and requires a skillful algorithm. The accurate
These derivations are based on Kennedy’s lemma whersolution is selected by the condition in E@3).

the signal quantum states is assumed to be linearly indepen- Finally, with Eq.(20) and Eq.(28), the optimum detection

dent. Therefore the derivation of the optimum detection op-operators for arbitrary signal prior probabilities can be de-

erators for signals with linearly dependent or mixed states isived as follows:

impossible with the above algorithm. We will find another

algorithm to derived the optimum detection operators with .

linearly dependent signals. lem[{ZR_z’\Ker(l“L MHa)(al+{2R+2x?
ACKNOWLEDGMENT —(1+ M)} —a)(—a|=k(2R+1-N)(|a)—al+
This work was supported by grants from the Ministry of |—a)a)],
Education. (A6)

APPENDIX: DERIVATION OF T — 2 2
IL=-——>5[{2R+2Ak“—(1+ A +{2R-2
THE OPTIMUM DETECTION OPERATORS 2 4R(1— k?) [{ K= )}|a><a| { “

BY THE QUANTUM BAYES STRATEGY
Q +(1+ M)} —a)—a| = k(2R=1+N)(|a){—a|+

Even in the case of a binary phase-shift coherent-state
signal sef| #1),|¥2)]1 =[|@),| — a)] the c-number equations | —a)(al)].
in Egs.(22) and(23) based on the quantum Bayes strategy. . . :
are too difficult to be solved. However, the eigenvalue equa:rhe average probability of error by these optimum detection

tion in Eg. (12), which is the alternative equation by the operators becomes

quantum Bayes strategy, can give the solution for arbitrary
prior probabilities. The eigenvalue equation becomes pOPT_ 1-V1-46,6k (A7)
e
2
(|=a)(—al=Na)aD)|m)=mlm) (A1)

It is also possible to derive the optimum detection opera-
where A\=¢£;/¢,. Two eigenvalues are obtained from the tors by the quantum Bayes strategy for ternary phase shift
above equation: and quaternary phase-shift coherent-state signal sets, where

all the signal prior probabilities are assumed to be efiligl
_1-A However, this assumption is just equal to the results obtained
by the quantum minimax strategy. Furthermore, in the case
(A2) of the ternary symmetric signal set, the derivation of the
optimum detection operators is too difficult to obtain the
1= analytical solution. Hence we can say that the quantum mini-
max strategy is more effective in the derivation of the opti-
mum detection operators because it can provide more solu-
where tions than the quantum Bayes strategy.
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